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This work proposes an efficient treatment of continuous-time optimal control problems with long horizons
and nonlinear least-squares costs. In particular, we present the Gauss—-Newton Runge-Kutta (GNRK) integrator
which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an
SQP-type algorithm is approximated with a Gauss-Newton Hessian. Moreover, L, penalty formulations for
constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation

of GNRK is provided in the open-source software framework acados. We demonstrate the effectiveness of
the proposed approach and its implementation on an illustrative example showing a reduction of relative
suboptimality by a factor greater than 10 while increasing the runtime by only 10%.

1. Introduction

Model predictive control (MPC) is an optimization-based control
strategy which relies on the (approximate) solution of nonlinear opti-
mization problems in real-time. In direct optimal control, starting from
a continuous-time optimal control problem (OCP), a variety of choices
have to be made to derive a discrete-time formulation that adequately
approximates the continuous-time problem but can be solved efficiently
within an online optimization context.

Direct methods for optimal control first discretize then optimize the
original problem and are the focus of this paper. In particular, we con-
sider a multiple shooting (Bock & Plitt, 1984) discretization approach.
Sequential quadratic programming (SQP) is a widely used algorithm
in the field of real-time nonlinear model predictive control (NMPC)
to tackle the resulting discrete-time OCP. Especially its application via
the real-time iteration (RTI) scheme (Diehl, Bock, & Schloder, 2005) is
of particular interest in the context of online optimization. Within the
RTI framework, a single SQP iteration is performed at each sampling
time, which allows one to further split the required computation into
a preparation and a feedback phase minimizing feedback delays.

One essential component of SQP software for NMPC based on
direct multiple shooting are integration routines that solve initial value
problems with possibly nonlinear and stiff differential equations and
compute the sensitivities of the result with respect to the initial state
and the control input (Frey, De Schutter, & Diehl, 2023; Quirynen,

2017). Often, these integration methods are simply referred to as
integrators.

The above ingredients are implemented in the open-source software
package acados which provides high-performance algorithms for op-
timal control (Verschueren et al., 2021). It internally uses the linear al-
gebra package BLASFEQ, which provides performance-optimized rou-
tines for small to medium sized matrix operations (Frison, Kouzoupis,
Sartor, Zanelli, & Diehl, 2018). The acados software offers a very
flexible optimization problem formulation supporting a wide range of
optimal-control structured problems, such as classic optimal control
problems (OCP) and moving horizon estimation (MHE) problems. Var-
ious discretization options are available, such as nonuniform grids,
explicit and implicit integrators and dedicated functionalities to handle
nonlinearities and linearities in cost and constraint functions efficiently.
Moreover, a variety of quadratic programming (QP) solvers, such as
HPIPM, qpOASES, DAQP, 0SQP, gpDUNES, (Arnstrom, Bemporad, &
Axehill, 2022; Ferreau, Kirches, Potschka, Bock, & Diehl, 2014; Frasch,
Vukov, Ferreau, & Diehl, 2013; Frison & Diehl, 2020; Stellato, Geyer, &
Goulart, 2017) are interfaced, which either tackle the OCP-structured
QP directly or after applying full or partial condensing to it (Axehill,
2015; Frison, Kouzoupis, Jgrgensen, & Diehl, 2016).

This paper focuses on the discretization and Hessian approximation
of the cost function. We investigate how the control performance, both
in terms of closed-loop cost and computation time, can be improved
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using a sophisticated cost discretization scheme. In particular, we focus
on nonlinear-least squares objectives, which are common in control
applications and allows us to use intrinsically positive-semidefinite
Gauss-Newton Hessian approximations. We efficiently implemented
the integration of a nonlinear least-squares Lagrange cost term together
with its derivatives within an integrator, resulting in a Gauss—-Newton
Runge-Kutta (GNRK) integration method, recently proposed in Katliar
(2022). In addition, we propose a simple but effective penalty for-
mulation to incorporate state constraints with an L, penalty. The
combination of the above ingredients are especially effective, in terms
of accuracy and associated computational complexity, when applied to
problems with relatively long horizons. The GNRK implementation is
described and its effectiveness is demonstrated together with the use
of RTI and a nonuniform discretization grid in terms of computation
time and closed-loop cost on the illustrative example of a pendulum on
a cart.

