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Abstract— The Real-Time Iteration (RTI) is an online non-
linear model predictive control algorithm that performs a
single Sequential Quadratic Programming (SQP) per sam-
pling time. The algorithm is split into a preparation and a
feedback phase, where the latter one performs as little com-
putations as possible solving a single prepared quadratic
program. To further improve the accuracy of this method,
the Advanced-Step RTI (AS-RTI) performs additional Multi-
Level Iterations (MLI) in the preparation phase, such as
inexact or zero-order SQP iterations on a problem with a
predicted state estimate. This paper extends and stream-
lines the existing local convergence analysis of AS-RTI,
such as analyzing MLI of level A and B for the first time,
and significantly simplifying the proofs for levels C and
D. Moreover, this paper provides an efficient open-source
implementation in acados, making it widely accessible to
practitioners.

Index Terms— Model predictive control, numerical algo-
rithms, software

I. INTRODUCTION

NONLINEAR Model Predictive Control (NMPC) requires
at every sampling instant an approximate online solution

of a discrete-time optimal control problem (OCP) of the form

min
s0,...,sN ,
u0,...,uN91

N91∑
i=0

Li(si, ui) + E(sN ) (1a)

s.t. s0 = x, (1b)
si+1 = ϕi(si, ui), k = 0, . . . , N 9 1, (1c)

0 ≤ hi(si, ui), k = 0, . . . , N 9 1, (1d)
0 ≤ hN (sN ). (1e)

Its optimization variables are the states si ∈ Rnx at τ i, k =
0, . . . , N and the control inputs ui ∈ Rnu acting on shooting
intervals [τ i, τ i+1], k = 0, . . . , N 9 1. The values si and si+1

are coupled by the discrete-time dynamics ϕi, which represent
the evolution of the real system over a shooting interval. The
cost is given by the path cost terms Li and the terminal cost
term E. The path constraints are given by hi and the terminal
constraint by hN . In NMPC, once the initial state x ∈ Rnx
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is known, the parametric nonlinear program (NLP) in (1) is
solved, and the first control input u0 is fed back to the plant.

Due to the availability of real-time algorithms and efficient
open-source software implementations, NMPC is increasingly
used in industrial applications. Real-time algorithms minimize
the feedback delay by reducing the online computational load.
The computations are typically divided into two phases: 1) a
preparation phase, in which all computations that can be done
without knowing x are performed; and 2) the feedback phase,
in which the new control input u0 is computed once x is
known.

The Real-Time Iteration (RTI) [1] performs a single Se-
quential Quadratic Programming (SQP) iteration per sampling
time. In the preparation phase, all function and derivative
evaluations necessary to construct a Quadratic Program (QP)
are performed. In the feedback phase, only a single QP is
solved. The Multi-level Iteration (MLI) was introduced in [2]
and extended in [3], [4]. It is an SQP-based method that offers
several variants, also called levels, which only partially update
the QP data to reduce the computation time. The levels are
sorted by the amount of QP data that is updated, where level
A only updates the initial state and level D updates all QP
data. The advanced-step controller (ASC) [5] solves in the
preparation phase an advanced problem to convergence, i.e.,
the OCP (1) with a predicted state xpred. In the feedback
phase, depending on how active-set changes are handled, it
solves a linear system, linear program, or QP [6]. The AS-
RTI method [7], [8] combines the RTI and ASC approaches.
In the preparation phase, it approximately solves an advanced
problem with some MLI variant, and in the feedback phase,
like RTI, it solves a single QP. This method adds some flex-
ibility by allowing one to trade off computational complexity
for numerical errors. It has good theoretical properties [7], but
has only been used in prototypical simulation experiments so
far [3], [9].

The open-source acados software package implements
efficient algorithms for embedded optimal control, with a focus
on SQP-type algorithms that thoroughly exploit the block
structure of optimal control problems, such as (1). It is written
in C and relies on the high-performance linear algebra package
BLASFEO [10]. The high-level interfaces to MATLAB and
Python, its flexible problem formulation, and the variety of
solver options have made it an attractive option for real-world
NMPC applications.
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Contributions. This paper extends the previously existing
analysis of AS-RTI [7], [8], such as analyzing Level B itera-
tions for the first time, which are computationally cheap and
converge to suboptimal but feasible solutions of the original
problem [2]. It streamlines and significantly simplifies the
proofs for the other two levels, C, D, compared to the previous
AS-RTI papers [7], [8]. Moreover, it presents an efficient
implementation of the AS-RTI method in acados [11].
Implementation details and the various algorithmic options are
discussed. We extensively test different variants of the imple-
mented algorithm on a benchmark example and demonstrate in
a Pareto plot how one can trade-off computational complexity
for optimality.

