
Optimal Control Applications and Methods

RESEARCH ARTICLE OPEN ACCESS

Multi-Phase Optimal Control Problems for Efficient
Nonlinear Model Predictive Control With acados
Jonathan Frey1, 2 | Katrin Baumgärtner1 | Gianluca Frison1 | Moritz Diehl1, 2

1Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg im Breisgau, Germany | 2Department of Mathematics, University Freiburg,
Freiburg im Breisgau, Germany

Correspondence: Jonathan Frey (jonathan.frey@imtek.uni-freiburg.de)

Received: 12 July 2024 | Revised: 8 October 2024 | Accepted: 8 November 2024

Funding: This work was supported by DFG via projects 424107692, 504452366, 525018088 by BMWK via 03EI4057A and 03EN3054B, and by the EU via ELO-X
953348.

Keywords: nonlinear model predictive control | optimal control | real-time control

ABSTRACT
Computationally efficient nonlinear model predictive control (NMPC) relies on elaborate discrete-time optimal control problem
(OCP) formulations trading off accuracy with respect to the continuous-time problem and online computational burden. Such for-
mulations, however, are in general not easy to implement within specialized software frameworks tailored to numerical optimal
control. This article introduces a new multi-phase optimal control problem (MOCP) interface for the open-source software aca-
dos allowing to conveniently formulate such problems and generate fast solvers that can be used for NMPC. While multi-phase
OCP formulations occur naturally in many applications, such as, for example, walking robots, this work focuses on MOCP for-
mulations that can be used to efficiently approximate standard continuous-time OCPs in the context of NMPC. To this end, the
article discusses advanced control parametrizations, such as closed-loop costing and piecewise polynomials with varying degree,
as well as partial tightening and formulations that leverage models of different fidelity. An introductory example is presented to
showcase the usability of the new interface. Finally, three numerical experiments demonstrate that NMPC controllers based on
multi-phase formulations can efficiently trade off computation time and control performance.

1 | Introduction

High-performance algorithms for nonlinear model predictive
control (NMPC) have extended its real-time applicability from
chemical processes to a huge variety of application areas [1–8].
Most NMPC implementations use a discrete-time model with
a fixed time step that is equal to the sampling time. However,
more elaborate optimal control problem (OCP) formulations
have enormous potential to reduce the computational burden
associated with the online optimization. Nonuniform time grids,
which have been shown to work especially well with accurate
cost integration [9], are an easy first step in this direction.
However, more sophisticated OCP formulations, like piecewise

--

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). Optimal Control Applications and Methods published by John Wiley & Sons Ltd.

polynomial control parametrizations of varying degree [10],
closed-loop-costing formulations [11], or using models of differ-
ent fidelity for parts of the horizon, are rarely used in practice,
due to the additional implementation effort. Such formulations
require the problem functions as well as input and state dimen-
sions to vary over the horizon. To this end, this article presents
a new feature of the open-source software acados [12] which
allows for a convenient formulation of multi-phase OCPs via its
high-level interfaces, Python, MATLAB, and Octave.

We use the term multi-phase optimal control problem (MOCP)
to describe OCP formulations that may have structurally different
models, constraints and cost formulations on parts of the horizon.

Optimal Control Applications and Methods, 2025; 46:827–845 827
https://doi.org/10.1002/oca.3234

https://doi.org/10.1002/oca.3234
https://orcid.org/0000-0003-2771-4209
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1002/oca.3234
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.3234&domain=pdf&date_stamp=2025-01-16

In the literature [13], this class of problem formulations has also
been referred to as multi-stage problems. As the term multi-stage
is also used in other contexts, such as tree-structured OCPs
[14–16] and OCP formulations which only allow stage-wise vary-
ing cost and constraint functions [17], we aim to avoid confusion
by using the term multi-phase OCP.

MOCP formulations occur naturally in different applications
when formulating OCPs where the dynamic behavior qualita-
tively changes at a certain point in time. For example, when
considering walking robots [18], chemical plants, where some
amount of substance is added at a certain point in time, such
as, when considering recycled waste cuts [19], or multi-train
scheduling [20]. However, the main focus of this article is on
MOCP formulations which can be derived to approximate the
solution of a continuous-time infinite-horizon problem in the
context of NMPC as discussed in Section 3.

The open-source software package acados implements efficient
algorithms for embedded optimal control [12]. It is written in
C and relies on the linear algebra package BLASFEO which
provides performance-optimized routines for small to medium
sized matrix operations [21]. The nonlinear OCPs can be solved
with acados using variants of sequential quadratic program-
ming (SQP), the real-time iteration (RTI) [22] and advanced-step
real-time iteration scheme [23], as well as differential dynamic
programming [24], which was recently added [25]. The system
dynamics can be handled with integration methods which are
able to propagate forward and adjoint sensitivities efficiently in
addition to the nominal result [12, 26]. In acados, the quadratic
subproblems are solved exploiting the block structure of OCPs.
It has been shown that OCP structure exploiting solvers can be
many times faster compared to general sparse solvers or dense
ones used with condensing [27, 28]. A variety of quadratic pro-
gramming (QP) solvers, such as HPIPM [29], qpOASES [30],
DAQP [31], OSQP [32], and qpDUNES [33] are interfaced, which
either tackle the OCP-structured QP directly or after applying
full or partial condensing to it [34, 35]. The fact that the OCP
algorithms implemented in acados support stage-wise vary-
ing dimensions and problem functions makes them applicable
to multi-phase OCP formulations. The addition of multi-phase
OCP support in the higher-level interfaces of acados, namely
Python, MATLAB, and Octave, enables the convenient use of
those algorithms.

The remainder of this introduction aims at giving an overview
on software frameworks other than acados, which are relevant
in the context of NMPC, and their ability to tackle multi-phase
problems. The multi-phase formulation considered in this article
is similar to the one tackled by GPOPS-II [36], which is a com-
mercial MATLAB software package for solving multi-phase OCPs
using state-of-the-art sparse NLP solvers, like IPOPT [37] and
SNOPT [38]. GPOPS-II has been successfully used for MOCPs
[20]. However, the focus of this article is on coupling MOCP for-
mulations with OCP-structure exploiting algorithms, which are
crucial for the design of high-performance NMPC controllers.
MOCPs have been previously tackled in the direct multiple shoot-
ing package MUSCOD-II [13], which allows multi-phase formu-
lations with piecewise polynomial control parametrizations and
coupled processes. WhileMUSCOD-II focused on problems from
process control with time scales in the second to minute range
[13, 39], the acados software package has been successfully

deployed on systems with much shorter time scales [2–8]. Both
MUSCOD-II and acados use a direct multiple shooting based
formulation.

The tool CasADi [40] offers a convenient symbolic framework,
algorithmic differentiation and interfaces to many state-the-art
NLP solvers, like IPOPT [37] and SNOPT [38]. Since these solvers
rely on general sparse linear algebra, they are suitable for MOCP
formulations, but not competitive with algorithms tailored to
exploit the OCP specific sparsity structure. A variety of software
projects specialized on OCP formulations have been developed
on top of the symbolic framework provided by CasADi. The
package do-mpc [15] provides Python functionality to allow
fast prototyping of NMPC, moving horizon estimation (MHE)
and supports tree-structured OCP formulations. In terms of
solvers, it relies on the ones available in CasADi. The rockit
package [41] allows to conveniently formulate OCPs in Python
and MATLAB and also covers MOCP formulations. In addition to
the CasADi solvers, it also provides interfaces to acados and
fatrop [28], which is an NLP solver highly inspired by IPOPT
that exploits the OCP structure. The OpEn [42] software package
provides a convenient interface for single-phase OCP problems
and implements the proximal averaged Newton-type method
for optimal control (PANOC) as a Rust solver and allows to
generate solvers for user defined problems from Python and
MATLAB using the CasADi symbolics. The GRAMPC [43] soft-
ware package can generate embedded solvers from MATLAB and
uses a gradient-based augmented Lagrangian method but does
not support problems with varying state and control dimensions.
The commercial solver FORCESPRO [44] implements compet-
itive algorithms for NMPC which support varying dimensions
between the stages [44, 45]. However, benchmark results created
with the academic license of FORCESPRO could not be disclosed
in past research [7, 27].

1.1 | Outline & Notation

The article introduces the multi-phase OCP formulation in
Section 2 and discusses how it can be handled using direct mul-
tiple shooting. Section 3 motivates using advanced OCP formu-
lations which may be cast as MOCPs to design efficient NMPC
controllers. In particular, it discusses piecewise polynomial con-
trol parameterizations, partial and progressive tightening formu-
lations, and the use of models of different fidelity within a single
OCP. Moreover, it presents and conceptually extends closed-loop
costing formulations. Section 4 discusses the efficient treatment
of multi-phase formulations within the acados software pack-
age and presents a tutorial example. Section 5 demonstrates how
NMPC controllers based on the MOCP formulations detailed in
Section 3 are able to trade off computation time and control per-
formance in ways that are not accessible when one is limited to
single-phase OCPs.

Table 1 gives a notational overview of the central optimization
problems discussed in this article.

2 | Multi-Phase Optimal Control Problem
(MOCP) Formulations

This section presents a continuous-time MOCP formulation in
Section 2.1 and describes how it can be discretized using direct
multiple shooting in Section 2.2.

828 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TABLE 1 | Notational overview of central optimization problems discussed in this article.

Continuous-time
MOCP (1)

Discrete-time multiple
shooting MOCP (2)

OCP-structured
NLP (11)

Single-phase
OCP (3)

Indices Phase 𝑘 ∈ {1, . . . ,𝑀} Phase 𝑘 ∈ {1, . . . ,𝑀} Discrete stage 𝑖 ∈ {0, . . . , 𝐾} —
Shooting nodes 𝑗 ∈

{
0, . . . , 𝑁

𝑘

}

Total shooting nodes 𝑁 =
∑𝑀

𝑘=1𝑁𝑘

Controls
(
𝑣
𝑘
(⋅)
)

𝑘=1, . . . ,𝑀

(
𝑢
𝑘,𝑗

)

𝑘=1, . . . ,𝑀,𝑗=0, . . . ,𝑁
𝑘
−1 Part of

(
𝑢
𝑖

)

𝑖=0, . . . ,𝐾−1 𝑣(⋅)

Discrete
decision

𝜂
𝑘

𝜂
𝑘

Part of
(
𝑢
𝑖

)

𝑖=0, . . . ,𝐾−1 —

Variables states 𝜉
𝑘
(⋅) 𝑥

𝑘,𝑗
𝑥
𝑖

𝑥(⋅)
Cost functions 𝓁

𝑘
, 𝐸

𝑘
𝐿

𝑘,𝑗
, 𝐸

𝑘
𝐿

𝑖
𝓁

Equalities Continuous dynamics 𝑓
𝑘

transition functions Γ
𝑘

Discrete dynamics 𝜙
𝑘,𝑗

transition functions Γ
𝑘

Discrete dynamics and
transitions 𝜙

𝑖

Continuous
dynamics 𝑓

Inequalities 𝑔
𝑘
, 𝑔e 𝑔

𝑘,𝑗
, 𝑔e ℎ

𝑖
𝑔

2.1 | Continuous-Time MOCP

Throughout this article, we will treat continuous-time MOCP,
which can be stated as

minimize
𝜉1(⋅), . . . ,𝜉𝑀 (⋅),
𝑣1(⋅), . . . ,𝑣𝑀 (⋅),
𝜂1 , . . . ,𝜂𝑀

𝑀∑

𝑘=1
∫

𝑡
𝑘+1

𝑡
𝑘

𝓁
𝑘

(
𝜉
𝑘
(𝑡), 𝑣

𝑘
(𝑡)
)

d𝑡 + 𝐸
𝑘

(
𝜉
𝑘

(
𝑡
𝑘+1

)
, 𝜂

𝑘

)
(1a)

subject to 0 = 𝑥0 − 𝜉1
(
𝑡1
)

(1b)

0 = 𝑓
𝑘

(
𝑡, 𝜉

𝑘
(𝑡), 𝜉̇

𝑘
(𝑡), 𝑣

𝑘
(𝑡)
)

(1c)

0 ≥ 𝑔
𝑘

(
𝜉
𝑘
(𝑡), 𝑣

𝑘
(𝑡)
)

(1d)

0 = Γ
𝑘

(
𝜉
𝑘

(
𝑡
𝑘+1

)
, 𝜂

𝑘

)
− 𝜉

𝑘+1
(
𝑡
𝑘+1

)
(1e)

0 ≥ 𝑔e
(
𝜉
𝑀
(𝑇)

)
(1f)

for 𝑡 ∈
[
𝑡
𝑘
, 𝑡

𝑘+1
)
, 𝑘 = 1, . . . ,𝑀

The finite time horizon [0, 𝑇] is split into 𝑀 fixed subintervals
[
𝑡
𝑘
, 𝑡

𝑘+1
]

with 𝑡1 = 0 and 𝑡
𝑀+1 = 𝑇 . Each interval defines a phase

𝑘 ∈ {1, . . . ,𝑀}. For each phase 𝑘, an implicit ODE 𝑓
𝑘

is given,
which defines the state trajectory 𝜉

𝑘
∶
[
𝑡
𝑘
, 𝑡

𝑘+1
]
→ ℝ𝑛

𝑥,𝑘 for a given
control trajectory 𝑣

𝑘
∶
[
𝑡
𝑘
, 𝑡

𝑘+1
]
→ ℝ𝑛

𝑣,𝑘 and initial state. The ini-
tial state of the first phase is given by 𝑥0, while the initial state
for the subsequent phases is given by the transition functions
Γ
𝑘
∶ ℝ𝑛

𝑥,𝑘 ×ℝ𝑛
𝜂,𝑘 → ℝ𝑛

𝑥,𝑘+1 , which map the terminal state of phase
𝑘 and discrete decision variables 𝜂

𝑘
∈ ℝ𝑛

𝜂,𝑘 to the initial state of
the next phase, allowing for the state dimension to vary between
the phases. The functions 𝓁

𝑘
and 𝐸

𝑘
define the path and ter-

minal cost terms for phase 𝑘. The functions 𝑔
𝑘

summarize the
inequalities imposed on states and controls in phase 𝑘. Finally,
the function 𝑔e summarizes the terminal constraints imposed at
the end of the horizon. These constraints can be used to encode
a terminal set for the state, which is typically required for MPC
with stability guarantees [46].