The remainder of the paper is structured as follows. Section 2
presents the continuous-time OCP and discusses in detail how to trans-
form it into an NLP using multiple shooting. Section 3 describes the
GNRK integrator. Section 4 presents numerical experiments and Sec-
tion 5 concludes the paper and discuss the handling of state constraints
via penalties.

2. Optimal control problem formulation

In this section, we start with a continuous-time optimal control
problem (OCP) which we aim at approximating with a direct multiple
shooting formulation that is suitable for real-time MPC. We give an
overview and recommendations on the various discretization choices
within the direct multiple shooting framework.

2.1. Continuous-time optimal control problem

We consider optimal control problems of the form

min / £(x(t), u(t)) dt (1a)

x(),u(-) 0

st x(0)= X b
0= f(t, x(0), (1), u(t)), 1€[0, o) (1c)

0> g(x(1), u()), t€[0, 00), (1d)

where x(-) : [0, 00) = R"x, u(-) : [0, 00) - R" are the state and control
trajectories respectively, % is the initial state value, f(-) describes the
implicit system dynamics and g(-) denotes the inequality constraints.
The cost function consists of the integral of the Lagrange cost term £(-),
which we assume to have the following nonlinear least-squares form

£0n) = 3wl @

where W € R"™*" is positive definite and r(-) : R"x x R — R" is the
potentially nonlinear residual function.

2.2. Discretization of the optimal control problem

In order to arrive at a finite dimensional approximation of the
continuous problem (1), which can be solved online, a finite time
horizon T and the number of shooting intervals N have to be chosen.
The shooting intervals are [¢,,?,,,] with 7, = 0 and ty = T. The time
steps are Ar, =t,,; —t, for n=0,..., N - 1. The multiple shooting OCP
corresponding to (1) can then be stated as

N-1
D L u,) + M(xy) (3a)

UQ,..UN- | n=0
s.t. X0 = %o (3b)

Xpp1 = Gp(xpou,), n=0,...,N-1 (30)
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02>g,(x,u,), n=0,...,N-1 (3d)

0= gterminal(xN)' (36)

Its optimization variables are the discrete control inputs u, acting
on [t,,t,,4], n = 0,...,N -1, and the discrete states x, at 7,, n =
0,...,N. The values x, and x,,; are coupled by integration methods
(integrators) ¢,(-) that discretize the continuous-time dynamics in (1c)
and that can be different for all stages n = 0,..., N - 1. The cost terms
L,(-) approximate the integral of the continuous cost over the shooting
interval [t,,t,,;]. The constraints g,(-) represent the continuous-time
constraints on [t,,1,,,]. Most direct methods in optimal control only
enforce the constraints at the shooting nodes. Lastly, the terminal
constraint g..mina(-) and the terminal cost term M(-) can be used to
approximately summarize the infinite remainder of the horizon.

2.3. Constraint handling via direct penalty

In the context of NMPC, it is not recommended to impose hard con-
straints on the state, since this can render the OCP infeasible (Rawlings,
Mayne, & Diehl, 2017). This issue is typically mitigated by softening
all constraints which depend on the state. This means that a scalar
constraint of the form A(z) < 0 in the variables z is replaced by

h(z) <s @

using an additional optimization variable s, commonly referred to as
slack, which is constrained to be nonnegative, s > 0. The slack is
penalized in the cost function, by adding a term p(s), which typically
consists of an L; and/or L, penalty. Such slack variables can be
considered as a control input in the context of optimization prob-
lem (3). However, many OCP specific solvers allow to handle them in
a more dedicated fashion, exploiting the fact that they do not enter the
dynamics (Frey, Di Cairano, & Quirynen, 2020; Frison & Diehl, 2020).

Since constraints are typically only imposed on the shooting nodes
in the discrete-time OCP, the continuous-time trajectories correspond-
ing to the discrete solution may violate the constraints between shoot-
ing nodes. This issue can be mitigated by directly adding the cost term
corresponding to the constraint violation to the continuous objective,
ie.

p,(max(0, h(z))). 6]

This can lead to a more accurate incorporation of the constraint cost if
an accurate cost integration is employed, see below, especially if longer
intervals are used.

