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Abstract— We investigate the usage of Moving Horizon
Estimation (MHE) for state and parameter estimation for
partially non-detectable systems with measurements corrupted
by outliers. We propose an arrival cost update formula based
on the Generalized Gauss-Newton method and illustrate how it
can be generalized to nonconvex loss functions that can be
effectively used for outlier rejection. Moreover, we propose
an adaptive regularization scheme for the arrival cost which
introduces forgetting as well as additional pseudo-measurements
to the arrival cost update. We illustrate the performance of
the proposed algorithms on a longitudinal vehicle state and
parameter estimation problem.

I. INTRODUCTION

Moving Horizon Estimation (MHE) is an optimization-
based method for nonlinear state and parameter estimation.
The estimates are obtained as the solution of a nonlinear
optimization problem that takes into account a fixed number
of previous observations [1]–[5]. The contributions of obser-
vations outside of the horizon are summarized by an – often
quadratic – arrival cost term. As the optimization window is
shifted from one iteration to the next, the arrival cost term is
typically updated to account for the measurement dropping
out of the optimization window.

The formulation of the estimation problem in terms of
a nonlinear program allows us to explicitly account for
non-Gaussian noise distributions by choosing appropriate
loss functions. For outlier rejection, nonconvex loss function
are of particular interest [6]. Moreover, additional system
parameters can be easily estimated alongside the state by
considering an augmented system model [3], [7]. If the states
and parameters are estimated online as part of a closed-
loop control system, the augmented model might however
no longer be detectable as soon as a steady-state is reached.
As a consequence, the covariance associated with the state
and parameter estimates grows unboundedly leading to high
sensitivity to outlier measurements.

The contribution of this paper is twofold: On the one
hand, we propose a general update formula for the arrival
cost for general convex and – in some special cases – even
nonconvex loss functions. The update approach generalizes
the method proposed in [8] which considered only the L2-
loss. On the other hand, we illustrate how the arrival cost
can be regularized when additional parameters are estimated
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in order to bound the associated covariance, thus reduc-
ing the sensitivity to outliers. The regularization introduces
forgetting, i.e. a downweighting of past measurements, as
well as additional pseudo-measurements of the estimated
parameters within the arrival cost update. We illustrate the
accuracy of the proposed MHE formulation on a longitudinal
vehicle motion estimation problem. In contrast to [9], where
MHE is applied to a similar problem, we refrain from using
a Pacejka-type Magic Formula [10] and consider a simple
model for the tire transmission force parameterized by only
two parameters, which has been used in [11].

II. MODEL ASSUMPTIONS AND MHE FORMULATION

In the following, we introduce the augmented system
model including additional system parameters that are to be
estimated. Besides, the Moving Horizon Estimation (MHE)
problem is defined.

We regard discrete-time systems subject to additive state
and measurement disturbances,

zi+1 = f̃(zi, ui, θ) + w̃i, (1a)

yi = h̃(zi) + vi, (1b)

with states zi ∈ Rnz , control inputs ui ∈ Rnu , measurements
yi ∈ Rny , as well as state and measurement disturbances
wi ∈ Rnx and vi ∈ Rny . The model equations depend on
some unknown parameters θ ∈ Rnθ . The functions f̃ and h̃
are assumed to be twice continuously differentiable. In order
to estimate the parameters θ alongside the system state zi,
we will use the following augmented system formulation

xi+1 = f(xi, ui) + wi, (2a)
yi = h(xi) + vi, (2b)

with

xi :=

[
zi
θi

]
, f(xi, ui) :=

[
f̃(zi, ui, θi)

θi

]
, h(xi) = h̃(zi).

With this formulation, the parameters θi might change from
one time step to the next. The magnitude of this change in
parameters can be chosen by selecting an appropriate loss
function. The inputs ui are assumed to be known exactly,
we thus introduce the shorthand fi(xi) := f(xi, ui).

At time step m = n + N , the MHE formulation with
measurement window y = (yn, yn+1 . . . , ym) is given as:

min
xn,...,xm

αn(xn)+

m91∑
i=n

ψ(xi+19fi(xi))+

m∑
i=n

φ(h(xi)9yi) (3)

with optimization variables (xn, . . . , xm). We assume that
ψ : Rnx → R+ and φ : Rny → R+ are continuously
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differentiable. The arrival cost αn : Rnx → R, is assumed to
be twice continuously differentiable. We denote the solution
of problem (3) by

(
x̂n|m, x̂n+1|m, . . . , x̂m|m

)
.

