
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2016 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 1101–1127

AN AUGMENTED LAGRANGIAN BASED ALGORITHM
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Abstract. This paper is about distributed derivative-based algorithms for solving optimization
problems with a separable (potentially nonconvex) objective function and coupled affine constraints.
A parallelizable method is proposed that combines ideas from the fields of sequential quadratic
programming and augmented Lagrangian algorithms. The method negotiates shared dual variables
that may be interpreted as prices, a concept employed in dual decomposition methods and the
alternating direction method of multipliers (ADMM). Here, each agent solves its own small-scale
nonlinear programming problem and communicates with other agents by solving coupled quadratic
programming problems. These coupled quadratic programming problems have equality constraints
for which parallelizable methods are available. The use of techniques associated with standard
sequential quadratic programming methods gives a method with superlinear or quadratic convergence
rate under suitable conditions. This is in contrast to existing decomposition methods, such as
ADMM, which have a linear convergence rate. It is shown how the proposed algorithm may be
extended using globalization techniques that guarantee convergence to a local minimizer from any
initial starting point.
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1. Introduction. Large-scale nonlinear optimization problems arise in a vari-
ety of applications ranging from economic optimization under shared resources via
statistical learning algorithms for networks and smart grids to distributed nonlinear
optimal control for ordinary and partial differential equations. Fortunately, although
the optimization problems arising from these fields may be large scale, they are often
structured and have a separable objective such that the optimization problem can be
written in the form

min
x

N∑
i=1

fi(xi) s.t.

{ ∑N
i=1Aixi = b,

hi(xi) ≤ 0 , i ∈ {1, . . . , N}.
(1.1)

This paper concerns distributed local optimization algorithms that can solve problems
of the form (1.1) for nonconvex functions fi : Rn → R, i ∈ {1, . . . , N} and hi : Rn →
Rnh , and for a potentially large integer N . Here, the matrices A1, . . . , AN ∈ Rm×n
and the vector b ∈ Rm are assumed to be given. In practice, the matrices Ai and
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1102 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

the vector b often model dependencies between subsystems. Examples are resource
constraints, couplings between subsystems in chemical production processes (batches),
time dependencies in dynamic optimization problems, and localization dependencies
in distributed sensor networks.

Existing distributed algorithms for problems of the form (1.1) often assume that
the functions fi and hi are convex. For example, one of the oldest and most basic
distributed convex optimization algorithms is the dual decomposition method, which
was originally proposed in [21]. Here, the main idea is to solve the dual ascent problem
that is associated with problem (1.1) by employing a gradient method, while the dual
objective function itself is evaluated in a distributed way. More recent articles and
literature reviews of the dual decomposition method for convex optimization problems
can be found in [5, 48]. In recent years, dual decomposition has been employed
frequently in distributed optimal control and model predictive control algorithms. A
wide variety of algorithms use gradient information-based ascent techniques to obtain
a fully distributed algorithm [32, 33, 49, 58, 59]. Other dual decomposition methods
employ an interior-point framework with a smoothed dual function [51, 70]. These
methods perform well if initialized far from a minimizer but often require a large
number of iterations to achieve medium accuracy in the solution. Yet another class
of dual decomposition methods [24, 25, 42] employs a semismooth Newton method,
similar to the one proposed by [45], for solving the dual optimization problems. While
a certain amount of communication is required for these methods, they are still highly
parallelizable and often lead to a significant reduction in the number of iterations.
For optimal control problems, a numerical implementation of the dual decomposition
semismooth Newton strategy is the open-source code qpDunes [26].

Another important and powerful class of distributed optimization algorithms is
based on the Uzawa method [72, 73] or the alternating direction method of multipliers
(ADMM), which was originally introduced in [28, 34]. ADMM methods have been
analyzed by many authors [12, 19, 20, 35] in the past. The review article [9] includes
a self-contained convergence proof of ADMM for convex optimization problems. One
advantage of ADMM in comparison to the standard dual decomposition approach
is that it converges more reliably if the functions fi are convex but not necessarily
strictly convex [9]. Recently, ADMM has also been applied in the field of optimal
control and we refer to [53] for an overview.

Unfortunately, if the functions fi and hi are nonconvex, far fewer approaches
exist. Dual decomposition methods are not applicable in this case, since we may have
a duality gap. Similarly, despite the successful developments and fortunate properties
of ADMM for convex optimization problems outlined above, ADMM is in general not
applicable if the functions fi are nonconvex. In section 2 a nonconvex optimization
problem is presented, for which ADMM is divergent. In summary, existing distributed
optimization methods from the field of convex optimization cannot be applied to solve
nonconvex problems.

One way to construct parallelizable nonconvex optimization algorithms is to start
with a standard nonlinear programming method and try to parallelize or even dis-
tribute most of its operations. Problem (1.1) can be solved by employing a sequential
quadratic programming (SQP) method [6, 56, 57, 75], where the partially separable
structure of the objective function can be exploited for computing Hessian approx-
imations [69]. In this case, the evaluation of the functions fi and hi as well as the
evaluation of their first or even second order derivatives can trivially be parallelized.
The convex QP subproblems can be solved with any of the distributed algorithms from
the field of convex optimization outlined above. This or very similar parallelization
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strategies are, for example, analyzed in [50] in a more general sequential convex pro-
gramming (SCP) framework. Other variants deal with the potentially large number
of inequality constraints by using external active set strategies [14, 61]. An example
for an implementation of an SQP method for medium- to large-scale problems is the
code SNOPT [29]. This way of applying the SQP or a more general SCP approach can
lead to an unnecessarily large number of potentially expensive communication steps.
For example, if we have∑N

i=1Aix
∗
i = b for x∗ ∈ argmin

x

∑N
i=1 fi(xi)

s.t. hi(xi) ≤ 0 , i ∈ {1, . . . , N} ,
the above outlined SQP method solves a potentially large number of coupled con-
vex optimization problems. Solving these convex problems requires communication,
although the original nonconvex problem is decoupled. The optimization problems
of interest are not decoupled, but in many practical problems only a weak coupling
is present. This situation occurs frequently in applications for which the coupling
constraints are introduced in order to model a refinement rather than a crucial fea-
ture. For example, if every agent in a sensor network can measure its position, all
agents in this network can estimate their positions independently by solving decoupled
(potentially nonconvex) maximum likelihood estimation problems. If an additional
measurement of the distance between the agents is available, they can improve their
position estimates by cooperating and solving jointly a coupled optimization problem.
In this case, the coupling constraint is introduced in order to refine the solution of the
original decoupled optimization problems. The solution of the coupled optimization
problem can be expected to be close to solution of the original decoupled optimization
problems. In such a situation, distributed SQP or more general SCP methods are not
the best choice, as these methods do not solve the decoupled NLPs as part of their it-
eration. Moreover, if we use parallelized variants of standard nonlinear programming
methods, globalization routines, such as a line search, may require us to exchange
additional information between the agents [71].