Outline. Section II recalls the AS-RTI method, Section III
derives novel error bounds, and Section IV discusses im-
plementation details. Section V provides extensive numerical
experiments and Section VI summarizes the paper.

II. THE ADVANCED-STEP REAL-TIME ITERATION

This section presents AS-RTI and algorithmic ingredients.

A. Sequential Quadratic Programming
The parametric NLP (1) can be written more compactly as

min
w∈Rnw

f(w) (2a)

s.t. 0 = g(w) +Mx, (2b)
0 ≤ h(w), (2c)

where the parameter x enters the equality constraint linearly
and M is an embedding matrix of appropriate size. Parametric
NLPs can always be brought into this form, by introducing
auxiliary variables and a linear equality constraint [1]. The
functions f : Rnw →R, g : Rnw →Rng , h : Rnw →Rnh are
assumed to be twice continuously differentiable.

The Langrangian function of (2) is L(z) = f(w) −
λ⊤(g(w) + Mx) − µ⊤h(w) with z = (w, λ, µ) and La-
grange multipliers λ ∈ Rng , µ ∈ Rnh

≥0 corresponding to (2b)
and (2c), respectively. We denote the primal-dual solution
of (2) by z̄(x) = (w̄(x), λ̄(x), µ̄(x)), which is under suitable
assumptions locally unique [12].

In the following, we consider a sequence of parameters
{xk}k≥0, i.e., the state at each sampling time tk, and perform a
fixed number of iterations for a fixed parameter xk. We use the
following notation. The solution z̄(xk) for a fixed xk is often
abbreviated to z̄k. Furthermore, by performing j iterations for
a fixed xk, we compute an approximation zk,j ≈ z̄k. If only
a single iteration is performed, as in RTI, index j is omitted
and we write zk = zk,1.

For a fixed parameter xk, a local minimizer of NLP (2) can
be computed by an SQP-type method [12]. Given a solution
guess zk,0 = (wk,0, λk,0, µk,0) sufficiently close to a local
minimizer, a sequence of QPs is solved

min
∆w

(ak,j)⊤∆w + 1
2∆w⊤Ak,j∆w (3a)

s.t. gk,j +Mxk +Gk,j∆w = 0, (3b)

hk,j +Hk,j∆w ≥ 0. (3c)

The symmetric positive definite matrix Ak,j is an approx-
imation of the Lagrange Hessian ∇2

wwL(zk,j). The vector
ak,j = ∇wf(w

k,j) denotes the objective gradient, gk,j =

g(wk,j), hk,j = h(wk,j) the constraint residuals, and Gk,j =
∇wg(w

k,j)⊤, Hk,j = ∇wh(w
k,j)⊤ are the Jacobians of

the constraints. The primal-dual solution of (3) is denoted
(∆wk,j , λk,j

QP, µ
k,j
QP), and a full SQP step updates the iterates

by setting wk,j+1 = wk,j + ∆wk,j , λk,j+1 = λk
QP, and

µk,j+1 = µk,j+1
QP . Every fixed parameter xk results in a

different sequence of iterates and corresponding QP data,
indexed by j, hence the use of both indices.

B. Real-time NMPC algorithms

The QP that computes the feedback for the new parameter
xk+1 at tk+1 is prepared in the preparation phase during
[tk, tk+1]. In the RTI, the QP is constructed at the previous
output zk = zk,1, computed at time tk. In AS-RTI, the point zk

is further refined by computing an approximate solution to an
advanced problem - an NLP (2) with a predicted parameter
xk+1
pred. The improved linearization point zk is now denoted

by zklin. The way the approximation is computed provides a lot
of flexibility in algorithm choice and allows for a whole family
of different algorithms. Finally, in the feedback phase, QP (3)
evaluated at zklin ≈ z̄(xk+1

pred) and xk+1 is solved, resulting in
the new output zk+1 = zk+1,1 ≈ z̄(xk+1). The main steps of
the AS-RTI are:
(S1) At time t = tk: Predict the initial state xk+1