In order to fit into the nonlinear least-squares framework, we pro-
pose to penalize constraint violations of (4) with an L, penalty with
weighting parameter y, by adding

p(z) = y(max(h(z), 0))* (6)

to the cost function. The combination of such penalty functions for
multiple constraints is visualized in Fig. 1. Note that for this penalty for-
mulation, the Gauss-Newton Hessian corresponds to the exact Hessian,
which is in this case not continuous. However, the Newton iterations
can be analyzed within the framework of semismooth Newton methods,
compare e.g. Hintermiiller (2010).

In contrast, using an L; penalty instead of the L, penalty yields
a nondifferentiable objective, rendering this formulation not directly
suitable for the numerical method presented in this paper. Instead, L,
penalties require the reformulation via a slack variable and inequalities.
However, an extension of formulation (6) to convex penalties with a
continuous gradient, such as the Huber loss, would also be suitable for
direct numerical treatment and can be handled with a generalized or
extended Gauss-Newton Hessian (Baumgéartner & Diehl, 2022).
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Fig. 1. Multiple constraints penalized via (6).

2.4. Cost integration scheme

Now that state constraints are incorporated into the cost function,
we want to define L,(-) to approximate the continuous-time cost term
on the interval [z,,7,,), i.e.

Tny
L, (x,,u,)~ / ] £(x(1), u(t))dt. @)
1,

n

We consider two possible integration schemes:

(i) The shooting node cost discretization (SN) approximates the cost
term as

L3NGx,,u,) = At,E(x,, 1), (8)

and corresponds to an Euler integration of the cost.

(ii) The (implicit) Runge-Kutta (RK) integration uses the same inte-
gration scheme which is used to integrate the dynamics, repre-
sented by ¢,(-). The Runge-Kutta integration of the cost and, in
particular, a Hessian approximation of this cost term, which is
efficient to compute, are described in detail in Section 3.

Note that the two options coincide if the dynamics are discretized using
one step of an explicit Euler scheme.

2.5. Practical considerations and nonuniform grids

In the context of real-time MPC, there are practical limitations rele-
vant for the design of the MPC controller. Firstly, the plant or actuators
typically have a minimum sampling time 4ty,,, for which a control
input should be applied. Operating the plant at a lower frequency
restricts the control law unnecessarily, potentially sacrificing control
performance. Thus, a controller should be able to output controls with
the same frequency, i.e., the sampling time of the controller T, should
equal 47, which we assume in the following. Secondly, the control
input applied for one sampling period is typically constant. These
considerations motivate a constant control input on the first shooting
interval [0,7,] with ¢, =T,.

While the remaining degrees of freedom in choosing a time grid
are massive, the majority of practical applications of MPC restrict
themselves to a uniform time grid. It is difficult to make general
suggestions about this choice, but we want to motivate the use of a
nonuniform in the following.

If the first shooting interval is longer, i.e., 4¢, > T, this can lead
to a loss of optimality, since the controls have to be chosen more
conservatively, such that they do not drive the system away from a
desired trajectory, even if applied for the longer period 4fz,. On the
other hand, if 47, < T,, the controller might choose too aggressive
actions for T, which are only safe to apply for the shorter period of
Aty

The prediction model and its discretization should be very accurate
on the first shooting interval to avoid suboptimality of the open-loop
trajectory due to model-plant mismatch on the first part of the horizon,
which is applied to the real system.
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Additionally, it is essential to have a sufficiently long time horizon
such that the optimizer is aware of future constraints or future changes
in the cost, such as reference changes. The crucial task of the latter
part of the horizon which is not applied to the plant is to capture the
cost-to-go accurately. However, since the computational cost of MPC
algorithms scales at least linearly in the number of shooting nodes, a
trade-off between a long time horizon and a low number of shooting
nodes has to be made, which motivates the use of a nonuniform time
grid.

Overall, these considerations encourage the use of a fine cost inte-
gration in contrast to the widely used shooting node discretization.

