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Abstract— Moving Horizon Estimation (MHE) is an
optimization-based approach to nonlinear state estimation. The
computational burden associated with the online solution of the
corresponding nonlinear optimization problems poses a major
challenge when applying MHE in practice. Motivated by these
considerations, we introduce zero-order MHE, an inexact,
but computationally less expensive variant of exact MHE.
Zero-order MHE is based on the Gauss-Newton algorithm
and avoids online evaluation of derivatives and factorizations.
As for exact MHE, the estimation error produced by zero-
order MHE would become zero in the absence of noise and
model-plant mismatch, and grows linearly with the noise
level. In addition, we present a structure-exploiting approach
for recursive factorization of the Gauss-Newton Hessian
approximation which allows for efficient arrival cost updates.
Zero-order MHE is compared to exact and linear MHE
both theoretically, in terms of estimation error bounds, and
numerically, by applying the methods to a state estimation
example.

I. INTRODUCTION

Moving Horizon Estimation (MHE) is an optimization-based
approach to nonlinear state estimation where the state esti-
mate is determined by solving a nonlinear optimization prob-
lem that takes into account a fixed number of measurements
on a moving horizon in the past.
Although previous work, [1], [2], has shown that MHE might
outperform the widely used Extended Kalman Filter (EKF),
the application of MHE is in practice often prevented by its
considerably higher computational complexity [1], [3].
Under the assumption of Gaussian noise and in the absence
of inequality constraints, the MHE state estimate is obtained
as the solution of an unconstrained nonlinear least-squares
problem. This kind of optimization problem is usually stated
as a nonlinear root-finding problem such that a local mini-
mizer can be obtained via Newton-type iterations. The com-
putational cost of an MHE iteration is thus mainly associated
with sensitivity generation and factorization of the Hessian
approximation used within the Newton-type iterations.
In this paper, we present and analyse zero-order MHE,
an inexact, but computationally less expensive variant of
MHE, which is based on the Gauss-Newton (GN) algorithm.
The main idea is to use fixed derivatives to avoid the
computational cost induced by online sensitivity generation
and factorization. The method is a direct translation of the
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Katrin Baumgärtner and Andrea Zanelli are with the Department of Mi-
crosystems Engineering (IMTEK) and Moritz Diehl is with the Department
of Microsystems Engineering (IMTEK) and Department of Mathematics,
University Freiburg, 79110 Freiburg, Germany.

katrin.baumgaertner@pluto.uni-freiburg.de

ideas proposed in [4], [5] from the context of Nonlinear
Model Predictive Control (NMPC) to the case of MHE.
Furthermore, we present an efficient method for updating
the arrival cost within zero-order MHE which is based on a
recursive factorization of the Hessian approximation.
In practice, we usually have to satisfy strict upper bounds
on the computation time that is available per iteration.
In this case, the number of Newton-type iterations has to
be limited which directly leads to the Real-Time Iteration
(RTI) framework [6], [4], [7], [8]. In addition to exact and
zero-order MHE, we therefore apply the corresponding RTI
variants to an example state estimation problem and discuss
the estimation results.
The paper is structured as follows. The exact MHE formu-
lation as well as linear and zero-order MHE are introduced
in Section II. In Section III, we present upper bounds on
the estimation error produced by exact, linear and zero-order
MHE. In Section IV, the recursive factorization approach
for the Hessian approximation is described. In Section V,
a multi-level algorithm that combines zero-order MHE and
the real-time iteration framework is outlined. In Section
VI, we apply exact, zero-order and linear MHE as well
as the corresponding RTI variants to a textbook example
and discuss the estimation results, which show competitive
performance of zero-order MHE.

II. MOVING HORIZON ESTIMATION FORMULATION AND
ALGORITHMS

In the following, the Moving Horizon Estimation (MHE) for-
mulation and zero-order MHE are introduced. Furthermore,
we briefly describe linear MHE which will serve as a baseline
in both Section III and Section VI.
For notational simplicity, we regard time-invariant systems
of the following form:

xi+1 = f(xi) + wi, (1a)
yi = h(xi) + vi, (1b)

with states xi ∈ Rnx , measurements yi ∈ Rny , state and
measurement disturbances wi ∈ Rnx and vi ∈ Rny . The
disturbances wi, vi are assumed to follow a zero-mean
Gaussian distribution. We make the assumption that the
functions f and h are twice continuously differentiable.
We consider the following MHE formulation:

min
x

1

2
‖x0 − x̂0‖2Q0

+
1

2

N−1∑
i=0

‖xi+1 − f(xi)‖2Q

+
1

2

N∑
i=0

‖h(xi)− yi‖2R,
(2)



with optimization variables x = (x0, . . . , xN ). The matrices
Q0, Q ∈ Rnx×nx and R ∈ Rny×ny are assumed to be
symmetric and positive definite.
Let V (x) be the objective function of the above optimization
problem. It can be rewritten in the following compact form:

