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ABSTRACT

Linear model predictive control (MPC) can be currently deployed at outstanding speeds, thanks to
recent progress in algorithms for solving online the underlying structured quadratic programs. In con-
trast, nonlinear MPC (NMPC) requires the deployment of more elaborate algorithms, which require
longer computation times than linear MPC. Nonetheless, computational speeds for NMPC compa-
rable to those of MPC are now regularly reported, provided that the adequate algorithms are used.
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In this paper, we aim at clarifying the similarities and differences between linear MPC and NMPC. In
particular, we focus our analysis on NMPC based on the real-time iteration (RTI) scheme, as this tech-
nique has been successfully tested and, in some applications, requires computational times that are
only marginally larger than linear MPC. The goal of the paper is to promote the understanding of

RTI-based NMPC within the linear MPC community.

1. Introduction

Linear model predictive control (MPC) is an advanced
control technique able to deal with multiple input mul-
tiple output constrained linear systems (Mayne, 2014;
Rawlings & Mayne, 2009). Recent algorithmic develop-
ments have significantly sped up computational times,
allowing for the deployment of MPC at outstand-
ing speeds (Domahidi, Zgraggen, Zeilinger, Morari, &
Jones, 2012; Ferreau, Kirches, Potschka, Bock, & Diehl,
2014; Frasch, Sager, & Diehl, 2015; Frison, Sorensen,
Dammann, & Jorgensen, 2014; Patrinos & Bemporad,
2014).

Nonlinear MPC (NMPC) is an effective way of tack-
ling problems with nonlinear constraints and dynam-
ics. Although not as widely used as linear MPC, NMPC
has a long history of deployment in the process indus-
try (Allgéwer, Nagy, & Findeisen, 2002), where the rela-
tively slow systems at hand leave room for computation-
intensive control algorithms. However, thanks to progress
in algorithms for optimal control and embedded control
platforms, NMPC is getting more and more considered
also for fast applications (Albin, Ritter, Abel, Quirynen, &
Diehl, 2015; Gros, Quirynen, & Diehl, 2012, 2014; Gros,
Vukov, & Diehl, 2013; Gros, Zanon, & Diehl, 2013; Gros,
Zanon, Vukov, & Diehl, 2012; Houska, Ferreau, & Diehl,
2011b; Vukov, Domahidi, Ferreau, Morari, & Diehl, 2013;
Vukov et al., 2012; Zanon, Gros, & Diehl, 2013; Zanon,
Horn, Gros, & Diehl, 2014).

One of the most successful and largely used
approaches to fast NMPC is arguably based on the
real-time iteration (RTI) (Diehl, Bock, & Schldder,
2005) and its predecessors (Li & Biegler, 1989; Ohtsuka,
2004). The RTI approach exploits the fact that NMPC
requires to successively solve optimal control problems
(OCPs) that are closely related, in the sense that at every
time instant the solution of the OCP at hand is very
similar to the solution obtained at the previous time
instant. RTI achieves the convergence of the NMPC
solution ‘on-the-fly] i.e. conjointly to the evolution of
the system dynamics. The reliability of this strategy
hinges on the fast contraction rate of Newton-type opti-
misation techniques. It has been formally studied in
Diehl, Findeisen, Allgower, Bock, and Schléder (2005),
and has been verified in many deployments of the RTI
approach.

In this paper, we aim at bridging the gap between linear
and RTI-based nonlinear MPC by highlighting the sim-
ilarities and differences of the two approaches. Because
the NMPC problem is solved approximately by solving
only one properly formulated QP per sampling instant,
RTT can be seen as a special case of linear time-varying
MPC with two important features:

(1) the linearisation of the system dynamics occurs
online and is done at the current state and control
prediction rather than on the reference trajectory;
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(2) the system dynamics are simulated using a numer-
ical integration scheme.

A theoretical justification for this approach has been
provided in Diehl, Bock, & Schloder (2005). An intuitive
justification can instead be provided by the so-called real-
time dilemma, which we describe in Section 3.3.

We remark that the connection between linear and
nonlinear MPC has already been highlighted from an
algorithmic point of view in Bock, Diehl, Kostina, and
Schléder (2007) and Bock et al. (2005). Highlighting the
similarity between linear and nonlinear MPC was, how-
ever, not the main focus of these contributions, where
the emphasis was rather on approximate RTT implemen-
tations and efficient computations. In this paper, we aim
instead at clarifying the connection between the two tech-
niques from the point of view of control engineers, based
on a more tutorial and less algorithm-focused approach.

The paper is organised as follows. Sections 2 and 3 for-
mulate, respectively, the linear and nonlinear MPC prob-
lems. Section 4 describes in detail the RTT-based NMPC
approach, establishing its connection to linear MPC in
Section 4.3. Section 5 describes numerical methods to
obtain the discrete-time nonlinear prediction model from
a continuous-time description of the system. A discussion
on how to reliably implement RTI-based NMPC is given
in Section 6. Conclusions are drawn in Section 7.

2. Linear model predictive control (MPC)

At every discrete-time instant i, for a given state estimate
x; of the system, the control policy u; is defined by solving
the following optimal control problem:

QPMPC (Jel‘, x;’ef, u?ef) =

-
arg min Y 5o % Bk |y | A (1a)
Axau R0 2 A SN

s. t. Axi’o = XAi — Xff()f (lb)

AXi gy = Aj kAXk + Bi kAui g + 1k,
k=0,...,N—1, (1¢)

CixAxix + DixAujg +hix <0,k=0,...,N—1,
(1d)

where x/f, 4 are the reference trajectories provided
at time i, constraint (1b) enforces that the prediction
starts at the current state, constraint (1c) enforces the
system dynamics and constraint (1d) enforces path con-

straints which include, e.g. actuator limitations, obstacle

avoidance, etc. We use here and in the following the nota-
tion ™ with k = 0, ..., N to denote the kth element of

the reference trajectory xf provided at time i. The same

applies to uf with k = 0, ..., N — 1. The trajectories
Ax,- = (Ax,-,o, ey AXLN), Au,‘ = (Aui’o, ey Au,-,N,l)
are the deviation of the system trajectories x;, u; predicted
at time i from the reference trajectories xl?ef, uref provided
at time 7, i.e.

Axi = Xk —xfekf, k=0,...,N,

Aujp=uwx—u, k=0,....N—1 (2

At every discrete-time instant i, the input applied to the
system is given by

MPC ref
u; =u;,+ Au; o,

(Ax;, Au;) = QPyppc (%10 &1, ). (3)
Matrices W; j are symmetric positive semidefinite. For
the sake of brevity, we omit the terminal cost in this sec-
tion. Formulation (1) is a structured quadratic program
(QP). In case matrices A; k, B; x are constant, we refer to
linear MPC based on a linear time-invariant (LTI) model,
otherwise to linear time-varying (LTV) MPC. If the ref-
erence trajectories x', 4! satisfy the dynamics of the
prediction model, the affine terms r; ; are zero in the
dynamic constraints (1c). Otherwise, the affine term r;

is non-zero and given by the offset terms r; , = A;, kxl?ekf +

o ref _ ref
Bikti = Xijeqr-

Linear MPC is often deployed to control nonlinear
dynamical systems. Consider a time-invariant discrete

nonlinear system:
xt = f(x, u), (4)
with the inequality constraints
h(x,u) <0. (5)

In order to deploy linear MPC on (4) and (5), one needs
to prepare the QP problem (1) (off-line, whenever possi-
ble), where the matrices A; k, B; k> Ci, k, D;, x stem from the
linearisation of the dynamics and of the inequality con-

straints at the reference trajectory x'', u!*l, i.e.
9 f (x, u) 9f(x, u)
Ai,k = . B Bi,k = ’
0% st Ot
(6a)
oh(x, u) oh(x, u)
Ci,k = 3— s Di,k = 3— P
o b o g
(6b)



rok = f (4G uE) = xS B =R (65 i) -
(6¢c)

The dynamic constraints (1c) and inequality con-
straints (1d) then approximate the nonlinear dynamics
(4) and inequality constraints (5) at the reference trajec-
tories, i.e.