The first term within the cost function in (3) represents
the arrival cost approximation αn(xn). This term should
approximate the exact arrival cost [4], which we denote by
α∗n(xn). The exact arrival cost is defined via the recursion

α∗i+1(xi+1)= min
xi

α∗i (xi)+ψ(xi+1−fi(xi))+φ(h(xi)−yi).

If the exact arrival cost α∗n(xn) is used instead of αn(xn)
within the MHE problem (3), we would recover the same
solution as the full information problem (FIE) [4], as can
be easily shown by dynamic programming arguments. As
the exact arrival cost α∗n(xn) is generally intractable to
compute, it is often replaced by a quadratic approximation,
here denoted by αn(xn),

αn(xn) =
1

2
‖xn − x̆n‖2P 91

n
. (4)

The arrival cost mean x̆n and covariance matrix Pn are
typically updated from one MHE problem to the next in order
to incorporate the contribution of the measurement dropping
out of the MHE horizon.

III. ARRIVAL COST UPDATE

In this section, we derive a general formula for updating a
quadratic arrival cost term by approximating the exact update
at the current state estimate. Note that the following approach
is applicable for any system of the form given in (2) and
might also be used if only states and no system parameters
are estimated. A similar derivation for the special case of
quadratic loss functions ψ(wn) and φ(vn) is given in [8].

When updating the arrival cost from one iteration to the
next, we would ideally like to approximate the exact arrival
cost update, which is – for a given arrival cost αn(xn) –
defined as

α̃n+1(xn+1)

= min
xn

αn(xn) + ψ(xn+1−fn(xn)) + φ(h(xn)−yn)︸ ︷︷ ︸
=:Ṽn(xn,xn+1)

(5)

We approximate α̃n+1 by solving a quadratic approximation
of (5), given as:

αn+1(xn+1) = min
xn

Ṽ QUAD
n (xn, xn+1) (6)

where Ṽ QUAD
n is a quadratic approximation of Ṽn and is

assumed to be of the following form:

Ṽ QUAD
n (xn, xn+1)=

1

2

[
∆xn

∆xn+1

]>
Bn(x̂n|m, x̂n+1|m)

[
∆xn

∆xn+1

]
+

[
∇xn Ṽn(x̂n|m, x̂n+1|m)

∇xn+1
Ṽn(x̂n|m, x̂n+1|m)

]>[
∆xn

∆xn+1

] (7)

where we used ∆xn := xn − x̂n|m, ∆xn+1 := xn+1 −
x̂n+1|m and Bn(x̂n|m, x̂n+1|m) ≈ ∇2Ṽn(x̂n|m, x̂n+1|m) is
some approximation of the Hessian of Ṽn at the current

estimate (x̂n|m, x̂n+1|m). For the following derivations to be
well-defined, the Hessian approximation has to be positive
definite.

Assumption 1. The Hessian approximation Bn(xn, xn+1)
is symmetric and positive definite for all xn, xn+1.

Note that∇xn Ṽn(xn, xn+1) is equivalent to the gradient of
the objective function Vn(xn, . . . , xm) of the MHE problem
w.r.t. xn. We thus have ∇xn Ṽn(x̂n|m, x̂n+1|m) = 0, since
x̂n|m, x̂n+1|m is a solution to the MHE problem. We can
thus reformulate (7) as:

Ṽ QUAD
n (xn, xn+1) =

1

2

 1
∆xn

∆xn+1

>cn 0 q>n
0 En S

>
n

qn Sn Dn

 1
∆xn

∆xn+1


where

cn = 2Ṽn(x̂n|m, x̂n+1|m), qn = ∇xn+1
Ṽn(x̂n|m, x̂n+1|m),

and

Bn(x̂n|m, x̂n+1|m) =:

[
En S>n
Sn Dn

]
.

Applying the Schur complement lemma, we can reformulate
Ṽ QUAD
n (xn, xn+1) as

Ṽ QUAD
n (xn, xn+1) = q>n∆xn+1 +

1

2
∆x>n+1P

91
n+1∆xn+1

+
1

2
‖∆xn + E91

n S
>
n∆xn+1‖2E91

n
+ const

where

Pn+1 :=
(
Dn − SnE91

n S
>
n

)91
. (8)

In this form, it is easy to minimize Ṽ QUAD
n (xn, xn+1) wrt.

xn. The solution map is x∗n(xn+1) = x̂n|m 9 E91
n S
>
n∆xn+1.