The transition formulation (1e) is similar to the one in
MUSCOD-II [47] with the addition of the discrete decision vari-
able 𝜂

𝑘
. Additionally, the formulation in the work by Leineweber

et al. [47] considers global variables and the time grid points 𝑡
𝑖

as
optimization variables. The global variables are implemented as
separate variables on each shooting interval and are constrained
to be equal. Global variables can be formulated in (1) by state
augmentation on the full horizon. In order to have time grid
points as optimization variables, the dynamics can be augmented
with a clock state and a speed of time variable acting as a con-
trol. The differences in problem formulation can be motivated
by the different solution methods implemented in acados and
MUSCOD-II, respectively. WhileMUSCOD-II deploys sparse lin-
ear algebra on blocks and allows linear couplings between stages,
acados uses specialized algorithms for purely OCP-structured
problems in which the dynamics constraints are the only cou-
pling between stages.

2.2 | Multi-Phase Multiple Shooting
Discretization

One can discretize MOCP (1) using direct multiple shooting
[48] dividing each time interval

[
𝑡
𝑘
, 𝑡

𝑘+1
]

into 𝑁
𝑘

shooting
intervals. We denote the total number of shooting intervals by
𝑁 =

∑𝑀

𝑘=1𝑁𝑘
. The resulting nonlinear program (NLP) can be

written as

minimize
𝒙,𝒖,𝜼

𝑀∑

𝑘=1

𝑁
𝑘
−1∑

𝑗=0
𝐿

𝑘,𝑗

(
𝑥
𝑘,𝑗
, 𝑢

𝑘,𝑗
,Δ𝑡

𝑘,𝑗

)
+ 𝐸

𝑘

(
𝑥
𝑘,𝑁

𝑘

, 𝜂
𝑘

)
(2a)

subject to 𝑥1,0 = 𝑥0 (2b)

𝑥
𝑘+1,0 = Γ𝑘

(
𝑥
𝑘,𝑁

𝑘

, 𝜂
𝑘

)
, 𝑘 = 1, . . .𝑀 − 1 (2c)

𝑥
𝑘,𝑗+1 = 𝜙

𝑘,𝑗

(
𝑥
𝑘,𝑗
, 𝑢

𝑘,𝑗

)
, 𝑗 = 0, . . . , 𝑁

𝑘
− 1,

𝑘 = 1, . . .𝑀
(2d)

0 ≥ 𝑔
𝑘,𝑗

(
𝑥
𝑘,𝑗
, 𝑢

𝑘,𝑗

)
, 𝑗 = 0, . . . , 𝑁

𝑘
− 1,

𝑘 = 1, . . .𝑀
(2e)

0 ≥ 𝑔e
(
𝑥
𝑀,𝑁

𝑀

)
(2f)

where 𝒙 =
(
𝑥1,0, . . . , 𝑥1,𝑁1

, 𝑥2,0, . . . , 𝑥𝑀,𝑁
𝑀

)
, 𝒖 = (𝑢1,0, . . . ,

𝑢1,𝑁1−1, 𝑢2,0, . . . , 𝑢𝑀,𝑁
𝑀
−1), and 𝜼 =

(
𝜂1, . . . , 𝜂𝑀

)
. The dis-

crete values 𝑥
𝑘,𝑗
∈ ℝ𝑛

𝑥,𝑘 represent the values of 𝜉
𝑘
(⋅) at the

corresponding shooting nodes. The controls 𝑢
𝑘,𝑗
∈ ℝ𝑛

𝑢,𝑘 act

829

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

on the jth shooting interval of phase 𝑘. The cost functions
𝐿

𝑘,𝑗
are called stage costs and reflect the cost integrated over

the shooting interval
[
𝑡
𝑘,𝑗
, 𝑡

𝑘,𝑗+1
)

with Δ𝑡
𝑘,𝑗
= 𝑡

𝑘,𝑗+1 − 𝑡
𝑘,𝑗

. The
initial state of the first phase is given by (2b) and for subse-
quent stages by (2c). The discrete-time dynamics are described
by the functions 𝜙

𝑘,𝑗
, which represent an integration scheme

applied to the continuous-time dynamic system in (1c). Ded-
icated functions that compute the numerical integration of
continuous-time dynamics and the solution sensitivities are an
essential component of efficient OCP solvers and available in
acados [26].

Finally, the constraint functions 𝑔
𝑘,𝑗

represent the constraints 𝑔
𝑘

on shooting interval
[
𝑡
𝑘,𝑗
, 𝑡

𝑘,𝑗+1
)
. Most commonly, the constraints

are only enforced at the initial point of the shooting interval,
that is, for 𝑥

𝑘,𝑗
, 𝑢

𝑘,𝑗
. However, it is possible to also impose them

on intermediate points. Similarly, the stage cost 𝐿
𝑘,𝑗

often corre-
sponds to a simple Euler integration of the continuous-time cost
𝓁
𝑘

over a shooting interval. Especially, when using longer inter-
vals, higher order integration of the cost term are necessary to
retain a good approximation quality. The cost integration can be
performed efficiently together with the integration of the dynam-
ics (1c). More details on this can be found in Section 3.4.1.

3 | MOCP Formulations For Model Predictive
Control

This section motivates the use of MOCP formulations for NMPC
applications, in which an ideal controller would apply the exact
solution to a continuous-time infinite-horizon OCP, which is
presented in Section 3.1. Moreover, Section 3.1 introduces the
concept of the cost-to-go function, the importance of its approx-
imation in NMPC, and why MOCP formulations should be
considered in this regard.

The following subsections provide examples of OCP formula-
tions which are suitable to approximate parts of the cost-to-go
corresponding to different parts of the time horizon in suc-
cessively more approximate ways. These formulations can be
cast as multi-phase problems and can thus be solved effi-
ciently using acados. In particular, Section 3.2 motivates using
models of different fidelity for different parts of the horizon,
Section 3.3 discusses piecewise polynomial control parameteri-
zations, Section 3.4 discusses closed-loop costing and Section 3.5
presents partial tightening.

3.1 | Continuous-Time Optimal Control
Problem, Model Predictive Control and Cost-To-Go

The standard infinite-horizon continuous-time OCP, which we
aim at approximating in various ways in this article, can be writ-
ten as

𝑉
(
𝑥0
)
= min

𝑥(⋅),𝑣(⋅) ∫
∞

0
𝓁(𝑥(𝑡), 𝑣(𝑡))d𝑡 (3a)

s.t. 𝑥0 = 𝑥(0) (3b)

0 = 𝑓 (𝑥(𝑡), 𝑥̇(𝑡), 𝑣(𝑡)), 𝑡 ∈ [0,∞) (3c)

0 ≥ 𝑔(𝑥(𝑡), 𝑣(𝑡)), 𝑡 ∈ [0,∞) (3d)

where 𝑥 ∶ [0,∞)→ ℝ𝑛
𝑥 , 𝑣 ∶ [0,∞)→ ℝ𝑛

𝑣 are the state and con-
trol trajectories, respectively, 𝑥0 is the initial state value, the
function 𝑓 describes the implicit system dynamics and 𝑔 denotes
the inequality constraints. The optimal value of OCP (3) is
defined as 𝑉

(
𝑥0
)
. The function 𝑉 (⋅) is called cost-to-go or value

function in the field of reinforcement learning.

The goal of model predictive control is to operate a system, typ-
ically by applying a constant control input for a fixed sampling
time Δ𝑡. This practical constraint can be formalized as

𝑣(𝑡) = 𝑢0 for 𝑡 ∈ [0,Δ𝑡] (4)

Regarding OCP (3) from a dynamic programming point of view
allows us to split the infinite horizon in different parts which
might be approximated in different ways. Using the principle of
optimality and accounting for (4), we can rewrite (3) as

minimize
𝑥(⋅),𝑢0 ∫

Δ𝑡

0
𝓁
(
𝑥(𝑡), 𝑢0

)
d𝑡 + 𝑉 (𝑥(Δ𝑡))

subject to 𝑥0 = 𝑥(0)

0 = 𝑓

(

𝑥(𝑡),
̇

𝑥(𝑡), 𝑢0

)

, 𝑡 ∈ [0,Δ𝑡]

0 ≥ 𝑔(𝑥(𝑡), 𝑣(𝑡)), 𝑡 ∈ [0,Δ𝑡)

(5)

which is again an OCP but with a much shorter horizon of length
Δ𝑡. Of course, the whole complexity of the problem is shifted into
the minimization of the cost-to-go term with this reformulation.
However, this shows that approximating the cost-to-go is key in
the development of an efficient NMPC controller.

In order to obtain an OCP formulation for MPC, one typically
selects a finite time horizon, replaces the infinite integral in (3)
with a finite one and adds a terminal cost and constraints on the
terminal state. This approximation of the cost-to-go together with
(5) can be discretized using multiple shooting, where the first
shooting interval typically corresponds to (5).

Additionally, the control trajectory to approximate the cost-to-go
after the finite-horizon approximation, could be parameter-
ized in different ways. In particular, piecewise polynomial con-
trol parameterizations and closed-loop costing are discussed in
Sections 3.3 and 3.4. These parameterizations correspond to
piecewise continuous functions, which cannot be directly applied
to the real system due to the practical constraint (4). However,
since the cost-to-go is anyway approximated by the choice of
a finite horizon, such control parametrizations can lead to bet-
ter approximations of the cost-to-go when using longer intervals
compared to standard piecewise constant parameterizations.

Next, we derive and discuss various multiple shooting based
approximate versions of (3) which apply structurally different
approximations for parts of the infinite horizon in (3) and can
be phrased as MOCPs.

3.2 | Models of Different Fidelity

In many physical systems, models of different fidelity are avail-
able and choosing an appropriate one for NMPC might depend

830 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

on the control frequency, desired time horizon and the available
solvers. The consideration of high-fidelity models is typically ben-
eficial for MPC performance. However, such models might be
computationally demanding and can become unstable for long
time horizons, which are important to consider in OCPs in order
to capture the evolution of slow dynamics and economic cost
terms. Multi-phase OCP formulations provide the possibility to
choose different models for specific parts of the horizon, allowing
for many more degrees of freedom when deriving a discrete-time
finite horizon problem. Low-fidelty models are typically cheaper
to integrate with a certain accuracy, not only due to their poten-
tially reduced dimensionality, but also because they are usually
less stiff and thus can be handled by computationally cheaper
integration schemes, such as explicit Runge–Kutta (ERK) meth-
ods. On the other hand, high fidelty models typically comprise
both fast and slow modes, which causes them to be stiff. Such
stiff models need to be handled with computationally expensive
implicit Runge–Kutta (IRK) methods or a great number of very
small integration steps of ERK methods.

Moreover, some nonlinear constraints, which are expensive to
evaluate, could be only included in a first part of the horizon. This
can be motivated by the practical observation that constraints
tend to be active in the first part of the horizon [49]. For example,
modeling oscillations within a physical system can be expensive
and only meaningful on short time horizons, as in the application
of wind turbine control [50].

Lastly, a variety of NMPC applications rely on underlying con-
trollers that handle the actuator dynamics. However, it can be
beneficial to directly model these actuators to accurately repre-
sent their behavior at least in the first part of the horizon. This can
allow one to specify cost and constraints that need a model of the
underlying actuator. Including such considerations can unleash
optimality potential that is inaccessible otherwise.

3.3 | Piecewise Polynomial Control
Parameterization

While piecewise constant control discretizations are by far the
most common parameterization for multiple shooting based
MPC, formulation (2) can accommodate piecewise polynomial
control parameterizations with degrees varying between shooting
intervals. A scalar control input 𝑣 on a shooting interval

[
𝜏0, 𝜏e

]

can be parameterized by a polynomial

𝑣(𝑡) =
𝑛deg∑

𝑖=0
𝑐
𝑖
⋅
(
𝑡 − 𝜏0

)𝑖 (6)

of degree 𝑛deg, such that the discrete control input on this inter-
val is given by 𝑐 =

(
𝑐
𝑖

)

𝑖=0, . . . ,𝑛deg
. This parametrization offers more

degrees of freedom and can in general better approximate the
optimal continuous-time control trajectory. Higher order con-
trol parametrizations could thus allow the use of longer shoot-
ing intervals compared to a piecewise constant parametrization,
while maintaining the approximation quality of the MPC feed-
back law.

The practical MPC consideration in (4) motivates using a
constant control parameterization on the first interval [0,Δ𝑡].

In order to combine a constant control input on the first shoot-
ing interval with higher order control parameterizations on other
shooting intervals, an MOCP formulation is thus necessary.