An alternative to SQP based methods are augmented Lagrangian methods [1, 39,
67, 55]. These methods have been analyzed exhaustively in the context of large-scale
nonconvex optimization and are implemented in the nonlinear programming software
library GALAHAD [17, 36]. Recent developments of nonlinear optimization methods also
include the exploitation of primal-dual augmented Lagrangians [30], which can be used
to construct variants of regularized SQP methods [31]. Early approaches toward the
application of augmented Lagrangian methods in the context of distributed nonlinear
optimization have been proposed in [64] and [74]. In these articles, the authors de-
velop strategies to approximate the coupled terms in the augmented Lagrangian by
first order approximations or minima of separable functions. Another framework for
nonconvex distributed optimization based on augmented Lagrangians has been pro-
posed by Bertsekas [2]. In this article the local convexity of augmented Lagrangians
functions for sufficiently large penalty parameters is exploited in order to apply the
concept of dual decomposition to nonconvex problems. Variants of Bertsekas’ method
can be found in [66, 68]. Cohen [15] suggests solving the original coupled problem by
constructing a sequence of auxiliary problems. A review of augmented Lagrangian
based decomposition methods for convex and nonconvex optimization algorithms can
be found in [37].

Outline of the paper and contributions. Section 2 starts with a review of
ADMM, arguably a state-of-the-art algorithm for distributed convex optimization. It
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1104 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

is explained why ADMM is not directly applicable to solve nonconvex optimization
problems without further precaution by discussing an example for which ADMM
is divergent. The main contribution of this paper is outlined in section 3, where
a novel augmented Lagrangian based alternating direction inexact newton method
(ALADIN) is introduced. This new method is designed to solve potentially nonconvex
optimization problems of the form (1.1). The similarities to and differences from
existing large-scale nonlinear optimization methods such as inexact SQP as well as
distributed augmented Lagrangian methods are discussed in section 4. Section 5
discusses cases in which ALADIN has the same iteration cost as existing ADMM
methods. It is outlined why ALADIN may lead to a significantly smaller number of
overall iterations and thus has the potential to out-perform state-of-the-art distributed
optimization methods. The global and local convergence properties of ALADIN are
discussed in sections 6 and 7, respectively. Section 8 provides a numerical example,
and section 9 concludes the paper.

Notation. Apart from mathematical standard notation, the dual variables are
written immediately after the constraint. For example, the syntax

min
x

N∑
i=1

fi(xi) s.t.

{ ∑N
i=1Aixi = b

∣∣∣ λ,
hi(xi) ≤ 0 | κi , i ∈ {1, . . . , N, },

means that the multiplier of the affine equality constraints is denoted by λ and the
multipliers of the ith decoupled inequality constraint by κi. Throughout this paper, a
KKT point (x, λ, κ) is called regular if the linear independence constraint qualification,
strict complementarity conditions, and second order sufficient condition (SOSC) are
satisfied [52].

2. Review of ADMM. This section reviews ADMM for solving problem (1.1).
ADMM has turned out to be a successful distributed algorithm for convex optimiza-
tion problems [43]. This section illustrates that ADMM is in general divergent and—at
least without further modifications—not applicable to nonconvex optimization prob-
lems.

For the purposes of this section, the structured optimization problem (1.1) is
written in scaled consensus form. Let I0 : Rm → R ∪ {∞} denote the indicator
function,

I0(r) =

{
0 if r = 0,

∞ otherwise.

Extended objective functions are given by

∀ ∈ {1, . . . , N}, gi(yi) =

{
fi(yi) if hi(yi) ≤ 0,

∞ otherwise.

The structured optimization problem (1.1) can be written in the equivalent form

min
x,y

N∑
i=1

gi(yi) + I0

(
N∑
i=1

Aixi − b

)
s.t. Ai(yi − xi) = 0 , i ∈ {1, . . . , N}.(2.1)

This equivalence is due to the fact that the variables xi enter the coupled constraints
via the terms Aixi only. Thus, instead of requiring xi = yi, it is sufficient to enforce the
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ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1105

constraintsAi(yi − xi) = 0, although this formulation leads to redundant optimization
variables, if the matrices Ai do not have full column rank. Recall that the matrices
Ai : Rm×n and the vectors b ∈ Rm are assumed to be given. The main idea of ADMM
is to construct an augmented Lagrangian function of the form

(2.2)

Lρ(x, y, λ) = I0

(
N∑
i=1

Aixi − b

)
+

N∑
i=1

{
gi(yi) + λTi Ai(yi − xi) +

ρ

2
‖Ai(yi − xi)‖2

}
,

where ρ > 0 is a penalty parameter. Starting with an initial guess x for the primal
optimization variable and an initial guess λ for the dual vector that is associated with
the consensus constraints, the method has the following steps:1

1. Solve the optimization problem y ∈ argminy Lρ(x, y, λ).

2. Terminate if ‖
∑N
i=1Aiyi − b‖1 is sufficiently small.2

3. Compute the dual variable updates λ+
i = λi + ρAi(yi − xi).

4. Solve the optimization problem x+ ∈ argminx+ Lρ(x
+, y, λ+).

5. Set x← x+ and λ← λ+ in order to continue with step 1.
The first optimization problem for the variable y is decoupled and can be solved in

parallel. The second optimization problem for the variable x+ can be solved explicitly
since this amounts to solving a quadratic program with linear equality constraints.
Algorithm 1 summarizes ADMM.

If the functions fi and hi are convex, convergence of Algorithm 1 can be estab-
lished under mild assumptions. This result is independent of how far the initial (x, λ)
is away from the optimal solution and independent of how the penalty parameter
ρ > 0 is chosen [9]. In this context, we also mention that Algorithm 1 presents only
one way to solve problem (1.1) based on ADMM, and there are many other variants
possible, as discussed in [9]. Algorithm 1 has the advantage that it is parallelizable,
but it requires us to solve a coupled equality constrained QP problem in each loop.
In large part the linear algebra operations required for solving this QP problem can
be performed in an initialization step. As the constraint matrices Ai, the constraint
right-hand b, as well as the Hessian matrix ρAT

i Ai of this QP problem are constant,
linear algebra decompositions of all matrices in this QP problem can be precomputed.
Notice that only the objective gradient of the QP problem changes in each iteration.

The convergence properties of ADMM have been analyzed in the context of maxi-
mal monotone operators [19, 20] and by using convex analysis [9]. The question under
which assumptions ADMM is also applicable for nonconvex functions fi and hi is an
open problem. In general, ADMM does not converge for nonconvex problems. In
order to illustrate this, it is assumed that we have no inequality constraints and that
the functions fi are twice continuously differentiable. In this case, the Hessian matrix
of the decoupled subproblems in step 1 of Algorithm 1 is given by

Hi(yi, ρ) = ∇2fi(yi) + ρAT
i Ai.