3. Implicit Runge-Kutta integration of the Lagrange term and
Gauss-Newton Hessian approximation

In the following, we describe how the Lagrange term within the con-
tinuous cost (1a) can be integrated with the same integration scheme
used for the system dynamics (1c). In particular, we show how the
first-order, as well as an approximation of the second-order derivatives
of the integrated Lagrange term can be computed with little computa-
tional overhead and a low memory footprint. Our presentation closely
follows the one given in Katliar (2022).

3.1. Integrated cost and its derivatives

We assume that each integration interval [7,,7,,,) is subdivided

. T . i i . Ny g
into ng,, equidistant subintervals [¢, ") with 1, = 15, 1,,, = ,"™
; ar a, . .
and 7, = t, + i—"- where —" is the length of each subinterval,
steps steps

i = 1,...,ng4.,. On each subinterval [#,7*!], the following system of
equations is solved:

Ngtages
sl =x, + L ajy,kz’l, 9
steps =1
0=fab, st ki uy), 10)
for j = 1,...,nyuees and where i = o+ nA’” . The final state at the
. . . steps
end of the subinterval is obtained as
" Nstages
X = x4 =N bk an
Msteps j=1

The coefficients a; , b;, c; are given by the Butcher tableau defining
a specific RK method. We obtain the integrated value of the cost at #
as:

A Nstages

. . t S
+1 _ n J N
) Y ¥ ] (12)
steps =1
where r/ = r(s"/, u,). Differentiating (12) with respect to w, = (x,,u,),
we obtain
i+1 i Nstages
dLitt AL A, M

. T o
= + b W, 13)
dwn dwn nsleps ; s "

N ij
where J,’ = j’T". For the Hessian, we differentiate the above again to
obtain !

d2Li+l dZLi At stages T o ny o eri,jJ
A= N b T W Y — 14
dw;, dw;,  Ngeps 17 =1 dw,

where ri,‘” is the /th component of r/. Discarding the second term
within the sum in (14), we obtain the Gauss-Newton (GN) Hessian

approximation

d2 Li+1 Nstages
n_ o oppitl . i n
~HM = H +

o T
b JHY W I, (15)
dw%, Asteps j=1 s "
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Note that the product .i,';’jTWf,’;’j in (15) is positive semidefinite. Thus,
if the coefficients b; are nonnegative,' the GN Hessian approximation
is positive semidefinite as well.

In summary, the GNRK cost integration technique is defined by
using the cost

LN Gxywy) 1= L, (16)

steps

where L: as in (12). It is used together with its exact gradient (13)
and the GN Hessian approximation in (15).

If used within an SQP-type algorithm, the Gauss—-Newton Hessian
approximation yields in general local linear convergence (Bock, 1983).
The asymptotic linear rate depends on the deviation of the Gauss—
Newton Hessian approximation from the exact Hessian at the solu-
tion (Messerer, Baumgértner, & Diehl, 2021). The deviation is explicitly
given by

At Nstages ny dzri’j'l

i+l . _ i n ijil —_n_

En '_En + n Z b/ Z T VI/I" dw? : (17)
steps =] =1 n

Thus, we expect fast linear convergence if the residuals r),’" are close
to zero.

3.2. Efficient computation of the Gauss—Newton Hessian

This section describes how the Gauss—-Newton Hessian of the inte-
grated cost can be obtained with minor additional computations within
an integrator that already delivers first-order derivatives. Applying the
chain rule, we can express J'/ as

Fid — jiJ giJ
Jn - "n Sn (18)
where we introduced
R Y
Jh =
n Jw
ij dsh ds/
S,/ = L) [ @, ] .
dw, ‘Dnuxnx :ﬂ'nuxr:u

Differentiating (9), we obtain

ij i Ngtages il
dsy/ dxl a1, di

dw, ~ dw i dw,’

