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Abstract

The purpose of this paper is an experimental proof-of-concept of the
application of NMPC for large scale systems using specialized dynamic op-
timization strategies. For this aim we investigate the application of mod-
ern, computationally efficient NMPC schemes and real-time optimization
techniques to a nontrivial process control example, namely the control
of a high purity binary distillation column. All necessary steps are dis-
cussed, from formulation of a DAE model with 164 states up to the final
application to the experimental apparatus. Especially an efficient real-
time optimization scheme based on the direct multiple shooting method
is introduced. It is characterized by an initial value embedding strat-
egy, that allows to immediately respond to disturbances, and real-time
iterations, that dovetail the optimization iterations with the real process
development. Using this scheme, sampling times of 10 seconds are feasible
on a standard PC. This shows that an efficient NMPC scheme based on
large scale DAE models is feasible for the real-time control of a pilot scale
distillation column.

Introduction

Over the last two decades linear model predictive control has emerged as a
powerful and widely used control technique, especially in the process indus-
try. Recently there is growing interest in model predictive control for nonlinear
systems in academia and in the industrial process control community, and the
properties of a variety of NMPC schemes have been investigated theoretically
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(see e.g. [DMS00, ABQ™99] for a review). In addition, there has been signif-
icant progress in the area of dynamic process optimization that made on-line
optimization for NMPC feasible [Wri96, Bie00, BDLS00] (compare also to the
overview article on optimization on moving horizon in this book [BBB*01]),
and simulation studies have shown the real-time feasibility even for large scale
process models [BDST00, DBS*01], as considered in this paper.

The main purpose of the paper is an experimental proof-of-concept of the
application of NMPC for large scale systems using specialized dynamic opti-
mization strategies. In particular, we consider the experimental application
of NMPC to a high purity binary distillation column. We want to show that
NMPC can be applied to large scale chemical processes, if well suited optimiza-
tion strategies are used, and that it leads to a reasonable control performance
without much tuning. This is experimentally validated, after addressing the
challenges of the practical realization as parameter estimation, on-line state
estimation and reliable data transfer with an existing process control system.
Considering the optimization based control of distillation columns, we also refer
to the research article [HLM™01] which deals with the problem of probabilistic
constraints.

The paper is structured as follows: In Section 1 we describe the consid-
ered distillation column as well as the used DAE model. Section 2 contains
the utilized formulation of the NMPC optimization problem, and in Section 3
we present the employed real-time optimization algorithm. In Section 4 we de-
scribe the experimental setup for the closed-loop experiments, and comment on
state estimation. Section 5 contains experimental closed-loop results and the
observed computation times, and gives a short comparison with a conventional
PI controller.

1 Distillation Column and Equations

The experimental implementation of NMPC was carried out on a pilot plant
distillation column for the separation of a binary mixture of Methanol and n-
Propanol. The desired product compositions are minimum 0.99 mol/mol (low
boiling component) for the top product and maximum 0.01 mol/mol for the
bottom product.

The column has a diameter of 0.10 m and a height of 7 m and consists
of N = 40 bubble cap trays. The overhead vapour is totally condensed in a
water cooled condenser which is open to atmosphere. The reboiler is heated
electrically. Several variables are measured and monitored on-line during each
experiment, such as temperatures of feed and reflux streams, at the reboiler
and condenser and on each tray of the column, volumetric flow rates of feed,
reflux, distillate and bottom product streams and the column pressure. Fluid
dynamic stable operation of the column is checked by the pressure drop along
the column for all operating conditions presented in this study. The nominal
operating conditions of the plant are listed in Table 1.

The flowsheet of the distillation system is shown in Figure 1. The preheated



feed stream Fyq enters the column at the feed tray as saturated liquid. It can
be switched automatically between two feed tanks in order to introduce well
defined disturbances in feed concentrations.

Process inputs available for control purposes are the heat input to the re-
boiler, (), and the reflux flow rate Lyo. Although the main control purpose is
to maintain the product purity specifications for a distillation column, prod-
uct composition measurements are often expensive, unreliable and with delays.
Therefore in this study temperatures 714 and Thg on trays 14 and 28 are selected
as two controlled variables (cf. Sec. 2).

A distributed control system (DCS) is used for data acquisition and the basic
control loops of the flow rates, the heat input, the liquid levels in the reboiler
and the condenser. To implement more advanced control schemes the DCS is
connected to a PC from and to which direct access from UNIX workstations
is possible. The NMPC scheme and the state estimator are implemented on
UNIX workstations, i.e. the DCS is only used for data acquisition and the basic
control loops.