pred at tk+1

(S2) At t ∈
[
tk, tk+1

)
: Starting from the last output zk, iterate

on (2) with x = xk+1
pred with some MLI variant, see Sec. II-

C, to obtain zklin – (“the inner iterations”).
(S3) At t ∈

[
tk, tk+1

)
: Construct QP (3) on the linearization

point zklin.
(S4) At time tk+1, solve (3) with x = xk+1.
Note that in the RTI scheme, step (S2) simplifies to setting
zklin = zk. In the ASC, zklin is a local minimizer of (2) with
x = xk+1

pred. Then, in (S4), a linear system or QP is solved to
obtain zk+1 [5], [6]. If an advanced problem with a perfect
prediction xk+1 = xk+1

pred is solved to local optimality, there is
no numerical error in the feedback, i.e., zk+1 = z̄(xk+1). We
denote AS-RTI with level X iteration as AS-RTI-X.

C. Multi-Level Iterations
In step (S2), we use some Multi-Level Iteration (MLI)

variant to compute zklin. All MLI levels start with a reference
point ẑk = (ŵk, λ̂k, µ̂k), which can be e.g., the linearization
point for the previous feedback phase in the AS-RTI context.
The different MLI levels recompute different values of (3) and
use evaluations at ẑk for the others.

Level D iterations. Level D iterations are essentially full
SQP iterations as described in Section II-A. All functions and
derivative derivations are evaluated exactly.

Level C iterations. In level C iterations, all matrices in
QP (3) are fixed: Âk ≈ ∇2

wwL(ẑk), Ĝk = ∇wg(ŵ
k)⊤,

Ĥk = ∇wg(ŵ
k)⊤. Only the vectors, i.e., gk,j , hk,j and ak,j ,

are updated. Note that the SQP subproblem (3) only uses the
objective gradient instead of the Lagrangian for ak,j , since
primal variables are updated in a delta and the duals in an
absolute fashion as in [12, Sec. 18.1]. To modify (3) to take
the latest multipliers into account in the Lagrange gradient but
fix the linearization of the constraints, ak,j needs to be updated
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for j ≥ 0 as ak,j = ∇L(wk,j , λk,j , µk,j)+λk,jĜk +µk,jĤk.
For a ẑk close enough to a solution, these iterations converge
linearly to a local optimum of (2) [2].

Level B iterations. In level B iterations, also called zero-
order iterations [13], only functions and no derivatives are
evaluated to set up QP (3). More specifically, only gk,j , hk,j

are obtained by evaluations. The objective gradient is approxi-
mated by ak,j = ∇wf(ŵ

k)+ Â(wk,j
B − ŵk). Here, wk,j+1

B are
the iterates computed by wk,j+1

B = wk,j
B +∆wk,j , wk,0

B = ŵk,
λk,j+1
B = λk,j

QP and µk,j+1
B = µk,j

QP, where (∆wk,j , λk,j
QP, µ

k,j
QP)

is the solution of QP (3) with the partially updated data as
just described. We call the generated sequence {zk,jB }j≥0 for
a fixed k the level B iterates.
Proposition 1. (Adapted from [2, Theorem 1.4]) If for a fixed
parameter xk, the level B iterates {zk,jB } converge to a limit
point z̄B(xk) = (w̄B(x

k), λ̄B(x
k), µ̄B(x

k)), short z̄kB, then z̄kB
is a primal-dual solution of the parametric NLP

min
w

f(w) + w⊤βk (4a)

s.t. 0 = g(w) +Mxk, (4b)
0 ≤ h(w), (4c)

with βk = ∇f(ŵk) + Âk(w̄k
B − ŵk)−∇f(w̄k

B)

+ (∇g(w̄k
B) 9 (Ĝ

k)⊤)λ̄k
B + (∇h(w̄k

B) 9 (Ĥ
k)⊤)µ̄k

B.

Therefore, the level B iterations converge to a solution of
an NLP that is parametric in xk and βk. The local minimizer
of (4) is feasible for (2) but not optimal, as the objective is
altered by w⊤βk.

Level A iterations. Compared to level B iterations, a level
A iteration does not evaluate the constraint residuals and only
updates them with respect to the parameter, i.e., gk = g(ŵk)+
xk, hk = h(ŵk). The new solution approximation is obtained
by a single QP solve, with wk

A = ŵk +∆w. It is important to
note that level A iterations only generate a new value wk

A for
every new parameter value xk, instead of a sequence as in the
other levels. The reason is that the QP is a piecewise linear
approximation of the solution map z̄(x), which is evaluated at
given parameters xk.