(19)
n nsleps I=1
The derivatives d'f are available within the forward propagation of
any Runge—Kutta integrator that applies internal numerical differentia-
tion and can be reused. For a detailed description of forward sensitivity
propagation within implicit integrators, we refer to Quirynen (2017).
The additional computations for using GNRK instead of SN on
a shooting interval are ny,qngeps €valuations of r(-) and %(0 and
matrix-matrix multiplications with dimension n, x (n, +n,), (n, +n,) X
n,, respectively (n, + n,) X (n, + n,). The additional linear algebra
operations are all of order (n, + n,)* or less, assuming that n, < (n, +
n,). Thus, it is of a lower order compared to the fastest QP solution
algorithms, which require computations with order n? and n} (Frey
et al., 2020; Frison, 2015). On the other hand, in the SN discretization,
the functions r(-) and %(‘) would only be evaluated once instead
Of Ryypeshyeps times, which might dominate the computational cost.
However, if these evaluations would dominate, the functions are likely
to be very nonlinear and a more accurate integration is desirable. Since
the Hessian contributions of each point within the RK integrator can
be accumulated on the fly using (15), (18) and (19), the additional
memory footprint is small and independent of n and n Note

steps stages®

! Note that this is the case for Gauss-Radau ITA and Gauss-Legendre
tableaus with ny,..; = 1,...,9 and all explicit tableaus implemented in acados
at the time of writing, but not true in general, e.g. some DIRK methods (Hairer
& Wanner, 1991) use negative coefficients b;.
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Table 1
Overview on discretization and solver options varied in the benchmark of this paper.

Option Variant I Variant II

Hessian (approximation)
cost discretization
discretization grid

Gauss-Newton (GN)
Shooting Node (SN)
uniform (a)

Exact Hessian (EH)
Runge-Kutta (RK)
nonuniform (b)

algorithm type converged SQP RTI
shooting intervals N 20 200
Time horizon T 0.4 4.0

that these considerations also hold for explicit Runge-Kutta method,
such as the widely used RK4 method. However, the relative additional
computational cost would be higher compared to the implicit GNRK
implementation considered in this work, since explicit integrators are
typically faster.

3.3. Comparison to generic quadrature states

Note that a common alternative to the approach described in the
previous sections is to propagate the cost with the same accuracy as
the dynamics via a cost state. Efficient integrators support a dedicated
treatment of quadrature variables, i.e., variables which do not enter the
dynamics, such that the implicit system of equations can be decoupled
and solved in the original space (Hindmarsh et al., 2005). This idea has
been extended to integrators that exploit more general linear structures
within the dynamic system (Frey et al., 2019; Quirynen, Gros, & Diehl,
2013).

The generic quadrature state approach however does not take the
cost function’s nonlinear least-squares structure into account. Thus,
it is limited to an exact Hessian propagation, which might result
in an indefinite Hessian and the associated problems within an NLP
solver. From a computational perspective, an exact Hessian propagation
requires at least an additional adjoint sweep and thus more computa-
tional resources. Different methods for Hessian propagation exist which
trade-off computations and memory footprint (Quirynen, 2017).

3.4. Implementation in acados

The GNRK algorithm described in Sections 3.1 and 3.2 has been
implemented in the open-source software package acados, which
provides high-performance, embedded solvers for nonlinear optimal
control. The cost integration was implemented as an option in the
acados IRK module for nonlinear-least squares cost functions (2).

The GNRK algorithm is compatible with additional Hessian contri-
butions form the constraints. In particular, when including Hessian con-
tributions from constraints with a convex-over-nonlinear structure as
described in Verschueren, van Duijkeren, Quirynen, and Diehl (2016),
this results in a sequential convex quadratic programming (SCQP)
scheme with integrated cost.

4. Numerical experiments

In this section, we illustrate the effectiveness of the presented
strategies in terms of closed-loop cost with two numerical simulation
studies. All experiments have been carried out using acados v0.3.1 via
its Python interface on a Laptop with an Intel i5-8365U CPU, 16 GB
of RAM running Ubuntu 22.04. The code to reproduce the results is
publicly available.?

4.1. Inverted pendulum on cart problem

In order to demonstrate the importance of cost discretization, we
regard the widely studied control problem of stabilizing an inverted

2 https://github.com/FreyJo/GNRK_benchmark


https://github.com/acados/acados/releases/tag/v0.3.1
https://github.com/acados/acados/releases/tag/v0.3.1
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Table 2
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Closed-loop performance of different controllers measured by relative suboptimality, maximum and minimum computation time, and SQP

iterations n

iter

over the scenario depicted in Fig. 2.