Feed rate, Fyo [I/h] 14.0
Feed composition, zr 0.32
Feed temperature, Tr [°C] 70.0
Top composition, x4; 0.99
Bottom composition, zg 0.0006
Temperature tray 28 Thg [°C] 70.0
Temperature tray 14 Ty4 [°C] 88.0
Reflux flow, Lyo [1/h] 4.3
Heat input, @ kW] 2.5
Top pressure [bar] 0.97
Reboiler holdup [1] 8.5
Condenser holdup [I] 0.17

Table 1: Nominal operating conditions

1.1 Differential Algebraic Model

Depending on the model simplifications different kinds of models can be ob-
tained for the dynamics of the distillation column. For the predictions in the
NMPC controller we use a (simple) equilibrium stage model, which is considered
to capture the main features of the column dynamics. The presented nonlinear
DAE model is based on the following assumptions:

e total condenser
o negligible vapor holdup

e constant molar liquid holdup
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Figure 1: Flowsheet of the distillation column

o perfect mixing

e the mixture is at equilibrium temperature

e Murphree efficiency is applied for each tray

The model consists principally of overall and component material balances
and energy balance for each tray £ where £ = 1,2,... ,N and N is the total
number of trays (compare also Figure 2). For notational convenience the index
£ = 0 is used for the reboiler and £ = N + 1 for the condenser. The following
balance equations are each written for the trays, the reboiler and the condenser,
in this order. Since the molar liquid holdup, n, is constant, overall material

balances become:

0 = Ly —Li+Ve 1=V +Fp
0 == LI_LO_%
0 = VWw—Lny1—D
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Figure 2: Distillation tray, ¢

Component material balance for components k = 1, N, — 1:

neZer = LeyiTerikn — Lewer + Vic1Ye—1,k — Vever + Frzrer (4)
notor = Liz1kr — Loxor — Voyok (5)
nN+1EN+1.k = VNyNg — (Int1r + D)Tngik (6)

Energy balances:

N.—1
’n/[hf = Ny Z (hik - hﬁNc):L'e,k + n[cﬁ’eT[
i=1
= L[+]_hf+1 - thf + wflh/}/—l - th}/ + Flh%"l (7)
N.—1
’I’Loh(I]/ = Ny Z (h(I]/’k — h(l)l,Nc)‘,i’.O;k + nocﬁyoT()
i=1
= Llhf - Loh{f - %h(‘)/ + Q - Qloss (8)

In the equations above, the molar concentrations of the liquid and vapour
phases are represented by x; and y. x; k is the index for components and N,
is the total number of components. For the process of interest in this study
N =40 and N, = 2. The molar vapour and liquid fluxes are denoted by V; and
Ly, the molar feed and distillate flows by Fy and D. Fy becomes 0 if the tray £
has no feed stream. A single feed stream is introduced to the column on tray
21. The energy balance for the reboiler includes terms for the heat input, @,
and the possible heat loss, Qoss- There are only N, — 1 independent component
balances since by definition

Ek:cg’k =1 (9)
Yryer = 1 (10)

Assuming an ideal mixture, the vapour phase composition in equilibrium
with the liquid phase, y;, is described by Rault’s law:

_ BTz

Yo = B (11)



Here P}(T}) is the equilibrium vapour pressure of the pure components and de-
termined by the Antoine equation in terms of the temperature, Ty, and constant
parameters A, B and C :

B
P{(Ty) = exp (Ak - TeTka> (12)

It should be noted that 7" in the energy balances (7) and (8) is obtained by
implicit differentiation of the combination of (10) - (12).

To account for the deviation from thermodynamic equilibrium due to finite
mass transfer resistance the definition of Murphree efficiency, ay, is applied for
each tray:

ap= Pk TYLh N (13)
Yo — Y1,k

To determine the (constant) pressures we assume that the condenser pressure
is fixed to the outside pressure, i.e., Pyy1 = Piop, whereas the pressures Py on
the trays and the reboiler are calculated under the assumption of a constant
pressure drop, AP, from tray to tray, i.e.,

P,=Pu1+AP, (=N,N-1,...,2,1,0. (14)

Additionally to the molar flow rates, which cannot be measured, also the
volumetric flow rates of the feed and reflux streams, Fy and Ly, are required.
They can be measured and controlled by the DCS. For example L. is deter-
mined from Ly, = Ly4+1v™, where v™ is the molar volume of the reflux stream.

The enthalpies of the liquid and vapour phases, heL and h,‘z/, partial molar
volumes, v™, and heat capacities, cﬁ’ ¢, are defined as functions of temperature
and composition; the effect of pressure on hy and v™ are neglected in the model.
For details of the correlations the reader is refered to [Die01].