For linear parametrizations, simple bounds on the inputs can be
satisfied everywhere by enforcing them at the start and end of
each control interval. In contrast, for higher order polynomial
parametrizations, even simple control bounds might be violated
within the shooting intervals if only enforced at the boundary
points. In order to avoid excessive use of such violations, one pos-
sibility is to enforce the control bounds at 𝑛pc equidistant points
within every shooting interval. For any fixed point 𝜏 ∈

[
𝜏0, 𝜏e

]
,

we have

𝑣(𝜏) =
𝑛deg∑

𝑖=0
𝑐
𝑖
⋅
(
𝜏 − 𝜏0

)𝑖 (7)

which results in a linear inequality constraint with coefficients
(
𝜏 − 𝜏0

)𝑖 for every intermediate point on which a control bound is
enforced. Additionally, one could add smooth penalties on viola-
tions of the control bounds and integrate them over the shooting
intervals, see Section 3.4.1.

3.4 | Cost-To-Go Approximation via
Closed-Loop Costing

The idea of closed-loop costing (CLC) is to apply a simple control
law, also called policy, 𝜅 ∶ ℝ𝑛

𝑥 → ℝ𝑛
𝑣 to the nonlinear system

in (3c) and assign the resulting cost term as a terminal cost [11,
51–53]. This control law is typically a locally stabilizing linear
controller, for example, corresponding to an LQR controller,
but could also be a more complex nonlinear control law, which
might be learned offline via RL or imitation learning [54, 55].
In the Reinforcement Learning and Dynamic Programming
community, this idea is more commonly referred to as rollout
of a base policy [56]. The cost-to-go is approximated by the
integrated cost associated with the closed-loop system under
policy 𝜅. The closed-loop costing problem corresponding to (3)
can be written as

min
𝑥(⋅),𝑣(⋅) ∫

𝑇1

0
𝓁(𝑥(𝑡), 𝑣(𝑡))d𝑡 + ∫

𝑇clc

𝑇1

𝓁(𝑥(𝑡), 𝜅(𝑥(𝑡)))d𝑡 (8a)

s.t. 0 = 𝑥(0) − 𝑥0 (8b)

0 = 𝑓 (𝑡, 𝑥(𝑡), 𝑥̇(𝑡), 𝑣(𝑡)), 𝑡 ∈
[
0, 𝑇1

)
(8c)

0 = 𝑓 (𝑡, 𝑥(𝑡), 𝑥̇(𝑡), 𝜅(𝑥(𝑡))), 𝑡 ∈
[
𝑇1, 𝑇clc

)
(8d)

0 ≥ 𝑔(𝑥(𝑡), 𝑣(𝑡)), 𝑡 ∈
[
0, 𝑇1

]
(8e)

0 ≥ 𝑔(𝑥(𝑡), 𝜅(𝑥(𝑡))), 𝑡 ∈
[
𝑇1, 𝑇clc

)
(8f)

0 ≥ 𝑔e
(
𝑥
(
𝑇clc

))
(8g)

where the first part of the horizon
[
0, 𝑇1

]
is the so-called control

horizon and the latter part the simulation horizon or closed-loop
costing horizon. Note that the control input is only defined on
the control horizon, that is, 𝑣 ∶

[
0, 𝑇1

]
→ ℝ𝑛

𝑣 and the control
dimension is zero on the CLC horizon. A discrete-time result

831

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

showing that the stability region grows when increasing the CLC
horizon is presented in the work by Magni and colleagues [57].
Note that the constraints are still imposed on the CLC horizon
and violations correspond to infinite cost values [51].

Closed-loop costing problems can be expressed using two phases.
In the terminal phase, the controls are replaced by the control law
in the cost and dynamics expressions, resulting in a phase 𝑘 with
𝑛
𝑢,𝑘
= 0. In the literature, single shooting has been the method

of choice to handle the CLC horizon due to its superior com-
putational efficiency in the case 𝑛

𝑢
= 0. However, the beneficial

convergence properties also make multiple shooting an attractive
option in acados: the partial condensing algorithm provided
by HPIPM allows to condense blocks of an arbitrary number of
stages, and this can be exploited to condense away all shooting
nodes in the CLC horizon, while possibly retaining them in the
control horizon. This makes the computational efficiency of mul-
tiple shooting similar to the one of single shooting, as the under-
lying QP solver does not see the shooting intervals corresponding
to the CLC horizon. For the experiments in Section 5.1, it was
necessary to use CLC with multiple shooting to achieve conver-
gence. To the best of our knowledge, the approximate infinite
horizon corresponding to the closed-loop costing phase was only
implemented with a single shooting interval in previous works
[11, 51–53, 58].

3.4.1 | Practical Treatment of Constraints With
Closed-Loop Costing

In practical OCP formulations, state constraints are often
replaced by penalties in the cost function to avoid infeasible
OCPs [46]. Especially when using longer shooting intervals, it is
very important to accurately integrate the cost term, including
penalties [9].

Accurate cost integration together with a propagation of the
cost gradient and a Gauss–Newton Hessian can be performed
efficiently. This is realized by the Gauss–Newton Runge–Kutta
(GNRK) integrators and implemented in acados [9]. They can
effectively handle 𝐿2 constraint penalties. This implementation
has been extended to treat more general convex-over-nonlinear
cost terms of the form

𝓁(𝑥(𝑡), 𝑣(𝑡)) = 𝜙(𝑟(𝑥(𝑡), 𝑣(𝑡))) (9)

with a smooth convex function 𝜙 and a nonlinear function 𝑟. The
new implementation is able to integrate such cost terms together
with their generalized Gauss–Newton (GGN) Hessian [59, 60].
This is required to handle more general smooth penalties effec-
tively, such as the squashed barrier closed-loop costing formula-
tion described in Section 3.4.2.

Despite the reformulation of state constraints as penalties, even
simple control bounds can render OCP (8) infeasible if the pol-
icy 𝜅(⋅) would choose controls that violate those bounds on the
CLC horizon. This would implicitly define a terminal region con-
straint. If one wants to avoid that, a blunt, but practical approach
would be to not impose the control bounds on the CLC horizon,
when using a linear control law 𝜅. Another option is to replace
control bounds on the CLC horizon with additional penalties.

A third option is to combine the penalty approach with squashing,
as detailed next.

3.4.2 | Squashed Closed-Loop Costing

Let us first assume to have a scalar control input 𝑢 with bounds
[𝑢, 𝑢] = [−1, 1]. The idea of squashed CLC is to create a CLC
OCP which is aware of the control bounds on the CLC horizon
by mapping any control input 𝑢 = 𝜅(𝑥) to the set [𝑢, 𝑢]. This can
be achieved by the composition of 𝜅 with a so-called squashing
function. A function 𝜎 ∶ ℝ → (−1, 1) is called squashing function
if it is twice continuously differentiable, strictly monotonically
increasing, odd, and satisfies lim

𝑧→±∞ 𝜎(𝑧) = ±1. Additionally,
it is important, that 𝜕𝜎

𝜕𝑧
(0) = 1, such that a linear control law is

locally not changed, assuming that the origin is the steady state.
One example is 𝜎(𝑧) = tanh(𝑧), which was also used in previous
works [61].

In the case of a control variable vector 𝑢 and components 𝑢
𝑖

sub-
ject to symmetric bounds

[
−𝑢

𝑖
, 𝑢

𝑖

]
, one can be replace each com-

ponent using a new variable 𝜈 and replacing 𝑢
𝑖

by the expression
𝑢
𝑖
⋅ tanh

(
𝜈

𝑢
𝑖

)

in the OCP.

It is recommended to use squashing together with barrier penal-
ties such that an iterative solver does not go arbitrarily close to
the squashed boundaries and gets stuck there [61]. A function
𝛽 ∶ ℝ → ℝ≥0 ∪ {∞} is called barrier function if it is twice con-
tinuously differentiable, strictly convex and lim

𝑧→±1 𝛽(𝑧) = ∞.
In particular, 𝛽(𝑧) = − log(1 + 𝑧) − log(−𝑧 + 1) is such a function
and is used in this article. The squashed LQR CLC variant with a
progressively increasing barrier can be interpreted in the frame-
work of progressive tightening [62], which offers both numerical
benefits and—under additional assumptions—closed-loop
stability guarantees for constrained nonlinear MPC. For a
self-contained stability analysis with all formally stated assump-
tions, we refer to Baumgärtner et al. [62]. It is also possible to
extend this concept to one-sided constraints by using one-sided
barriers and any smooth approximation of the max-function
instead of the sigmoid as a squashing function.

3.5 | Partial Tightening

The partial tightening concept was introduced by Zanelli et al.
[63] as a strategy to reduce the computational cost of solving
NMPC problems. To this end, an approximate formulation
is introduced which divides the horizon into two phases.
On the second phase, the constraints are tightened, that is,
replaced by barrier formulations. More precisely, a constraint
0 ≥ 𝑔

𝑗
(𝑥(𝑡), 𝑣(𝑡)) as in (3) is replaced by a logarithmic barrier term

−𝜏 log
(
𝑔
𝑗
(𝑥(𝑡), 𝑣(𝑡))

)
(10)

which is added to the cost function with a barrier parameter 𝜏.

The partial tightening formulation allows to derive closed-loop
stability guarantees based on the property that the stage cost are
monotonically increasing with the stage index [63]. The barrier
formulation in (10) can be combined with a series of monoton-
ically increasing values for 𝜏 for subsequent stage costs on the
tightened horizon to a progressive tightening formulation.

832 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Partial and progressive tightening formulations have been ana-
lyzed in the literature regarding closed-loop stability proper-
ties [62, 64] and successfully applied in practical applications
such as collision avoidance for motion planning [65], control of a
human-sized quadrotor [66], as well as voltage control in active
distribution networks [67].

In context of the RTI, the variables corresponding to this second
phase can be fully eliminated in the preparation phase using a
Riccati recursion. In an SQP setting this can be achieved by per-
forming partial condensing and summarizing all stages of the
tightened horizon into a single block of the reduced QP.

3.6 | Summary

The previous subsections gave a variety of examples for
multi-phase formulations after motivating them with a dynamic
programming perspective on optimal control. Altogether, these
concepts provide a universe of possibilities to approximate, dis-
cretize and parameterize continuous time infinite-horizon OCPs.
Piecewise constant controls together with a (relatively) high
fidelity system model is the most widely used discretization strat-
egy in MPC practice and its use can be justified clearly for the first
part of the horizon, for which the controls are to be deployed, as
detailed in Section 3.1. In contrast, the more advanced options in
Sections 3.2–3.5 are promising options to approximate the later
part of the (infinite) horizon via the cost-to-go.

Many of the options could be combined, for example, longer
shooting intervals and piecewise polynomial controls of higher
degree could be used together with a low fidelity model in a later
part of the horizon. Additionally, one could combine piecewise
polynomial controls in order to plan the control input for a first
part of the horizon and append a closed-loop costing horizon.

Selecting a suitable strategy from this immense variety of options
is a very problem dependent task. It depends on the relevant time
horizon, the constraint and cost functions, the availability of dif-
ferent models and control policies, as well as a priori knowledge
of the system and the available solution algorithms. We hope that
this discussion on various techniques to approximate and dis-
cretize OCP problems helps control engineers to fully leverage
their system knowledge, including different models and approx-
imate policies, in order to develop efficient MPC schemes for
real-world applications.

4 | Efficient Implementation in acados

This section illustrates how MOCPs are formulated and solved in
acados. Starting from problem (2), we discuss in Sections 4.1
and 4.2 the treatment of transition stages and how the problem
fits into the internal formulation treated by acados. Section 4.3
presents a tutorial MOCP example and how it can be formulated
for an efficient solution in acados.

4.1 | Treating Transition Stages

In order to incorporate transitions between two phases into an
existing SQP software for OCP-structured problems, we first

consider the simple case where (2c) boils down to 𝑥
𝑘+1,0 = 𝑥

𝑘,𝑁
𝑘

,
𝑛
𝜂,𝑘
= 0 and𝐸

𝑘
(⋅) ≡ 0. These trivial phase transitions can be elim-

inated by enforcing 𝜙
𝑘,𝑁

𝑘
−1
(
𝑥
𝑘,𝑁

𝑘
−1, 𝑢𝑘,𝑁

𝑘
−1
)
= 𝑥

𝑘+1,0 and remov-
ing 𝑥

𝑘,𝑁
𝑘

, 𝜂
𝑘

from the problem.

In the nontrivial case, we observe that the transition equation (2c)
has the same form as the equation for a shooting gap (2d). We
thus call these discrete transition stages. On the discrete transition
stage, the discrete decision variable 𝜂

𝑘
takes the role of a control

input and 𝐸
𝑘

takes the role of the stage cost.

As opposed to formulating the transition as a concatenation of
a dynamics step and a transition, the implementation of a tran-
sition with a separate discrete transition stage has the following
advantages: Both the terminal state of the phase before the tran-
sition and the initial state of the phase after the transition are
readily available in the solver and the transition cost 𝐸

𝑘
fits seam-

lessly into an MOCP formulation.