We thus have

αn+1(xn+1) = Ṽ QUAD
n (x∗n(xn+1), xn+1)

=
1

2
‖xn+1 − x̆n+1‖2P 91

n+1
+ const

with

x̆n+1 = x̂n+1|m − Pn+1∇wψ(ŵn|m) (9)

where ŵn|m = x̂n+1|m − fn(x̂n|m).

Proposition 1. If Assumption 1 is satisfied, the updated
arrival cost covariance matrix Pn+1 is positive definite.

Proof. This follows directly from the fact that the inverse
covariance matrix P 91

n+1 is given as the Schur complement
of the block En in Bn(x̂n|m, x̂n+1|m).

Theorem 2. The arrival cost update defined in (9), (8)
satisfies the gradient condition for the arrival cost [8].

Proof. Using (9), we can express the gradient of the updated
arrival cost αn+1(xn+1) as:

∇αn+1(xn+1)

= P 91
n+1

(
xn+1 − x̂n+1|m

)
+∇ψ

(
x̂n+1|m − fn(x̂n|m)

)
.
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Evaluating the gradient at the estimate x̂n+1|m, we obtain

∇αn+1(x̂n+1|m) = ∇ψ
(
x̂n+1|m − fn(x̂n|m)

)
, (10)

which shows that the gradient condition is satisfied.

Corollary 1. We assume ψ and φ are convex. If a Gener-
alized Gauss-Newton (GGN) Hessian approximation is used
within the quadratic approximation in (7), the arrival cost
update in (9), (8) is given explicitly as:

Pn+1 = Q̂n+ÂnF
91
n Â
>
n, (11)

Fn = P 91
n + Ĉ>nR̂

91
n Ĉn (12)

x̆n+1 = x̂n|m − Pn+1∇wψ(ŵn|m). (13)

where Ân := ∂fn
∂xn

(x̂n|m), Ĉn := ∂hn
∂xn

(x̂n|m), and

ŵn|m := x̂n+1|m − fn(x̂n|m), Q̂91
n := ∇2

wψ(ŵn|m),

v̂n|m := h(x̂n|m)− yn, R̂91
n := ∇2

v φ(v̂n|m).

Proof. The GGN Hessian approximation of∇2Ṽn(xn, xn+1)
is given as BGGN

n (xn, xn+1)=Jn(xn)>Λ(vn, wn)Jn(xn) with

Λ(vn, wn) =

P 91
n

∇2φ(vn)
∇2ψ(wn)

, (14)

J(xn) =

 1 0
Cn(xn) 0
−An(xn) 1

 (15)

with Cn(xn) = ∂hn
∂xn

(xn) and An(xn) = ∂fn
∂xn

(xn). Note that
the Jacobian J(xn) does not depend on xn+1. Using this
notation, the matrices En, Dn are given as

En = P 91
n + Â>nQ̂

91
n Ân + Ĉ>nR̂

91
n Ĉn, Dn = Q̂91

n ,

and equation (8) is explicitly given as

P 91
n+1 = Q̂91

n − Q̂91
n Â
>
nE

91
n ÂnQ̂

91
n . (16)

Applying the Woodbury identity to (16), we obtain the
formula in (11).

Please note that the arrival cost update in Corollary 1
corresponds to a Kalman Filter predict and update step,
where the update step is done in information form.

Corollary 2. Suppose the GGN Hessian is used as Hessian
approximation Bn(x̂n|m, x̂n+1|m) within the arrival cost
update. If Pn is positive definite and ∇2ψ(w), ∇2ψ(v) are
positive definite for all w, v, then Pn+1 is positive definite.

Proof. From (15), it is easy to see that the Jacobian J(xn)
has full rank for all xn. Under the given assumptions, the
matrix Λn(wn, vn) is positive definite for all wn, vn, which
implies that the GGN Hessian BGGN

n (xn, xn+1) is positive
definite as well. Proposition 1 then directly implies positive
definiteness of Pn+1.