£ ref f
Axj g1 = Aj Axi + B Aui g + f( X U ,rek) X et 1

=ik

(7)
CikAxik + DijAuig+ h (€5, uiS) <0. (8)
~— —
=hi

If the reference trajectory x*f, u™f is feasible for the
system at hand, i.e. it satisfies (4) and (5), then r; = 0 such
that the task of the MPC consists solely in rejecting distur-
bances and the error yielded by the linear model (7). Fea-
sible reference trajectories are typically designed off-line
via, e.g. open-loop optimal control. For a given reference
trajectory computed oft-line, the corresponding lineari-
sation (7) ensues, and can also be computed off-line. If an
infeasible reference trajectory is used, then the term 7;
does not vanish, and triggers a first-order correction in
the QP (1) for the infeasible trajectory.

When a set-point regulation problem is considered, a
fixed reference trajectory is used. In this case, xf, u! are
constant, and satisfy the stationarity condltlon xrekf o=

ref =f (xzr"'kf , rt3f) resulting in r; = 0. At every discrete

t1me instant k, the input applied to the system is given
by (3).

3. Nonlinear MPC (NMPC)

NMPC is sometimes preferred over linear MPC because it
can treat the nonlinear dynamics and constraints directly
and explicitly, as opposed to using linear approximations.
We consider here a generalisation of the linear MPC for-
mulation (1) to nonlinear systems of the form (4):

NLP (%, £, uf*) =

i Wi
N-1 ref 7T ref
arg min l ik T Xik W; ik T Xik
g o g ref ik o g ref
x,u — 2 uix—u X Ui — U,

s. t. Xi0 = XA,', (9b)

= f (xik wik) k=0,...,N—=1, (9)

Xik+1
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h (xik, uix) <0,k=0,...,N—1. (9d)
While we restrict here to a quadratic positive
(semi-)definite stage cost, in the context of nonlin-
ear MPC, more generic costs can be preferable. However,
the use of a non-positive-definite stage cost makes it
hard to ensure closed-loop stability (Rawlings, Angeli, &
Bates, 2012) and additional care might be needed at the
algorithmic level (Quirynen, Houska, et al., 2014). Note
however that, as proven in Zanon, Gros, and Diehl (2014)
and Zanon, Gros, and Diehl (2016), the feedback control
law of any locally stabilising non-positive-definite NMPC
formulation can be approximated up to first order by an
(N)MPC formulation with positive-definite stage cost.
Similarly to Section 2, for the sake of brevity, we omit
the terminal cost in this section. At every time instant i,
Problem (9) provides the NMPC control solutions for sys-
tem (4), given by
NMPC

ul - ul()s

(xi, uj) = NLP (921', X Fef) (10)

i

Problem (9) is a structured nonlinear program (NLP),
which can be solved efliciently using various solu-
tion approaches. We briefly recall next the sequential
quadratic programming (SQP) approach, which itera-
tively solves quadratic approximations of the NLP until
convergence is achieved.

3.1 Sequential quadratic programming (SQP) for
NMPC

In the SQP approach, Problem (9) is sequentially approx-
imated by QPs delivering Newton directions for perform-
ing steps towards the solution starting from the available
guess. The iteration is repeated taking (not necessarily
full) Newton steps until convergence.

Ataguess (x5, u¥"), Problem (9) is approximated

by the QP:
QPrwpc (i, 28, ™, et ull) =
N-1

o iy, 35 [ e | o
(11a)
s.t. Axio=X; — x%ess, (11b)
Axjkr1 = AikAxix + BixAuix + ik, (11c)
CikAxik + DixAujx + hix <0, (11d)

where
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9 f(x,u)
Al’k = dx guess  guess ’
ik Tk
9 f(x,u)
Bi‘k = ou guess  guess (123)
ik Tk
_ 0h(x,u)
Ci’k - dax guess  guess ’
ik Tk
. 0h(x,u)
Dl’k - ou yBuess  guess ’ (12b)

ik Uik

_ guess  guess guess guess  guess
rik=f (xi,k Uik ) — X hik=h ( ey ) )

xguess _ Xrekf
_ i,k i
Jik = Wik |: s uref]

ik ik

(12¢)

and H; i is some approximation for the Hessian of the
Lagrangian in Problem (9). The popular Gauss—Newton
Hessian approximation (Bock, 1983) is given directly by
H; x = W, in this case. The SQP algorithm at time
instant i is detailed in Algorithm 1.

Algorithm 1: SQP for NMPC at discrete time i

Input: current state estimate x;, reference trajectory
£ f guess  guess
(xf¢, u*) and initial guess (x7, u; )

while Not converged do

1 | Evaluate r;x, h; ) and the sensitivities

Aik, Bix, Cix, Djk, Hix, Jix using (12)

2 | Construct and solve

QPxypc (3?,», D 7 ufef) asin (11) to

get the Newton direction (Ax;, Au;)

3 | Compute step size o € ]0, 1] to guarantee

descent (Nocedal & Wright, 2006)

4 | Update (x¥"°", u?"®") with the Newton step:

(x;guess’ u;guess) - (nguess, u?uess) +a(Axi, Auy)
(13)

end

return NMPC solution (x;, ;) = (x5, u¥")

The NMPC solution is then obtained from the SQP
Algorithm 1 as follows:
H?IMPC = Ui,
(xi, w;) = SQP (%, 28", uf*™, i wh), (14)
S, U . u®), we denote
the solution of NLP (%;, x/, u*') obtained by apply-

1 l

ing the SQP Algorithm 1 starting from the initial guess
(xguess guess)

We aim here at stressing the similitudes and differences
between computing the control solution using the linear
MPC approach (3) and using the NMPC approach (14).

where by SQP (-xAi, Buess uguess’ xref uref),

10 8®° *e @ ? Iiirle(?rll';ﬂggp tep| |
st (fu ste
- @ 4 O Converged SQPp
% 5 1
o oB0qg
oo o P
0 ‘ "ooflessse s s |
0 5 10 15 20
g T T T 1
ol ey A
x 4
0 @angugsaeeeee~
0 5 10 15 20
0.2
0 4
5-0.2 1
0'4 —E&—Linear MPC

()

e . ——1st (full) SQP step
0 5 10 —&—Converged SQP |20

time

Figure 1. Comparison between the open-loop predicted trajec-

tories obtained via linear MPC (circles), via performing a single

iteration of Algorithm 1 using a full step (@ = 1) and " =

ref guess

X, u; = {Ef (crosses), and via running Algorithm 1 to full

convergence (squares).