4.2 | Multi-Phase Multiple Shooting
Formulation in acados

The discrete-time MOCP in (2) can be framed as a regular
OCP-structured problem with stage-varying costs and constraints
and where—in contrast to the standard setting—the control and
state dimension might vary stage-wise,

minimize
𝑥0 , . . . ,𝑥𝐾 ,
𝑢0 , . . . ,𝑢𝐾−1

𝐾∑

𝑖=0
𝐿

𝑖

(
𝑥
𝑖
, 𝑢

𝑖
,Δ𝑡

𝑖

)
+ 𝐸

(
𝑥
𝐾

)
(11a)

subject to 𝑥0 = 𝑥0 (11b)

𝑥
𝑖+1 = 𝜙

𝑖

(
𝑥
𝑖
, 𝑢

𝑖
,Δ𝑡

𝑖

)
, 𝑖 = 0, . . . , 𝐾 − 1 (11c)

0 ≥ ℎ
𝑖

(
𝑥
𝑖
, 𝑢

𝑖

)
, 𝑖 = 0, . . . , 𝐾 − 1 (11d)

This OCP consists of 𝐾 stages, which capture both the shooting
intervals and the transition stages. As outlined in the previous
section, nontrivial transitions are modeled by adding an extra
phase comprised of a single interval. The transition function Γ

𝑘

is specified using the acados discrete dynamics module and the
discrete decision variable 𝜂

𝑘
corresponds to the control variable

for this phase. The number of stages 𝐾 for the OCP (11) would
thus be 𝐾 =𝑀 − 1 +

∑𝑀

𝑘=1𝑁𝑘
if all transitions are nontrivial and

𝐾 =
∑𝑀

𝑘=1𝑁𝑘
if all transitions are trivial. Note that the stage cost

𝐿
𝑖
and equality constraint𝜙

𝑖
do not depend on the shooting inter-

val length Δ𝑡
𝑖

if 𝑖 is a transition stage.

A major challenge in tackling OCP (11) with efficient
structure-exploiting solvers is that the dimensions of states,
controls and constraints are varying arbitrarily between stages.
In acados, this can be easily achieved by the different mod-
ules of the SQP-type algorithm. Each stage has its own module
to compute and linearize cost and constraint functions. Each
gap constraint (11c) is associated with a module to evaluate
and linearize it. The internal OCP-structured QP subproblem
of acados is based on the HPIPM software package [29]. In
addition to interior-point solvers for dense and OCP-structured
QP formulations, HPIPM offers efficient routines for transform-
ing OCP-structured QPs into dense QPs via full condensing or
smaller OCP-structured QPs via partial condensing [68]. The
HPIPM core algorithms—full and partial condensing, as well as

833

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

0

1

2

p
[m

]

phase 1

phase 2

− 4

− 2

0

s
[m

/s
]

0.0 0.2 0.4 0.6 0.8 1.0
time t [s]

− 50

0

a
[m

/s
2
]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
p0 [m]

0

50

100

150

200

250

300

co
st
-t
o-
go

V
([
p 0
,0
])

standard OCP

MOCP N 1 = 15 T1 = 0 .6

MOCP N 1 = 10 T1 = 0 .4

MOCP N 1 = 5 T1 = 0 .2

FIGURE 1 | Tutorial example: We consider a double integrator, which is in the second phase approximated by a single integrator. The left plot shows
the corresponding state and control trajectories. The right plot shows the cost-to-go as a function of the initial position 𝑝0 for different approximations
of the reference OCP which only uses the double integrator model.

the Riccati-based QP solver—support stage-varying dimensions.
These full and partial condensing algorithms allow any dense QP
solver, such as DAQP [31] and qpOASES [30] or HPIPM itself, as
well as the OCP-structure exploiting solver in HPIPM, to be used
seamlessly for multi-phase problem formulations in acados.

4.3 | Tutorial Example of a Multi-Phase OCP

In this section, we discuss a tutorial example of an MOCP
which uses different models on distinct parts of the horizon and
detail how to formulate the problem in acados via its Python
interface. The code to reproduce the figures in this section
is publicly available in the acados code base v0.4.0 [69].
In addition to the Python example presented in this section
(https://github.com/acados/acados/blob/v0.4.0/examples/acado
s_python/mocp_transition_example/main.py) a version of the
example for MATLAB and Octave is available (https://
github.com/acados/acados/blob/v0.4.0/examples/acados_matla
b_octave/mocp_transition_example/main_multiphase_ocp.m).
We regard a double integrator system which consists of the state
𝜉1 = (𝑝, 𝑠), with position 𝑝 in m and speed 𝑠 in m

s
. The control

input 𝑣1 is the acceleration 𝑎 in m
s2 and the continuous-time

dynamics are simply given by

0 = 𝑓1
(
𝜉1, 𝜉̇1, 𝑣1

)
=

[
𝑝̇ − 𝑠

𝑠̇ − 𝑎

]

Let us formulate an MOCP with two phases where an approxi-
mate model is employed in the second phase. The approximate
model does not consider acceleration and regards the velocity as
the control input instead yielding a one dimensional system, that
is, 𝜉2 = 𝑝, 𝑣2 = 𝑠. The system dynamics are then 𝑓2

(
𝜉2, 𝜉̇2, 𝑣2

)
=

𝑝̇ − 𝑠. The transition function is given by Γ
𝑘

(
𝜉1
)
= 𝑝. Note

that this transition only ensures continuity of 𝑝, while 𝑠 can
jump at the transition and between control intervals within the
second phase.

We define an MOCP with a time horizon of 𝑇 = 1 and the cost
functions

𝓁1
(
𝜉1, 𝑣1

)
= 𝑝

2 + 0.1𝑠2 + 10−3
𝑎

2
, 𝐸1

(
𝜉1
)
= 𝑝

2 + 0.01𝑠2

𝓁2
(
𝜉1, 𝑣2

)
= 𝑝

2 + 0.1𝑠2
, 𝐸2

(
𝜉2
)
= 10𝑝2

We impose control bounds as constraints on both phases: In the
first phase, we have −50 ≤ 𝑎 ≤ 50, in the second phase, we use
−5 ≤ 𝑠 ≤ 5. We associate the first phase with the interval [0,0.4]
and the second phase with [0.4,1.0] and divide the intervals uni-
formly into 10 and 15 shooting intervals, respectively. The result-
ing problem is a QP and solved with a single SQP iteration in
acados. The optimal trajectory for 𝑥0 = [2, 0]⊤ is visualized in
the left plot in Figure 1.

The right plot in Figure 1 shows how MOCPs can approximate
the cost-to-go function. All OCPs use 𝑁 = 25 shooting inter-
vals and a time horizon of 𝑇 = 1. The MOCPs use the single
integrator approximate OCP phase as described above on the
interval

[
𝑇1, 𝑇

]
. The shooting intervals are equidistant on both

phases with 𝑁1 intervals in the first phase and 𝑁 −𝑁1 in the
second phase.

We want to use the tutorial example to demonstrate the
formulation of an MOCP with a nontrivial transition using
the new acados interface. First, we need to define the
models for all phases, the double and the single integrator
model as well as the transition model. The single integra-
tor model is defined as an explicit ODE using CasADi as
follows

import casadi as ca
def get_single_integrator_model() ->

AcadosModel:
model = AcadosModel()
model.name = ’single_integrator’
model.x = ca.SX.sym(’p’)
model.u = ca.SX.sym(’v’)
model.f_expl_expr = model.u
return model

The transition model is defined as

def get_transition_model() -> AcadosModel:

834 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/acados/acados/blob/v0.4.0/examples/acados_python/mocp_transition_example/main.py
https://github.com/acados/acados/blob/v0.4.0/examples/acados_python/mocp_transition_example/main.py
https://github.com/acados/acados/blob/v0.4.0/examples/acados_python/mocp_transition_example/main.py
https://github.com/acados/acados/blob/v0.4.0/examples/acados_matlab_octave/mocp_transition_example/main_multiphase_ocp.m
https://github.com/acados/acados/blob/v0.4.0/examples/acados_matlab_octave/mocp_transition_example/main_multiphase_ocp.m
https://github.com/acados/acados/blob/v0.4.0/examples/acados_matlab_octave/mocp_transition_example/main_multiphase_ocp.m
https://github.com/acados/acados/blob/v0.4.0/examples/acados_matlab_octave/mocp_transition_example/main_multiphase_ocp.m

model = AcadosModel()
model.name = ’transition_model’
p = ca.SX.sym(’p’)
v = ca.SX.sym(’v’)
model.x = ca.vertcat(p, v)
model.disc_dyn_expr = p
return model

Let’s assume that we already formulated the OCPs for the individ-
ual phases, the one with the single and double integrator model,
which use the established Python interface ofacados, more pre-
cisely the AcadosOcp class.

def formulate_double_integrator_ocp() ->
AcadosOcp:
...

def formulate_single_integrator_ocp() ->
AcadosOcp:
...

A multi-phase OCP can be formulated inacadosusing theAca-
dosMultiPhaseOcp class, which is created by specifying the
number of stages per phase.

N_list = [10, 1, 15]
10 stages for double integrator,
1 stage for transition, 15 stages for
single integrator
ocp = AcadosMultiphaseOcp(N_list=N_list)

The novel interface allows to define the dynamics, cost and con-
straints of one phase utilizing the single-phase OCP formulations,
that is, the AcadosOcp class.

define phases for single and double
integrator

phase_0 = formulate_double_integrator_ocp()
ocp.set_phase(phase_0, 0)
phase_2 = formulate_single_integrator_ocp()
ocp.set_phase(phase_2, 2)
define the transition phase and cost
phase_1 = AcadosOcp()
phase_1.model = get_transition_model()
phase_1.cost.cost_type = ’NONLINEAR_LS’
phase_1.model.cost_y_expr = phase_1.model.x
phase_1.cost.W = np.diag([L2_COST_P, 1e-1

* L2_COST_V])
phase_1.cost.yref = np.array([0., 0.])
ocp.set_phase(phase_1, 1)

Most solver options can be set in the same way as for the
single-phase OCP:

ocp.solver_options.nlp_solver_type = ’SQP’
ocp.solver_options.time_steps = np.array

(N_list[0] * [0.4/N_list[0]]
+ [1.0] # transition stage
+ N_list[2] * [0.6 / N_list[2]])

Some additional solver options that cannot vary for single-phase
OCP problems can be set additionally.

ocp.mocp_opts.integrator_type = [’ERK’,
’DISCRETE’, ’ERK’]

Finally, an AcadosOcpSolver can be created from the
AcadosMultiphaseOcp, just as from an AcadosOcp object.

acados_ocp_solver = AcadosOcpSolver(ocp)

The interactions with the solver are independent of whether it
was created from a single or multi-phase OCP formulation.

5 | Numerical Experiments

This section presents three numerical case studies. First,
Section 5.1 compares MPC controllers with different con-
trol parameterizations and closed-loop costing variants on an
inverted pendulum test problem. Second, Section 5.2 regards
the task of controlling a differential drive robot directly through
the voltages of actuators and compares the performance of con-
trollers based on single- and multi-phase problem formulations.
Third, Section 5.3 shows the efficiency of partial tightening with
RTIs qualitatively replicating the benchmark results from the
first partial tightening article [63]. All experiments have been
carried out using acados v0.4.0 [69] via its Python interface
on a Laptop with an Intel i5-8365U CPU, 16 GB of RAM running
Ubuntu 22.04.

Note that these experiments only compare acados controllers
based on single- and multi-phase OCP formulations. Compar-
isons with solvers based on other software packages are out of
the scope of this article. However, since the computation times
of single- and multi-phase OCP formulations within acados
are consistent, results from existing software comparisons can
be transferred to multi-phase problems if all competing solvers
support MOCPs.

5.1 | Inverted Pendulum on Cart Test Problem

We investigate the inverted pendulum on cart problem in the set-
ting from the benchmark presented by Frey et al. [9] and compare
different controllers with different closed-loop costing variants
and control parametrizations. The code of the original bench-
mark has been adapted to incorporate the new controllers [70].

The differential state of the model is 𝑥 = [𝑝, 𝜃, 𝑠, 𝜔]𝑇 with cart
position 𝑝 in m, cart velocity 𝑠 in m

s
, angle of the pendulum 𝜃

in rad and angular velocity 𝜔 in rad
s

. The control input 𝑣 is a force
acting on the cart in the horizontal plane. The system dynamics
can be found, for example, in the article by Verschueren et al. [12].
In our OCP formulation, 𝑣 is constrained to be in [−40, 40]. The
simulation starts with an initial state 𝑥0 =

[

0, 𝜋
5

,0,0
]𝑇

. The goal
is to drive all states to zero, that is, the unstable upright position.
We formulate the following nonlinear least-squares cost consist-
ing of quadratic costs on states and controls and a term penalizing
a position 𝑝 outside of

[
𝑝min, 𝑝max

] ≔ [−1, 1], namely

𝑙(𝑥, 𝑢) = 𝑥
⊤Qx + 𝑣

⊤Rv + 𝛾 ⋅
(
max

(
𝑝min − 𝑝, 0

))2

+ 𝛾 ⋅
(
max

(
𝑝 − 𝑝max, 0

))2

where the cost weights are chosen as 𝛾 = 5 ⋅ 104, 𝑄 =
diag

(
100,103,0.01,0.01

)
, 𝑅 = 0.2. The terminal cost term is

set to 𝑀(𝑥) = 𝑥
⊤Px, where 𝑃 is obtained as solution of the

discrete algebraic Riccati equation with cost and dynamics
linearized at the steady state.