1.1.1 Summarizing the DAE:

We can subsume all system states in two vectors x and z which denote the
differential and the algebraic state vectors, respectively.

The (molar) Methanol concentrations in reboiler, on the 40 trays, and in the
condenser zy for £ = 0,1,... , N + 1 are the 42 components of the differential
state vector x. The liquid and vapor (molar) fluxes L, and V3 (¢ =1,2,...,N)
out of the 40 trays as well as the 42 temperatures Ty ({ = 0,1,2,... ,N +
1) of reboiler, trays and condenser form the 122 components of the algebraic
state vector z = (Ly,... ,Ln,Vi,..., VN, To,... ,Tn41)T 1. Note that those
algebraic variables that can easily be eliminated (as e.g. hf, y¢, PZ(Tt), etc.)
do not count as algebraic variables in this formulation.

IThe equilibrium temperature of the condenser mixture helps to define the temperature
of the reflux, when not specified. Otherwise, this last algebraic variable could be eliminated
without changing the dynamics.



The two components of the control vector u = (Lyo1, Q)7 are the volumetric
reflux flow, Ly, out of the condenser, and the heat input, ), determining the
molar vapour flux out of the reboiler. All system parameters can be subsumed
in a vector p. The resulting model has 42 differential equations f, and 122
algebraic equations g.

We can write the DAE system, which has index one, in the following sum-
marized form:

x(t) = f(x(8),2(t),u(t),p) (15)
0 = g(x(t)2(t),u(t),p) (16)

1.2 Estimation of the Model Parameters

In the actual application, the performance of NMPC depends on the quality
of the model. Considering this fact, steady state and and open-loop dynamic
experiments have been performed. To obtain measurements of the dynamic
behaviour of the column step changes in the feed rate Fy, and composition z g,
the reflux rate Lo, and heat input () were performed.

Measurements of all temperatures T, ... ,Tn41 were taken for least squares
fitting of the simulated to the observed behaviour. The assumptions for this fit
are that the tray efficiencies are constant on each of the two column sections,

ie. a1 = ... = an, and an.4+1 = ... = an, that the pressure losses are
equal on all trays: APy = ... = APy, and that the molar tray and condenser
holdups coincide: n; = ... = ny. Therefore, the parameters to be adjusted

to the dynamic experimental data were: Qioss, @1, ANp+1, APy, and ny. The
parameter estimation was performed with the off-line version of the multiple
shooting method that is described below in the context of real-time optimization.
For details we refer to [Die01].

2 Nonlinear Model Predictive Controller Setup

As usual in distillation control, the product purities £ and zp at reboiler and
condenser are not controlled directly — instead, an inferential control scheme
which controls the deviation of the temperatures on tray 14 and 28 from a
given setpoint is used. Earlier investigations have shown that the temperatures
(respectively concentrations) on these trays are much more sensitive to changes
in the inputs of the system than the product concentrations [AR92]. It can be
expected, that if these concentrations are kept constant, the product purities
are safely maintained for a large range of process conditions. Since the tray
temperatures correspond directly to the concentrations via the Antoine equation
and the temperatures on tray 14 and 28 are measured directly, we refine the
controll objective to keep these temperatures as close to their setpoint values
as possible. In the following we will use T(z) := (T4, Tos)” for the controlled

- T . )
temperatures and T := ( T7§T, 738" )~ for the desired setpoints.



A desired steady state xg, zs, and the corresponding control u, as well as
the steady state temperatures can be determined as the solution of the steady
state equation

f(xs,zs,us,p) = 0,
g(xs,zs,us,p) = 0, (17)
T(zs) —Ter = O,.

In the following we will refer to this set of equations as r(xs,zs,us,p) = 0.
Notice that last equation restricts the steady state to satisfy the inferential
control aim of keeping the temperatures at the fixed reference values. The
necessary degrees of freedom are the two components of the steady state controls
u,.

The open-loop objective is formulated as the integral of a least squares term
(x, 2,1, 1,,p)[3 with

I(x,z,u,u,,p) := (rif‘{((zl)l:i:;f) . (18)

The second component is introduced for regularization, with a small diagonal
weighting matrix R = diag(0.05°Ch1~1,0.05 °CkW1).

To ensure nominal stability of the closed loop-system, we follow here a
somewhat practical approach based on results given in [DMS96, CA98]. We
append an additional prediction interval [to + T¢,t0 + Tp] to the control hori-
zon [tg,to + Te], with the controls fixed to the setpoint values us; determined
by (17). If the control horizon is sufficiently large, the closed-loop system will
be stable. A horizon length of T}, — T, = 3600 seconds proved to be sufficient in
all performed experiments.