III. IMPROVED ERROR ESTIMATES FOR THE AS-RTI

This section recalls some results for the convergence of
predictor-corrector methods and derives novel error bounds
for different variations of the AS-RTI method.

A. Error bounds for the feedback phase
For ease of exposition, let us consider only equality-

constrained problems, or assume a fixed active set. Later,
in Remark 10, we comment on what needs to be changed
to generalize the result to inequality-constrained problems.
Regard the parametric optimization problem

min
w

f(w) s.t. 0 = g(w) +Mx. (5)

The Karush–Kuhn–Tucker (KKT) conditions of (5) can be
stated as the nonlinear root-finding problem

F (z, x) =

[
∇f(w)−∇g(w)λ

g(w) +Mx

]
= 0, (6)

with z = (w, λ) ∈ Rnz , nz = nw + ng and the function
F : Rnz × Rnx → Rnz which is at least once continuously
differentiable. Its zeros are denoted by z̄(x) = z̄.

We make a regularity assumption on the solutions of the
parametric NLP (5). The Linear Independence Constraint
Qualification (LICQ) is said to hold at a point w if the vectors
∇gi(w), i = 1, . . . , ng are linearly independent. The Second
order Sufficient Conditions (SOSC) is said to hold at a KKT
point z̄k if Z⊤∇2

wwL(z̄k)Z ≻ 0, where Z ∈ Rnw×(nw−ng) is
a basis for the null space of ∇g(z̄k)⊤.
Assumption 2. (LICQ, SOSC) For all parameters x ∈ X ⊆
Rnx , all local minimizers z̄(x) of (2) satisfy the LICQ and
SOSC conditions.

The Jacobian of F (z, x), which due to linearity in x only
depends on z, is denoted by J(z) := ∂(F (z,x))

∂z . Recall that
zk+1 ≈ z̄(xk+1) and zk ≈ z̄(xk). A predictor-corrector step
for the parametric root-finding problem (6) can be written

zk+1 = zk − J(zk)−1F (zk, xk+1). (7)

Note the dependence on the next parameter xk+1. If a fixed
xk is used instead, equation (7) reduces to an exact Newton-
step, a corrector step. If zk = z̄(xk), due to the linearity of
F (z, x) in x, equation (7) reduces to a predictor step: zk+1 =

zk + ∂z̄(xk)
∂x (xk+1 − xk), see [14, Sec. 1.2] for details.

We proceed by restating some results that we use to study
the AS-RTI error, starting with the convergence of Newton’s
method, cf. [15, Sec. 8.3.3.]. Suppose that the parameter xk

is fixed, then (7) is simply a standard exact Newton-step
zk,j+1 = zk,j − J(zk,j)−1F (zk,j , xk). One may also use a
Jacobian approximation Mk,j ≈ J(zk,j).
Assumption 3. (ω and κ conditions) There exist ω < ∞ and
κ < 1 such that, for any fixed xk, given iterate zk,j and
Jacobian approximation Mk,j , the following holds:

(a) ∥(Mk,j)−1(J(zk,j)− J(z))∥ ≤ ω∥zk,j − z∥, ∀z,
(b) ∥(Mk,j)−1(J(zk,j)−Mk,j)∥ ≤ κ.

Here, (a) is a rescaled Lipschitz condition on the Jacobian,
and (b) measures the Jacobian approximation error. For the
exact Jacobians (Mk,j = J(zk,j)) it holds that κ = 0.
Assumption 4. (Initialization) A starting point zk,0 of a
sequence generated by a Newton-type method satisfies

∥z̄k − zk,0∥ < rz = 2(1−κ)
ω . (8)

Assumption 4 tells how close to a solution one must initial-
ize so that Newton’s method converges with full steps. Both
Ass. 3 and 4 are standard for local Newton-type convergence
analysis to state the following theorem [1], [2], [13], [14].
Theorem 5. (Newton-type convergence, cf. [15, Thm. 8.7])
Regard the continuously differentiable function F in (6) with
a fixed xk, and a solution z̄(xk) (short z̄k) with F (z̄k, xk) = 0.
If Ass. 3 holds, the sequence {zk,j} generated by zk,j+1 =
zk,j − (Mk,j)−1F (zk,j , xk) satisfies the inequality

∥z̄k − zk,j+1∥ ≤
(
κ+ ω

2 ∥z̄k − zk,j∥
)
∥z̄k − zk,j∥. (9)

Moreover, if Assumption 4 holds, then the sequence {zk,j}
converges to z̄k as j → ∞.
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Define αk := κ+ ω
2 ∥z̄k−zk,0∥, with αk < 1 due to Ass. 4.