835

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The controllers use two different discretization grids, visu-
alized in Figure 2. The plant is simulated with a time step
of Δ𝑡 = 0.02s. All controllers use the GNRK cost discretiza-
tion described in our recent article [9] and Section 3.4.1
with a Gauss-Radau IIA method of order 7 on each shooting
interval. Additionally, we compare various control parame-
terizations, namely piecewise polynomials of different degree
on all but the first shooting interval [0,Δ𝑡], see Section 3.3,
and closed-loop costing formulations, see Section 3.4. In
order to conveniently formulate the models with piecewise
polynomial controls, we added the functionality Acados-
Model.reformulate_with_polynomial_control().

An overview of all controller variants is presented in Table 2
and discussed in the next section. In particular, grids A and
B visualized in Figure 2 are used with different numbers of
shooting intervals 𝑁 . Control parameterizations with piece-
wise polynomials of different degrees 𝑛deg and control bounds
enforced on 𝑛pc equidistant points on every shooting interval
are investigated. Additionally, closed-loop costing formulations
with an LQR policy and a squashed LQR policy together with
a progressive barrier are evaluated. Some of the closed-loop
trajectories are plotted in Figure 3 and some of the open-loop
control trajectories corresponding to the first problem are shown
in Figure 4.

5.1.1 | Controller Variants

The controller labeled IDEAL uses a uniform time discretiza-
tion corresponding to time steps Δ𝑡 with piecewise constant con-
trols, that is, no mismatch between the plant and the OCP model.
This controller gives the best closed-loop performance, but has
the highest computational complexity. The controller REF cor-
responds to the variant which gave the best trade-off between
computation time and closed-loop performance in the original
benchmark [9]. The goal is to derive a discrete-time OCP variant
which uses less shooting intervals than this controller in order to
reduce the associated computational complexity, while attaining
similar closed-loop performance as variant REF.

The variant REF-N10 uses the same kind of grid, but divides
the interval [Δ𝑡, 𝑇] into 9 instead of 19 shooting intervals. Thus,
the computational complexity associated with one iteration is
roughly halved. However, the closed-loop performance is highly
degraded. The controller variant PW-LIN-B uses a piecewise lin-
ear control parametrization on all but the first shooting inter-
val, while otherwise matching the variant REF-N10. This results
in a much better performance compared to REF-N10, with
marginally higher computational burden, indicating that the
cost-to-go approximation on this coarse grid is limited by the con-
trol parameterization.

Grid A t
0 T = 4.0

Δ t
T1 = 0.3

Grid B t
0 T = 4.0

Δ t

FIGURE 2 | Two time grids considered in the benchmark. Both grids start with an interval of length Δ𝑡 = 0.02. The grids are visualized for 𝑁 = 10
shooting intervals. For Grid A, the interval

[
Δ𝑡, 𝑇1

]
is divided into 𝑁1 = 4 equidistant intervals, and

[
𝑇1, 𝑇

]
into 𝑁2 = 𝑁 −𝑁1 − 1 = 5 equidistant

intervals. For Grid B, the interval [Δ𝑡, 𝑇] is divided into 𝑁 − 1 intervals.

TABLE 2 | Closed-loop comparison of different controller variants on the pendulum test problem with different discretization grids and the control
parametrizations, including closed-loop-costing and piecewise polynomial controls.

Variant ID 𝑵 Grid
Control

parametrization
Comp. time/

iter (ms)
Relative

suboptimality (%)

IDEAL 200 B pw. constant 3.45 0.00
REF 20 B pw. constant 0.41 3.72
REF-N10 10 B pw. constant 0.19 267.57
PW-LIN-B 10 B pw. polynomials with 𝑛deg = 1, 𝑛pc = 2 0.22 13.54
PW-CUBIC-B 10 B pw. polynomials with 𝑛deg = 3, 𝑛pc = 10 0.23 13.59
CLC-LQR 10 A Unconstrained LQR CLC 0.21 3.41
CLC-SQB 10 A Squashed + prog. barrier CLC 0.22 5.13
PW-CONST-A 10 A pw. constant 0.20 0.49
PW-LIN-A 10 A pw. polynomials with 𝑛deg = 1, 𝑛pc = 2 0.22 0.40
PW-QUAD-1 10 A pw. polynomials with 𝑛deg = 2, 𝑛pc = 4 0.23 0.06
PW-QUAD-2 10 A pw. polynomials with 𝑛deg = 2, 𝑛pc = 10 0.24 0.15
PW-CUBIC-1 10 A pw. polynomials with 𝑛deg = 3, 𝑛pc = 4 0.21 0.07
PW-CUBIC-2 10 A pw. polynomials with 𝑛deg = 3, 𝑛pc = 6 0.23 0.03
PW-CUBIC-3 10 A pw. polynomials with 𝑛deg = 3, 𝑛pc = 10 0.25 0.02

836 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

− 1.0

− 0.5

0.0

p
[m

]

t [s]

− 25

0

25

ν
[N

]

IDEAL

REF

REF-N10

PW-LIN-B

CLC-SQB

PW-CUBIC-3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t [s]

− 0.5

0.0

0.5

θ
[r
ad
]

FIGURE 3 | Closed-loop trajectories corresponding to the benchmark results in Table 2. Values for the position 𝑝 outside of [−1, 1] are heavily
penalized and result in high suboptimality, which is reported in Figure 5 and Table 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t [s]

− 40

− 30

− 20

− 10

0

10

20

30

40

ν
[N

]

REF-N10: Grid B, pw. constant

PW-CUBIC-B: Grid B, pw. polynomial ndeg = 3 , n pc = 10

PW-LIN-A: Grid A, pw. polynomial ndeg = 1 , n pc = 2

PW-CUBIC-2: Grid A, pw. polynomial ndeg = 3 , n pc = 6

FIGURE 4 | Open-loop control trajectories corresponding to the first problem solved in the closed-loop simulation visualized in Figure 3. Details
on the controller variants are provided in Table 2.

10− 1 100 101 102

relative suboptimality [%]

0.20

0.25

0.30

0.35

0.40

M
ea
n
co
m
p
u
ta
ti
o
n
ti
m
e
p
er

N
L
P
it
er
.
[m

s] REF

REF-N10

PW-LIN-B

PW-CUBIC-B

CLC-LQR

CLC-SQB

PW-CONST-A

PW-LIN-A

PW-QUAD-1

PW-QUAD-2

PW-CUBIC-1

PW-CUBIC-2

PW-CUBIC-3

FIGURE 5 | Pareto plot comparing the controllers in Table 2 in terms of mean computation time per NLP solver iteration and relative suboptimality
with respect to the controller IDEAL which is not included in this Figure.

837

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

− 1.0

− 0.5

0.0

p
[m

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t [s]

− 40

− 20

0

20

40
ν
[N

]

CLC-LQR

CLC-SQB

FIGURE 6 | Multiple shooting with closed-loop costing. The solver iterates after performing three iterations on the first problem in the closed-loop
scenario in Figure 3 are visualized.

We evaluate two closed-loop costing (CLC) variants. Both CLC
controllers use Grid A, where the second part of the time hori-
zon,

[
𝑇1, 𝑇

]
is implemented with a second phase, see Section 3.4.

For the CLC-LQR controller, the control law is the stabilizing
LQR control law 𝜅LQR(𝑥) = Kx. The control input constraints are
not enforced on the CLC horizon. This controller results in a
closed-loop performance that is similar to the one of controller
REF proposed in the original benchmark [9] at half the compu-
tation time.

The other CLC controller is labeled CLC-SQB and uses the
same linear feedback law with additional squashing to impose
the given control limits, 𝜅squash(𝑥) = 𝜎(Kx). Additionally, a bar-
rier term 𝛽(𝜎(Kx)) is added on the CLC horizon. The resulting
controller can therefore not plan with violations of the control
bounds in the CLC horizon. This controller yields slightly worse
closed-loop performance compared to the standard CLC-LQR
controller. We attribute this observation to the fact that the CLC
controller with squashing naturally has a more conservative
plan, which results in some additional suboptimality. Figure 6
visualizes intermediate iterates of the controllers CLC-LQR and
CLC-SQB and gives some insights into CLC. It can be seen that
the controls on the CLC horizon are continuous, since 𝜅 and
the state trajectory are continuous. However, for the intermedi-
ate iterates of the multiple shooting formulation, the shooting
gaps, which are visible in Figure 6 result in gaps in the con-
trols within the CLC horizon which are closed at convergence.
Lastly, we observe that the CLC-LQR controller violates the con-
trol bounds in its plan, while the squashed variant CLC-SQB
inherently respects them.

As an alternative to the CLC controllers, some variants are
included, which use discretization Grid A, but a standard control
horizon on the second part of the grid

[
𝑇1, 𝑇

]
and piecewise poly-

nomial controls on [Δ𝑡, 𝑇] with the control bounds enforced on
𝑛pc equidistant points on every shooting interval, see Section 3.3.

The controllers PW-CONST-A and PW-LIN-A exactly enforce
the control bounds, are among the controllers with the lowest
computational complexities and result in a relative suboptimality

below 0.5%. In particular, they are able to roughly halve the com-
putational complexity of REF, the best controller in the origi-
nal benchmark [9], while reducing the suboptimality by a factor
greater than seven.

5.1.2 | Discussion

The fact that controller PW-CONST-A has a lower computa-
tional burden compared to the CLC variant is attributed to
the fact that the control law 𝜅(⋅) and its derivatives have to be
evaluated often within every step and Newton iteration of the
implicit integrator. The additional computational burden of a
larger input dimension, which is 0 or 1 on the latter part of the
horizon, is rather small for efficient state-of-the-art QP solvers.
There are certainly other examples in which a CLC controller is
computationally more attractive. In addition to the test setting,
this of course depends on the underlying software framework
for linearization and solution of the subproblems. In particular,
for modern OCP-structure exploiting software frameworks, the
computational burden associated with an extra control variable
is less significant compared to when CLC was introduced in the
early 1990s [27].

A similar comparison of CLC controllers with respect to obvious
alternatives is not to be found in the existing literature on CLC
[11, 51–53, 58]. In addition to the CLC-LQR controller described
above, we compare a related variant, which uses 𝑁2 = 1, that is,
single shooting on the CLC horizon, and instead performs five
steps of IRK on this interval. This controller variant does not con-
verge in the first simulation step of the scenario and has a com-
putational complexity similar to CLC-LQR. This indicates that
the multiple shooting CLC implementation proposed in this arti-
cle has desirable properties compared to the single shooting CLC
variants used in previous works.

Overall, the comparison of CLC with respect to nonuniform OCP
discretizations shows that the latter are very competitive. On
this test example, the nonuniform grid variant outperforms the
LQR closed-loop costing based controller in terms of closed-loop
performance by a factor of 7 while requiring an equal amount of
computational resources.

838 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Finally, we regard controllers with piecewise polynomial control
parameterizations of degree 𝑛deg > 1 which enforce the control
bounds on 𝑛pc intermediate points. The open-loop solutions cor-
responding to the first problems within the closed-loop simula-
tion are visualized for a few controllers in Figure 4. We observe
small violations of the open-loop control trajectories with respect
to the control bounds, for example, at 𝑡 ≈ 0.2 for PW-CUBIC-2
and 𝑡 ≈ 0.35 for PW-CUBIC-B.

All variants in Figure 4 use 10 shooting intervals. Comparing
REF-N10 in Figure 4 with the optimal closed-loop control trajec-
tory in Figure 3, we observe that this planned controls are qual-
itatively very different from the optimal ones, resulting in a bad
cost-to-go approximation and thus closed-loop performance. In
contrast, PW-CUBIC-2 can capture the qualitative behavior of the
optimal closed-loop control trajectory well. In particular, the rel-
atively short intervals in the first part of the horizon enable the
cubic polynomials to approximate the optimal bang-bang solu-
tion in this phase well. In contrast, the variant PW-CUBIC-B,
which uses the same control parametrization as PW-CUBIC-2,
but on grid A, approximates this optimal bang-bang behavior
with a slower transition, see Figure 3, resulting in significantly
higher closed-loop cost, see Table 2. A visual comparison of the
open-loop trajectories of PW-CUBIC-2 and PW-LIN-A shows that
the optimal bang-bang behavior in the first part of the horizon
is approximated similarly, while on the first long interval, start-
ing at 𝑡 = 0.3, the cubic polynomials capture the optimal behavior
qualitatively better, as piecewise linear functions do not have an
inflection point.

When comparing controllers with the same parametrization, but
different grids on which the control bounds are enforced, that
is, varying 𝑛pc, we can observe two effects. First, comparing
PW-QUAD-1 and PW-QUAD-2, we see that enforcing control
bounds on a finer grid can result in worse closed-loop perfor-
mance. This can be attributed to the fact that enforcing the con-
trol bounds on a fine grid using polynomials results in a more
conservative approximation of the cost-to-go, since the planned
controls are approximated within the bounds. On the other hand,
regarding PW-CUBIC-1, PW-CUBIC-2, and PW-CUBIC-3, we
observe that enforcing constraints on a tighter grid can improve
the approximation quality.

Overall, the general trend in our experiments shows that addi-
tional degrees of freedom in piecewise polynomial control
parametrizations can result in a strongly improved closed-loop
performance if the control bounds are enforced on a sufficiently
fine grid, which we attribute to a better approximation of the
closed-loop cost. In particular, PW-CUBIC-3 results in better
performance than PW-QUAD-2, which in turn improves on
PW-LIN-A. Of course one needs to be careful, when it comes
to drawing general conclusions from the presented results on
piecewise polynomial control parameterizations. The additional
computational cost of polynomial control parameterizations of
higher degrees and handling the corresponding bounds will be
much more significant with growing 𝑛

𝑣
. In addition to the dimen-

sions, the optimal choice of control parameterization and where
to enforce control bounds depends on the qualitative behavior of
the continuous-time optimal solution (bang-bang or continuous),
the time discretization grid, the available solvers and computa-
tional resources. However, the possibility of formulating such

problems within an efficient software package can significantly
improve the closed-loop performance of MPC controllers.