Both (1) with (6) and (11)-(12) form a QP approxima-
tion of the NMPC problem (9). This statement is true by
construction for QPxpmpc. By inspection, it is also easy to
verify that QPypc in (1) is an approximation of (9) if the
reference trajectory (xf, ui") is used as the linearisa-
tion point and a Gauss—-Newton Hessian approximation
is used. This similarity can be formally construed via the
following Lemma:

Lemma 3.1: If a Gauss—-Newton Hessian approximation
is used, i.e. H; = Wi, then the following equivalence
holds:

ref ref  ref ref )

QPNMPC ()/C\'i, xi B ui ) xi . ui = QPMPC (321, :’ef’ refol.S)

Proof: By inspection, the linearisation (12) taken at
x%uess = lre,f , uﬁess = urekf is identical to the linearisation
(6) used in QPypc in (1). Additionally, J; x evaluated at
xguess = lre,f , ui‘;fss = ur“'kf is zero. Consequently, the solu-
t10n of QPnmpc given by (1) is identical to the solution of

QPxmpc given by (11). [ |

If the SQP Algorithm 1 is fed with the reference trajec-
tory as an initial guess, i.e. is run as

x;, u; = SQP ()?i, xfef, ufef, xfef, ufef) . (16)

Then, the first Newton direction (Ax;, Au;) computed

in Algorithm 1, line 2, is identical to the solution of the

linear MPC problem computed via (3). This observation
is illustrated in Figure 1 for the simple problem:



N N—1
min - laiels +20 ) luidl;  (172)
k=0 k=0
s.t. Xio = XA,‘, (17b)
sin (|01 |x;x
Xik+1 = 0.9x;  + |: u([k n 113 i ):| , (17¢)
i ik
luixl <05, k=0,...,N—1, (17d)

with state x; ;. € R?, input u;; € R,and N = 19. The opti-
mal trajectories obtained via linear MPC (1) are reported
using circles (o). The trajectories obtained from perform-
ing a single iteration of Algorithm 1, with a full step (o =
1) and 28" = ¥, 4" = 4l as the initial guess are
displayed using plus signs (+). The trajectories resulting
from running Algorithm 1 to full convergence are dis-

played using squares.

3.2 Warm-started SQP for NMPC

Algorithm 1 requires the initial guess x7*°, u$'“" as an

input. Selecting an adequate initial guess is crucial for
obtaining a fast and reliable convergence of the SQP iter-
ations. First, a good initial guess allows for avoiding the
SQP algorithm to exit with an infeasible solution; second,
it allows for taking full Newton steps (o« = 1) in the SQP
algorithm, hence allowing for a fast convergence rate.

In the previous section, we showed that when the ref-
erence trajectory is provided as an initial guess, the first
SQP step, if full, provides the same solution as linear
MPC. However, the reference trajectory is sometimes a
rather poor initial guess for the SQP strategy, e.g. when
the actual system trajectory is not in the neighbourhood
of the reference.

In the specific context of SQP for NMPC, a very good
initial guess for the discrete time instant i can be con-
structed, provided that a good solution has been obtained
at the previous time instant i — 1. In such a case, the fol-
lowing shifting procedure can be used. Shifting constructs
aninitial guessx% , u?"“” for time i using the solution:

(it 1) = SQP (Bp, A5, W8, e ),
(18)
obtained for time i — 1. Shifting assumes that the sys-
tem evolution follows closely the predicted trajectory, i.e.
it assumes x; ~ x;_; 1. The shifting procedure then reads
as follows:

guess
Xk = XicLk+1, k=0,... (19a)

(19b)

guess _
ui,k = Uj—1,k+1> k—O,
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guess guess guess
XiN = (xi,Nfl’ ”i,Nfl) .

(19¢)

It shall be observed that if the solution (x;_;, ;) is
feasible, then the shifted solution is feasible with respect
to the dynamic constraints. Additionally, if the guess for
the time instant i obtained via the shifting procedure is
sufficiently close to the exact solution of the NMPC prob-
lem (9), then the following statements hold (Diehl et al.,
2002):

e full Newton steps are selected in the SQP iterations,
i.e. = 1atline 3 of Algorithm 1;

e the first iteration of Algorithm 1 provides already an
excellent approximation of the exact solution to the
NMPC problem (9).

The guess for the last control input ulg’lﬁs_sl can be

selected via different approaches. Whenever available, a
control law « (x) which locally stabilises the system while
enforcing the path constraints can be used to compute
ubn" =k (xF5")). In the absence of unmodelled per-
turbations, this choice guarantees recursive feasibility of
the MPC scheme, i.e. feasibility not only with respect to
the system dynamics, but also with respect to the path
constraints. Under some mild assumptions, it, moreover,
ensures a decrease in the MPC cost, therefore enforcing
stability of the closed-loop system (Rawlings & Mayne,
2009). In practice, simpler approaches are often used. The
simplest one is to create a copy of the control input at stage
N—2,ie.
U?fﬁs_sl = uﬁlﬁs_sz = Uji_1 N—1- (20)
The shifting procedure is illustrated in Figure 2(a,b).
It can be seen how, for the unperturbed case, shifting
provides a guess which is extremely close to the solu-
tion. In the perturbed case, a correction of the guess is
necessary but shifting is, nevertheless, close to the solu-
tion. These observations provide an important intuitive
justification of the RTT approach, described in Section 4.
Before presenting it in detail, we first review the real-time
dilemma.

3.3 Thereal-time dilemma

Upon obtaining a new state estimate x;, the SQP proce-
dure can be started. The real-time dilemma stems from
the fact that while the SQP iterations are performed,
the physical system evolves, and the information used to
compute the state estimate X; becomes outdated.

Clearly, this problem can be partially addressed by
using a prediction of what the state of the system will
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O Solution at time i-1
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<+ Solution at time i
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—&—Solution at time i-1u
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——Solution at time iu
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time

(b)

Figure 2. lllustration of the shifting procedure. (a) In the absence of disturbance and model error, the guess obtained via shifting the
previous solution is typically an excellent approximation of the current solution. In this graph, the guess for time j and the corresponding
solution are indistinguishable. (b) In the presence of disturbances, x; diverges significantly from the predicted one x; _, ;, and therefore

the guess x7"** obtained via shifting needs a correction.

be at the time the SQP algorithm will be completed,
as opposed to directly using the current state estimate.
However, even when using such a prediction approach,
since updating the control policy requires the completion
of the SQP algorithm, the SQP procedure introduces a
potentially large delay between gathering measurements
from the physical system and delivering the correspond-
ing required control action. It follows that even if the
SQP computational time is accounted for via a state pre-
diction, the SQP algorithm is nonetheless based on out-
dated system information. We illustrate this key issue in
Figure 3(a).

The key idea of the RTT procedure detailed in Section
4, and first presented in Diehl et al. (2002), is to consis-
tently incorporate the latest information on the system
evolution in the iterations computing the NMPC solu-
tions. The real-time dilemma then consists in choosing
between applying an exact solution computed using out-
dated information versus applying an approximate solu-
tion computed using the most up-to-date information.