Applying (9) recursively, results in the useful inequality

∥z̄k − zk,j+1∥ ≤ (αk)j+1∥z̄ − zk,0∥. (10)

Next, we look at the solution map z̄(x) for different
parameters x. Assumption 2 implies that J(z̄(x)) is invertible
for all x ∈ X , cf. [12, Lem. 16.1]. Thus, applying the implicit
function theorem [12, Thm. A.1] to (6) entails that z̄(x) is
locally unique and Lipschitz continuous

∥z̄(xk+1)− z̄(xk)∥ ≤ σ∥xk+1 − xk∥. (11)

By applying a single predictor-corrector step (7) for the
parameters xk+1 and xk

lin, the corresponding solution map
approximations zk+1≈ z̄(xk+1) and linearization point zklin ≈
z̄(xk

lin) can be related by combining (9) and (11) as follows.
Theorem 6. (Adapted from [14, Th. 3.5], [13, Lem. 3.1.5])
Regard the continuously differentiable function F in (6), and
solution z̄(x) with F (z̄(x), x) = 0. Let Assumptions 2 and 3
hold. Then, the iterates zk+1 and z̄klin = zk generated by (7)
for the parameters xk+1 and xk

lin = xk satisfy

∥z̄k+1−zk+1∥ ≤ (κσ + ωσ2

2 ∥xk+1 − xk
lin∥)∥xk+1−xk

lin∥
+(κ+ωσ∥xk+19xk

lin∥+ ω
2 ∥z̄klin9zklin∥)∥z̄klin9zklin∥. (12)

Note that index j is omitted since a single Newton-type step
is computed for every parameter. Furthermore, if for some
fixed x0 the point z0 ≈ z̄0 satisfies Ass. 4, there exists rx
(depending on σ, κ and ω) such that for ∥xk+1 9 xk∥ < rx,
the sequence {zk} generated by (7) remains bounded with
∥zk − z̄(xk)∥ < rz , cf. [14, Corollary 3.6.].

B. Error bounds for the preparation phase
Given a linearization point zklin and xk

lin, in the feedback
phase, i.e., step (S4) of AS-RTI, a QP is solved to obtain an
approximation zk+1 ≈ z̄(xk+1). In the absence of inequalities,
instead of a QP, the linear system (7) is solved, and we have
the error bound in (12). We see from (12) that the accuracy
of the new output zk+1 improves with a smaller difference
between the parameters via ∥xk+1−xk

lin∥ and higher accuracy
of the linearization point via ∥z̄klin − zklin∥. The goal of AS-
RTI is to reduce ∥z̄klin−zklin∥ by solving an advanced problem
with xk

lin = xk+1
pred ≈ xk+1 performing iterations with some

MLI variant, which results in tighter bounds for ∥z̄k+1−zk+1∥
in (12). We proceed by quantifying the error for each variant.

Level D iterations. Here, we use Newton-type steps in (7)
with Mk,j

D ≈ J(zk,j) and assume that Ass. 3 holds for some
κD and ωD. Starting with the previous output zk and pre-
dicted parameter xk+1

pred, and assuming that ∥zk − z̄(xk+1
pred)∥ <

2(1−κD)
ωD

, a modification of Ass. 4, we carry out ND Newton-
type iterations to obtain zklin. Theorem 5 and (10) yield

∥zklin − z̄(xk+1
pred)∥ ≤ (αk

D)
ND∥zk − z̄(xk+1

pred)∥. (13)

with αk
D = κD+ ωD

2 ∥zk − z̄(xk+1
pred)∥ < 1. In the limiting case

where xk+1
pred = xk+1 and j → ∞, we see that in the right-hand

side of (12) becomes zero, i.e. zk+1 = z̄k+1.
Level C iterations. In level C, we essentially proceed as in

level D, except that we use a constant Jacobian approximation

Mk,j = Mk
C =

[
Âk (Ĝk)⊤

Ĝk 0

]
computed at the reference point

ẑk = zk−1. We assume that that Ass. 3 holds for some κC

and ωC. Similar to level D, starting with the previous output,
zk and xk+1

pred, and assuming that ∥zk − z̄(xk+1
pred)∥ < rz,C =

2(1−κC)
ωC

, a modification of Ass. 4, we perform NC Newton-
type iterations to obtain zklin. Applying Thm 5 and (10) yields