V (x) =
1

2
‖M(x)− Y ‖2, (3)

where

M(x) = W
1
2



x0

x1 − f(x0)
...

xN − f(xN−1)
h(x0)

...
h(xN )


, Y = W

1
2



x̂0

0
...
0
y0

...
yN


, (4)

and W = diag(Q0, Q, . . . , Q,R, . . . , R). Thus, the MHE
problem corresponds to solving the following nonlinear least-
squares problem:

min
x

1

2
‖r(x)‖2 (5)

with residual function r(x) = M(x)− Y.
A. Exact MHE and the Gauss-Newton Algorithm

If the MHE problem (5) is solved with the Gauss-Newton
(GN) algorithm and xk = (xk0 , . . . , x

k
N ) denotes the current

iterate, the next GN iterate xk+1 is given by the equation

B(xk)
(
xk+1 − xk

)
= −J

(
xk
)>
r
(
xk
)
, (6)

where J
(
xk
)

= ∂r
∂x

(
xk
)

= ∂M
∂x

(
xk
)

is the Jacobian of the
residual function and B(xk) = J

(
xk
)>
J
(
xk
)

is the GN
Hessian approximation.
Within each GN iteration, a substantial part of the overall
computation time is required for evaluation of J

(
xk
)

and
factorization of the GN Hessian approximation B

(
xk
)
.

B. Zero-order MHE

Zero-order MHE does not evaluate derivatives online, but
instead uses a fixed Jacobian approximation J̄ and, in
particular, a fixed Hessian approximation B̄ = J̄>J̄ which
can be evaluated and factorized offline. The method is called
zero-order, as only function evaluations and no higher order
derivatives are required online.
The zero-order GN iteration is defined by the following
equation:

B̄
(
xk+1 − xk

)
= −J̄>r

(
xk
)
, (7)

where B̄ = J̄>J̄ is the fixed Hessian approximation, xk is
the current iterate, xk+1 is the subsequent iterate.
The computational cost of a single zero-order GN step
corresponds to the evaluation of the residual function r

(
xk
)

and a linear system solve with prefactorized Hessian approx-
imation B̄.
Comparing (7) with the original GN iteration (6), where
the computation of a single step requires evaluation of

r
(
xk
)

and J
(
xk
)

as well as factorization of B
(
xk
)
, the

computational cost is significantly reduced.
Assuming that the zero-order GN iteration converges, the
zero-order MHE estimate is defined as the limit of the
sequence of zero-order GN iterates.

C. Linear MHE

With linear MHE, the nonlinear model is approximated by a
fixed linearization, which is used across all MHE iterations.
In this case, the optimization problem that has to be solved in
each iteration reduces to a convex, quadratic program (QP):

xlin ∈ arg min
x

1

2
‖Mlin(x, x̄)− Y ‖2 , (8)

where x̄ denotes the linearization point. The linearized model
Mlin is given by

Mlin (x, x̄) = M (x̄) + J̄ (x− x̄) (9)

with J̄ = J (x̄). Assuming that B̄ = J̄>J̄ is invertible, the
solution xlin to (8) is unique and given by

xlin = x̄− B̄−1J̄> (M (x̄)− Y ) . (10)

D. Asymptotic Contraction Rate

Local convergence of the zero-order MHE scheme follows
directly from the convergence analysis in [4].
If the exact and zero-order GN iterates converge to xexact

and xzo respectively, the asymptotic contraction rate [9] is
given by

κexact = ρ

(
I−B

(
xexact

)−1 ∂2V

∂x2

(
xexact

))
, (11)

κzo = ρ
(
I− B̄−1

(
J̄>J(xzo)

))
, (12)

where ρ(·) denotes the spectral radius. If J̄ is similar to
J(xzo), we would thus expect fast (local) convergence of
zero-order MHE.