2.0.1 The optimal control problem:

The resulting optimal control problem is formulated as follows:

L L (), 2(8), u(), s, o) de (19)

subject to the model DAE

x(t) = f(x(t),z(t),u(t),p)
0 = gx(t)z(t)ut),p) OrtEHoto+T]

with
u(t) =u,; fort € [to+ Te, to + Tp).

Furthermore the initial values for the differential states and values for the system
parameters are given by:

X(to) = Xy,

P = Po = constant.



All state and control inequality constraints are combined to:
é(x(t),z(t),u(t),p) 2 0 te [tOJtO + Tp]-

In particular, we require that the bottoms product and distillate streams Lg
and V41 cannot become negative, which implicitly leads to “natural” upper
limits on the inputs @ and L, . Additionally, explicit lower and upper bounds
for @ and L., are given.

The steady state control ug is determined by the steady state equation

0 = r(XSa zS7 uS7 p)

3 Real-time Solution of the NMPC Optimiza-
tion Problems

In this section we will describe the newly developed real-time iteration scheme
that we employed for the on-line computations in this study. For a more detailed
description of the algorithm we refer to [Die01]; cf. also [BDST00, FAD*00,
DBS*01]

The scheme is based on the direct multiple shooting method [Pli81, BP84],
which is introduced in the overview article [BBBT01] in this book (Section 5,
“Introduction into Direct Solution Algorithms”), to which we explictly refer
here. We stay close to the notation used in this article, with one important
difference: in contrast to direct multiple shooting for ODEs, we need to account
for the algebraic states in the DAE model equations.

Direct Multiple Shooting for DAE: In addition to the differential node
values s? (which are denoted s; in [BBB101]), we also introduce algebraic node
values s7. For simplicity we use a piecewise constant control representation
with control parameters qo,...,qn_1 on the N multiple shooting intervals.
The prediction horizon [to + t.,to + 1] is chosen to be the last interval, so that
tn—1 =to+7T. and tn = to+ T}, with constant steady state control qy_1 = us,.

On each subinterval [t;, t;4+1] we compute the independent trajectories x;(t)
and z;(t) as the solution of a relazed initial value problem:

Xi(t) = f(xi(t),2:(t),ds,p) (20)
0 = g(xi(t),z(t),q:p) — e Privi=i g(si,s;,qi,P) (21)
xi(t;) = si, zi(t;) =sj] (22)

The decaying subtrahend in (21) with 8 > 0 is deliberately introduced to allow
an efficient DAE solution for initial values s7 that may violate temporarily the
consistency conditions (16) (cf. Bock et al. [BES88], Schulz et al. [SBS98]).
Note that the i-th multiple shooting trajectories x;(t),z;(t) on [t;,t;y1] are
functions of s?,s?,q;, and p, so that we will write: x;(¢;s%,s%,q;,p), and
zi(t;sfas»L;:qiap)'



To remove the freedom introduced by the DAE relaxation, additional
equalities g(s?,s?,q;,p) = O have to be added to the NLP formula-
tion given in [BBBT01], and taking account of the additional variables
Xs,%s,Ug, p as well of the steady state constraint (17), we formulate the
following structured Nonlinear Program (NLP) in the unknowns € :=

T T oz z .
(SOa"' ySNySQy--- sSN_1,90,--- 7qN—2;Xsazsausap)'

tit1
mln Z / ”1 X ta Sz ,Sz,q“p) Zz(t, S“S“q“p) quusap)||2 dt (23)
t;

subject to
s =Xo, P = Po, (24)
siy1 = X;(tiy1;87,8],9:;,p), 1=0,...,N—1, (25)
0 =g(s?,s,q:,Pp), i=0,...,N—1, (26)
0 < é(s?,si,qi,p), i=0,...,N—-1, (27)
0 = r(xs,Zs, Us, P)- (28)

3.1 Real-Time Iterations and Initial Value Embedding

In the real-time context, the above NLP (23)-(28) has to be solved several times;
a crucial observation is that the optimization problems differ only in the values
Xo and po, which enter the problem through the linear constraints (24). Instead
of considering a sequence of unrelated optimization problems P(xg,po), each
of which is solved independently by an iterative SQP type method, we shift the
focus towards the solution iterations themselves: the real-time iteration scheme
can be considered as a sequence of Newton type iterates towards the solution
of the above problem, with the particularity that the values for x¢ and pg are
changed during the iterations.