Thus, even if the functions fi are nonconvex, the decoupled subproblems satisfy the
SOSC condition at a local minimizer yi, as long as a sufficiently large augmented

1We could also start the loop with step 4 assuming that we have an initial guess for y and λ+.
2The termination criterion is not scale invariant. We use one-norms to measure constraint viola-

tions throughout, although it would be possible to use other norms.
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1106 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

Algorithm 1. ADMM (consensus form).

Input: Initial guesses xi ∈ Rn and λi ∈ Rm, a penalty parameter ρ > 0, and a
tolerance ε > 0.

Repeat:

1. Solve for all i ∈ {1, . . . , N} the decoupled NLPs

min
yi

fi(yi) + λTi Aiyi +
ρ

2
‖Ai(yi − xi)‖22 s.t. hi(yi) ≤ 0.(2.3)

2. If ‖
∑N
i=1Aiyi − b‖1 ≤ ε, terminate and return x∗ = y as a

numerical solution.

3. Implement the dual gradient steps λ+
i = λi + ρAi(yi − xi).

4. Solve the coupled equality constrained QP problem

(2.4)

min
x+

N∑
i=1

{ρ
2

∥∥Ai(yi − x+
i )
∥∥2

2
− (λ+

i )TAix
+
i

}
s.t.

N∑
i=1

Aix
+
i = b.

5. Update the iterates x ← x+ and λ ← λ+ and continue with
step 1.

Lagrangian parameter ρ with Hi(yi, ρ) � 0 exists. One might conjecture that Al-
gorithm 1 converges to a local minimizer if the functions fi are nonconvex, as long
as we choose the initialization in a small neighborhood of this minimizer and if the
subproblems are strictly convex. However, unfortunately, this conjecture is false. In
order to illustrate this, a counterexample is provided.

Example 2.1. This example is about the case N = 1 and n = 2 with f1(x) =
x1 ·x2, A = (1,−1), and b = 0 (but no inequalities) such that problem (1.1) takes the
form

min
x

x1 · x2 s.t. x1 − x2 = 0.

Clearly, this optimization problem has a unique and regular minimizer at x∗1 = x∗2 =
λ∗ = 0 at which the linear independence constraint qualification and the second order
sufficient KKT condition are satisfied. Moreover, for ρ = 3

4 , the subproblems in step 1
of Algorithm 1 are strictly convex, since the matrix

H1

(
0,

3

4

)
=

1

4

(
3 1

1 3

)

is positive definite. The iteration is started with x = 0 but λ 6= 0. In the first step,
the decoupled NLP has the form

min
y

1

2
yT
(

0 1
1 0

)
y + λ(y1 − y2) +

3

8
‖y1 − y2‖22 .
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ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1107

It can be solved explicitly finding the optimal solution

y =

(
−2
2

)
λ.

Next, the QP problem from step 4 of Algorithm 1 has a trivial solution at x+ = 0,
since x+ enters the optimization problem only via the term Ax+ that is, however,
enforced to be equal to zero at the optimal solution. Thus, the only nontrivial iterate
is the variable λ, which satisfies

λ+ = λ+
3

4
(y1 − y2) = −2λ.

This iteration is divergent.

There exist several variants of ADMM depending on how the constraints are
formulated and at which point the dual variable updates are implemented. The above
example is a counterexample for the convergence of one particular variant of ADMM
for a particular choice of ρ. The aim of this paper is to fix the convergence problem
that can be observed in Example 2.1.

3. Distributed nonlinear optimization algorithm. This section proposes a
novel algorithm for solving structured optimization problems of the form

min
x

N∑
i=1

fi(xi) s.t.

{∑N
i=1Aixi = b,

hi(xi) ≤ 0 , i ∈ {1, . . . , N}.
(3.1)

The functions fi : Rn → R and hi : Rn → Rnh are assumed to be twice continuously
differentiable for all i ∈ {1, . . . , N}, but not necessarily convex. It is also assumed
that problem (3.1) is feasible and that all local minimizers are regular KKT points.
The aim is to find a local minimizer numerically. As in the previous sections, the
matrices Ai ∈ Rm×n and the vector b ∈ Rm are assumed to be given.

In the following, the dual variables of the inequality constraints hi(xi) are denoted
by κi ∈ Rnh

+ . The multipliers of the affine coupling constraints are denoted by λ as
in the previous section. The following sections are about Algorithm 2.

Notice that this “high-level interface” presentation of the main algorithmic idea
relies on the assumption that we already have low-level tools for solving the coupled
and potentially distributed equality constrained QP problems of the form (3.3) as
well as a centralized NLP solver for solving problems of the form (3.2). In a practical
implementation the accuracy of these lower-level QP and NLP solvers can be adjusted
by auxiliary routines. Nevertheless, the analysis and discussion in this paper are based
on the assumption that the QP and NLPs are solved with high precision. An analysis
of variants, which solve the NLPs and QP inexactly, is beyond the scope of this
paper. The decoupled optimization problems (3.2) are feasible whenever the original
problem (3.1) is feasible. The penalty parameter ρ ≥ 0 is in principle redundant in
the sense that the symmetric and positive definite scaling matrices Σi � 0 introduced
in Algorithm 2 may be adjusted during the iterations. The QP subproblems (3.3) are
always feasible, as the point

(∆y, s) =

(
0,

N∑
i=1

Aiyi − b
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Algorithm 2. ALADIN.

Input: Initial guesses xi ∈ Rn and λ ∈ Rm and a numerical tolerance ε > 0.
Repeat:

1. Choose a sufficiently large penalty parameter ρ ≥ 0 and positive semidefinite
scaling matrices Σi ∈ Snx

+ and solve for all i ∈ {1, . . . , N} the decoupled
optimization problems

min
yi

fi(yi) + λTAiyi +
ρ

2
‖yi − xi‖2Σi

s.t. hi(yi) ≤ 0 | κi(3.2)

to either local or global optimality.

2. If ‖
∑N
i=1Aiyi − b‖1 ≤ ε and ρ ‖Σi(yi − xi)‖1 ≤ ε, terminate with x∗ = y

as a numerical solution.

3. Choose constraint Jacobian approximations Ci ≈ C∗i of the matrices C∗i
defined by

C∗i,j =

{
∂
∂x (hi(x))j

∣∣
x=yi

if(hi(yi))j = 0

0 otherwise for i ∈ {1, . . . , N} ∀j ∈ {1, . . . , nh}.

Compute the modified gradient gi = ∇fi(yi) + (C∗i − Ci)
Tκi and choose

symmetric Hessian approximations Hi ≈ ∇2
{
fi(yi) + κTi hi(yi)

}
.

4. Choose a sufficiently large penalty parameter µ > 0 and solve the coupled
QP

min∆y,s

∑N
i=1

{
1
2∆yTi Hi∆yi + gTi ∆yi

}
+ λTs+ µ

2 ‖s‖
2
2

s.t.