Hessian approximation N Tls] RTI  uniform  rel. subopt.  max ny,, median ny,, I nin[MS] T max [MS] in Fig. 2
and cost discretization

GNRK 200 4.0 X 0.0 % 21 4.89 25.3 207.4 A
GNSN 200 4.0 X 0.0 % 20 4.97 25.9 206.2

GNRK 20 4.0 X 3.6 % 1 1.00 0.9 1.1 B
GNRK 20 4.0 3.7 % 15 4.08 1.8 15.5

GNSN 20 4.0 X 68.3% 1 1.00 0.8 1.0 C
GNSN 20 4.0 34.3% 33 4.42 1.7 31.5

EHSN 20 4.0 34.3% 400 8.48 1.8 393.1

EHRK 20 4.0 3.7 % 50 5.85 4.8 72.7

GNRK 20 4.0 X X 992.3% 1 1.00 0.9 1.0 D
GNRK 20 4.0 X 845.4% 23 5.70 2.5 20.6

GNSN 20 4.0 X X 960.9% 1 1.00 0.8 1.0

GNSN 20 4.0 X 823.4% 48 6.38 2.7 46.9

GNRK 20 0.4 X X 3524.8% 1 1.00 0.9 1.8

GNRK 20 0.4 X 3356.3% 400 164.53 2.7 688.0

pendulum mounted onto a cart. The differential state of the model
is x = [p,0,s,0]" with cart position p, cart velocity s, angle of the
pendulum 6 and angular velocity w. The system dynamics can be found
e.g. in Verschueren et al. (2021). The control input u is a force acting on
the cart in the horizontal plane and constrained to be in [-40,40]. The
example simulation starts with an initial state %, = [0, 0,0, 0]" with
0y = ’5—' The goal is to drive all states to zero, i.e. the unstable upright
position. We formulate the nonlinear least squares cost

Lpena (X, u) = x"Ox +u' Ru+ po(x) + py(x), (20)

consisting of quadratic costs on states and controls, with weights O =
diag(100,10%,0.01,0.01), R = 0.2, and additional penalty terms p;(x)
corresponding to the inequalities p.;, — p < 0 and p — p.x < 0 with
Pamin = — 1, Pmax = 1 and y = 5-10%, c.f. (6). The terminal cost term is set
t0 M peng(x) = xT Px, where P is obtained as solution of the discrete
algebraic Riccati equation with cost and dynamics linearized at the
steady-state.

4.2. Controller variants in closed-loop

We study the behavior of different controller variants in a closed-
loop simulation of 4s. The plant is represented by a single-step IRK
integrator that uses the Radau IIA Butcher tableau with ng,.., =4 with a
sampling time of T, =0.02s. It internally uses a model that is augmented
with a cost state to accurately capture the evolution of (20) over time.

All controllers use HPIPM without condensing as a QP solver and a
single step of IRK with Radau IIA Butcher tableau and ng,,.,=4 on each
shooting interval solving the system of RK equations to a tolerance of
erk = 10712, The time horizon is chosen to be T = 4s if not otherwise
stated and divided using one of the following time grids:

(a) uniform time grid with 4z, = %, n=0,...,N-1
(b) nonuniform time grid using the sampling time T, = 0.02s on

the first interval, A7, = T,, and dividing the remainder equally

between the other intervals, i.e., 4t,= %, n=1,...,N-1.

In terms of cost-discretization, we compare the shooting node (SN)
and the Runge-Kutta (RK) versions, which can be combined either
with the Exact Hessian (EH) or the Gauss—-Newton Hessian (GN), such
that the proposed approach is GNRK. Additionally, we look at con-
verged SQP and SQP-RTI and different number of shooting intervals
N. An overview on the discretization and solver options varied in this
benchmark is given in Table 1.

In Fig. 2, the closed-loop trajectories of different controllers are
visualized. Key performance indicators of even more variants are listed
in Table 2. The minimum and maximum computation time #.;,, re-
spectively 7., are evaluated after running the exact same simulation
5 times and taking the minimum of each execution to remove artifacts.