The variant of the algorithm that we used in this study is based on the
constrained Gauss-Newton method. For the current iterate & and the current
values (Xg)r+1 and (po)k+1, all problem functions are linearized to yield the
following, specially structured Quadratic Program (QP) in the variables
A€ = (Asg,... ,AsY,AsSE, ... ASY 1, Aqo, - .. , AdN_2, AX,, Az, Aug, Ap):

tit1
rgm / IL(t) + Li(t) (As?TAs:T Aqt Au,t Ap™) 7|2 dt (29)
t;

subject to
Asg = (X0)k+1 — 55, AP = (Po)k+1 — P, (30)
As? = x; + X; (As?T, AsET, AqT, ApT)T, i=0,...,N—1, (31)
0=g; +G:As? + G; (As?T,Aq;”, Ap™)T, i=0,...,N—1, (32)
0<&+C; (As?T, As?T Aq,T, ApT)7, i=0,...,N—1, (33)
0=r+R(Ax,T,Az,T, Au,T)T + RPAp. (34)

10



The solution A€y, of this quadratic program is first used to determine the control
(40)k+1 := (q0)x +(Aqo)x which is immediately given to the plant, and secondly
to compute the next real-time iterate:

Err1 =&k + Ay (35)

The iterations never terminate. Instead, the values (X¢)g+1 and (po)g+1 are
changed from one iteration to the next, according to the current state and
parameter estimates.

Remark 1: Note that the objective function in (29) can, neglecting a constant,
equivalently be written as

Yo {(Asy Asi” Aqi Au,” Ap”) b,
+%(Asgﬂ; Asfq; Aq;% Au, T ApT) H; (Asz, Asz, Aq;T Au,T ApT)T}.

with Hessian blocks and gradient vectors

tit1 tit1
H,' = 2/ Li(t)TLi (t) dt and h, = 2/ Li(t)le'(t) dt.

t; t;

This formulation explicitly shows that the linear least squares problem (29)-(34)
is nothing else than a finite dimensional quadratic programming problem. In
fact, the Gauss-Newton matrices H; can be regarded a cheap approximation of
the ezact Hessian blocks HP*' | as they arise in the exact Hessian SQP method.

Remark 2: Instead of using & + A€y directly as the new iterate (we call this
the warm start strategy) it is alternatively possible to account for the movement
of the horizon in time, if the multiple shooting intervals are equally spaced with
interval lengths that correspond to a sampling time. To achieve this, a shift
in the problem variables is performed before the new iterate is defined, i.e.,
Eq. (35) is replaced by &xy1 := S(€r + Ay), where S is a shift operator which
removes the variables of the first interval, shifts all variables by one interval,
and appends new guesses on the last interval. For details, see [Die01].

Remark 3: For the related class of shrinking horizon problems (as defined
in [BBBT01]), we can prove contractivity of the real-time algorithm under mild
conditions, if plant and model coincide after an initial disturbance [Die01]. The
contractivity result can conceptually be generalized to the shift strategy on
long horizons, but in practice warm start and shift strategy show very similar
performance [DBLS99].

Remark 4: The formulation of the constraints (24) in the NLP (23)-(28)
can be considered an initial value embedding of each optimization problem into
the manifold of perturbed problems. It allows a very efficient transition from
one optimization problem to the next: let us for a moment assume that &

11



is equal to the ezact solution &} of the optimization problem P((X¢)x, (Po)x),
and that the above QP (29)-(34) is formulated with the ezact Hessian blocks
H2<t. Then it can be shown under mild conditions that the next real-time
iterate 11 = &) + A&y is a first order prediction for the solution £;,; of the

optimization problem P((X¢)g+1, (Po)k+1), i-e.
2)

even at points where the active set changes [Die01]. In practice, the initial value
embedding strategy ensures that the real-time iterates &, stay close to the exact
solutions £, even if a Gauss-Newton Hessian is employed instead of the exact
one.

e -giet=o (| 1)

3.1.1 Real-Time QP Generation and Solution:

The generation and solution of the structured quadratic program (29)-(34) are
dovetailed in the real-time iteration scheme. The initial value embedding turns
out to be crucial for the real-time performance, as it allows to prepare large
parts of the QP solution without knowledge of (x¢)+1, (Po)k+1. The following
steps are performed during each real-time iteration:

1. Reduction: Generate the equality constraints (32) by linearizing the con-
sistency conditions (26), and resolve (32) to eliminate As? from the prob-
lem (G? is invertible due to the index one assumption). Similarly, gen-
erate (34) and resolve it to eliminate Ax,,Az,, Au, from the problem
(assuming that the square matrix R is invertible).