{∑N
i=1Ai (yi + ∆yi) = b+ s

∣∣∣ λQP,

Ci∆yi = 0 , i ∈ {1, . . . , N}.

(3.3)

5. Run Algorithm 3 in order to find step-sizes α1, α2, α3 ∈ R+ or, alternatively,
set α1 = α2 = α3 = 1 in order to run ALADIN without global convergence
guarantees. Define

x+ = x+ α1(y − x) + α2∆y and λ+ = λ+ α3 (λQP − λ) .

6. Update the iterates x← x+ and λ← λ+ and continue with step 1.

is a feasible point of problem (3.3). In step 3 of Algorithm 2 the modified gradient
gi = ∇fi(yi)+(C∗i −Ci)Tκi is constructed. This is in analogy to inexact SQP methods,
which are based on modified gradients that correct errors in the step direction due
to inexact constraint Jacobian approximations as explained in [18]. The first order
stationarity conditions of problem (3.2) are given by

∇fi(yi) +AT
i λ+ (C∗i )Tκ− ρΣi(yi − xi) = 0.

The linear independence constraint qualification for the lower-level inequality con-
straints is assumed to be satisfied. Thus, if Algorithm 2 terminates by satisfying the
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ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1109

termination criterion from step 2, the estimate ρ ‖Σi(yi − xi)‖1 ≤ ε holds. Conse-
quently, ∥∥∇fi(yi) +AT

i λ+ (C∗i )Tκ
∥∥

1
≤ ε;

that is, the point x∗ = y with associated dual solution λ∗ = λ and κ∗ = κ satisfies the
first order stationarity condition for problem (3.1) up to the user-specified numerical
tolerance ε > 0. Moreover, if the termination criterion in step 2 is satisfied y also
satisfies the primal feasibility condition ‖

∑N
i=1Aiyi − b‖1 ≤ ε. It can be checked

easily that (x∗, λ∗, κ∗) is a primal-dual KKT point of problem (3.1)—up to the user
specified numerical accuracy ε. In particular, y is always feasible with respect to the
inequality constraints. As mentioned earlier, the termination criterion is not scale
invariant. The one-norm could also be replaced by other norms.

The connection of Algorithm 2, ALADIN, to the augmented Lagrangian, ADMM,
and generic inexact Newton methods will be discussed in the following sections, which
focus on explaining similarities but also differences and advantages of the proposed
algorithm to existing large-scale and distributed optimization methods. A mathemat-
ical analysis of the convergence properties of ALADIN follows in sections 6 and 7.

4. Similarities and differences compared to (inexact) SQP and aug-
mented Lagrangian methods. Algorithm 2 has a certain similarity with both
SQP and augmented Lagrangian methods. One way to highlight this similarity is by
considering the Powell–Hestenes augmented Lagrangian function with respect to the
coupled constraints

Kµ(y, λ) =

N∑
i=0

fi(yi) + λT

(
N∑
i=1

Aiyi − b

)
+
µ

2

∥∥∥∥∥
N∑
i=1

Aiyi − b

∥∥∥∥∥
2

2

.

One variant of the augmented Lagrangian method defines an approximate minimizer
of the optimization problem

min
∆y
Kµ(y + ∆y, λ) s.t. hi(y + ∆y) ≤ 0(4.1)

and updates the primal and dual variables as

y+ = y + ∆y and λ+ = λ+ µ

(
N∑
i=1

Aiy
+
i − b

)
.(4.2)

Clearly, one way to approximately solve problem (4.1) is by performing exactly one
SQP step. Using the same notation as in Algorithm 2, this leads to a QP subproblem
of the form

min∆y

∑N
i=1

{
1
2∆yTi Hi∆yi + gTi ∆yi

}
+ λT

(∑N
i=1Ai (yi + ∆yi)− b

)
+ µ

2

∥∥∥∑N
i=1Ai (yi + ∆yi)− b

∥∥∥2

2

s.t. hi(yi) + Ci∆yi ≤ 0 , i ∈ {1, . . . , N}.

(4.3)

Here, the choice Ci = ∇hi(yi)T with gi = ∇f(yi) corresponds to an exact SQP
method. Otherwise, if Ci is only an approximation of the exact constraint Jacobian
and gi = ∇f(yi) + (C∗i −Ci)Tκi the modified gradient, this corresponds to an inexact
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1110 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

SQP method [18, 40]. For numerical reasons, when µ is large, it is better to solve the
equivalent QP3

min∆y,s

∑N
i=1

{
1
2∆yTi Hi∆yi + gTi ∆yi

}
+ λTs+ µ

2 ‖s‖
2
2

s.t.

{∑N
i=1Ai (yi + ∆yi) = b+ s

∣∣∣ λ+,

hi(yi) + Ci∆yi ≤ 0 , i ∈ {1, . . . , N} ,

(4.4)

by introducing the slack variable s. Here, the updated multiplier λ+ from (4.2) can
be identified with the multiplier that belongs to the equality constraint in the above
QP.4 Interestingly, this QP basically coincides with the QP problem (3.3) that is
solved in step 4 of Algorithm 2. Here, the only difference between the two QPs is that
in (3.3) the inequalities in the current working set are enforced as equalities, while
QP (4.3) keeps all linearized inequalities without relying on any guess of the active set.
From this perspective, the proposed ALADIN algorithm is a mixture of an augmented
Lagrangian and an SQP method. However, as explained in the introduction, both SQP
and augmented Lagrangian methods are centralized optimization algorithms that do
not solve decoupled optimization problems of the form (3.2). In this respect, ALADIN
differs from augmented Lagrangian based SQP methods.

Solving large-scale QP problems with inequality constraints, such as problem (4.3),
can be expensive. Clearly, solving the equality constrained optimization problem (3.3)
is still expensive, as this requires communication between the distributed agents, but
at least this equality constrained QP can be solved by a suitable sparse or distributed
linear algebra solver [10, 13, 65]. This concept is in a similar form adopted by exter-
nal active set methods [14, 61] (also known as “outer active set methods”), which are
well-known tools for solving nonlinear optimization problems with a large number of
constraints. However, a major difference of Algorithm 2 compared to external active
set methods is the way how the active set is determined. Here again, the main dif-
ference is the introduction of step 1 in combination with the approximation Ci ≈ C∗i ,
where the set of indices of the nonzero rows of Ci can be interpreted as our current
guess for the active set. For the special choice Ci = C∗i the working set corresponds
to the active constraint indices at the optimal solution of the decoupled nonlinear
programming problems (3.2). This is in contrast to conventional active set meth-
ods, which typically determine a new working set by adding a constraint to maintain
feasibility or removing a constraint based on the sign of its Lagrange multiplier. A
conventional active set method does not solve an intermediate nontrivial decoupled
NLP.

Remark 4.1. The above variant of the augmented Lagrangian method has simi-
larities but is not equivalent to the linearly constrained Lagrangian method [27].