III. ESTIMATION ERROR BOUNDS

In the following, we assess the estimation error, which is the
deviation of the estimated state trajectory from the true state
trajectory, as a function of the measurement noise. We make
the simplifying assumption that the true state trajectory is
not disturbed by noise.
Let xtrue = (xtrue

0 , . . . , xtrue
N ) denote the true state trajectory

where, by assumption,

xtrue
k+1 = f(xtrue

k ), k = 0, . . . , N − 1.

We define the disturbance vector ε ∈ Rnε , nε = (N+1)(nx+
ny), as

ε = W
1
2

(
x̂0 − xtrue

0 , w0, . . . , wN−1, v0, . . . , vN
)
,

where wk = 0, k = 0, . . . , N 9 1, as we assumed that there
is no state noise. We can then define Y as a function of ε:

Y (ε) = M(xtrue) + ε. (13)



More explicitly, equation (13) is given as

W
1
2



x̂0

0
...
0

y0

...
yN


= W

1
2



xtrue
0 + (x̂0 − xtrue

0 )

xtrue
1 − f(xtrue

0 )
...

xtrue
N − f(xtrue

N−1)

h(xtrue
0 ) + v0

...
h(xtrue

N ) + vN


.

Consequently, the residual function r is parametric in ε,

r(x, ε) = M(x)− Y (ε), (14)

with M(x) as defined in (4) and Y (ε) as defined in (13).
In order to derive bounds on the estimation error, we regard
the disturbance vector ε as a parameter within the optimiza-
tion problems that are solved by exact, zero-order and linear
MHE.
If the exact GN iterates converge to xexact(ε) for given Y (ε),
then xexact(ε) is a solution to the parametric nonlinear root-
finding problem defined by:

J(x)>r(x, ε) = 0. (15)

With xk = xk+1, this follows directly from (6). Equa-
tion (15) corresponds to the first-order necessary condition
of optimality of the original MHE formulation (2) given as:

Pexact(ε) : xexact(ε) ∈ arg min
x

V (x, ε), (16)

where V (x, ε) = 1
2‖r(x, ε)‖2, and r(x, ε) as defined in (14).

If the zero-order GN iterates converge to xzo(ε), then xzo(ε)
is a solution to the parametric nonlinear root-finding problem
defined by:

J̄>r(x, ε) = 0, (17)

which is directly obtained from equation (7) by setting
xk+1 = xk. As shown in [4], this equation can be interpreted
as the first-order condition of optimality of a perturbed
variant of the original problem Pexact(ε), which is given by:

Pzo (ε, x̄) : xzo(ε, x̄) ∈ arg min
x

Vzo (x, ε, x̄) , (18)

where

Vzo (x, ε, x̄) =
1

2
‖r(x, ε)‖2 + g (ε, x̄)

>
x,

g (ε, x̄) =
(
J̄ − J (xzo (ε, x̄))

)>
r (xzo(ε, x̄), ε) ,

with J̄ = J (x̄). For linear MHE, the corresponding para-
metric QP is given as

Plin (ε, x̄) : xlin (ε, x̄) ∈ arg min
x

Vlin (x, ε, x̄) , (19)

where

Vlin (x, ε, x̄) =
1

2
‖rlin (x, ε, x̄) ‖2,

rlin (x, ε, x̄) = Mlin (x, x̄)− Y (ε),

with Mlin (x, x̄) as in (9) and Y (ε) as in (13).

Lemma 1. Suppose J(xtrue)>J(xtrue) is invertible. Un-
der this assumption, there is a nonempty neighbourhood
N (xtrue) such that both J(x)>J(xtrue) and J(x)>J(x) are
invertible for all x ∈ N (xtrue).

Proof. The eigenvalues of a matrix are given as the roots
of its characteristic polynomial. The coefficients of the char-
acteristic polynomial are continuous functions of the entries
of the matrix. As the roots of a polynomial function depend
continuously on its coefficients [10], we can conclude that
the eigenvalues of a matrix are a continuous function of its
entries.
Continuity of J(x) thus implies continuity of the eigenval-
ues of J(x)>J(xtrue) and J(x)>J(x) with respect to x.
As J(xtrue)>J(xtrue) has only nonzero eigenvalues, there
must be a nonempty neighbourhood N (xtrue) of xtrue such
that the eigenvalues of J(x)>J(xtrue) and J(x)>J(x) are
nonzero for all x ∈ N (xtrue).