2. DAE solution and derivative generation: Solve the relaxed initial value
problems (20)-(22) and compute simultaneously the directional derivatives
of the trajectories x;(t) z;(t) in the reduced directions, using the principle
of internal numerical differentiation (IND) as described by Bock [Boc81].
This yields the reduced version of (31).2 Linearize also the constraints (27)
and generate a reduced version of (33).

3. Gradient and Hessian generation: Compute a reduced version of the gra-
dient integrals h; and of the Gauss-Newton Hessian blocks H;. The sparse
DAE solver DAESOL [Bau00] has been adapted to compute numerical ap-
proximations of reduced versions of h; and H; simultaneously with the sen-
sitivity calculations from step 2, with negligible additional costs [Die01].

4. Condensing: Using the (reduced) linearized continuity conditions (31),
eliminate the variables As?,... , As%. Project the objective gradient and
Hessian, as well as the linearized path constraints (33) onto the space of
the remaining variables As§, Aqg,... ,Aqy_2, Ap.

2Note that the full matrix X; is never computed in this partial reduction approach that
was developed by Leineweber [Lei99].
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5. Step generation: take the current values (X¢)g+1, (Po)k+1 from the state
estimator, and eliminate As? := (x¢)r — s§ and Ap := (po)r — p, and
generate a fully condensed QP in the variables (Aqg, ... ,Aqnx_2). Solve
this QP with an efficient dense QP solver using an active set strategy.
Give the value qg + Aqp immediately as a control to the plant.

6. Expansion: Expand the solution to yield values for all variables A€, and
perform the iteration &x11 = & + Ak. Go to 1.

Note that the computations of step 5 are in typical applications orders of
magnitude shorter than the overall computations of one cycle. This means
that the response delay of one sampling time, that is present in all previous
NMPC optimization schemes, is practically avoided. It is interesting to observe
that step 5 corresponds to the solution of a QP in linear MPC, which is based
on a system linearization along the currently best predicted trajectory. Note,
however, that this trajectory is updated after each iteration, and that the real-
time iteration scheme maintains all advantages of a fully nonlinear treatment of
the optimization problems.

The major computational costs for each real-time iteration, those of step 2,
scale roughly linear with the number N of predicted control intervals.

A comparison of the closed-loop behaviour of the real-time iteration strategy
with a full iteration scheme, where each optimization problem is iterated to
convergence, can be seen in Figure 7. In the shown example scenario even the
full iteration scheme (that was started using the initial value embedding) was
nearly always able to meet the limit of 10 seconds sampling time; the comparison
shows no significant differences in the closed loop behaviour. Note, however, that
bounds on the number of iterations for the full iteration scheme are difficult to
establish.

4 Experimental Setup

In Section 5 we will demonstrate the real-time feasibility of the presented NMPC
scheme. Furthermore, we give a short comparison of the achieved results with
a conventional PI-controller. The purpose of the performance comparison is to
show that NMPC does lead to reasonable performance without much tuning
required. In the following, we shortly outline the two used controller setups.

4.1 NMPC Controller Setup

For the real-time application we implemented the presented NMPC scheme using
the real-time optimization strategy given. For the NMPC setup we assume
that the column is given in LV configuration, i.e., we use Ly, and the heat
input () into the boiler (which corresponds to the vapor flow out of the boiler)
as manipulated variable. State estimates are obtained using a variant of an
extended Kalman filter. Figure 3 shows the overall controller /plant/estimator
setup. As described in Section 2, we use a inferential control scheme, i.e., the

13
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Figure 3: Closed loop NMPC setup

product concentrations are not directly controlled, but instead the temperatures
T14 and Thg which are directly measured at the column. The deviation of these
temperatures from the desired reference temperatures 775t and T3§' are weighted

in the stage cost function, cf. Eq. (18).

4.1.1 State Estimation:

To obtain an estimate of the 42 differential system states and of the model
parameter xr we have implemented a variant of an Extended Kalman Fil-
ter (EKF). To improve the performance of the estimator, the temperature T5; is
fed into the state estimator additionally to the controlled temperatures 774 and
Tss. Together with the implemented controls (Q and L), the measured feed
flow rate Fyo is also given to the estimator. The usage of the measured heat
input and reflux flow (in contrast to the optimization output) is necessary to
overcome input disturbances, since both values can only be controlled indirectly
giving the setpoints to the low-level control loops in the DCS.

The EKF is based on subsequent linearizations of the system model at each
current estimate; each measurement is compared with the prediction of the
nonlinear model, and the estimated state is corrected according to the deviation.
The weight of past measurement information is kept in a weighting matrix,
which is updated according to the current system linearization.