Remark 4.2. The method in Algorithm 2 is equivalent to dual decomposition if
ρ = 0 is enforced. This result is established in Appendix A.

3QP (4.4) is still ill-conditioned if µ is large, but the advantage of the reformulation with the
slack variable s is that the large entries in the associated Hessian matrix are all on the diagonal such
that the problem can easily be rescaled by employing a suitable preconditioner.

4The stationarity condition for the QP (4.4) with respect to s has the form λ + µs − λ+ = 0,

which yields the update rule (4.2), λ+ = λ+ µs = λ+ µ(
∑N

i=1 Aiy
+
i − b).
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5. Similarity to ADMM for Hi = ρAT
iAi, Σi = AT

iAi, Ci = 0, and
µ → ∞. Algorithm 2 is inspired by ADMM. For λi = λ and Σi = AT

i Ai, step 1
of Algorithm 1 coincides with step 1 of Algorithm 2. Algorithm 2 is an “alternating
direction method” in the sense that it alternates—similar to Algorithm 1—between
solving small-scale decoupled nonlinear programming problems and large-scale cou-
pled equality constrained QP problems. The following discussion assumes that we
use the constraint Jacobian approximation Ci = 0, i ∈ {1, . . . , N}. If no inequal-
ity constraints are active, this approximation is exact. For µ → ∞, i.e., s = 0 in
problem (3.3), the QP problem (3.3) can be written in the equivalent form

min∆y

∑N
i=1

{
1
2∆yTi Hi∆yi + gTi ∆yi

}
s.t.

∑N
i=1Ai (yi + ∆yi) = b

∣∣∣ λQP.
(5.1)

For Ci = 0, the modified gradient is given by

gi = ∇fi(yi) + (C∗i − 0)
T
κ = AT

i λ̂
ADMM
i with λADMM

i = λ+ ρ(Aiyi − vi).

In the latter equality the stationarity condition has been substituted. Substituting this
equation for the gradient and assuming Hi = ρAT

i Ai the above QP can equivalently
be written in the form

min∆y

∑N
i=1

{
ρ
2 ‖Ai∆yi‖

2
2 +

(
λADMM
i

)T
Ai∆yi

}
s.t.

∑N
i=1Ai (yi + ∆yi) = b

∣∣∣ λQP.
(5.2)

The choice α1 = α2 = 1 implies ∆yi = yi − x+
i , revealing that the above QP is

coinciding with the QP problem (2.4) as long as λADMM
i is associated with the updated

dual variable λ+
i in step 3 of Algorithm 1. Thus, for Hi = ρAT

i Ai, Σi = AT
i Ai, and

Ci = 0 the cost of one ALADIN iteration is exactly the same as the cost of one ADMM
iteration, since the only difference between these two algorithms is that ALADIN
maintains only one dual variable λ ∈ Rm that is updated in a slightly different manner
than the dual variables λ1, . . . , λN ∈ Rm from Algorithm 1. However, the fact that
the ADMM equivalent choice Ci = 0 and Hi = ρ

2A
T
i Ai correspond in general to

a rather poor approximation of the constraint Jacobian and Hessian matrix gives a
strong indication that ALADIN has the potential to out-perform ADMM in many
practical applications. This is motivated by the fact that it is possible to construct
more accurate approximations Ci and Hi of the constraint Jacobian and Hessian
matrix—in some special cases, e.g., if the number m of coupling constraints is small,
it may even be tractable to compute the exact matrices C∗i and H∗i .

Numerical linear algebra considerations. If the approximations Ci and Hi

are constant, some of the matrix decompositions for solving the QP problem (3.3) can
be computed in advance. The local convergence properties of ALADIN are, however,
much better and less scaling dependent if we maintain updates Ci and Hi during the
algorithm. Examples for such updates include low-rank updates of Ci and Hi, e.g.,
computed via BFGS or even limited memory BFGS updates, or updates of our guess
of the optimal active set referring to the decision of which rows of Ci are chosen to
be exactly equal to zero. These updates are not necessarily expensive. For example,
low-rank updates of Ci and Hi can directly be translated into cheap updates of the
matrix decompositions and, similarly, updates of the active set can be realized in
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1112 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

analogy to the update techniques that are employed in state-of-the-art active set QP
solvers [23]. In practice, it depends on the dimension and sparsity pattern of the
matrices Ai as well as the cost for communication between the distributed agents
whether the time investment for maintaining nonconstant constraint Jacobian and
Hessian approximations as well as updates of the associated matrix decompositions
that are required for solving QP (3.3) pays off in terms of the overall number of
iterations due to better convergence rate. Notice that this is nothing but the well-
known trade-off of cost per iteration and convergence rate that is omnipresent in
nonlinear optimization algorithms.

6. Global convergence analysis. This section analyzes how to enforce global
convergence of Algorithm 2 to local minimizers of the original optimization prob-
lem (1.1). As in the above discussions, it is assumed that the linear independence
constraint qualification holds such that all local minimizers of the decoupled optimiza-
tion problem (3.2) as well as the original optimization problem (3.1) satisfy the first
order KKT conditions. Notice that this is a rather mild assumption, which always
holds under the linear independence constraint qualification and which is in a similar
form employed in the context of global convergence of other nonlinear programming
methods [52]. Moreover, it is assumed that the Hessian approximation matrices Hi are
symmetric and positive semidefinite. However, neither the approximations Hi ≈ H∗i
of the Hessians nor the approximations Ci ≈ C∗i of the constraint Jacobians have to be
accurate. The following convergence analysis is rather general and includes in partic-
ular the ADMM-inspired approximation Ci = 0 and Hi = ρAT

i Ai as well as low-rank
approximations of Hi and Ci as special cases. The scaling matrices Σi are assumed
to be positive definite. Notice that for the ADMM-inspired choice, Σi = AT

i Ai, this
assumption is only satisfied if the matrices Ai have full column rank.

Following a standard framework for measuring global progress of an optimization
algorithm toward a local minimizer [38, 52], a globalization routine for ALADIN is
summarized in the form of Algorithm 3. This algorithm is based on the L1-penalty
function

Φ(x) =

N∑
i=1

fi(xi) + λ

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
1

+ κ
∑
i,j

max{ 0, (hi(xi))j } ,

where 0 < λ < ∞ and 0 < κ < ∞ are assumed to be sufficiently large constants
such that Φ is an exact penalty function for problem (1.1). The aim of the following
consideration is to show that Algorithm 3 enforces a descent of Φ after a finite number
of steps. In order to ensure that this is sufficient to prove convergence, the descent
condition

Φ(x)− Φ(x+) ≥ γ

(
N∑
i=1

{ρ
2
‖yi − xi‖2Σi

}
+ λ

∥∥∥∥∥
N∑
i=1

Aiyi − b

∥∥∥∥∥
1

)
(6.1)

is introduced. Here, 0 < γ � 1 is fixed and y denotes the solution of the decoupled
optimization problem (3.2). Notice that if the termination criterion from step 2 of
Algorithm 2 is not satisfied for the given tolerance ε > 0, the expression on the
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ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1113

Algorithm 3. Globalization strategy for ALADIN.