Summary of the section

e When SQP is deployed on NMPC, and the reference
trajectory is used as an initial guess, the first step
of a full-step Gauss—Newton SQP delivers the same
control solution as linear MPC ( Lemma 3.1).

e In the context of NMPC, the SQP iteration can
be efficiently warm-started by shifting the solution

obtained at the previous time instant (Section 3.2).
In the presence of reasonably small disturbances, the
SQP algorithm then needs only a couple of full New-
ton steps to reach full convergence.

e When running SQP to full convergence, only the
first iteration is using an up-to-date estimate of the
system state x;. Subsequent iterations are still per-
formed based on X;, while the system state evolves,
making x; outdated (Section 3.3).

4. The real-time iteration (RTI)

In this section, we recall the RTI approach first intro-
duced in Diehl et al. (2002). It is important to remark
that several approaches for real-time NMPC have been
proposed in the literature. The Newton-type controller (Li
& Biegler, 1989) shares many similarities with the RTI
approach, in particular the fact that it performs only one
full Newton step per sampling time. The main difference
is that it does not use the generalised tangential predic-
tor of the initial value embedding Diehl et al. (2009) and
it is based on a sequential discretisation of the system
dynamics. The Continuation/GMRES Method (Ohtsuka,
2004) is also based on taking a single full Newton step per
sampling instant. However, rather than on SQP, it is
based on an interior-point-like approach where the bar-
rier parameter is fixed at a prescribed value and the
barrier function is not self-concordant. Convergence is
improved by making use of a tangential predictor. The
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(a) (b)

Figure 3. lllustration of the SQP and RTI timelines. Note that the sampling time for the two approaches is different, so that l‘,SQP > R,
(a) SQP: a model-based prediction of the state estimate X; can be obtained at time j — 1in order to start the next SQP algorithm after the
latest control policy uMPC is delivered. The prediction can be used to account for the physical time elapsing while the SQP algorithm is
running. However, subsequent measurements of the system evolution occurring as the SQP algorithm is running are not incorporated
in the SQP iteration, and are therefore ignored. (b) RTI: every time a state estimate X; is obtained from the measurements, the feedback

phase of the RTI step is triggered. Once the feedback phase is completed, a new preparation phase is started. RTI takes successive full

Newton steps, always using the latest information available on the system.

advanced step controller (Zavala & Biegler, 2009) is based
on an interior point approach and consists in solving the
NLP to convergence at each iterate. However, (a) the com-
putational delay is accommodated for by using a predic-
tion of the future initial state and (b) once the actual
state is known, the solution is corrected using a tan-
gential predictor, similarly to the Continuation/GMRES
method. In this paper, we decided to further restrict our
attention to the RTI approach because of the stronger
similarities to linear MPC, since both are based on
the solution of a QP at each sampling instant and can
therefore account for active set changes (Diehl et al,
2009).

The RTT approach consists in performing the Newton
steps always using the latest information on the system
evolution. For the sake of clarity, we first introduce a sim-
plified version of the RTI algorithm (Section 4.1), and
then the complete RTI algorithm (Section 4.2). Finally, we
establish a comparison between RTI-based NMPC and
linear MPC that will reveal a strong connection between
the two approaches (Section 4.3).

4.1 Single full Newton step in SQP

To introduce the RTT algorithm, it is useful to first con-
sider Algorithm 2, which is a simplified version of Algo-
rithm 1 with the addition of a shifting procedure for con-
structing the initial guess. Here, at every discrete time
instant i, the NMPC solution is updated using a single
full Newton step, instead of performing the SQP algo-
rithm to full convergence. The Newton step is taken on

the NMPC solution obtained at the previous time i — 1,
after the shifting procedure (19) is applied.

Algorithm 2: Newton iteration for NMPC at discrete
time §

Input: state estimate x;, reference trajectory
(xrf, urf) and previous NMPC solution
(xi-1, Ui—1)
1 Shift (x;_1, u;_;) according to (19) to construct
guess  guess
(xj ’ ui )
2 Evaluate r; &, h; and the sensitivities
€ss ess .
Ai,ka Bi,kv Ci,ka Di,ka Hi,ka ]i,k at (xi';u B u?u )uSIHg
(12)
3 Construct and solve
QPnwpe (%5, 25, 6™, &, ui) asin (11) to

get (Ax;, Au;)
4 Apply the full Newton step

(i wi) < (7, uf'™) + (Axi, Awy)

return NMPC solution (x;, u;)

The efficiency of Algorithm 2 at providing a good
approximation of the fully converged NMPC solution
hinges on the assumption that the shifted NMPC solution
obtained at time i — 1 is a good initial guess for the NMPC
solution at time i. Under this assumption, a full New-
ton step can be taken (@ = 1), and provides an excellent
approximation of the fully converged NMPC solution. An
illustration of this fact is given in Figure 4, where a single
full Newton step strategy is compared to a fully converged
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Figure 4. lllustration of the single full Newton step approach,
including state noise in the closed-loop simulation.

SQP method. Algorithm 2 computes the RTI feedback
control policy. However, as we will present in the next sec-
tion, the genuine RTT algorithm divides the computations
in two phases so as to achieve shorter feedback laten-
cies. It is also interesting to note that Algorithm 2 con-
structs the QP using the shifted solution guess directly,
even though the initial state might be different from the
state estimate X; in this trajectory. This concept is typically
referred to as initial value embedding and it allows for a
generalised tangential predictor from one time step to the
next, as discussed in more detail in Diehl et al. (2009).

4.2 The RTI algorithm: preparation-feedback split

The RTT algorithm is an improved version of Algorithm 2,
where its feedback time is reduced. The improvement
is using the fact that steps 1 and 2 of Algorithm 2 do
not require the knowledge of the state estimate x;, and
can therefore be performed before the state estimate x;
becomes available.

The RTT scheme (see Algorithm 3) thus proposes to
split the operation between:

® a preparation phase, performing the computations
involved in the steps 1 and 2 of Algorithm 2 prior
to obtaining the new state estimate x;.

e a feedback phase, performing the computations
involved in steps 3 and 4 upon obtaining the latest
state estimate ;.

Note that usually the Gauss-Newton Hessian approx-
imation (Bock, 1983), i.e. H; x = W, y, is used because

Algorithm 3: RTI for NMPC at discrete time i

Preparation phase performed over the time interval
[tio1, til
Input: previous NMPC solution (x;_;, #;—1),

reference (x|, u'f|

1 Shift (x;_1, u;_1) according to (19) to construct
(xi'guess’ uiguESS)

2 Evaluate r; ¢, h; and the sensitivities
Aik, Bik, Cik, Dig, Hik, Jixat (63, u¥™) using
(12)

3 Form QP (11) omitting X;, prepare all possible
computations (e.g. condensing, matrix
factorisations)

return QP (11)

Feedback phase performed at time ¢; upon availability
of )2','
Input: x;, prepared QP (11)

4 Compute (Ax;, Au;) by introducing x; in QP (11)
and solving it

5 Apply the full Newton step

(i, u;) < (5, uB") + (Ax;, Auy)

i

return NMPC solution (x;, u;)

(1) it does not require the computation of second-
order derivatives and (2) it always delivers a positive
(semi)definite Hessian approximation. For a detailed
overview on the RTT scheme, including a proof of nomi-
nal stability, we refer to Diehl (2001a, b) and Diehl, Find-
eisen, et al. (2005).