In contrast to an ordinary EKF the implemented estimator can incorporate
additional knowledge about states and parameters in form of bounds. This is
especially useful as the tray concentrations have to be in the interval [0, 1] to
make a reasonable DAE solution possible. For details, we refer to [Die01].

In Section 5 we will consider two scenarios for the “estimates” of the feed
concentration disturbance. In the first scenario it is assumed that the time and
value of the disturbance is known exactly and directly fed into the EKF. In
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the second scenario we consider the disturbance in the feed concentration zr as
unknown, i.e., the value of zp is also estimated by the EKF.

4.1.2 Tuning of NMPC controller and EKF:

The NMPC controller and the EKF were tuned independently based on simu-
lations and measured data, respectively. The EKF receives new measurements
and provides new state estimates every 10 seconds, and the NMPC optimizer
solves one optimization problem in this period. The control inputs on the con-
trol horizon were parameterized as piecewise constant, with 10 control intervals
each of 120 seconds length, followed by a prediction interval of T, — T, = 3600
seconds with the inputs fixed to the steady state values us (cf. Sec. 3). Note
that it does not cause any difficulty that the interval length of 120 seconds in
the control horizon is not equal to the sampling time of 10 seconds.

4.1.3 Implementation of the NMPC setup:

The NMPC controller was implemented on a Unix workstation running under
Linux. The open-loop optimization problem was solved on-line using our spe-
cially tailored version of MUSCOD2 as outlined in Section 3. The EKF was
implemented using MATLAB and the integration routine DAESOL [Bau00] to
obtain the necessary derivatives. The file transfer between the DCS and the
workstation was done using a PC connected to the DCS from which the mea-
sured and manipulated variables could be read and written to via ftp, which
was done every 10 seconds.

4.2 Configuration of the PI control loops
Tzrgf - .ZUF,F

Pl ¢ Tos

T Lvol/Dvol

Ty L@

column Tia

Figure 4: Closed loop PI setup

The conventional control scheme used consists of two decoupled single-
input/single-output PI loops which where already implemented on the column.
In contrast to the NMPC setup a L/D,V configuration is used. The controlled
variables are, as in the NMPC case the temperatures on trays 14 and 28. The
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manipulated variables are the heat input @ to the boiler (corresponding to the
liquid flow V out of the boiler) and the reflux ratio Lyo1/Dyol. However, for
comparisons we plot in section 5 the reflux flow rate for the decoupled PI as
well as the NMPC controller.

4.2.1 PI Controller Tuning:

To achieve good control performance, the PI controllers are tuned as follows:
In a first step, a Ziegeler-Nichols tuning based on the process reaction curve
method is performed for each loop. This method was chosen since it is easy to
apply and does only require single step tests. In a second step, the resulting PI
controllers were detuned to compensate for the interactions between the control
loops.

4.2.2 Implementation of the PI Setup:

The PI controllers were already implemented using the basic control function in
the used DCS. The data collection was done using a PC connected to the DCS
and the Unix workstations, compare Figure 1.

5 Experimental Results

In this section we present results on the computational demand and performance
of the PI control setup and the NMPC controller using the dynamic optimization
strategy outlined in Section 3. The main result here is an experimental proof-
of-concept that NMPC can be used in real-time even for large scale models.
The performance results given are only supposed to show that NMPC, without
much further tuning, does lead to satisfying control performance.

5.1 Considered Disturbance Scenarios

The NMPC scheme and the decoupled PI controllers were tested on various
scenarios. As scenarios we used a series of step changes in the feed flow rate
(Fyo1); a step change in the feed composition (2r); and a short reflux breakdown
(Lyor = 0.5). In the following figures the reflux flow rate, Ly, is plotted for both
NMPC and PI controllers although the corresponding manipulated variable is
reflux ratio, (Lye1/Dvol), for the PI controller setup.

5.1.1 Feed Flow Change:

Figure 5 shows the controlled outputs (T2s and T14) and input responses ( Lyo
and Q) when the feed flow rate, Fy,l, is changed stepwise first —10 % at t=
0.57 h, then +20 % at t=1.16 h, finally —10 % at t=1.52 h. The plots on
the left hand side show the results of NMPC and those on the right hand side
belong to the PI controller. As can be seen, while there is no obvious difference
between the two schemes in the first phase, the performance of NMPC is better
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than that of PI in the second and third phases. In the final phase, NMPC
can handle with the corresponding load change in about 20 min. whereas the
PI controller requires 40 min. In the case of PI controllers, the slightly higher
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Figure 5: Comparison of closed loop NMPC and conventional PI controller
performances for step disturbances in Fy)

deviation of the controlled variables from their set points can be explained by
the fact that no feedforward disturbance information is used, whereas NMPC
uses the disturbance information. This advantage of NMPC results in finding
the optimum values for Ly, and () at once while the manipulated variables move
very slowly for PI controllers following the change in feedback measurements.