Theorem 1. Suppose J(xtrue)>J(xtrue) is invertible. Then
there are nonempty neighbourhoods N (0) ⊆ Rnε and
N (xtrue) ⊆ R(N+1)nx of zero and the true state trajectory
such that the solution maps

xexact : N (0)→ Rnx ,
xzo : N (0)×N (xtrue)→ Rnx ,
xlin : N (0)×N (xtrue)→ Rnx ,

with xexact(0) = xzo(0, x̄) = xlin(0, xtrue) = xtrue, are
well-defined and the following holds:

(a)
∥∥xtrue − xexact(ε)

∥∥ = O (‖ε‖) ,
(b)

∥∥xtrue − xzo (ε, x̄)
∥∥ = O (‖ε‖) ,

(c)
∥∥xtrue − xlin (ε, x̄)

∥∥ = O (‖ε‖) +O
(
‖xtrue − x̄‖2

)
.

Proof. For part (a), consider again the nonlinear root-finding
problem defined by

J(x)>r(x, ε) = 0. (20)

If there is no noise, the residuals at xtrue are zero, i.e.
r(xtrue, 0) = 0. Thus, xtrue satisfies (20) for ε = 0. With
r(xtrue, 0) = 0, we additionally have

∂

∂x

(
J(x)>r(x, ε)

)∣∣∣∣
(x,ε)=(xtrue,0)

= J(xtrue)>J(xtrue).

By assumption J(xtrue)>J(xtrue) is invertible. We can
therefore apply the Implicit Function Theorem at (x, ε) =
(0, xtrue), which implies that the solution to (20) is locally
unique, i.e. the solution map xexact( · ) is well-defined.
Besides, the solution map satisfies xexact(0) = xtrue and
is Lipschitz continuous in a neighbourhood of zero.

For part (b) and (c), we first note that Lemma 1 implies
that there is a nonempty neighbourhood N (xtrue) such that
J(x̄)>J(xtrue) and J(x̄)>J(x̄) are invertible for all x̄ ∈
N (xtrue). For both linear and zero-order MHE, we will
consider only linearization points within this neighbourhood.



For part (b), suppose x̄ ∈ N (xtrue). We consider the
nonlinear root-finding problem given by

J̄>r(x, ε) = 0, (21)

with J̄ = J(x̄). For ε = 0, the true state trajectory is a
solution to (21), since r(xtrue, 0) = 0. Besides, the Jacobian

∂

∂x

(
J̄>r(x, ε)

)∣∣∣∣
(x,ε)=(xtrue,0)

= J̄>J(xtrue)

is invertible by assumption. Therefore, we can apply the
Implicit Function Theorem at (x, ε) = (xtrue, 0). It implies
that the solution to (21) is locally unique and can thus
be described by xzo( · , x̄). The solution maps satisifies
xzo(0, x̄) = xtrue and is Lipschitz continuous w.r.t. ε in a
neighbourhood of zero.

For part (c), we again consider x̄ in N (xtrue) such that
J(x̄)>J(x̄) is invertible. In this case, xlin(ε, x̄) is explicitly
given as:

xlin(ε, x̄) = x̄− B̄91J̄> (M(x̄)− Y (ε)) . (22)

The solution map xlin( · , x̄) is continuously differentiable in
ε which implies that

xlin(ε, x̄) = xlin(0, x̄) +O (‖ε‖) . (23)

We now consider xlin(0, x̄, ), which is continuously differ-
entiable in x̄. At x̄ = xtrue, we have M(x̄) − Y (0) = 0.
Therefore, the derivative at x̄ = xtrue is given as

∂xlin

∂x̄
(0, x̄)

∣∣∣∣
x̄=xtrue

= I− B̄91J̄>J̄

∣∣∣∣∣
x̄=xtrue

= 0.

As the first-order derivative is zero at x̄ = xtrue, the Taylor
expansion of xlin(0, x̄) at x̄ = xtrue is given by

xlin(0, x̄) = xlin(0, xtrue) +O
(
‖x̄− xtrue‖2

)
.