It is important to remark that:

e The delay introduced by the feedback time can be
accommodated as in linear MPC, by including a cor-
responding prediction in the state estimate.

e The overall sampling time #; — t;_; that can be
achieved by the RTI scheme is limited by the total
time spent in solving both the feedback phase and
the preparation phase.

e The time required to perform the feedback phase is
practically the same as the time required to solve the
linear MPC problem.

e Part of the computations related to the QP solution
can often be moved to the preparation phase, e.g.
using a technique called condensing (Bock, 1983;
Vukov et al., 2013).

e The sampling time that can be achieved via RTI-
based NMPC increases from standard linear MPC
by the time required for the preparation phase.



e Itis typically desirable that the feedback time is only
a fraction of the overall sampling time. Because the
preparation phase can often fit in the time after the
feedback phase and before the next state estimate is
available, RTI NMPC can in many cases be applied
at the same sampling frequency of linear MPC based
on a model pre-linearised off-line.

An illustration of the RTI timeline is displayed in
Figure 3(b).

4.3 Extending linear MPC to NMPC via the RTI

We want to first establish a clear connection between lin-
ear MPC and the RTT approach described in Algorithm
3, and then clarify how linear MPC can be extended to
NMPC. First, it is useful to observe the following:

Lemma 4.1: When a Gauss—Newton Hessian approxima-
tion is used, i.e. Hi p = Wy and x;_; = xl?ef, U = u?ef
are fed as inputs to the preparation and feedback phases
of Algorithm 3, then RTI delivers the same solutions as the

linear MPC scheme (1)-(3).

Proof: Follows from Lemma 3.1. [ |

As a consequence of Lemma 4.1, linear MPC can be
regarded as an RTI scheme where the preparation phase
is performed only once, usually off-line, based on the ref-
erence trajectory. Linear MPC then runs only the feed-
back phase of Algorithm 3. This observation entails thata
linear MPC scheme can be easily extended to an approxi-
mate NMPC scheme via the RTT approach. The extension
requires that one performs the preparation phase online,
i.e. that a new linearisation of the NMPC problem is per-
formed at every discrete time instant, based on a shift-
ing of the previous NMPC solution. Note that algorithms
which could be classified as intermediate between linear
MPC and RTI-based NMPC have been proposed in Bock
et al. (2005, 2007).

The difference between linear MPC, RTT NMPC and
fully converged NMPC is illustrated in Figures 5, 6(a)
and 6(b). Figure 5 shows the open-loop predictions at
time instant i = 2 in the presence of state noise. It can
be seen that, while the RTT prediction is close to the fully
converged SQP solution, the linear MPC scheme delivers
a different solution. Figure 6(a) displays the closed-loop
trajectory in the absence of state noise. Again, RTT and
fully converged SQP are indistinguishable, while linear
MPC difters significantly. Figure 6(b) proposes the same
simulation with the addition of state disturbances. The
same behaviour is observed also in this case.
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Figure 5. lllustration of the RTI solution vs. the linear MPC solution
at the discrete time instant i = 2, with state disturbances.

4.4 Global vs. local optimality

Linear MPC can be preferred because the convexity of the
underlying optimisation problem guarantees one to com-
pute its global solution at every time instant. In contrast,
the nonconvexity of the optimisation problem underly-
ing NMPC problems prevents such guarantees to be pro-
vided. We will argue here, however, that under some
assumptions, the solution provided by the RTI scheme
will follow the global solution of the NMPC problem. The
required assumptions are the following ones:

(1) the RTI scheme is warm-started at the global opti-
mum,

(2) the sampling frequency is sufficiently high,

(3) there are no jumps in the reference and the state,

(4) the OCP underlying the NMPC problem
fulfils  second-order sufficient conditions
(SOSC) (Nocedal & Wright, 2006) for every
feasible initial condition,

(5) the global optimum depends continuously on the
initial state and reference.

A formal proof of this statement is rather involved
and can be found in Diehl (2001) for local optimality.
Assumption 1 additionally ensures that the local opti-
mum followed by RTT is also the global one. In order to
give an intuitive understanding, we remark that Assump-
tion 4 guarantees that the solution manifold is smooth
and has no bifurcation. This entails that the RTT will
keep track of the global solution manifold as long as it
starts on that manifold and the initial conditions x; are
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Figure 6. lllustration of the RTI solution vs. the linear MPC solution in closed-loop simulations, with and without state disturbances. (a)

No state disturbances. (b) State disturbances of covariance 0.1.

sufficiently close to the predicted ones. The latter is guar-
anteed by Assumptions 1-3. Faster sampling results in a
larger set of disturbances for which RTT tracks the global
solution manifold. Assumption 5 ensures that the solu-
tion manifold is continuous in time. In practice, the warm
starting can be performed by setting the system at a ref-
erence steady state and initialising the RTT algorithm
accordingly. Consequently, RTT is initialised at the global
optimum.

In Section 4.3, we established the connection between
RTT and linear MPC. We remark that, when controlling
a nonlinear system, linear MPC can be seen as a specific
case of RTI initialised at the reference rather than at the
current state and control prediction. In this framework, it
becomes clear that the global optimum achieved by lin-
ear MPC is actually a local approximation of the NMPC
solution in a neighbourhood of the reference. Therefore,
the linear MPC solution is not the global optimum for the
nonlinear problem.

Summary of the section:

* NMPC based on RTI performs a single full New-
ton step at every discrete time instant, relying on the
fast convergence of Newton-type optimisation. This

approach allows for performing the Newton steps
using the latest information on the system evolution.

e RTI can be divided in a preparation phase and
a feedback phase, minimising the delay between
obtaining a new state estimate and updating the con-
trol policy.

e Linear MPC can be regarded as an RTI scheme
where the preparation phase is performed only once,
off-line. In this context, the extension of linear MPC
to RTI-based NMPC then simply requires that the
preparation phase is repeatedly performed online.

5. MPC and NMPC for continuous-time systems

The preparation phase of Algorithm 3 requires to com-
pute online the evaluation of the discretised system
dynamics (4) with the associated sensitivities, namely
Vfi(x, u). In the case the system is readily described as
a discrete dynamic system, computing flx, u) and Vf{x,
u) is straightforward. However, in many applications, the
system dynamics are available in a continuous form, typ-
ically as an ordinary differential equation (ODE) of the
form

s(t) = F (s(t), v(1)), 1)



where we use s(t) and v(t) to denote the continuous-time
states and controls and, thus, distinguish them from their
discrete-time counterparts.

In this section, we will present a family of numerical
methods for simulation and sensitivity generation. It is
important to stress that the well-known matrix exponen-
tial can also be considered as such a method for numer-
ical simulation. However, depending on the system con-
sidered, other methods might be more accurate and less
computationally intensive. We also want to stress the fact
that several integration steps can be taken inside each
control interval in order to increase the accuracy of the
simulation. We will also sketch how the sensitivities can
be propagated in case multiple integration steps are taken.