Initialization: Choose sufficiently large 0 < λ < ∞ and 0 < κ < ∞ as well as a
fixed 0 < γ � 1.

Globalization steps:

(a) Set α1 = α2 = α3 = 1. If the iterate x+ from step 5 of Algorithm 2 satisfies

Φ(x)− Φ(x+) ≥ γ

(
N∑
i=1

{ρ
2
‖yi − xi‖2Σi

}
+ λ

∥∥∥∥∥
N∑
i=1

Aiyi − b

∥∥∥∥∥
1

)
(6.2)

for the L1 penalty function

Φ(x) =

N∑
i=1

fi(xi) + λ

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
1

+ κ
∑
i,j

max{ 0, (hi(xi))j } ,

return α1 = α2 = α3 = 1.

(b) If the full step is not accepted, set α1 = 1 and α2 = α3 = 0 such that x+ = y.
If condition (6.2) is satisfied, return α1 = 1 and α2 = α3 = 0.

(c) If neither (a) nor (b) was successful, set α1 = α2 = 0 such that x+ = x.
Next, determine the global maximizer α∗3 ∈ (0, 1] of the function Vρ(x, λ +
α3 (λQP − λ)) with Vρ denoting the optimal objective of the decoupled dual
problem

Vρ(x̄, λ) = min
y

N∑
i=1

{
fi(yi) + λTAiyi +

ρ

2
‖yi − x̄i‖2Σi

}
− λTb(6.3)

s.t. hi(yi) ≤ 0 , i ∈ {1, . . . , N}.

Return α1 = α2 = 0 and α3 = α∗3.5

Output: Line search parameters α1, α2, α3 needed in step 5 of Algorithm 2.

right-hand side of the above inequality is always bounded below by

γ

(
N∑
i=1

{ρ
2
‖yi − xi‖2Σi

}
+ λ

∥∥∥∥∥
N∑
i=1

Aiyi − b

∥∥∥∥∥
1

)
≥ γ min

{
σε2

2ρ
, λε

}
.

Here, σ > 0 is a constant that depends—due to the equivalence of norms in finite
dimensional Euclidean spaces—on the choice of the norm in the termination criterion
only. Let

Vρ(x̄, λ) = min
y

N∑
i=1

{
fi(yi) + λTAiyi +

ρ

2
‖yi − x̄i‖2Σi

}
− λTb(6.4)

s.t. hi(yi) ≤ 0 , i ∈ {1, . . . , N}

5We assume here for simplicity of presentation that the line search is exact. For a practical
implementation this strategy should be refined, e.g., by implementing an inexact line-search based
on Goldstein or Wolfe conditions [52].
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1114 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

denote a dual merit function. Under the assumption that ρ and µ are sufficiently
large, Algorithm 3 enforces convergence. Notice that Algorithm 3 is divided into
three steps, (a), (b), and (c). The motivation for step (a) or (b) is rather obvious,
since these steps both aim at satisfying the strict descent condition (6.1). However, it
is possible to construct cases where neither (a) nor (b) is successful. For example, if the
constraint Jacobian approximation is exact, Ci = C∗i , while at the optimal solution of
the decoupled optimizations problem from step 1 many of the inequality constraints
are weakly active, the only way to satisfy the equality constraints Ci∆yi = 0 in the
equality constrained QP (3.3) might be to choose ∆y = 0. If, in addition, (y − x)
is not a strict descent direction—for example, due to a poor initial guess for λ that
is far away from the optimal solution, it is not possible to satisfy condition (6.1).
In such situations, Algorithm 3 proceeds with step (c), which sets α1 = α2 = 0,
i.e., no update of the primal variable is implemented. Notice that the evaluation
of the auxiliary function Vρ in step (c) can be distributed. The line search in step
(c) requires communication, which is in a similar form needed in dual decomposition
methods, but must be interpreted as a disadvantage compared to ADMM methods
for convex optimization problems. In order to understand why in step (c) only the
dual variable λ is updated, the auxiliary optimization problem

Zρ(x) = minz
∑N
i=1

{
fi(zi) + ρ

2 ‖zi − xi‖
2
Σi

}
s.t.

{∑N
i=1Aizi − b = 0,

hi(zi) ≤ 0 , i ∈ {1, . . . , N},

(6.5)

is introduced. Notice that optimization problems of the form (6.5) are often em-
ployed in the field of proximal algorithms, which have been studied extensively in
the literature [41, 44]. Nowadays, proximal algorithms are standard tools in convex
optimization and are widely used in the field of distributed optimization. In partic-
ular, the connections with alternating direction methods are elaborated in [54]. In
the following, the proximal optimization problem (6.5) is used as an auxiliary tool for
proving convergence of ALADIN. Here, the main idea is to exploit the fact that the
optimal solution z∗ of the above optimization problem is a strict descent step as we
have

Φ(x) ≥
N∑
i=1

fi(xi) + λ

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
1

+ κ
∑
i,j

max{ 0, (hi(xi))j }

=

N∑
i=1

{
fi(xi) +

ρ

2
‖xi − xi‖2Σi

}
+ λ

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
1

+ κ
∑
i,j

max{ 0, (hi(xi))j }

≥
N∑
i=1

{
fi(z

∗
i ) +

ρ

2
‖z∗i − xi‖

2
Σi

}
= Φ(z∗) +

N∑
i=1

{ρ
2
‖z∗i − xi‖

2
Σi

}
,

which implies

Φ(x)− Φ(z∗) ≥
N∑
i=1

{ρ
2
‖z∗i − xi‖

2
Σi

}
+ λ

∥∥∥∥∥
N∑
i=1

Aiz
∗
i − b

∥∥∥∥∥
1︸ ︷︷ ︸

=0

.(6.6)

Now, clearly, step (c) of Algorithm 3 ensures that if there are no updates of the
primal variable, the dual iterate λ converges for any choice of µ > 0 to a limit point
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λ∗ ∈ argmaxλ Vρ(x̄, λ) as long as the maximum exists. Fortunately, for sufficiently
large ρ and under certain regularity assumptions, it can be shown that this maximum
always exists and, even more importantly, that there is no duality gap. In order to
prove this statement, the projection problem

minζ
∑N
i=1

1
2 ‖ζi − xi‖

2
Σi

s.t.

{∑N
i=1Aiζi − b = 0,

hi(ζi) ≤ 0 , i ∈ {1, . . . , N},

(6.7)

is introduced. Its optimal solution ζ∗ can be interpreted as the projection of the
point xi onto the feasible set of the original optimization problem (3.1). Next, if the
objective of the auxiliary optimization (6.5) is scaled with 1

ρ , it becomes clear that

problems (6.5) and (6.7) are equivalent in the limit for ρ→∞. More generally, prob-
lem (6.5) (with rescaled objective) can be obtained from problem (6.7) by perturbing
the objective function with a term of order 1

ρ .