∥zklin − z̄(xk+1
pred)∥ ≤ (αk

C)
NC∥zk − z̄(xk+1

pred)∥. (14)

with αk
C = κC + ωC

2 ∥zk − z̄(xk+1
pred)∥ < 1. Since Mk

C is
fixed, it is a less accurate but computationally cheaper Jacobian
approximation and usually κD ≪ κC holds. For similar ωD

and ωC, it follows that rz,C < rz,D. In other words, the
previous output zk must be closer to the solution z̄(xk+1

pred)
for level C than for D to achieve contraction of the iterates.

Level B iterations. Following Proposition 1, Level B iter-
ations for NLPs without inequality constraints converge to a
solution of

min
w

f(w) + w⊤βk s.t. 0 = g(w) +Mxk, (15)

with βk = ∇f(ŵk)+Âk(w̄k
B−ŵk)−∇f(w̄k

B)+(∇g(w̄B)
k−

(Ĝk)⊤)λ̄k
B. The KKT conditions of (15) read
FB(z, β

k, xk) = F (z, xk) + [(βk)⊤, 0]⊤. (16)

A sequence of iterates is generated via zk,j+1 = zk,j −
(Mk

B)
−1FB(z

j , β, xk+1
pred), where the parameters βk and xk+1

pred

are fixed, and Mk
B = Mk

C. We have the following estimate.
Proposition 7. Assume that LICQ and SOSC hold for (15)
at all z̄B(x, β), for x ∈ X and β ∈ Rnw . Suppose that
Ass. 3 holds for zk,j+1 = zk,j − (Mk

B)
−1FB(z

j , βk, xk+1
pred)

with constants κB and ωB , and that ∥zk − z̄kB∥ < 2(1−κB)
ωB

.
Then the sequence of iterates {zjB}j=1,...,NB fulfills
∥z̄(xk+1

pred) 9 z
k
lin∥ ≤ σB∥βk∥+ (αk

B)
NB∥z̄B(xk+1

pred, β
k)9zk∥,

where σB is the Lipschitz constant of z̄B(x, β) and αk
B =

κB + ωB

2 ∥zk − z̄B(x
k+1
pred, β

k)∥ < 1.
Proof. Adding and subtracting z̄B(x, β

k) in the left term of
the next equation, and using the triangle inequality we get

∥z̄(x)− zklin∥ ≤ ∥z̄(x)− z̄B(x, β
k)∥+ ∥z̄B(x, βk)− zklin∥.

For the first term on the right, we note that z̄B(x, 0) = z̄(x).
Since LICQ, SOSC hold for (15) by applying the implicit
function theorem to (16), we have that ∥z̄(x) − z̄B(x, β)∥ ≤
σB∥β∥. For the second term on the left, we apply (10)
with NB iterations, and obtain that ∥z̄B(x, β) − zklin∥ ≤
(αB)

NB∥z̄B(xk+1
pred, β) − zk∥. By using these two terms and

x = xk+1
pred the result of this proposition is obtained.

Even if level B iterations are fully converged j → ∞, the
error ∥z̄(xk+1

pred)− zklin∥ ≤ σB∥β∥ remains, as they converge to
feasible but suboptimal points of (2), cf. Prop. 1. Analogously
to C and D, the previous output zk has to be close enough to
z̄B(x

k+1
pred) such that the iterates contract.

Level A iterations. Applying Thm 6 with xk
lin=xk+1

pred yields
an error bound for the feedback phase of AS-RTI-A.
Proposition 8. Let the assumptions of Theorem 6 hold. When
zklin is obtained via a Level A iteration zklin = zk91 9
(Mk91)91F (zk91, xk+1

pred), the feedback error satisfies
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∥z̄k+19zk+1∥ ≤ (κσ + ωσ2

2 ∥xk+1 9 xk+1
pred∥)∥xk+19xk+1

pred∥
+(κ+ωσ∥xk+19xk+1

pred∥+ ω
2 ∥z̄klin9zklin∥)∥z̄klin9zklin∥. (17)

Compared to RTI, where xk
lin=xk and zklin=zk, AS-RTI-A

can significantly reduce the error if xk+1
pred ≈ xk+1 and if the

predictor provides a good approximation zklin≈ z̄(xk+1
pred)= z̄klin.