For the sake of simplicity, we consider here an explicit
ODE having time-invariant dynamics, though the follow-
ing developments can be easily extended to the time-
varying case and to implicit ODE or differential alge-
braic equation (DAE) systems. We consider a piecewise
constant parametrisation of the control inputs v(f) with
parameters uo, ..., Uy 1, such that v(t) = ug, t € [t,
tx + 1[- Note that, in principle, the restriction to piecewise
constant control parameterisations is not required as long
as local basis functions are used to maintain the structure
of the resulting OCP. Also note that piecewise constant
controls are most commonly used in practice for the ease
of implementation using zero-order holders. The follow-
ing notation will be used further to refer to the respective
Jacobian evaluations of the ODE in (21):

dF (s,
Fs(x’ M) = ﬂ )
85 S=X,0=U
dF (s,
F,(x,u) = 9F(sv) (22)
80 S=X,0=U

5.1 First linearise then discretise

In the context of linear MPC, it is common to compute
the linearisation in (6) by directly linearising the con-
tinuous time formulation using the reference trajectory.
Subsequently, a discrete time description can be obtained
via the matrix exponential. This means that for any time
instant 7 in the reference trajectory, matrices Ay, Bx are
given by

F (x?ekf , et ) T
A = e VTR

T;
s F, {ef’ ref T,—
Bo= [ SRR (ol ) ar @
0

Note that T is the chosen physical sampling time satisfy-
ing Ty =1t —t;i_,ie Ty = % in case of an equidistant

grid over the control horizon with length T.
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For a fully predefined reference, (23) can be performed
off-line, prior to deploying the linear MPC scheme such
as performed, e.g. in Bonis, Xie, and Theodoropou-
los (2012) and Di Cairano, Yanakiev, Bemporad, Kol-
manovsky, and Hrovat (2012). If the reference is time-
invariant and feasible, Equation (23) provides an exact
linearisation of the continuous dynamics as long as the
system resides in this steady state. In all other cases, the
linearisation provided by (23) becomes inexact. There-
fore, it can be preferable to first discretise the system using
numerical integration. In the following, we will illustrate
some integration schemes which allow for highly accurate
discretisations for any chosen sampling time.

5.2 Firstdiscretise then linearise

The exact discrete dynamics (4) corresponding to the sys-
tem in (21) are formally given by

with

T € [t tit1]

f G, ug) =5 (tigr) s
{s’(r) =F (s(1), ug),

S () = x5, 24)

where Tg = tx,1 — t and the piecewise constant con-
trol parameterisation has been used. In case T is not
negligible compared to the time constant of the nonlin-
ear dynamics of the system, it is not advisable to use
the matrix exponential (23) to obtain the discrete lin-
earisation (11c). A more generally applicable approach is
to numerically approximate the discrete dynamics from
(24), in order to obtain a linearisation with a specific
desired accuracy. This requires the numerical simulation
of a nonlinear system of differential equations (see Hairer,
Norsett, and Wanner (1993) and Hairer, Norsett, and
Wanner (1996) for a detailed overview).

For the purpose of this article, let us restrict the discus-
sion to the class of one-step methods, an important family
which includes Runge—Kutta (RK) methods. Unlike mul-
tistep schemes, these one-step methods have the advan-
tage that they do not require any start-up procedure
which makes them rather suitable for short simulation
times. In addition, we will consider the integration over
one shooting interval using a fixed step size T; resulting
in Ng = % integration steps per shooting interval. It is
importantl to note that these choices are made only for
the sake of simplicity, while in general any integration
method could be used, e.g. a multistep method and/or an
adaptive step size implementation.

5.2.1 Explicit Euler

Let us start with the simplest but also typically not the
most efficient integration scheme, known as the Euler
method and detailed in Algorithm 4. This first-order
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method provides us with the following approximation of
the exact discrete dynamics:

I f (xXk, r) — feaer Xk, ) || = O (Th) , (25)

which corresponds to the global or transported error
(Hairer et al., 1993).

The resulting discrete-time nonlinear system needs
to be linearised to obtain (12a), which can be per-
formed efficiently using the principle of internal numer-
ical differentiation (Bock, 1983), which computes the
needed sensitivities Ay, Bx by differentiating the integra-
tion method itself. The required derivatives can be eval-
uated using the techniques of algorithmic differentiation
(AD) (Griewank & Walther, 2008) and propagated for-
ward through the integration algorithm using the chain
rule as detailed in Algorithm 4, where we denote the iden-
tity matrix by I. Note that while the numerical integration
scheme is approximating the real system dynamics up to
the integrator order, the sensitivities computed via the
approach described here are the exact derivatives of the
integration scheme, up to machine precision. Hence, the
approach departs from computing the sensitivities using,
e.g. variational approaches, where both the integration
of the system dynamics and the sensitivities are inex-
act (Caracotsios & Stewart, 1985). For more information
on the application of AD to explicit integration schemes
and an extension to adjoint sensitivity analysis, we refer
the reader to Walther (2006).

Algorithm 4: Ng steps explicit Euler with forward
AD
Input: x;, uy

1x+=xk, AkZI, BkZ@
2 forn=1:Nsdo
3 xt <« x++TiF(x+,uk)

4 [Ak Bk] <«
(1T B ) [A¢ B + [0 B ()]
end
return x*, Ay, By

5.2.2 Alternative explicit schemes

Even though the explicit Euler scheme is very simple, it
typically does not yield the most efficient approach to
obtain the desired accuracy because it is only of order one.
Indeed, many more explicit integration methods have
been developed and can be found (e.g. in Hairer et al,,
1993). A popular example is the four-stage RK method of
order 4, detailed in Algorithm 5, together with its forward
sensitivity propagation. Unlike explicit Euler, this scheme

results in a global error which satisfies

Il f Gk i) — frxa 5k, ) | = O (T3, (26)

where T; is again the chosen step size. Similar to our
previous discussion on Euler, the computed sensitivities
are the exact derivatives Ay = w, B, = df“%u’;k’”k)
and can be interpreted as applying this RK scheme
to the forward system of variational differential equa-
tions (VDE) (Walther, 2006).

Note that both Algorithms 4 and 5 have been included
mostly for illustration purposes, while efficient imple-
mentations typically rely on AD tools (often implemented
using either operator overloading or source code trans-
formation) as described in, e.g. Griewank and Walther
(2008) and Walther (2006). The open-source ACADO
Toolkit software (Houska, Ferreau, & Diehl, 2011a) pro-
vides a high-level framework for deploying a code-
generated RTI approach, including autogenerated inte-
grators with tailored sensitivity propagation (Quirynen,
Vukov, Zanon, & Diehl, 2014).

5.2.3 Implicit integration schemes

In case of a stiff system of differential equations,
it is advised to use an implicit integration scheme
instead (Hairer et al., 1996). In contrast to the previous
methods, they require the solution of an implicit sys-
tem of equations to perform each integration step. Their
improved stability properties typically result in a bet-
ter numerical accuracy for a given computational effort.
An implicit integration scheme can readily be extended
to deal with an implicit ODE system or with a DAE of
index 1. To keep our discussion compact, we do not detail
any implicit or semi-implicit methods (Hairer et al., 1996)
nor the computation of their sensitivities in this article.
More information and a possible implementation can be
found in Albersmeyer and Bock (2008) and Hindmarsh
etal. (2005). Additionally, autogenerated implicit integra-
tors with tailored sensitivity propagation are presented in
Quirynen, Vukov, et al. (2014).