5.1.2 Feed Concentration Change:

For the next test, a step change in the feed composition is considered ; zp is
decreased from 0.320 to 0.272 at t=1.0 h. In Figure 6, the first column on the left
hand side illustrates the results of NMPC which incorporates EKF estimating
zr. As can be seen, the controlled outputs (T14 and Tbg) oscillate with small
deviations from the set points but NMPC performance is still acceptable.

From the last two columns of Figure 6 it is evident that the performance of
NMPC with known disturbance in zr outperforms the PI controller in main-
taining the controlled variable Thg.
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Figure 6: Step change in zr: Comparison of closed loop NMPC — for unknown
and known zy — with the conventional PI controller performances

Comparison of real-time iterations with a full-iteration scheme: Fig-
ure 7 compares the computational and control performance of the real-time
iteration scheme, that we used in all presented experiments, with a full itera-
tion scheme, for the same scenario as in Fig. 6 (zr known). The full iteration
scheme was initialized by an initial value embedding, but then iterated until a
prespecified convergence criterion was satisfied (KKT tolerance of 10~3). If the
optimization time exceeded the sampling time of 10 seconds, the old control was
used for another sampling period.

It can be seen that the control performance is nearly identical in our example,
but that the CPU times differ significantly. Note that the real-time iteration
scheme had unused CPU capacity as the sampling time was fixed to 10 seconds
in both schemes.

The CPU time variations in the real-time iterations are due to integrator
adaptivity. The largest computation times occur for both schemes at the mo-
ment when the step change in xr happens, which makes large changes in the
predicted trajectory necessary.

Due to the unused capacity of the real-time iteration scheme, more detailed
process models are computationally feasible for the same sampling time. First
experimental tests with a larger and stiffer DAE model (82 differential and 122
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Figure 7: Performance and CPU time comparison of real-time iterations (cf.
Fig. 6, z known) with full iterations to convergence, on a standard PC.

algebraic states) have shown that the corresponding NMPC controller is still
real-time implementable [Die01].

5.1.3 Short Reflux Breakdown:

In the previous two cases the disturbing effects of load changes (in the feed flow
and composition) on controlled variables are reasonably small. In order to have
large disturbance effects on T4 and Thg we applied a reflux flow breakdown
on the system starting at 0.22 h. for a short period of time (approximately 4
minutes). After the reflux flow is switched on again, NMPC and PI controller
are able to bring the T4 and T»g back to their set points within 1 hour. However,
both controllers lead to slight oscillations in the closed loop.

It is interesting to note that the PI controller of Tog shows an aggressive
response during the initial transition period. We have experienced that if the
reflux breakdown is applied for a longer period of time, the PI controller of Thg
becomes completely unstable.

5.2 Discussion of Computational Demand and Closed-
loop Performance

The presented experiments show that NMPC can handle the control problem
satisfactorily while being real-time implementable. The results are comparable
to the performance of (existing) PI controllers for a moderate range of distur-
bances.
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Figure 8: Comparison of closed loop NMPC and conventional PI controller
performances for a short time reflux (Lyo1) breakdown

Due to the efficiency of our real-time optimization scheme a more complex
model would still be feasible for on-line implementation.

One of the challenges to be solved is to improve the state estimation and
disturbance detection, as load changes which are unlikely to be measured in
an industrial application, like zr, need to be estimated for a realistic NMPC
scheme. As can be seen in Figure 6, the closed loop performance when zp is
estimated by the EKF could still be improved.

It is the aim of future work to show the benefits of real-time NMPC appli-
cations for more complex processes or for a wide range of operating conditions
like start-up periods of chemical processes.

6 Conclusions

We have presented an experimental proof-of-concept of the application of NMPC
to the control of a high purity binary distillation column.

An efficient real-time optimization scheme based on the direct multiple
shooting method is described. Among its features are an initial value embed-
ding strategy, that allows to immediately respond to disturbances, and real-time
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iterations, that dovetail the optimization iterations with the real process devel-
opment. This approach makes sampling times of 10 seconds for a system model
of 164th order possible on a standard PC.

Our study shows that real-time implementation of NMPC using large scale
DAE models is feasible for the control of a pilot scale distillation column, if
efficient numerical optimization techniques are used.
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