Remark 9. The same linearization at zk91 is reused to com-
pute both an approximation for xk+1

pred and xk. It is important
to start from zk91 for computing zklin instead of zk to avoid
taking the same corrector step twice, cf. (7).
Remark 10 (Extension to inequality constraints). All results
are derived from two inequalities: convergence of Newton’s
method in Theorem 5, and Lipschitz continuity of z̄(x) in (11).
The KKT conditions of inequality constrained NLP (2) can
be written as a generalized equation solved by the Newton-
Josephy method, which is equivalent to SQP. Using Robinson’s
strong regularity, which is implied by strong SOSC and LICQ,
Theorem 5 can be generalized via [14, Thm. 3.5] and Eq. (11)
via [14, Lem. 3.3].

IV. IMPLEMENTATION IN ACADOS

Next, we discuss some practical aspects for an efficient im-
plementation of AS-RTI within the acados software, which
has been developed as part of this work.

a) Condensing and QP solution with two phases: The
acados software offers a variety of QP solvers. HPIPM
offers efficient methods to transform OCP-structured QPs into
dense ones or ones with a shorter horizon by full and partial
condensing [16]. Since in the preparation phase all matrices
of the QP are readily available, most of the condensing
operations can be performed in that phase. Moreover, it is
common to eliminate the initial state variable from the QP.
An efficient split of operations is realized by implementing
functions that assume that only matrices of QP (3) are known
and a second one that completes the computations once the
vector quantities are known. This split functionality is utilized
when implementing the level A, B, and C iterations.

b) Advancing: There are two main strategies to set up the
advanced problem, (S1). 1) Simulate with ϕ0(·) internally at
the current SQP iterate. 2) Simulate the system externally.
Both strategies work in general for nonuniform discretization
grids in (1), which have been shown to be superior with respect
to uniform ones in [17]. Option 1) assumes that ϕ0 models the
systems evolution over the sampling time. In contrast, 2) does
not require this assumption and allows using a higher fidelity
model than used in the OCP.

V. NUMERICAL EXPERIMENTS
This section compares different MPC controllers in an open-

source numerical simulation study [18] using acados v0.3.2
[19] via Python on a Laptop with an Intel i5-8365U CPU, 16
GB of RAM running Ubuntu 22.04.

a) Inverted pendulum on cart test problem: The differential
state of the model is x = [p, θ, s, ω]⊤ with cart position p, cart
velocity s, angle of the pendulum θ and angular velocity ω.
The control input u is a force acting on the cart in the horizon-
tal plane. The ODE, describing the system dynamics can be
found e.g. in [11]. In our OCP formulation, u is constrained to

TABLE I
TIMINGS, RELATIVE SUBOPTIMALITY, STATIONARITY RESIDUAL AND

CONSTRAINT VIOLATION FOR DIFFERENT CONTROLLERS.

max. time max. time relative mean mean
prepare feedback subopt. 103∥g∥ ∥∇wL∥

algorithm [ms] [ms] [%]

SQP-100 0.00 5.518 0.05 0.00 0.00
SQP-2 0.00 0.264 0.25 12.99 7.75
AS-RTI-D-2 0.35 0.020 0.04 0.74 1.28
AS-RTI-D-1 0.23 0.020 0.25 8.26 5.38
AS-RTI-C-2 0.32 0.020 0.04 5.34 2.20
AS-RTI-C-1 0.23 0.021 0.24 10.70 5.85
AS-RTI-B-2 0.28 0.021 0.57 1.28 8.20
AS-RTI-B-1 0.19 0.021 0.54 8.77 7.98
AS-RTI-A 0.13 0.019 0.54 12.41 6.63
RTI 0.11 0.022 3.55 14.06 8.26
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Fig. 1. Pareto plot: timings vs. relative suboptimality.

be in [−40, 40]. The goal is to stabilize the system in the un-
stable upright position driving all states to zero. We formulate
the linear least squares cost l(x, u) = x⊤Qx + u⊤Ru with
cost weights are Q = diag(100, 103, 0.01, 0.01), R = 0.2.
The terminal cost term is set to E(x) = x⊤Px, where P is
obtained as a solution of the discrete algebraic Riccati equation
with cost and dynamics linearized at the steady state.