Remark 1 (Nonconvex Loss Functions). Outliers within
the measured outputs can be effectively rejected by using a
nonconvex loss function for the output error. One particular
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Fig. 1. Loss function φ(v;σ, k) for σ = 0.5 (left) and σ = 1 (right).
For comparison the quadratic loss that matches the curvature at the origin is
shown. The horizontal lines indicate the convex regions of the loss functions.

choice of a nonconvex loss function for outlier rejection is
the following:

φ(v;σ, k) = k2

(
1− exp

(
− v2

2k2σ2

))
.

The Hessian of φ(v;σ, k) evaluated at zero is given by
φ′′(0;σ, k) = σ−2, such that we can easily tune the above
loss to approximate an L2-loss in a neighborhood of the
origin (cf. Fig. 1). The parameter k defines the interval on
which the loss function is convex. In particular, φ(v;σ, k) is
convex on [−kσ, kσ].

In order for the arrival cost covariance matrix to be positive
definite, we need to replace the Hessian R̂91, within the
arrival cost update by a positive definite approximation. To
this end, we use an Extended Gauss-Newton (XGN) Hessian
approximation as introduced in [12]. The XGN Hessian can
be used both for convex and nonconvex loss functions that
have a unique global minimum. The XGN Hessian leads to
a quadratic approximation of the loss function that preserves
the location of the global minimum at zero. We refer to [12]
for a more elaborate analysis of the XGN approximation.

IV. ARRIVAL COST REGULARIZATION AND FORGETTING

In the following, we illustrate how the arrival cost update
can be regularized in order to guarantee that the arrival cost
covariance will be within a given lower and upper bound.
Regularization of the arrival cost is particularly beneficial if
the system reaches a steady state at which the (linearized)
system is no longer detectable. In this case, the covariance
associated with the state estimate might increase unbound-
edly leading to a very high sensitivity of the state estimate
to outliers.

Let us first consider detectability of the augmented system,
as given in (2), at a steady state (xss, uss). The Jacobian of
the system dynamics and the output function at the steady
state are given as

Ass =
∂f

∂x
(xss, uss) =

[
Azss Aθss
0 1

]
, Css =

∂h

∂x
(xss) =

[
Czss 0

]
.
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Proposition 3 (Non-Detectability at the Steady State). We
consider the linear system obtained by linearizing (2) at the
steady state (xss, uss). This linear system is not detectable if

(a) rank (Czss) < nθ, or
(b) rank

(
Aθss
)
< nθ.

Proof. From Hautus Lemma [13], we know that the system
is detectable if

rank

([
λ1−Ass

Css

])
= nx (17)

for all λ ∈ eig(Ass), |λ| ≥ 1. The eigenvalues of Ass are
given as the solution of

det

([
Azss − λ1 Aθss

0 1− λ1

])
= 0.

Since

det

([
Azss − λ1 Aθss

0 1− λ1

])
= det (Azss − λ1) det (1− λ1) ,

we have eig(Ass) = eig(Azss) ∪ eig(1). For our particular
type of system, we thus need to check the rank of the matrix

M(λ) :=

Azss − λ1 Aθss
0 1− λ1
Czss 0

 (18)

for all λ ∈ eig(Ass) = eig(Azss) ∪ eig(1) with |λ| ≥ 1.
Considering λ = 1 ∈ eig(1), we obtain

rank (M(1)) ≤ rank (Czss) + rank
([
Azss−λ1 Aθss

])
, (19)

i.e. rank (M(1)) ≤ rank (Czss) + nz < nθ + nz = nx if (a)
holds. Similarly, we have

rank (M(1)) ≤ rank
([
Azss − 1
Czss

])
+ rank

(
Aθss
)
, (20)

which implies rank (M(1)) ≤ nz + rank
(
Aθss
)
< nz +nθ if

(b) holds.

Note that the above proposition directly implies that any
augmented system is not detectable at the steady state if
the number of measurements ny is less than the number of
parameters nθ.

At a steady state where some of the states or parameters
are not detectable, the arrival cost covariance Pn will grow
with each update step due to the state noise covariance. In the
following, we propose one way of introducing regularization
to the arrival cost update to prevent the covariance from
growing unboundedly.

Definition 1 (Regularization of the Arrival Cost Covariance).
A regularized arrival cost covariance matrix, P̄n+1, is ob-
tained with the following formulas:

P̄n+1 = Q̂n + Q̄+ Ân F̄
91
n Â>n (21)

F̄n = P̄ 91
n + Ĉ>nR̂

91
n Ĉn + C̄

>
R̄91C̄ (22)

for fixed matrices Q̄ ∈ Rnx×nx , R̄ ∈ Rn̄y×n̄y , C̄ ∈ Rn̄y×nx
and with R̄ positive definite and Q̄ positive semidefinite.