5.2 | Differential Drive Robot With Actuator
Model and Economic Cost

We consider a differential drive robot and develop an NMPC
controller which takes the underlying actuators into account
allowing it to consider their power consumption in the cost func-
tion. The code to reproduce the results presented in this section
is publicly available [71] (https://github.com/FreyJo/ocp_solver
_benchmark/blob/v0.1.0/experiments/actuator_diff_drive.py).

5.2.1 | Modeling

This subsection describes the differential drive model with and
without actuators [72]. The dynamic model which disregards the
actuators is presented first. This model consists of the state vector
𝑥simple =

[
𝑝x, 𝑝y, 𝑣, 𝜃, 𝜔

]
, where 𝑝x, 𝑝y denotes the robots position

in x- and y-coordinates in m, 𝑣 the velocity of the robot in m
s

, 𝜃 the
heading angle in rad, and 𝜔 the angular velocity in rad

s
. The input

of this model are 𝑢simple =
[
𝜏r, 𝜏l

]
, the torques applied to the right

and left driving wheel, respectively, in Nm. The evolution of the
system is described by the ODE

𝑥̇simple =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣 cos 𝜃
𝑣 sin 𝜃

𝑎1 + 𝑚c𝑑𝜔
2

𝑚 + 𝑎2
La3 − 𝑚cd𝜔v
𝐼 + 𝐿2𝑎2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

where the shorthands 𝑎1 =
𝜏r+𝜏l

2
, 𝑎2 =

2𝐼w
𝑅2 , and 𝑎3 =

𝜏
𝑟
−𝜏

𝑙

𝑅
are

introduced. The model contains the following parameters, which
we assume to be constant: The total mass of the robot 𝑚 = 220kg,
the mass of the robot without the wheels and the rotating parts of
the actuators 𝑚c = 200kg, the robot’s moment of inertia around
the center of mass 𝐼 = 9.6kg ⋅m2, the combined moment of iner-
tia about the wheel’s axis of a driving wheel and the rotating part
of the actuator 𝐼w = 0.1kg ⋅m2.

In addition, we consider a more accurate model of the robot
which takes the two actuators, namely a motor on each driving
wheel into account. The model including actuator dynamics con-
sists of the state 𝑥act =

[
𝑝x, 𝑝y, 𝑣, 𝜃, 𝜔, 𝐼r, 𝐼l

]
, where 𝐼r, 𝐼l are the

currents in the motor driving the right and left wheel, respec-
tively, and the control input 𝑢act =

[
𝑉r, 𝑉l

]
, where 𝑉r, 𝑉l denote the

voltages applied to the motors. The evolution of the states com-
mon for both models is given by (12), where the motor torques
𝜏r, 𝜏l are substituted by 𝜏r = 𝐾1𝐼r and 𝜏l = 𝐾2𝐼l. In addition, the
dynamics of the currents are given by

[
𝐼̇ r

𝐼̇ l

]

=
⎡
⎢
⎢
⎢
⎣

−
𝐾1𝜓1 −𝑅act𝐼r + 𝑉r

𝐿act

−
𝐾2𝜓2 −𝑅act𝐼l + 𝑉l

𝐿act

⎤
⎥
⎥
⎥
⎦

(13)

with
𝜓1 =

𝑝̇x cos 𝜃 + 𝑝̇y sin 𝜃 + L𝜔
𝑅

(14)

839

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/actuator_diff_drive.py
https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/actuator_diff_drive.py
https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/actuator_diff_drive.py

𝜓2 =
𝑝̇x cos 𝜃 + 𝑝̇y sin 𝜃 − L𝜔

𝑅
(15)

This accurate model additionally contains the motor constants
𝐾1 = 1.0, 𝐾2 = 1.0, the coil inductance 𝐿act = 10−4H, the coil
resistance 𝑅act = 0.05Ω as parameters which we assume to be
constant.

5.2.2 | OCP Formulation

We want to minimize the following cost term

𝑙act
(
𝑥act, 𝑢act

)
= 𝑥

⊤

actQxact + 𝑉r𝐼r + 𝑉l𝐼l (16)

with 𝑄 = diag
(
103

, 103
, 10−4,1,10−3,0.5,0.5

)
. Note that the sec-

ond summand 𝑉r𝐼r + 𝑉l𝐼l is an economic cost term correspond-
ing to the power consumption. It is implemented in acados
by introducing slack variables 𝑠low, 𝑠up and constraints 𝑠low ≤
[
𝑉r𝐼r, 𝑉l𝐼l

]⊤ ≤ 𝑠up and replacing the term 𝑉r𝐼r + 𝑉l𝐼l in the cost
with 𝑠low,1 + 𝑠low,2 + 𝑠up,1 + 𝑠up,2. When using the actuator model
for the full horizon, we use the terminal cost term:

𝐸act
(
𝑥act

)
= 𝑥

⊤

actQxact (17)

We want to investigate approximate MOCP formulations which
use the simple differential drive model on the latter part of the
horizon. The cost term in (16) can be approximated using the sim-
ple model by disregarding the economic cost term, that is, using

𝑙simple
(
𝑥simple, 𝑢simple

)
= 𝑥

⊤

simple𝑄̃𝑥simple + 𝑢
⊤

simple𝑅̃𝑢simple (18)

with 𝑄̃ = diag
(
103

, 103
, 10−4,1,10−3), 𝑅̃ = diag(0.5,0.5). As a ter-

minal cost of the first phase, cf. (2), we define

𝐸trans
(
𝑥act

)
= 0.5Δ𝑡trans ⋅

(
𝐼

2
r + 𝐼

2
l
)

(19)

where Δ𝑡trans denotes the length of the last shooting interval on
which the actuator model is used. This cost term corresponds to
the tracking part of the cost in (16) and is needed since 𝐼r, 𝐼l are
not included in the simple model. When using the simple model
at the end of the horizon, we use the terminal cost term:

𝐸simple
(
𝑥simple

)
= 𝑥

⊤

simple𝑄̃𝑥simple (20)

For both models, we impose the following path constraints on
the state

0 ≤ 𝑣 ≤ 1 (21)

−0.5 ≤ 𝜔 ≤ 0.5 (22)

Additionally, we impose the following constraints on the control
inputs when using the actuator model

−10 ≤ 𝑉l ≤ 10 (23)

−10 ≤ 𝑉r ≤ 10 (24)

Respectively, for the simple model, we impose

−60 ≤ 𝜏r ≤ 60 (25)

−60 ≤ 𝜏l ≤ 60 (26)

5.2.3 | Algorithm Variants: Real-Time Iterations

The RTI [69] is a popular algorithm for practical NMPC applica-
tions. Unlike fully converged SQP, which iterates to convergence
at each step, RTI performs only a single linearization and QP solu-
tion per control instance. This enables faster and fixed-frequency
feedback to the system. Additionally, the RTI computations can
be split into two phases: the preparation phase, which can be exe-
cuted before the initial state of the problem is known, and the
feedback phase, which handles the remaining computations.

5.2.4 | Comparing Controller Variants

We compare different controller variants. All variants use uni-
form discretization steps of Δ𝑡 = 0.1s, the model dynamics are
integrated using an implicit Runge–Kutta method with a Leg-
endre Butcher tableau of order 6 on each shooting interval. The
controllers are based on an acados full-step SQP solver using a
Gauss–Newton Hessian approximation and solving the QPs with
HPIPM without condensing.

We consider MOCP variants with 𝑁 = 40 and 𝑁 = 50 shoot-
ing intervals and vary 𝑁act, the number of shooting intervals on
which the actuator model is used. Afterwards, we use a transition
stage and 𝑁 −𝑁act shooting intervals with the simple model. For
the single-phase OCP variants, we vary the number of shooting
intervals 𝑁 , as this formulation does not allow for a transition.

We compare several controllers in a closed-loop simulation
of 20s using the actuator model starting at the initial state
𝑥0 = (1,1,0, 𝜋,0,0,0), exactly integrating the cost in (16) using 10
integrator steps for a sampling time of 0.1s. In order to evalu-
ate relative suboptimality, a reference controller with 𝑁 = 60
shooting intervals of the actuator model is used.

The Pareto plot in Figure 7 visualizes the suboptimality and com-
putation time of the various variants. The figure consists of sep-
arate subplots for the RTI variant SQP, for which all controllers
converged to the desired tolerance in all steps of the closed-loop
simulation. Note that the variant OCP 𝑁 = 50 corresponds to
the controller MOCP 𝑁 = 50, 𝑁act = 50. The solver variants OCP
𝑁 = 30 and MOCP 𝑁 = 50, 𝑁act = 10 with SQP require a similar
computation time. However, the MOCP variant results in a three
fold lower relative suboptimality. On the other hand, MOCP with
𝑁 = 50, 𝑁act = 10 delivers a similar suboptimality compared to
the variant OCP 𝑁 = 50, while only requiring roughly half of
the computation time. Overall, the MOCP variants dominate the
Pareto front in large parts. It is of course possible to generate
many more combinations using MOCP formulations or by vary-
ing the number of SQP iterations. These results show that deriv-
ing an approximate OCP formulation and using it within an
MOCP can result in an NMPC controller which is able to out-
perform NMPC controllers that only use a single-phase OCP
formulation.

5.3 | Partial Tightening

This section briefly demonstrates how partial tightening can
be efficiently implemented within acados, qualitatively
reproducing the results from the benchmark in the article
that introduced partial tightening [63]. To this end, we regard

840 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10− 1 100 101 102

Relative suboptimality [%]

5

10

15

20

25

30

35

40
m
ea
n
co
m
pu

ta
tio

n
tim

e
[m

s]

SQP

OCP N = 10

OCP N = 20

OCP N = 30

OCP N = 40

OCP N = 50

MOCP N = 50, N act = 10

MOCP N = 50, N act = 20

MOCP N = 50, N act = 30

MOCP N = 50, N act = 40

MOCP N = 40, N act = 10

MOCP N = 40, N act = 20

MOCP N = 40, N act = 30

101 102

Relative suboptimality [%]

0.5

1.0

1.5

2.0

2.5

m
ea
n
co
m
pu

ta
tio

n
tim

e
[m

s]

RTI

OCP N = 10

OCP N = 20

OCP N = 30

OCP N = 40

OCP N = 50

MOCP N = 50, N act = 10

MOCP N = 50, N act = 20

MOCP N = 50, N act = 30

MOCP N = 50, N act = 40

MOCP N = 40, N act = 10

MOCP N = 40, N act = 20

MOCP N = 40, N act = 30

FIGURE 7 | Pareto plot comparing different controller variants for directly controlling the actuators of a differential drive robot with an economic
cost. All MOCP variants use 𝑁 = 50 shooting intervals and 𝑁 −𝑁act of an approximate model which disregards the actuator dynamics. Note that the
x- and y-axes are different between the subplots containing the SQP and RTI variants. Markers with different tints of the same color correspond to the
same value of 𝑁 . MOCP based controllers are marked with triangles and single-phase OCP ones with circles.

TABLE 3 | Performance overview of different controllers with RTI and partial tightening. Maximum timings are over the closed-loop simulation in
Figure 8 and are given in [ms] and relative suboptimality is evaluated by comparing with the controller variant 𝑁 = 100, 𝑁exact = 100.

Computation times

Variant Preparation Feedback Total Rel. subopt. (%)

𝑁 = 100 𝑁exact = 5 0.23 0.32 0.54 21.25
𝑁 = 100 𝑁exact = 10 0.25 0.36 0.59 16.61
𝑁 = 100 𝑁exact = 20 0.24 0.44 0.65 12.25
𝑁 = 100 𝑁exact = 50 0.25 1.15 1.36 5.15
𝑁 = 100 𝑁exact = 100 0.23 2.87 3.05 0.00
𝑁 = 50 𝑁exact = 50 0.10 2.17 2.27 990.43

the inverted pendulum on cart model as in Section 5.1. The cost
function is of linear least-squares form

𝑙(𝑥, 𝑣) = 𝑥
⊤Qx + 𝑣

⊤Rv (27)

with 𝑄 = diag
(
0.1,1,0.1,2 ⋅ 10−3), 𝑅 = 5 ⋅ 10−4. For the terminal

cost, we use 𝑥⊤Px, where 𝑃 is the solution of the continuous-time
algebraic Riccati equation with cost and dynamics linearized
at the steady-state [0,0,0,0]. The only constraint is that the con-
trol input is −12 ≤ 𝑣 ≤ 12. When using partial tightening, the
constraint is replaced with an additional log-barrier term as
in (10) corresponding to this constraint with 𝜏 = 5 and a GGN
Hessian approximation is used. While previous works only used
custom implementations of partial tightening, the MOCP inter-
face allows a convenient formulation in established software
and the source code to reproduce the results presented in this
section is publicly available [71] (https://github.com/FreyJo/ocp
_solver_benchmark/blob/v0.1.0/experiments/zanelli_partial
_tightening.py).