Plugging this into (23), we obtain

xlin (ε, x̄) = xlin
(
0, xtrue

)
+O

(
‖x̄ 9 xtrue‖2

)
+O (‖ε‖) .

As xlin(0, xtrue) = xtrue, we can conclude that

‖xlin(ε, x̄)− xtrue‖ = O
(
‖x̄− xtrue‖2

)
+O (‖ε‖) .

IV. RECURSIVE FACTORIZATION AND EFFICIENT
ARRIVAL COST UPDATES

Up to now, we assumed that the only quantity that changes
from one MHE problem to the next is the vector Y which
includes the measurements y0, . . . , yN . Within the MHE
framework, we would, however, update the arrival cost as
well. In the following, we present a recursive approach for
the factorization of the Hessian approximation B̄ that allows
for efficient updates of the arrival cost.
Let J̄ = J (x̄) where x̄ = (x̄0, . . . , x̄0). We assume that
J̄ has full rank, which implies that B̄ = J̄>J̄ is positive
definite.

The linear system, which has to be solved in each zero-order
GN iteration, is given as:

J̄>J̄ p = c, (24)

where p = xk+1 − xk denotes the GN step. The right-hand
side c is given as c = −J̄>r

(
xk
)
.

To simplify notation, we consider the case N = 3. The linear
system (24) is then explicitly given as

P0 (QA)>

QA P1 (QA)>

QA P2 (QA)>

QA P3



p0

p1

p2

p3

 =


c0
c1
c2
c3

 , (25)

where A = −∂f∂x (x̄0), C = ∂h
∂x (x̄0) and

P0 = Q0 +A>QA+ C>RC,

Pk = Q+A>QA+ C>RC, k = 1, 2,

P3 = Q+ C>RC.

We can exploit the block-tridiagonal structure of the matrix
B̄ = J̄>J̄ to recursively eliminate variables from (25) using
Schur complements. Let P̄3 = P3 and c̄3 = c3. The linear
system that is defined by the last two equations of (25) then
reads: [

QA P2 (QA)>

QA P̄3

]p1

p2

p3

 =

[
c2
c̄3

]
. (26)

As B̄ is positive definite, we have P̄3 � 0. The last equation
of (26) thus implies

p3 = P̄−1
3 (c̄3 −QAp2) .

Together with the first equation of (26), we obtain

QAp1 +
(
P2 −A>Q>P̄−1

3 QA
)︸ ︷︷ ︸

P̄2

p2 = c2 −A>Q>P̄−1
3 c̄3︸ ︷︷ ︸

c̄2

.

The system of linear equations (25) that we originally started
with has been reduced to P0 (QA)>

QA P1 (QA)>

QA P̄2

p0

p1

p2

 =

c0c1
c̄2

 . (27)

This reduced matrix is again positive definite, as it is the
Schur complement B̄/P̄3 of P̄3 in B̄. Thus, the reduced
linear system (27) has exactly the same structure as the orig-
inal linear system (24) such that we can proceed eliminating
variables by applying the procedure we just described.
In summary, the recursion is given by the following formulas.

Backward sweep:

P̄N = PN ,

P̄k = Pk −A>Q>P̄−1
k+1QA, k = N − 1, . . . , 0,

c̄N = cN ,

c̄k = ck −A>Q>P̄−1
k+1c̄k+1, k = N − 1, . . . , 0.



Forward sweep:

p0 = P̄−1
0 c̄0,

pk+1 = P̄−1
k+1 (c̄k+1 −QApk) , k = 0, . . . , N − 1.

With this method, the computational cost associated with
the factorization of the Hessian approximation is O

(
Nn3

x

)
.

For an overview of alternative block-structured factorization
approaches for MHE, we refer to [11].
If we want to update P0, which is the only quantity de-
pending on the arrival cost matrix Q0, the last step of the
recursion has to be recomputed. This is associated with
a computational cost of O

(
n3
x

)
. Within zero-order MHE,

it is thus possible to efficiently update the arrival cost
online, while avoiding a full refactorization of the Hessian
approximation.