The regularized arrival cost update can be interpreted as
a GGN-based arrival cost update with an additional pseudo-
measurement ȳn = C̄x̂n|m. We would typically add pseudo-
measurements of the estimated parameters θn, i.e. choose
C̄ = [0nθ×nz 1nθ×nθ ].

Proposition 4. The regularized arrival cost update defined in
(21) and (22) can be obtained as the solution of the following
variant of problem (6).

αn+1(xn+1) = min
xn

Ṽ QUAD
n (xn, xn+1) +

1

2
‖C̄xn − ȳn‖2R̄91

where ȳn = C̄x̂n|m and Ṽ QUAD
n is given by a quadratic

approximation of Ṽn with Hessian B̄GGN
n given as

B̄GGN
n (xn, xn+1) = Jn(xn)>∇2

s Λ̄n (rn(xn, xn+1)) Jn(xn)

with ∇2
s Λ̄n(s) = diag

(
P 91
n , R̂91

n , (Q̂n + Q̄)91
)

.

Proof. Note that the gradient of the term 1
2‖C̄xn − ȳn‖2R̄91

with respect to xn is zero and thus only the Hessian of the
regularized arrival cost is changed. In particular, the Hessian
w.r.t. xn, denoted by En, is given by

En = P 91
n + Â>n(Q̂n + Q̄)91Ân + Ĉ>nR̂

91
n Ĉn + C̄

>
R̄91C̄.

Proposition 5. For a positive definite matrix Q̄ and a
positive definite matrix R̄, the regularization of the arrival
cost implies the following bound:

C̄
>
R̄91C̄ � F̄n � Q̄91 + Ĉ>nR̂

91
n Ĉn + C̄

>
R̄91C̄.

Proof. With P̄ 91
n and Ĉ>nR̂

91Ĉn positive semidefinite, the
lower bound follows from (22). Noting that Q̄ � P̄n and
thus Q̄91 � P̄ 91

n , we obtain the upper bound from (22).

Note that the introduction of the matrix Q̄ can be in-
terpreted as a form of forgetting, as we have P̄n+1 � Q̄.
Increasing Q̄ leads to a larger arrival cost covariance and
thus increased forgetting. An alternative way of introduc-
ing forgetting within the arrival cost update would be to
downweight the inverse covariance matrix directly, i.e. using
γP̄ 91

n+1 with 0 < γ < 1.
In particular for estimation problems where both the

system state and additional system parameters are estimated,
introducing forgetting is advantageous if the parameters can
be assumed to stay constant for most of the time, but might
be subject to step changes. On the other hand, forgetting
increases the sensitivity to outliers if not enough information
is available within the measurements of the current optimiza-
tion window to accurately estimate the parameter value.

Based on these considerations, we propose to use an
adaptive regularization scheme for the arrival cost update
when estimating both the system state and parameters. The
main idea is to introduce pseudo-measurements of the esti-
mated parameters within the arrival cost update only if the
variance associated with these estimates does not decrease
sufficiently within the MHE optimization window. To this
end, let us first consider an upper bound on the growth of
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the covariance associated with the parameter estimates within
the optimization window.

Lemma 6. We consider an augmented system for com-
bined state and parameter estimation as in (2). Suppose
(x̂n|m, . . . , x̂m|m) is the solution to the current MHE prob-
lem with arrival cost defined by x̆n, Pn.

Let Q̂i = diag(Q̂zi , Q̂
θ
i ) = ∇2

wψ(ŵi|m)91, i = n, . . . ,m.
We consider the covariance matrix Pm+1|m associated with
the prediction x̂m+1|m = fm(x̂m|m). We have

P θm+1|m � P θn +

m∑
i=n

Q̂θn.

where P θm+1|m and P θn are the diagonal blocks of Pm+1|m
and Pn that correspond to the etimated parameters θ.

Proof. We obtain Pm+1|m by applying the recursion in (11),
(12) N -times starting from Pn|m = Pn and using the
linearization of the MHE problem at the solution [14]–[16].

Let us consider the covariance Pn+1 = Pn+1|m after
applying the recursion once. From (12), it directly follows
that Fn � P 91

n . We thus have

Pn+1 � Q̂n + ÂnPnÂ
>
n.