This benchmark compares controllers in a closed-loop simula-
tion with initial state 𝑥0 = [0, 𝜋,0,0] for a duration of 5s with a
time step of 0.01s. The controllers use different underlying OCP
formulations, where the length of the overall horizon and the

tightened horizon are varied. The tightened horizon is imple-
mented as a second phase of an MOCP formulation. The length
of a shooting interval is fixed to 0.01s and the dynamics are dis-
cretized using an RK4 integrator. We vary the total number of
shooting intervals 𝑁 and the number of shooting intervals on
which the constraints are formulated exactly 𝑁exact. The second
phase contains 𝑁 −𝑁exact shooting intervals, on which the con-
trol bounds are replaced with logarithmic barriers.

All controllers use the RTI algorithm with a split into prepara-
tion and feedback phase, see Section 5.2.3. The QPs are solved
using partial condensing, such that the blocks corresponding
to the tightened horizon are condensed into one block and the
remaining blocks remain uncondensed. In order to perform as
many operations as possible in the preparation phase, acados
internally implements functions that assume that only matri-
ces of the QP are known and a second one that completes the
computations once the vector quantities are known. For the
acados module that performs the condensing and QP solution
has a split functionality, namely condense_lhs() and con-
dense_rhs_and_solve().

Table 3 gives an overview on the controllers closed-loop per-
formance and the computation times split into preparation and

841

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/zanelli_partial_tightening.py
https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/zanelli_partial_tightening.py
https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/zanelli_partial_tightening.py
https://github.com/FreyJo/ocp_solver_benchmark/blob/v0.1.0/experiments/zanelli_partial_tightening.py

0

2

4

p
[m

]

t [s]

− 10

0

10

ν
[N

]

N = 100 , N exact = 5

N = 100 , N exact = 20

N = 100 , N exact = 100

N = 50 , N exact = 50

0 1 2 3 4 5
t [s]

0

2

4

θ
[r
ad
]

FIGURE 8 | Closed-loop trajectories corresponding to different controller variants with partial tightening. The total number of shooting intervals
𝑁 and the ones handled exactly 𝑁exact are varied.

N = 100 , Nexact
= 5

N = 100 , Nexact
= 10

N = 100 , Nexact
= 20

N = 100 , Nexact
= 50

N = 100 , Nexact
= 100
N = 50 ,Nexact

= 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ax
im

um
tim

e
pe
r
cl
os
ed
-l
oo

p
ite
r.

[m
s] preparation

feedback

FIGURE 9 | Maximum timings for the preparation and feedback phase over the closed-loop simulation shown in Figure 8. The timings are also
given in Table 3.

feedback phase. Figure 8 visualizes the closed-loop trajectories
for different controller variants. Figure 9 and Table 3 show that
the preparation time is consistent between all solver variants
with 𝑁 = 100 and roughly halved for the variant with 𝑁 = 50.
While the controller with 𝑁 = 50, 𝑁exact = 50 fails at swinging
up the pendulum, the other controllers succeed at this task.
Comparing the variants with 𝑁 = 100, one can see that decreas-
ing 𝑁exact results in an increase in relative suboptimality and a
decrease in associated computational complexity, more specifi-
cally a decrease int. he computation time of the feedback phase.
Overall, the results are very similar to the ones reported in the
original benchmark [63]. Note that in our implementation, the
barrier parameter 𝜏 could be easily increased over the shoot-
ing intervals, resulting in a progressive tightening formulation
which is not partial tightening. In summary, partial and progres-
sive tightening formulations allow one to trade off computational
complexity and closed-loop performance and can be formulated
conveniently as MOCPs.

6 | Conclusion

This article gives an overview on multi-phase OCP (MOCP)
formulations and their efficient treatment using multiple

shooting in the open-source software package acados. Sev-
eral approaches are presented which allow one to formulate
discrete-time approximations of a continuous-time OCP in a suc-
cessively approximate way which require an MOCP formulation.
The work provides an overview on different control parametriza-
tions for use within multiple shooting, such as piecewise
polynomial controls of different degrees and closed-loop costing
variants, and motivates their use. These control parametrizations
have been compared on a benchmark example from previous
work. Moreover, we demonstrate the efficiency of NMPC con-
trollers based on an MOCP formulation with an approximate
model in a second phase. Lastly, we show how partial and
progressive tightening OCPs can be phrased as MOCPs. These
examples show that the added degrees of freedom allow one to
develop NMPC controllers, which outperform ones limited to
single-phase OCP formulations. While other state-of-the-art soft-
ware packages are limited to single-phase OCP formulations or
use general purpose NLP solvers instead of structure-exploiting
algorithms tailored to OCPs, the new acados feature allows for
both a convenient formulation and the generation of efficient
solver for MOCPs. We believe that this new feature will make
efficient solvers for MOCP formulations more available to NMPC
practitioners and spread their use in real-world applications.

842 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Author Contributions

Jonathan Frey: Conceptualization, Data Curation, Formal Analy-
sis, Investigation, Methodology, Software, Visualization, Writing –
Original Draft Preparation, Writing – Review & Editing. Katrin
Baumgärtner: Conceptualization, Data Curation, Formal Analysis,
Investigation, Methodology, Visualization, Writing – Original Draft
Preparation, Writing – Review & Editing. Gianluca Frison: Soft-
ware, Writing – Review & Editing. Moritz Diehl: Conceptualization,
Supervision, Writing – Review & Editing.

Acknowledgments

The authors want to thank Rudolf Reiter for fruitful discussions.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available in
the following repositories: acados at https://github.com/acados/acados/,
reference number [69] and GNRK benchmark code, for the example in
Section 5.1, [69], OCP solver benchmark, for the examples in Sections 5.2
and 5.3 [70].

References

1. F. Dabbene, M. Cannon, M. Chamanbaz, A. Isaksson, M. Mammarella,
and D. Raimondo, “Guest Editorial Special Issue on State-Of-The-Art
Applications of Model Predictive Control,” IEEE Transactions on Control
Systems Technology 31, no. 5 (2023): 1965–1970.

2. S. Hänggi, J. Frey, V. S. Dooren, M. Diehl, and C. H. Onder, “A Modular
Approach for Diesel Engine Air Path Control Based on Nonlinear MPC,”
IEEE Transactions on Control Systems Technology 31 (2022): 1521–1536,
https://doi.org/10.1109/TCST.2022.3228203.

3. A. Zanelli, J. Kullick, H. Eldeeb, G. Frison, C. Hackl, and M. Diehl,
“Continuous Control Set Nonlinear Model Predictive Control of Reluc-
tance Synchronous Machines,” IEEE Transactions on Control Sys-
tems Technology 30 (2021): 130–141, https://doi.org/10.1109/TCST.2020
.3043956.

4. B. B. Carlos, T. Sartor, A. Zanelli, M. Diehl, and G. Oriolo, “Least Con-
servative Linearized Constraint Formulation for Real-Rime Motion Gen-
eration,” IFAC-PapersOnLine 53 (2020): 9519–9525.

5. B. B. Carlos, T. Sartor, A. Zanelli, et al., “An Efficient Real-Time NMPC
for Quadrotor Position Control Under Communication Time-Delay,”
in Proceedings of 16th International Conference on Control, Automation,
Robotics and Vision (ICARCV) (Shenzhen, China: IEEE, 2020), 982–989.

6. Y. Gao, F. Messerer, J. Frey, N. van Duijkeren, and M. Diehl,
“Collision-Free Motion Planning for Mobile Robots by Zero-Order Robust
Optimization-Based MPC,” in Proceedings of 2023 European Control Con-
ference (ECC) (Bucharest, Romania: IEEE, 2023).

7. A. Norouzi, S. Shahpouri, D. Gordon, et al., “Deep Learning Based
Model Predictive Control for Compression Ignition Engines,” Control
Engineering Practice 127 (2022): 105299.

8. A. Romero, R. Penicka, and D. Scaramuzza, “Time-Optimal Online
Replanning for Agile Quadrotor Flight,” IEEE Robotics and Automation
Letters 7, no. 3 (2022): 7730–7737.

9. J. Frey, K. Baumgärtner, and M. Diehl, “Gauss–Newton Runge–Kutta
Integration for Efficient Discretization of Optimal Control Problems With
Long Horizons and Least-Squares Costs,” European Journal of Control 80
(2024): 101038.

10. V. Vassiliadis, R. Sargent, and C. Pantelides, “Solution of a Class of
Multistage Dynamic Optimization Problems. 1. Problems Without Path
Constraints,” Industrial and Engineering Chemistry Research 10, no. 33
(1994): 2111–2122.

11. L. Magni and R. Scattolini, “Stabilizing Model Predictive
Control of Nonlinear Continuous Systems,” Annual Reviews in Control
28 (2004): 1–11.

12. R. Verschueren, G. Frison, D. Kouzoupis, et al., “acados—A Modular
Open-Source Framework for Fast Embedded Optimal Control,” Mathe-
matical Programming Computation 14 (2021): 147–183, https://doi.org
/10.1007/s12532-021-00208-8.

13. D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder, “An Efficient
Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic
Process Optimization. Part I: Theoretical Aspects,” Computers and Chem-
ical Engineering 27 (2003): 157–166.

14. D. Kouzoupis, “Structure-Exploiting Numerical Methods for
Tree-Sparse Optimal Control Problems” (PhD diss., University of
Freiburg, 2013).

15. F. Fiedler, B. Karg, L. Lüken, et al., “Do-Mpc: Towards FAIR Nonlinear
and Robust Model Predictive Control,” Control Engineering Practice 140
(2023): 105676.

16. S. Lucia, “Robust Multi-Stage Nonlinear Model Predictive Control”
(PhD diss., TU Dortmund, 2014).

17. “MATLAB Documentation of Multistage Nonlinear Model Predic-
tive Controller” accessed September 13, 2024, https://de.mathworks.com
/help/mpc/ref/nlmpcmultistage.html.

18. G. Schultz and K. Mombaur, “Modeling and Optimal Control of
Human-Like Running,” IEEE/ASME Transactions on Mechatronics 15,
no. 5 (2009): 783–792.

19. M. Diehl, A. Schäfer, H. G. Bock, and J. P. Schlöder, “Optimiza-
tion of Multiple-Fraction Batch Distillation With Recycled Waste Cuts,”
AICHE Journal 48, no. 12 (2002): 2869–2874, https://doi.org/10.1002/aic
.690481214.

20. H. Ye and R. Liu, “A Multiphase Optimal Control Method for
Multi-Train Control and Scheduling on Railway Lines,” Transportation
Research Part B: Methodological 93 (2016): 377–393, https://doi.org/10
.1016/j.trb.2016.08.002.

21. G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “BLAS-
FEO: Basic Linear Algebra Subroutines for Embedded Optimization,”
ACM Transactions on Mathematical Software (TOMS) 44, no. 4 (2018):
1–42, https://doi.org/10.1145/3210754.

22. M. Diehl, “Real-Time Optimization for Large Scale Nonlinear
Processes” (PhD diss., University of Heidelberg, 2001).

23. J. Frey, A. Nurkanović, and M. Diehl, “Advanced-Step Real-Time
Iterations With Four Levels – New Error Bounds and Fast Implemen-
tation in acados,” IEEE Control Systems Letters 8 (2024): 1703–1708,
https://doi.org/10.1109/LCSYS.2024.3412007.

24. D. Mayne, “A Second-Order Gradient Method for Determining Opti-
mal Trajectories of Non-linear Discrete-Time Systems,” International
Journal of Control 3, no. 1 (1966): 85–96.

25. D. Kiessling, K. Baumgärtner, J. Frey, W. Decré, J. Swevers, and
M. Diehl, “Fast Generation of Feasible Trajectories in Direct Optimal
Control,” IEEE Control Systems Letters 8 (2024): 1168–1173.

26. J. Frey, J. De Schutter, and M. Diehl, “Fast Integrators With Sensitivity
Propagation for Use in CasADi,” in Proceedings of 2023 European Control
Conference (ECC) (Bucharest, Romania: IEEE, 2023).

27. D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl, “Recent Advances
in Quadratic Programming Algorithms for Nonlinear Model Predictive
Control,” Vietnam Journal of Mathematics 46, no. 4 (2018): 863–882.

843

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/acados/acados/
https://github.com/acados/acados/
https://doi.org/10.1109/TCST.2022.3228203
https://doi.org/10.1109/TCST.2022.3228203
https://doi.org/10.1109/TCST.2020.3043956
https://doi.org/10.1109/TCST.2020.3043956
https://doi.org/10.1109/TCST.2020.3043956
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://de.mathworks.com/help/mpc/ref/nlmpcmultistage.html
https://de.mathworks.com/help/mpc/ref/nlmpcmultistage.html
https://de.mathworks.com/help/mpc/ref/nlmpcmultistage.html
https://doi.org/10.1002/aic.690481214
https://doi.org/10.1002/aic.690481214
https://doi.org/10.1002/aic.690481214
https://doi.org/10.1016/j.trb.2016.08.002
https://doi.org/10.1016/j.trb.2016.08.002
https://doi.org/10.1016/j.trb.2016.08.002
https://doi.org/10.1145/3210754
https://doi.org/10.1145/3210754
https://doi.org/10.1109/LCSYS.2024.3412007
https://doi.org/10.1109/LCSYS.2024.3412007

28. L. Vanroye, A. Sathya, J. de Schutter, and W. Decré, “Fatrop: A Fast
Constrained Optimal Control Problem Solver for Robot Trajectory Opti-
mization and Control,” in Proceedings of 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Detroit, MI: IEEE,
2023), 10036–10043.