Lemma 1. Let the functions fi and hi be twice continuously differentiable with the
second order derivative of the fis being bounded on the feasible sets Fi = {yi|hi(yi) ≤
0} and let the matrices Σi be positive definite. If the minimizer of problem (6.7) is a
regular KKT point, then we have

sup
λ

Vρ(x̄, λ) = Zρ(x̄)

for all sufficiently large ρ, i.e., there is no duality gap.

Proof. Since the second order derivatives of functions fi and hi are assumed to
be bounded, it is known that the optimal solutions of problem (6.5) are contained
in a small open neighborhood of the projection point ζ∗, whose width scales with 1

ρ ,
i.e., this neighborhood can be made arbitrarily small by choosing a sufficiently large
ρ. For the following discussion, the shorthand

Fρ(z) =

N∑
i=1

{
fi(zi) +

ρ

2
‖zi − xi‖2Σi

}
is introduced. Next, the assumption that ζ∗ is a regular KKT point implies that
there exist matrices Q1 ∈ Rn×m and Q2 ∈ Rn×(n−m) with [A1, . . . , AN ]Q2 = 0 as well
as a twice continuously differentiable function ξ : Rn−m−na → Rn−m such that the
optimization problem

Zρ(x) = minz1,z2 Fρ(Q1z1 +Q2ξ(z2))

s.t.
[A1, . . . , AN ]Q1z1 − b = 0,

‖Q1z1 +Q2ξ(z2)− x‖2 ≤ τ1
ρ

(6.8)

is equivalent to problem (6.5) via the variable substitution z = Q1z1 + Q2ξ(z2) and
a sufficiently large constant τ1 < ∞. Notice that the above statement follows im-
mediately from a generalized version of the implicit function theorem as discussed
in [7] recalling that we assume that ζ∗ is a regular KKT point such that the active
inequality constraints can locally be eliminated. Next, it is easy to verify that the
optimization problem (6.8) is strictly convex in (z1, z2) if ρ is sufficiently large. This
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1116 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

follows from the fact that ξ is twice continuously differentiable and that the Hessian
matrix of the objective function of problem (6.8) is given by

∇2
(z1,z2) Fρ(Q1z1+Q2ξ(z2)) =M(z1, z2)+ρ

N∑
i=1

(
QT

1

∇z2ξ(z2)QT
2

)
i

Σi

(
QT

1

∇z2ξ(z2)QT
2

)
i

.

Here, the matrix valued function M(z1, z2) denotes the terms in the second order
derivative expression that can be bounded by a constant independent of ρ. In other
words, M satisfies ‖M(z1, z2)‖2 ≤ τ2 for all feasible points (z1, z2) of problem (6.8)
and for a sufficiently large constant τ2 < ∞, which does not depend on ρ. As
the minimizer of problem (6.7) is assumed to be a regular KKT point, ∇z2ξ(z2)
is a full-rank matrix for all feasible points z2 in problem (6.8), which implies that
∇2

(z1,z2) Fρ(Q1z1 +Q2ξ(z2)) is a positive definite matrix for all feasible points (z1, z2)

of problem (6.8) and all sufficiently large ρ. Thus, problem (6.8) is strictly convex and,
consequently, there is no duality gap. Since this optimization problem is equivalent
to the original optimization problem (6.5) we have established the statement of the
lemma.

Notice that the above lemma has been established in very similar versions in [62,
63] in the context of augmented Lagrangian and proximal operator analysis. Here, it
should be noted that Lemma 1 is based on the rather strong regularity assumption
that the minimizers of problem (6.7) are regular KKT points. Generalization of
the above lemma are possible by employing standard analysis techniques from the
field of parametric optimization [7]. In [62, 63] such “no-duality-gap statements” are
established in the context of augmented Lagrangian functions under much weaker
regularity assumptions.

Theorem 2. Let problem (3.1) be feasible and bounded from below such that a
minimum exists. If the assumptions from Lemma 1 are satisfied, if ρ is sufficiently
large, and if the line-search parameters are adjusted by Algorithm 3, then Algorithm 2
terminates after a finite number of iterations.

Proof. As problem (3.1) is assumed to be feasible, all decoupled NLPs as well
as the QP are feasible by construction. Consequently, the iterates of Algorithm 2
are well-defined. The proof is in two parts. The first part establishes the fact that
Algorithm 2 together with Algorithm 3 applies step (c) of the globalization routine at
most for a finite number of steps. The second part establishes that steps (a) and (b)
of Algorithm 3 ensure that Algorithm 2 terminates after a finite number of iterations
by using the result from Part 1.

Part 1. Assume that Algorithm 2 together with Algorithm 3 executes step (c)
infinitely often, which implies that the primal variable x stops being updated. In this
case, the line search in step (c) ensures that the dual iterates λ converge to a local
maximum of Vρ(x, ·). Consequently, the considerations from the proof of Lemma 1
imply that the primal solution sequence y converges to the limit point y∗ = z∗. Thus,
the fact that z∗ is a strict descent direction (see inequality (6.6)) ensures that for
sufficiently large ρ > 0 and γ � 1 the strict descent conditions in either step (a)
or (b) of the above globalization strategy are satisfied. This is a contradiction to
the above assumption that the algorithm applies step (c) for an infinite number of
iterations.

Part 2. If Algorithm 2 does not terminate after a finite number of steps either
step (a) or step (b) of Algorithm 2 is applied infinitely often. This is due to the fact

D
ow

nl
oa

de
d 

09
/2

7/
18

 to
 1

95
.1

76
.9

6.
20

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1117

that Part 1 already excludes the case that step (c) is applied infinitely often. Whenever
step (a) or (b) is applied the progress difference Φ(x)−Φ(x+) is bounded from below
by strictly positive constant. As Φ is bounded from below this is a contradiction.
Consequently, Algorithm 2 must terminate after a finite number of steps.

7. Local convergence analysis. This section concerns the local convergence
properties of Algorithm 2 under the assumption that the functions fi are twice con-
tinuously differentiable. Here, the main idea is to show that Algorithm 2 inherits the
convergence properties from inexact SQP methods if ρ is sufficiently large.

Lemma 3. Let the functions fi, i ∈ {1, . . . , N}, be twice continuously differen-
tiable and let the minimizer (x∗, λ∗) of problem (1.1) be a regular KKT point. More-
over, let N ⊆ RN ·n ×Rm be a sufficiently small open set with 0 ∈ N and let ρ > 0 be
such that

∀i ∈ {1, . . . , N}, ∇2
x

[
fi(x

∗
i ) + κTi hi(x

∗
i )
]

+ ρΣi � 0.