Due to the particular structure of Ân resulting from (2), we
obtain

Pn+1 =

[
P zn+1 P θ,zn+1

(P θ,zn+1)> P θn+1

]
=

[∗ ∗
∗ Q̂θn + P θn

]
.

Taking this upper bound as a reference value for the
growth of the covariance associated with the estimated
parameters within the optimization window for the case when
no measurements are available, we can define an adaptive
arrival cost regularization as outlined next.

Definition 2 (Adaptive Arrival Cost Regularization). We con-
sider an augmented system for combined state and parameter
estimation as in (2). Let C̄ = [0nθ×nz 1nθ×nθ ] and suppose
R̃ = diag(σ̃2

1 , . . . , σ̃
2
nθ

) is positive definite. We furthermore
assume Q̂i = diag(Q̂zi , Q̂

θ
i ) := ∇2

wψ(ŵi|m)91, i = n, . . . ,m.
We set the pseudo-measurement covariance in (22) to

R̄n = diag

(
σ̃2

1

κ1
, . . . ,

σ̃2
nθ

κnθ

)
(23)

with

κj =
σ̂2
m+1|m,j

σ̂2
n|m,j +

∑m
i=nQ

θ
i;j,j

(24)

where Q̂θi;j,j denotes the j-th diagonal entry of the matrix
Q̂θi , σ̂2

n|m,j and σ̂2
m+1|m,j denote the j-th diagonal entry of

Pn = Pn|m and Pm+1|m respectively.

Note that 0 ≤ κj ≤ 1 due to Lemma 6 and thus the pseudo
measurements have minimal covariance σ̃2

j if no information
about the parameters is available within the optimization
window, i.e. we have σ̂2

m+1|m,j = σ̂2
n|m,j +

∑m
i=nQ

θ
i;j,j and
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Fig. 2. Nonlinear dependency of the tire slip σ and the transmitted force
Ftire. The values σmid and σsat are related to the slip values of either
50% or 90% of the maximum force that can be transmitted.
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Fig. 3. Open-loop simulation: The plot in the top row show the measure-
ment noise v with a series of outlier at starting at t = 85s. The bottom plot
shows the open loop control input u.

thus κj = 1. If however κj � 1, the covariance of the
pseudo-measurements tends to infinity and no regularization
is added to the updated covariance.

V. APPLICATION: LONGITUDINAL VEHICLE MOTION
ESTIMATION

We demonstrate the proposed methods on a longitudinal
vehicle motion and tire friction parameter estimation exam-
ple. To this end, we consider an open-loop scenario to show
the estimation improvement isolated from feedback actions.

A. Longitudinal Vehicle Motion Model

We use a longitudinal vehicle motion model where we
measure the longitudinal position p and our aim is to control
the speed s in a steady-state. The system is characterized by
the state z = [p s]. As a single input u = [σ], the model
takes the tire slip-ratio σ

σ =
rω − s
s

, (25)

which is the ratio of how much the tire velocity at the contact
point rω deviates from the ground velocity, where r is the
effective tire radius and ω is the rotational speed. We model
the tire transmission force Ftire by means of a parameterized
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Fig. 4. Parameter estimates obtained in an offline estimation problem for the noise and control trajectory shown in Fig. 3. Results obtained with an UKF
(top), EKF with and without regularization (middle) and MHE with and without regularization (bottom) are shown. The uncertainty band indicate a ±1σ
interval associated with the respective estimates. The assumed state and measurement noise covariances are the same for the EKF, UKF and the arrival
cost updates. Additional pseudo-measurements are used for the methods using regularization.

function with two unknown and changing parameters θ =
[θ1 θ2] given by

Ftire(σ) = θ2 tanh(θ1σ). (26)

The choice of this model is motivated in [11]. The shape of
the tire transmission force function simplifies the estimation
problem compared to more elaborate functions like the
Magic Formula [17] with a potential drawback constituting
in the fact that it can not capture the difference between dry
and lubricate friction. Nevertheless, the decreasing part of the
force transmission curve related to the insufficiently modeled
part is not within the operating region of a usual vehicle
control algorithm and the used model is sufficient to present
the effectiveness of the proposed algorithms. Fig. 2 shows
the tire force transmission function. Input values σmid and
σsat relate to slip values that either transmit half or 90% of
the maximum achievable transmission force. The parameters
of the rolling resistance force Froll = sign(s)F̄roll and the
nonlinear air drag force Fair = cairs