29. G. Frison and M. Diehl, “HPIPM: A High-Performance
Quadratic Programming Framework for Model Predictive Control,”
IFAC-PapersOnLine 53 (2020): 6563–6569.

30. H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: A Parametric Active-Set Algorithm for Quadratic Pro-
gramming,” Mathematical Programming Computation 6, no. 4 (2014):
327–363, https://doi.org/10.1007/s12532-014-0071-1buerger.

31. D. Arnstrom, A. Bemporad, and D. Axehill, “A Dual Active-Set Solver
for Embedded Quadratic Programming Using Recursive LDL𝑇 Updates,”
IEEE Transactions on Automatic Control 67, no. 8 (2022): 4362–4369,
https://doi.org/10.1109/TAC.2022.3176430.

32. B. Stellato, T. Geyer, and P. J. Goulart, “High-Speed Finite Control Set
Model Predictive Control for Power Electronics,” IEEE Transactions on
Automatic Control 32, no. 5 (2017): 4007–4020.

33. J. V. Frasch, M. Vukov, H. Ferreau, and M. Diehl, “A Dual Newton
Strategy for the Efficient Solution of Sparse Quadratic Programs Arising
in SQP-Based Nonlinear MPC,” Optimization Online 3972 (2013).

34. G. Frison, D. Kouzoupis, J. B. Jørgensen, and M. Diehl, “An Efficient
Implementation of Partial Condensing for Nonlinear Model Predictive
Control,” in Proceedings of 2016 IEEE 55th Conference on Decision and
Control (CDC) (Las Vegas, NV: IEEE, 2016), 4457–4462.

35. D. Axehill, “Controlling the Level of Sparsity in MPC,” Systems & Con-
trol Letters 76 (2015): 1–7.

36. M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB Software for
Solving Multiple-Phase Optimal Control Problems Using Hp-Adaptive
Gaussian Quadrature Collocation Methods and Sparse Nonlinear Pro-
gramming,” ACM Transactions on Mathematical Software 41, no. 1 (2014):
1–37, https://doi.org/10.1145/2558904.

37. A. Wächter and L. T. Biegler, “On the Implementation of an
Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear
Programming,” Mathematical Programming 106, no. 1 (2006): 25–57.

38. P. Gill, W. Murray, and M. Saunders, “SNOPT: An SQP Algorithm for
Large-Scale Constrained Optimization,” SIAM Review 47, no. 1 (2005):
99–131, https://doi.org/10.1137/S0036144504446096.

39. D. B. Leineweber, A. A. S. Schäfer, H. G. Bock, and J. P. Schlöder, “An
Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale
Dynamic Process Optimization. Part II: Software Aspects and Applica-
tions,” Computers and Chemical Engineering 27 (2003): 167–174.

40. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi—A Software Framework for Nonlinear Optimization and Opti-
mal Control,” Mathematical Programming Computation 11, no. 1 (2019):
1–36, https://doi.org/10.1007/s12532-018-0139-4.

41. J. Gillis, B. Vandewal, G. Pipeleers, and J. Swevers, “Effortless Model-
ing of Optimal Control Problems With Rockit,” 39th Benelux Meeting on
Systems and Control (2020).

42. P. Sopasakis, E. Fresk, and P. Patrinos, “OpEn: Code Generation for
Embedded Nonconvex Optimization,” IFAC World Congress (2020).

43. T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A Software
Framework for Embedded Nonlinear Model Predictive Control Using
a Gradient-Based Augmented Lagrangian Approach (GRAMPC),” Opti-
mization and Engineering 20, no. 3 (2019): 769–809, https://doi.org/10
.1007/s11081-018-9417-2.

44. A. Zanelli, A. Domahidi, J. L. Jerez, and M. Morari, “FORCES NLP: An
Efficient Implementation of Interior-Point Methods for Multistage Non-
linear Nonconvex Programs,” International Journal of Control 93 (2017):
13–29, https://doi.org/10.1080/00207179.2017.1316017.

45. A. Domahidi, A. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient Interior Point Methods for Multistage Problems Arising
in Receding Horizon Control,” in Proceedings of IEEE 51st IEEE Confer-
ence on Decision and Control (CDC) (Maui, HI: IEEE, 2012), 668–674.

46. J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control:
Theory, Computation, and Design, 2nd ed. (Madison, Wisconsin: Nob Hill,
2017).

47. D. B. Leineweber, I. Bauer, A. A. S. Schäfer, H. G. Bock, and J. P.
Schlöder, “An Efficient Multiple Shooting Based Reduced SQP Strategy
for Large-Scale Dynamic Process Optimization (Parts I and II),” Comput-
ers and Chemical Engineering 27 (2003): 157–174.

48. H. G. Bock and K. J. Plitt, A Multiple Shooting Algorithm for Direct
Solution of Optimal Control Problems (Oxford, UK: Pergamon Press,
1984), 242–247.

49. J. Frey, S. D. Cairano, and R. Quirynen, “Active-Set Based Inexact Inte-
rior Point QP Solver for Model Predictive Control,” IFAC-PapersOnLine
53 (2020): 6522–6528.

50. D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear Model Predictive
Control of Wind Turbines Using LIDAR,” Wind Energy 16, no. 7 (2013):
1107–1129.

51. G. de Nicolao, L. Magni, and R. Scattolini, “Stabilizing
Receding-Horizon Control of Nonlinear Time Varying Systems,”
IEEE Transactions on Automatic Control AC-43, no. 7 (1998): 1030–1036.

52. G. de Nicolao, L. Magni, and R. Scattolini, “Stabilizing Nonlinear
Receding Horizon Control via a Nonquadratic Terminal State Penalty,”
in Proceedings of the Symposium on Control, Optimization and Supervi-
sion, CESA’96 IMACS Multiconference (Lille, Villeneuve d’Ascq: Gerf EC
Lille, 1996), 185–187.

53. M. Diehl, L. Magni, and G. D. Nicolao, “Efficient NMPC of Unstable
Periodic Systems Using Approximate Infinite Horizon Closed Loop Cost-
ing,” Annual Reviews in Control 28, no. 1 (2004): 37–45, https://doi.org
/10.1016/j.arcontrol.2004.01.011.

54. J. Carius, F. Farshidian, and M. Hutter, “Mpc-Net: A First Principles
Guided Policy Search,” IEEE Robotics and Automation Letters 5, no. 2
(2020): 2897–2904.

55. A. Ghezzi, J. Hoffman, J. Frey, J. Boedecker, and M. Diehl, “Im-
itation Learning From Nonlinear MPC via the Exact Q-Loss and Its
Gauss-Newton Approximation,” in Proceedings of the 62nd IEEE Confer-
ence on Decision and Control (CDC) (Singapore: IEEE, 2023).

56. D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming (Belmont,
MA: Athena Scientific, 1996).

57. L. Magni, G. de Nicolao, L. Magnani, and R. Scattolini, “A Stabilizing
Model-Based Predictive Control for Nonlinear Systems,” Automatica 37,
no. 9 (2001): 1351–1362.

58. R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
Microsecond Solvers for Nonlinear MPC: A Tutorial Using ACADO Inte-
grators,” Optimal Control Applications and Methods 36 (2014): 685–704.

59. R. Verschueren, v N. Duijkeren, R. Quirynen, and M. Diehl, “Exploit-
ing Convexity in Direct Optimal Control: A Sequential Convex Quadratic
Programming Method,” in Proceedings of the 2016 IEEE 55th Conference
on Decision and Control (CDC) (Las Vegas, NV: IEEE, 2016).

60. K. Baumgärtner and M. Diehl, “The Extended Gauss-Newton Method
for Nonconvex Loss Functions and Its Application to Time-Optimal
Model Predictive Control,” in Proceedings of the American Control Con-
ference (ACC) (Atlanta, GA: IEEE, 2022).

61. K. Baumgärtner, Y. Wang, A. Zanelli, and M. Diehl, “Fast Nonlin-
ear Model Predictive Control Using Barrier Formulations and Squashing
With a Generalized Gauss-Newton Hessian,” in Proceedings of the IEEE
61st Conference on Decision and Control (CDC) (Cancún, Mexico: IEEE,
2022), 558–563.

844 Optimal Control Applications and Methods, 2025

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s12532-014-0071-1buerger
https://doi.org/10.1007/s12532-014-0071-1buerger
https://doi.org/10.1109/TAC.2022.3176430
https://doi.org/10.1109/TAC.2022.3176430
https://doi.org/10.1145/2558904
https://doi.org/10.1145/2558904
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s11081-018-9417-2
https://doi.org/10.1007/s11081-018-9417-2
https://doi.org/10.1007/s11081-018-9417-2
https://doi.org/10.1080/00207179.2017.1316017
https://doi.org/10.1080/00207179.2017.1316017
https://doi.org/10.1016/j.arcontrol.2004.01.011
https://doi.org/10.1016/j.arcontrol.2004.01.011
https://doi.org/10.1016/j.arcontrol.2004.01.011

62. K. Baumgärtner, A. Zanelli, and M. Diehl, “Stability Analysis of Non-
linear Model Predictive Control With Progressive Tightening of Stage
Costs and Constraints,” IEEE Control Systems Letters 7 (2023): 3018–3023.

63. A. Zanelli, R. Quirynen, G. Frison, and M. Diehl, “A Partially Tight-
ened Real-Time Iteration Scheme for Nonlinear Model Predictive Con-
trol,” in Proceedings of the IEEE 56th Annual Conference on Decision and
Control (CDC) (Melbourne, Australia: IEEE, 2017).

64. A. Zanelli, “Inexact Methods for Nonlinear Model Predictive Control:
Stability, Applications, and Software” (PhD diss., University of Freiburg,
2021).

65. R. Reiter, K. Baumgärtner, R. Quirynen, and M. Diehl, “Progres-
sive Smoothing for Motion Planning in Real-Time NMPC,” in Proceed-
ings of the European Control Conference (ECC) (Stockholm, Sweden:
IEEE, 2024).

66. A. Zanelli, G. Horn, G. Frison, and M. Diehl, “Nonlinear Model
Predictive Control of a Human-Sized Quadrotor,” in Proceedings of the
2018 European Control Conference (ECC) (Limassol, Cyprus: IEEE, 2018),
1542–1547.

67. G. Valverde and T. van Cutsem, “Model Predictive Control of Voltages
in Active Distribution Networks,” IEEE Transactions on Smart Grid 4, no.
4 (2013): 2152–2161.

68. G. Frison, “Algorithms and Methods for High-Performance Model
Predictive Control” (PhD diss., Technical University of Denmark (DTU);
2015), https://www.doi.org/10.5281/zenodo.7371687.

69. J. Frey, R. Verschueren, G. Frison et al., “acados Releases” (2024),
https://www.doi.org/10.5281/zenodo.7371687.

70. J. Frey, “OCP Solver Benchmark Code,” https://www.doi.org/10.5281
/zenodo.13794857.

71. R. Dhaouadi and A. A. Hatab, “Dynamic Modelling of
Differential-Drive Mobile Robots Using Lagrange and Newton-Euler
Methodologies: A Unified Framework,” Advances in Robotics & Automa-
tion 2, no. 2 (2013): 1–7.

72. M. Diehl, H. G. Bock, and J. P. Schlöder, “A Real-Time Iteration
Scheme for Nonlinear Optimization in Optimal Feedback Control,”
SIAM Journal on Control and Optimization 43, no. 5 (2005): 1714–1736,
https://doi.org/10.1137/S0363012902400713.

845

 10991514, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3234 by A

lbert-L
udw

igs-U
niversität Freiburg, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.7371687
https://doi.org/10.5281/zenodo.7371687
https://www.doi.org/10.5281/zenodo.7371687
https://doi.org/10.5281/zenodo.13794857
https://doi.org/10.5281/zenodo.13794857
https://doi.org/10.5281/zenodo.13794857
https://doi.org/10.1137/S0363012902400713
https://doi.org/10.1137/S0363012902400713

	Multi-Phase Optimal Control Problems for Efficient Nonlinear Model Predictive Control With acados
	ABSTRACT
	1 | Introduction
	1.1 | Outline & Notation

	2 | Multi-Phase Optimal Control Problem (MOCP) Formulations
	2.1 | Continuous-Time MOCP
	2.2 | Multi-Phase Multiple Shooting Discretization

	3 | MOCP Formulations For Model Predictive Control
	3.1 | Continuous-Time Optimal Control Problem, Model Predictive Control and Cost-To-Go
	3.2 | Models of Different Fidelity
	3.3 | Piecewise Polynomial Control Parameterization
	3.4 | Cost-To-Go Approximation via Closed-Loop Costing
	3.4.1 | Practical Treatment of Constraints With Closed-Loop Costing
	3.4.2 | Squashed Closed-Loop Costing

	3.5 | Partial Tightening
	3.6 | Summary

	4 | Efficient Implementation in acados
	4.1 | Treating Transition Stages
	4.2 | Multi-Phase Multiple Shooting Formulation in acados
	4.3 | Tutorial Example of a Multi-Phase OCP

	5 | Numerical Experiments
	5.1 | Inverted Pendulum on Cart Test Problem
	5.1.1 | Controller Variants
	5.1.2 | Discussion

	5.2 | Differential Drive Robot With Actuator Model and Economic Cost
	5.2.1 | Modeling
	5.2.2 | OCP Formulation
	5.2.3 | Algorithm Variants: Real-Time Iterations
	5.2.4 | Comparing Controller Variants

	5.3 | Partial Tightening

	6 | Conclusion
	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	References