5.3 Exponential integrators: integration by
linearisation

In our discussion on how to compute the discretised
and linearised dynamics from (11c), we distinguished
between two seemingly different approaches. Inspired by
linear systems theory, the first approach linearises the
continuous ODE system and uses the matrix exponen-
tial to obtain its discrete time representation. However,
this can be considered a special case of the more general



Algorithm 5: Ng steps Runge-Kutta 4 with forward
AD
Input: xi, uy

1x+:xk, AkZI, Bk=®
2 forn=1:Ngdo
3 ki < F(x", uy)
dk, dk

4 7}1‘ d—u’lc <«

F () [Ae B + [0 £ (7, )]
5 k, <« F(xt+ %kl, ur)
o | [d d] < mo+

B[ (a1+ 232 (+ 22) ]+
[@ E} (x+ + %k], uk)]

7 ks < Fx* + 3ky, up)

8 [% %] < E(x" +

dxk d Ug

Bl [ (A + 392) (Be+ S2)] +
[0F, (x" + %kz, we) ]

9 k4 <—F(X++Tik3,uk)
10 [3—2 S—ﬁ:] <~ E(x" +

T, ks, ) [(Ak + T Z—"k) (Bk +7T Z_kk)] +
[0 E (x* + T ks, up)]

1 xt Ly + 2k + 2k + k)
12 | [AxBi] < [Ax Bi] +

g <|:dxk duk] +2|:dxk duk]+2 I:dxk duk]+|:dxk duk]>
end
return x*, Ay, By

family of exponential integrators (Hochbruck & Oster-
mann, 2010). This means that it can actually be consid-
ered part of the second approach in which the exact non-
linear dynamics (24) are numerically approximated.
Exponential integrators are based on a linearisation of
the nonlinear ODE from Equation (21) in a point (x, )

As(t) = E(%, i) As(t) + E, (%, i) Av(t)

+ g(As(t), Av(t)), (27)
where As(t) = s(t) — x, Av(t) = v(t) — u and g(As(?),
Av(t)) denotes the nonlinear remainder. Because the lin-
ear part of the latter equations is integrated exactly, this
type of methods are popular for stiff differential equa-
tions. The simplest numerical scheme holds the value of
the function g(-) constant over the integration step result-
ing in the first-order exponential Euler approximation.
The linearisation-based approach from Section 5.1 can
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also be obtained by applying the latter method directly
to the nonlinear ODE, using the reference trajectory as
a linearisation point. This directly shows the limitations
of that approach, since only one integration step is per-
formed and this in an off-line manner instead of applying
an integration method based on the actual current state
of the system.

Summary of the section

In the literature, one can find many NMPC implemen-
tations using a special case of the more general frame-
work of using an integration method to approximate (24)
resulting in a discrete time model which can be lin-
earised by propagating the corresponding sensitivities.
In Keviczky and Balas (2006), the nonlinear system is,
for example, discretised and linearised using a single-
step forward Euler integrator. In Falcone, Tufo, Borrelli,
Asgari, and Tseng (2007), a similar approach is used but
the linearisation is done at the current initial state and it is
kept constant throughout the prediction horizon in order
to reduce computations.

It is important to note that:

e when the system is in steady state, the matrix expo-
nential approach provides an exact linearisation of
the nonlinear system dynamics. In all other cases,
this linearisation, however, becomes inexact;

* numerical integration methods can provide an arbi-
trarily accurate approximation of the nonlinear dis-
crete dynamics of the system for any given sampling
time;

e the technique of internal numerical differentiation
in combination with AD allows one to efficiently
propagate the sensitivities of any integrator to obtain
the exact linearisation of the system’s approximated
discrete time dynamics;

e cfficient numerical methods are available, which
make it possible to simulate the system dynamics
and sensitivities in extremely short times.

6. Reliable implementation of RTI for
continuous time systems

Because the RTI scheme only takes one single full New-
ton step per sampling instant, this scheme is expected
to work better for systems which are mildly nonlinear,
while more nonlinear systems could be harder to sta-
bilise. This remark is true for discrete-time systems; how-
ever, for continuous-time systems, a careful implemen-
tation of the algorithm makes it possible to control also
highly nonlinear systems. Important tuning parameters
are: (1) the sampling time, (2) the horizon length, (3) the
integrator accuracy, (4) the use of a shifting strategy, (5)
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Figure 7. Closed-loop simulations of a pendulum swing-up using several sampling times T, = 0.025,0.05,0.1,0.2,0.5s. The trajectories
obtained using RTl and converged NMPC are plotted in thick dashed and thin continuous lines, respectively.

passing the reference in a smart way, and (6) the cost tun-
ing matrices.

The choice of the cost-tuning matrices is usually done
by trial and error, using knowledge of the system to be
controlled. If the problem has a clear economic criterion,
a cost design strategy has been proposed in Zanon et al.
(2014, 2016). If the problem is, instead, of tracking nature,
the cost can be chosen so as to not only stabilise the sys-
tem, but also help convergence of the algorithm. Rough
guidelines include weighting every state and control and
avoiding large differences between the weights associated
with each state or control.

In the following, we illustrate points (1)-(5) using as
an example a pendulum mounted on top of a cart. The
derivation of the model, as well as a tutorial on integra-
tors for fast NMPC, is given in Quirynen, Vukov, et al.
(2014). The cart can only move on the (horizontal) x-axis
and its position is given by wy. The angle of the pendulum
is denoted by 0, using the convention that § = 0 rad cor-
responds to the pendulum hanging down in the negative
(vertical) y direction. The system dynamics are given by
the explicit ODE

ml sin(0)0% 4 mgcos(0) sin(0) + u
wo = M+ m — m(cos(0))? ’

G — ml cos(0) sin(@)é2 +ucos(0) + (M + m)gsin(0)
- I(M + m — m(cos(9))?) ’

where M = 1kg,m = 0.1kg,/ = 0.5m,g = 9.81 m/s?
are, respectively, the mass of the cart, the mass attached
at the end of the massless pendulum rod, the rod
length and the gravitational acceleration. The NMPC
controller (9) has been set up using weighting matrices
Wy = diag([10 10 0.1 0.1 0.01]) and the terminal cost

xﬁdiag([ 10 10 0.1 0.1 ])xN. No path constraints have
been introduced for simplicity. All other tuning param-
eters are specified separately for each simulation.

For the following simulations, we consider a swing-up
of the pendulum with a step in the reference for the angle
0 from 0 to 7 occurring at t = 2's. We used a prediction
horizon T, = 25, a sampling time T = 0.1s, an explicit
RK integrator of order 4 (RK4) with a fixed step size =
0.025 s (see Algorithm 5) and we made use of the shifting
strategy (19)-(20). Using the control provided by NMPC,
the closed-loop trajectories have been simulated using the
integrators with error control available in Matlab. In the
following, we will study the effect of varying each one of
the given parameters singularly, while keeping all others
fixed. In all figures, we will plot the closed-loop solutions
obtained using RTT and converged NMPC using thick
dashed and thin continuous lines, respectively, unless dif-
ferently specified.