2 are assumed to be
known. The motion of the model can be described by

mp̈ = Ftire(σ)− Froll(s)− Fair(s), (27)

which we reformulate and simplify for positive velocities
into the first order differential equations

ż = fc(z, u, θ)=

[
s

1
m (θ2tanh(θ1σ)− F̄roll − cairs

2)

]
. (28)

An RK4 integrator is used to integrate (28) to obtain the
discrete state mapping zk+1 = f̃(zk, uk, θ). We use the
augmented model as presented in Section II in order to
include the system parameters θ2 and θ1 within the discrete
system dynamics. With measuring the position p solely, we
have h(xk) = pk.

B. Methods and Tuning Parameters

In addition to several variants of the MHE method, we
consider an Extended Kalman Filter (EKF) and an Unscented
Kalman Filter (UKF). Both a standard EKF and an EKF with
additional pseudo-measurements is used. For all methods,
we assume a measurement variance of R = 0.1, which
corresponds to the true measurement noise variance in the
simulations. For the EKF, UKF and the arrival cost update,
the state noise is assumed to have a covariance

Q̄ = diag(10−5, 5 · 10−5, 0.008, 60).
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For MHE, we use an L2 loss for the state noise with Q =
diag(10−5, 5 · 10−5, 0.004, 30), i.e. the variance is reduced
for the parameters. For the measurement noise, we use a
negative Gaussian loss with σ = R = 0.1 and k = 1 (cf.
Fig. 1). The MHE horizon is set to N = 6.

For all variants using regularization via pseudo-
measurements, we set the covariance of the pseudo mea-
surements to R̄ = diag(0.08, 0.000005) and C̄ = [02 12],
i.e. we add pseudo-measurements for the parameters only.

C. Simulation Results

In an open-loop simulation, we compare how the presented
approaches perform on the longitudinal vehicle model in
the presence of outliers. The input trajectory as well as
the measurement noise is shown in Fig. 3. The system is
excited in the first part of the simulation until t = 60s and
then kept at a steady state. The excitation is performed in
the range of the major non-linearity of the system which is
indicated by means of the dotted lines related to significant
points in the tanh-function. The top plot in Fig. 3 shows the
measurement noise trajectory, including a series of outliers
starting at time t = 85s. The estimated parameters for this
scenario obtained with the different methods are shown in
Fig. 4. Both standard variants (EKF, UKF) get severely
disturbed by the outliers, whereas the MHE variants are
not affected as severly. Furthermore, the MHE variant with
regularization leads to bounded covariance estimates, even
though no system excitation is present after t = 60s,
except for the measurement noise. For the MHE variant
without regularization, the covariance keeps growing and the
estimates start to drift as is the case for the UKF and EKF.

The true speed s of the system approaches a steady state
value of sss = 27.87 m

s at the end of the simulation. Due
to the linear output function, the observability matrix O is
independent of the position p (which does not reach a steady
state). The singular values of the observability matrix at the
steady state are given by

σ(O) = {2.02, 2.19 · 10−1, 8.08 · 10−4, 2.25 · 10−22},
which clearly indicates that the system is not observable.

VI. CONCLUSIONS AND OUTLOOK

We considered a Moving Horizon Estimation (MHE)
approach for combined state and parameter estimation in the
presence of outlier measurements. In this setting, nonconvex
loss functions are of particular interest as they can be used
to effectively reject outlier measurements in an automated,
model-based way. We thus proposed an arrival cost update
formula for general convex and some nonconvex loss func-
tions that is based on a generalized Gauss-Newton (GGN) or
an extended Gauss-Newton (XGN) Hessian approximation.
If additional system parameters are estimated alongside the
state, the estimation problem can become ill-posed if the
system reaches a steady state as the parameters might then be
no longer observable. To this end, we introduced an adaptive
regularization scheme that comprises both forgetting and
additional pseudo-measurements of the estimated parameters.

Using a simplified longitudinal vehicle motion estimation
problem, we compared the proposed MHE algorithm to the
extended and unscented Kalman Filter and showed superior
estimation accuracy.

Currently, we assume that the MHE problem is solved
exactly for deriving the arrival cost update. Future research
will consider a real-time variant of the MHE algorithm
where only an approximate solution of the MHE problem
is available. Furthermore, future work will include an effi-
cient implementation of the proposed algorithm as well as
extensive benchmarking.
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