10*

cost state

10" 5

2.5 3.0 3.5 4.0

—— A: GNRK N = 200 uniform
--= B:GNRK N =20RTI -

C: GNSN N =20 RTI
D: GNRK N = 20 RTT uniform

Fig. 2. Closed-loop state and control trajectories for different controllers stabilizing a
pendulum on cart system. The corresponding computation times are given in Table 2.

The relative suboptimality is obtained by comparing the total closed-
loop cost, i.e., the integrated cost state, with the one of an ideal
controller, i.e. without model-plant mismatch.

The black line in Fig. 2 shows the reference controller with a
fine uniform time grid and GNRK cost discretization. In this case,
there is no model-plant mismatch and the difference between GNRK
and SN cost discretization is negligible, see Table 2. The controller
variants with GNRK cost discretization, a nonuniform grid and N =20
result in a very similar closed-loop cost with only around 3.7% of
relative suboptimality with respect to the baseline. In contrast, using
the standard SN cost discretization with otherwise the same settings,
results in a suboptimality of 34% and 68% for converged SQP and
RTI respectively. When using controller variants with a uniform grid
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Fig. 3. Pareto plot comparing computation time and relative suboptimality of different
controllers, see Table 1. The x-axis is linearly scaled in [0, 1].
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Fig. 4. Empirical contraction rate for different initial states of the pendulum example.

Both controllers use a uniform grid with 7' = 4s and n,,.; =4.

and Aty = 10T}, the control performance drastically degrades, resulting
in a relative suboptimality of over 800%. On the other hand, using a
uniform grid with A7, =T; results in a very short horizon length 7', when
keeping N =20 fix. The corresponding controller does not stabilize the
pendulum and results in over 3000% of relative suboptimality.

The computation times in Table 2 show that all Gauss—-Newton
variants with N = 20 and RTI have a similar runtime. As expected,
the variants with converged SQP have a much higher variance in CPU
time. Comparing the versions with exact Hessian in Table 2 to their
GN counterparts, we observe that they converge to the same solution.
However, the minimum runtime is more than twice as high. The
computation times of the GN variants with N =200 are roughly tenfold
of the corresponding version with N = 20. Regarding the number of
SQP iterations in Table 2, we observe that while the median number
of iterations is similar for GNRK and GNSN, the maximum number is
roughly half for GNRK, indicating better convergence properties.

Fig. 3 visualizes the Pareto front of different controllers from Table 2
in terms of relative suboptimality and maximum computation time. The
latter ultimately determines if a controller is real-time feasible. It can
be seen that the proposed controller variant B results in a reduction of
relative suboptimality by a factor of 18 while increasing the maximum
computation time by less than 10%, compared to controller variant C,
i.e., the same controller without cost integration, which was regarded
as an attractive variant before this work.

Overall, the results indicate that using GNRK allows one to dras-
tically reduce the number of shooting intervals as long as the first
interval is kept at T}.

4.3. Empirical contraction rate

In order to give insights into why the maximum number of iterations
in Table 2 is higher for GNSN than for GNRK, we regard the empirical

. R d . .
contraction rate &, = ”IITIII“ , where d, denotes the step in all variables
k
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at SQP iteration k. The empirical contraction rate is plotted in Fig. 4 for
two initial states, X, = [0, 6,0, 0]". We observe that GNRK converges
with a faster rate. For the easier initial state with 6, = Z, the difference
is not significant, while for the initial state with §, = 7, the &, values
close to the solution are significantly smaller.

5. Conclusion & outlook

The GNRK integrator has been shown to handle nonlinear least-
squares OCPs with long horizons effectively, as it trades off accuracy
and computational complexity. We showed that soft L, constraints can
be handled accurately without additional slack variables by integrating
the constraint violation penalty, which perfectly fits the GNRK frame-
work. The effectiveness of GNRK combined with the use of nonuni-
form discretization grids and L, penalties for state constraints has
been demonstrated on an illustrative example. Furthermore, this pa-
per gave some recommendations that can help MPC practitioners to
formulate and discretize their problems to obtain a competitive solver
implementation.

Possible future work includes an extension of the current GNRK
implementation in acados to handle generalized and extended Gauss—
Newton Hessian terms (Baumgéirtner & Diehl, 2022), which would
allow one to handle more general convex-over-nonlinear cost and
penalty functions.
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