V. MULTI-LEVEL REAL-TIME ITERATION ALGORITHM

In the following, we outline a multi-level real-time itera-
tion algorithm similar to the method proposed in [4]. The
main idea of the Real-Time Iteration (RTI) framework, as
introduced in [6], [4], is to perform only a single Newton-
type step per iteration, thereby significantly reducing the
computational cost. Previous work, both in the context of
NMPC [6], [4] and MHE [7], has shown that RTI methods
achieve competitive performance.
Zero-order MHE, as presented in Section II, does not re-
quire any evaluation of derivatives. It might be nevertheless
beneficial to update the Hessian approximation from time
to time, especially, if the considered system is operated at
a wide range of different operating points. In this case, we
propose to combine a real-time iteration variant of zero-order
MHE with a higher level process that updates the Hessian
approximation and its factorization.
At the low level, we compute, at every timestep k, an esti-
mate of the current state of the system by performing a single
zero-order GN step. The higher level process, that works in
parallel, takes the current estimate as input and uses it as
linearization point for updating the Hessian approximation.
The new Hessian is factorized, which might require multiple
timesteps, and the factorization is provided to the lower level
process as soon as it is available. A schematic presentation
of this algorithm is given in Fig. 1.
An update of the Hessian approximation might be initiated
after a fixed number of timesteps, i.e. every Nu-th timestep,
or even asynchronously, e.g. when a change of the steady
state is detected.

VI. ILLUSTRATIVE EXAMPLE

In this section, we apply exact, linear, and zero-order MHE
as well as the corresponding real-time iteration variants to
an example problem in order to illustrate the algorithms and
results presented in the previous sections.

. . . x(t−3) x(t−2) x(t−1) x(t) . . .

y(t−3) y(t−2) y(t−1) y(t)

. . . MHE MHE MHE MHE . . .

FACTORIZATION

Fig. 1. Schematic representation of the multi-level algorithm with horizon
N = 2. We use indices in parentheses to distinguish them from the indices
used within the MHE formulation.

The following example has been adopted from [12]. We con-
sider a continuous stirred-tank reactor where an irreversible,
first-order reaction, A → B, occurs. The continuous time
system is given as

Ṫ =
F0(T0 − T )

πr2h
− ∆Hk0c

ρCp
exp

(
− E

RT

)
+

2Uh (Tc − T )

rρCp
,

ċ =
F0(c0 − c)
πr2h

− k0c exp

(
− E

RT

)
,

Ṫc = 0,

where c is the molar concentration of the substance A, T is
the reactor temperature, and Tc is the coolant liquid temper-
ature. The values of the model parameters can be found in
[12]. Only the reactor temperature T can be measured. We
discretize the continuous time system with ∆t = 0.25 min
using a single RK4 step.
The system has a stable steady state at

xs1
= (324.497, 877.825, 300),

which we use as linearization point for linear MHE. In
addition, the derivative at xs1

is used as Jacobian approx-
imation within zero-order MHE, i.e. we set J̄ = J(x̄)
with x̄ = (xs1 , . . . , xs1). For all estimation methods, the
horizon is set to N = 10. As weighting matrices, we use
Q = diag

(
10, 10, 106

)
and R = 0.1. The initial arrival cost

is set to Q0 = diag (100, 10, 1) and x̂0 = xs1
.

For updating the arrival cost, we apply an Extended Kalman
Filter (EKF) update and prediction step. More precisely,
if x̂0 and Q0 define the current arrival cost, we obtain
the updated arrival cost quantities, x̂+

0 and Q+
0 , from the

following formulas:

Update step:

x̂−0 = x̂0 +K (y0 − h(x̂0)) ,

Q−0 = Q0(I−KC)91,

K = Q91
0 C

> (CQ91
0 C

> +R91
)91

.

Predict step:

Q+
0 =

(
A(Q−0 )91A> + Q̃91

)91

,

x̂+
0 = f

(
x̂−0
)
,
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Fig. 2. True state trajectory, measurements and MHE estimates obtained
from exact, zero-order and linear MHE. The horizon is N = 10.

where we do not use the original weighting matrix Q, which
is used within the MHE formulation, but the matrix Q̃. By
choosing Q̃ very small, we can decrease the influence of
the arrival cost, and therefore the influence of measurements
outside of the horizon, on the overall cost function. Here, we
choose Q̃ = diag(10, 10, 10) in order to allow the coolant
liquid temperature Tc, which is assumed to be constant on
the horizon, to change its value from one MHE iteration to
the next.
For exact MHE, the derivatives A = ∂f