Sampling time. When implementing NMPC for
continuous-time systems, one can reduce the nonlin-
earities in the problem by choosing a sampling time
which is short enough. For different sampling times, the
closed-loop solutions are displayed in Figure 7. It can be
seen that, as the sampling time gets larger, the RTT deliv-
ers closed-loop solutions which can be quite different
from the ones obtained using converged NMPC. We also
remark that, when this effect starts to become noticeable,
the control performance of both RTI and converged
NMPC deteriorates significantly. It can therefore be
noted that, on the proposed example, RTI yields a better
closed-loop response than fully converged NMPC when
a shorter sampling time is chosen for the former. We
remark that, in order to make the comparison fair, we
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Figure 8. Closed-loop solutions of a pendulum swing-up using several prediction horizons T,=05,08,1,2,4s and a step in the reference
occurring at t = 4s. The trajectories obtained using RTl and converged NMPC are plotted in thick dashed and thin continuous lines,

respectively.

set the terminal cost to 0, such that the cost functions
approximate the same continuous-time cost functional.

Prediction horizon. We illustrate now how the predic-
tion horizon affects the controller performance by using
a prediction horizon T, = 0.5,0.8,1,2,4s. In order to
better visualise the performance of the different NMPC
controllers, we introduce the step in the reference at t =
4s. The closed-loop solutions are displayed in Figure 8.
It can be seen that, when the prediction horizon becomes
too short, the controller performance visibly degradates
and the RTT solutions start to diverge from the converged
solutions.

Integrator accuracy. Because the integrator accuracy
determines the accuracy of the discrete-time model used
by NMPC, one must choose an integrator which deliv-
ers predictions that are accurate enough to predict the
evolution of the system in time. The closed-loop solu-
tions are displayed in Figure 9 using a sampling time Ty
= 0.15s and an explicit Euler integrator with a num-
ber of integration steps Ny = 20,10,5,2,1 over one
shooting interval. It can be seen that, as the accuracy
becomes lower, the RTT solutions start to diverge from
the converged solutions and the control performance
worsens.

It is important to note that, using 2 steps of RK4
yields a closed-loop behaviour which is very close to
that obtained by using 30 steps of explicit Euler, but
its preparation phase takes only about 26% of the time
needed when using 30 steps of explicit Euler. As described
in Section 5, RK4 consists of four stages, while explicit
Euler consists of one stage: this is reflected in the
computational times for the preparation phase which

become similar when using two steps of RK4 or eight
steps of explicit Euler. The closed-loop trajectories dis-
played in Figure 9 also highlight another important fact:
the difference between using 10 or 20 steps of explicit
Euler is marginal. Indeed, high integration accuracies
are not always needed and the closed-loop trajectories
become insensitive to integrator accuracy when it gets
high enough. Moreover, when deploying NMPC on real
systems, unmodelled dynamics and external perturba-
tions dominate over the integration error, so that it can be
preferable to favour faster sampling times and rather use a
reduced integration accuracy in order to meet tight tim-
ing constraints. For the considered scenario, 10 steps of
explicit Euler or the cheaper choice of 1 step of RK4 could
already yield an accurate enough integrator. We remark,
however, that the studied example has been chosen for
illustration and all the proposed schemes have an overall
computational time well below 1 ms on a 2.3 GHz Intel
Core i7 with 16 Gb of RAM so that the computational
effort is not a concern.

Shifting. As already highlighted in Section 3.2, con-
structing an initial guess by shifting the trajectory
obtained at the previous sampling time can be very
beneficial when implementing NMPC using the RTI
scheme. This fact is also highlighted in Figure 10, where
it can be seen that, using a sampling time T, = 0.05s,
the closed-loop trajectories obtained using RTI with-
out shifting yield poor control performance. Instead, by
using the shifting strategy, the RTT solution matches the
converged NMPC solution very closely. We remark that,
by using a sampling time Ty = 0.1s, the RTI solution
without shifting becomes unstable, while the RTI solution
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Figure 9. Closed-loop solutions of a pendulum swing-up using different integrator accuracies with a sampling time T, = 0.15s and an
explicit Euler integrator with a number of integration steps Ng = 20, 10, 5,2, 1 over one shooting interval. The trajectories obtained using
RTl and converged NMPC are plotted in thick dashed and thin continuous lines, respectively.

with shifting still matches the converged NMPC solution
very closely.

Choice of the reference. The choice of the reference
trajectory is also a crucial element for ensuring a reli-
able implementation of the RTI scheme. In the ideal
case, one would pre-compute a feasible trajectory so
that the NMPC controller only needs to reject perturba-
tions. Sometimes this is not possible and the NMPC con-
troller needs to both reject perturbations and plan the
trajectory that the system must follow. The simulations
we performed in this section fall into the second cate-
gory: we used a step in the reference that was passed to the

m
o
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|

I
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|

\

— e converged NMPC
e 1 e ‘\\ Ty Sy et R — e — L

RTI-NMPC controller. Because it is a large step, we
decided to introduce it after 2 s instead of having it at
the beginning of the horizon. This is beneficial because
it progressively enters the NMPC prediction horizon and
leaves the time to the RTI scheme to converge to the
solution before the system starts to move. Indeed, ref-
erence changes which occur far from the beginning of
the horizon do not affect the initial part of the predicted
trajectory. This fact is illustrated in Figure 11, where
we display the closed-loop solutions obtained by intro-
ducing the step in the reference at time t = 0,1,2,s. It
can be seen that, when the step enters at the end of the
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Figure 10. Closed-loop solutions of a pendulum swing-up using RTI with and without shifting as well as converged NMPC. The solutions
obtained using RTI with and without shifting are displayed in continuous blue and red line respectively, while the converged NMPC

solution is displayed in dashed yellow line.
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Figure 11. Closed-loop solutions of a pendulum swing-up using a step in the reference occurring at times t = 0,1, 2, s. The trajectories
obtained using RTl and converged NMPC are plotted in thick dashed and thin continuous lines respectively.

horizon, the RTT and converged solutions are indistin-
guishable. When the step is provided at the beginning of
the horizon instead, the RTI solution is very far from the
converged one and its performance is very poor. When
the step occurs at t = 1 s instead, the RTI solution differs
from the converged NMPC solution, but its performance
is still good.

Summary of the section

The RTT scheme is able to closely track the con-
verged NMPC solution, provided that the algorithm is
implemented carefully. In particular, the sampling time
should be chosen small enough, the prediction horizon
long enough, the integrator should be accurate, the shift-
ing strategy should be used and the reference should
be chosen adequately. Moreover, tuning the cost appro-
priately is also important for guaranteeing good per-
formance. Examples of successful implementations of
the RTI scheme for nontrivial nonlinear systems can
be found in Albin et al. (2015), Debrouwere, Vukov,
Quirynen, Diehl, and Swevers (2014), Gros, Quirynen,
and Diehl (2012), Gros et al. (2014), Gros, Zanon, and
Diehl (2013), Zanon, Frasch, Vukov, Sager, and Diehl
(2014), and Zanon et al. (2014).

7. Conclusions

In this paper, we have clarified the similarities and dif-
ferences between linear MPC and the RTI-based NMPC
approach. On the one hand, RTI can be seen as a straight-
forward extension of linear MPC, which makes use of an
integrator to relinearise the system dynamics and path
constraints at the current prediction rather than on the

reference. On the other hand, RTI is an SQP-type solver
for NMPC, which, under mild assumptions, tracks the
NMPC solution manifold. Therefore, in many cases, the
RTT strategy can be deployed to implement a genuine
NMPC scheme with a limited additional computational
burden and coding effort compared to linear MPC.
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