b) Scenario: The system is simulated for four seconds at a
sampling time of ∆t = 0.05s. We simulate 20 different scenar-
ios, in each of which, the system starts at an upward position
with a random initial value for p and is disturbed at two time
instances, at 0s and 2s by overwriting the control action with
random value in [−100, 100]. The OCP is formulated with a
time horizon of 2s divided into N = 20 shooting intervals,
the first is of length ∆t and the remaining uniformly split the
rest of the time horizon. The dynamics are discretized using
one step of an implicit Radau IIA method of order three with
three Newton iterations on each shooting interval, respectively
of order seven with 20 Newton iterations for the simulation
step of the plant.

c) Controllers: We apply a variety of controllers and report
their performance in Table I. All controllers use the full
condensing functionality from HPIPM [16] and the active-set
solver DAQP [20]. The solvers labeled SQP n apply n SQP
iterations. Different variants of AS-RTI controllers are labeled
AS-RTI-X-n performing n level X iterations on the advanced
problem in each preparation phase. Additionally, we compare
with a plain RTI controller.

d) Evaluation: The Pareto plot in Fig. 1 compares the
controller variants in terms of maximum computation time and
relative suboptimality. The latter is evaluated by computing
the closed-loop cost and comparing with a controller that uses
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Fig. 2. Primal and dual residuals of inner iterations and the applied
feedback steps for RTI and different AS-RTI variants.

a finer uniform discretization grid with N = 40 and fully
converged SQP, which is marked as ideal in Fig. 1. In Table I,
we additionally report the maximum timings for preparation
and feedback phase over all simulations. Additionally, the
mean values of the constraint violation and the Lagrange
gradient over all simulation steps are listed. The shooting gaps
show satisfaction of nonlinear constraints, quantified as ∥g∥.
The example only contains linear inequality constraints, which
are always satisfied. Thus, it allows one to compare closed-
loop suboptimality and constraint violation simultaneously.
Figure 2 shows how primal and dual infeasibility evolve over
all AS-RTI iterations over a few time steps after applying a
large disturbance to the plant.

e) Discussion: Firstly, we can see from Table I that the
timings of the feedback step for all AS-RTI variations are
consistent and a multiple lower compared to their preparation
phase, which is enabled by the split condensing described
in Sec. IV. In our closed-loop simulation, the delay from
the computation of the feedback phase is neglected, which
would impact all real-time controllers similarly, but would
drastically degrade the performance of the SQP algorithms
included for reference. The classic RTI algorithm has a rather
high suboptimality and is the fastest real-time algorithm.

AS-RTI-A, with a single precondensed QP solve, is able
to greatly improve on the classic RTI algorithm with much
better performance and a marginally increased computational
load, cf. Fig. 1. In Figure 2, one can observe that level B
iterations converge to a feasible linearization point. This iterate
is associated with a fixed suboptimality which is visible in the
second subplot and consistent Proposition 7.

In contrast to the level B iterations, the level C iterations
converge to a feasible locally optimal point. The same holds
for level D iterations. Since iterations of level D are more
accurate than level C, it follows that κD < κC, which implies
a faster error reduction in (13) compared to (14). This can be
observed in Figure 2 which shows faster convergence for D,
i.e., the steeper slope in both primal and dual infeasibility.

Overall, we see in Figure 2 that the feedback iterates of
all AS-RTI variants are more accurate than the one of plain
RTI. This is due to the tighter bound in (12), more precisely,
the reduced error in the linearization point ∥z̄klin − zklin∥, and
the smaller parameter difference ∥xk+1 − xk+1

pred∥ for AS-RTI
compared to ∥xk+1 − xk∥ for plain RTI.

VI. CONCLUSION

This paper streamlines and extends the existing analysis of
AS-RTI with Multi-Level Iterations (MLI) of all for levels.
It is shown that if the current solution is sufficiently close
to the next solution, the numerical error can be reduced by
a few computationally cheap MLI iterations. Furthermore, an
efficient implementation in the open-source package acados
is presented making the method widely available for real-world
applications on embedded hardware. Numerical examples con-
firm the theory and demonstrate how to assemble efficient
variants of the AS-RTI method. In particular, AS-RTI-A can
significantly improve control performance over standard RTI
at only 20% additional cost per sampling time, by computing
a single additional QP solution to the advanced problem.
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