∂x (x̂−0 ) and C =
∂h
∂x (x̂0) are used for updating the arrival cost. For zero-order
MHE, we use the fixed derivatives that are used within the
zero-order GN iterations, i.e. A = ∂f

∂x (xs1), C = ∂h
∂x (xs1),

such that the arrival cost update does not require sensitivity
generation.
As intialization, we use a shifted version of the solution that
we obtained in the previous iteration plus a one-step ahead
prediction. More precisely, if (x∗0, . . . , x

∗
N ) is the solution

of the previous MHE problem, we initialize the subsequent
problem with (x∗1, . . . , x

∗
N , f(x∗N )).

Fig. 2 shows the true state trajectory and the observed data,
as well as the state estimates obtained from the exact, linear
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Fig. 3. True state trajectory, measurements and MHE estimates obtained
from the RTI variants of exact and zero-order MHE. The horizon is N = 10.

and zero-order MHE. As illustrated by Fig. 2, the system
is initially in the steady state xs1

. There is no state noise
except for a step change of the coolant liquid temperature Tc

occuring at timestep k = 30 which serves as an unmodeled
disturbance and changes the steady state of the system to
xs2 = (332.5, 782.2, 303).
All three estimation approaches lead to almost identical
estimates around the steady state xs1 , which was used as
linearization point. After the step change, only exact MHE
and zero-order MHE recover the new steady state xs2

. The
state estimates obtained from linear MHE are reasonably
accurate only for the reactor temperature T . For the states
that are not measured, i.e. concentration c and coolant
liquid temperature Tc, the linear MHE estimates deviate
significantly from the true state trajectory.
In Fig. 3, the estimates obtained from the RTI variant of
exact and zero-order MHE are plotted. For both methods, a
single GN step is sufficient to achieve results comparable to
the fully converged solutions of exact MHE.
Fig. 4 shows the asymptotic contraction rates κexact and κzo

as defined in (11) and (12) computed at the corresponding
solutions shown in Fig. 2. The contraction rate for zero-order
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Fig. 4. Asymptotic contraction rate κ for zero-order and exact MHE.

MHE increases after the step change of the coolant liquid
temperature Tc, as we move away from the linearization
point. The contraction rate for exact MHE increases after the
step change, when the residuals are high, and then decreases
again, as the new steady state of the system is estimated
correctly again.
Fig. 5 serves as an illustration of Theorem 1. To obtain
the depicted data, we generate random measurement noise
trajectories and solve the corresponding MHE problems
using exact, linear and zero-order MHE. We use a horizon
of N = 10 and the same weighting matrices as before. As
linearization point, the steady state xs1 is used, the true state
of the system is however the steady state xs2

.

VII. CONCLUSIONS AND OUTLOOK

For exact MHE, a considerable computational burden is
associated with sensitivity generation and factorization of the
Hessian approximation which has to be performed online.
We propose an inexact zero-order method that avoids these
costs by using fixed derivatives and thus a fixed Hessian
approximation throughout the estimation process. Compared
to the standard GN algorithm, the zero-order variant reduces
the computational complexity of a single GN iteration signif-
icantly while producing an estimation error which is of the
same order as the estimation error of exact MHE. The even
simpler approach of using a fixed linearization, i.e. linear
MHE, yields the same order of estimation error only if we
linearize at the true state of the system.
Due to the special structure of the Hessian approximation,
we can obtain its factorization using a backward recursion
procedure which allows for an efficient online update of the
arrival cost within zero-order MHE.
Additionally, we outline a multi-level algorithm that com-
bines a real-time iteration variant of zero-order MHE with
asynchronous updates of the Hessian approximation.
The effectiveness of zero-order MHE in comparison to exact
and linear MHE is shown numerically using a state estima-
tion example. For the presented example, the corresponding
real-time iteration variant of zero-order MHE achieves an
estimation performance similar to the performance of exact
MHE.
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Fig. 5. Estimation error as a function of ‖ε‖.

In this paper, we focus on the unconstrained case only.
However, previous work has shown that the algorithm can
easily be extended to the constrained case and will then
always yield a feasible solution [13]. Therefore, future work
will extend the presented results to constrained MHE and,
additionally, include an efficient implementation of the pre-
sented algorithm as well as extensive benchmarking.
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