There exist constants χ, χ1, χ2 < ∞ such that for every point (x, λ) satisfying the
condition (x− x∗, λ− λ∗) ∈ N the decoupled minimization problems

min
yi

fi(yi) + λTAiyi +
ρ

2
‖yi − xi‖2Σi

s.t. hi(yi) ≤ 0

have locally unique minimizers (yT1 , . . . , y
T
N )T ∈ {x∗} ⊕ χN that satisfy the inequality

‖y − x∗‖ ≤ χ1 ‖x− x∗‖+ χ2 ‖λ− λ∗‖ .

As mentioned earlier, the decomposed optimization problems in Algorithm 2 are
very closely related to standard augmented Lagrangian methods and Lemma 3 is
in very similar versions well-known in the literature. For example, Bertsekas has
analyzed the solutions of the minimizers of augmented Lagrangian functions under
small perturbations of the multiplier; see Proposition 4.2.3 in [5]. A very similar
analysis can be found in Theorem 17.6 of [52]. However, for the of sake completeness
we provide a concise proof of Lemma 3.

Proof. The Hessian matrices ∇2
[
fi(x

∗
i ) + κTi hi(x

∗
i )
]

+ ρΣi of the decoupled opti-
mization problems

(7.1) ξi(x, λ) = argmin
ξi

fi(ξi) + λTAiξi +
ρ

2
‖ξi − xi)‖2Σi

s.t. hi(ξ) ≤ 0

are strictly positive for all (x, λ) in a small neighborhood of (x∗, λ∗). Thus, the
parametric minimizers ξi(x, λ) are locally well-defined and continuously differentiable
functions in this neighborhood, because (x∗, λ∗) is assumed to be a regular KKT
point. Moreover, the equation ξi(x

∗, λ∗) = x∗i holds. This follows from the first order
KKT conditions of problem (7.1). The statement of the lemma is now an immediate
consequence, because the finite constants χ1 and χ2 satisfy χ1 > ‖ ∂ξi∂xi

(x∗, λ∗)‖ and

χ2 > ‖∂ξi∂λ (x∗, λ∗)‖, respectively.

Local convergence rate estimates from the field of standard SQP methods can be
applied easily to the full-step variant of Algorithm 2 with α1 = α2 = α3 = 1 as long
as the requirements of Lemma 3 are satisfied. For example, if the exact Hessian and
constraint Jacobian Hi = H∗i , Ci = C∗i are used and if 1

µ < O(‖y − x∗‖) when solving

the coupled QP problem (3.3), then the inequalities∥∥x+ − x∗
∥∥ ≤ ω

2
‖y − x∗‖2 and

∥∥λ+ − λ∗
∥∥ ≤ ω

2
‖y − x∗‖2
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1118 BORIS HOUSKA, JANICK FRASCH, AND MORITZ DIEHL

hold in a neighborhood of the optimal solution for a constant ω <∞. This statement
follows from the fact that the optimality condition for the QP (3.3) can be written in
the form H∗ AT (C∗)T

A − 1
µI 0

C∗ 0 0


 ∆y

λ+ − λ
κQP

 =

 ∇y
∑N
i=0 fi(yi) +ATλ

b−Ay
0

 .

In this form it becomes apparent that solving the QP (3.3) is equivalent to applying
an inexact Newton step to the optimality conditions of problem (3.1) for a fixed
active set. Since the Hessian matrix H∗ and the constraint Jacobian C∗ are exact,
the only approximation comes from the term 1

µI perturbing the central block of the

KKT matrix. As we assume 1
µ < O(‖y − x∗‖); this term converges to zero when

approaching the minimizer x∗ such that the locally quadratic convergence rate of
Newton’s method is preserved [52]. Here, it is assumed that (x∗, λ∗) is a regular KKT
point, which, in combination with Lemma 3, yields

χ1

∥∥x+ − x∗
∥∥+ χ2

∥∥λ+ − λ∗
∥∥ ≤ (χ1 + χ2)ω

2

(
χ1

∥∥x+ − x∗
∥∥+ χ2

∥∥λ+ − λ∗
∥∥)2 .

This is sufficient to prove local quadratic convergence of the algorithm as χ1, χ2 are
strictly positive constants. Similarly, for the case that the matrices Hi → H∗i , µ→∞,
and Ci → C∗i converge to the exact Hessians and exact constraint Jacobians, respec-
tively, superlinear convergence can be established. In another variant, if Hi and Ci
are sufficiently accurate approximations of H∗i and C∗i , then Algorithm 2 converges
linearly. Methods and algorithms for adjusting the Levenberg–Marquardt regular-
ization 1

µ in such a way that the above convergence statements hold are discussed

exhaustively in [22]. Of course, all these local convergence rate statements are at this
point less surprising from an “SQP perspective” in the sense that they are only a
simple consequence of the convergence properties of standard or inexact SQP meth-
ods, which have been analyzed exhaustively in the existing literature [18]. However,
given the fact that other distributed optimization algorithms such as ADMM typically
have a linear convergence rate in the convex case and may even be locally divergent
in the nonconvex case (as in Example 2.1), the convergence properties of ALADIN
established above provide a significant improvement on the existing results for these
methods. Moreover, the proposed ALADIN algorithm can be interpreted as a bridge
between distributed and centralized optimization algorithms that provides a unifying
framework for the convergence analysis of these methods.

Finally, it remains to be discussed that the above local convergence analysis is
based on the assumption that full steps are taken in a local neighborhood of the
optimal solution. This is the case if Algorithm 3 chooses α1 = α2 = α3 = 1. For
standard SQP methods a full-step assumption is critical in the sense that it is possible
to construct cases for which the favorable local convergence properties of full step SQP
methods are jeopardized by globalization routines that prevent the use of a full step
close to the solution. This phenomenon is known as the Maratos effect [46]. In the
context of SQP methods, strategies for avoiding the Maratos effect have been analyzed
exhaustively [11, 16, 47]. Notice that there is an important difference between SQP
methods and ALADIN, namely, ALADIN solves decoupled NLPs as part of step 1 of
Algorithm 2. Thus, if Algorithm 2 is started at the primal optimal solution x∗, but
with a wrong multiplier λ 6= λ∗, the solution y of the decoupled NLPs will in general
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be different from x∗. As a consequence, Algorithm 2 might choose x+ 6= x∗ if a full
step with α1 = α2 = α3 = 1 is applied. Of course, this behavior is not desired, as
this would mean that the algorithm would choose x+ 6= x∗, although the initialization
x = x∗ was already optimal. Fortunately, the globalization routine from the previous
section prevents this undesirable behavior. In fact, if we start at x = x∗ but λ 6= λ∗,
the globalization step (c) ensures that only the dual variable λ is updated. In this
case, the dual variables converge with the desired rate to the optimal solution. This is
guaranteed by the following theorem, which shows that Algorithm 3 chooses α3 = 1
if λ is in a local neighborhood of regular dual solution λ∗ as long as Hi and Ci are
sufficiently close to H∗i and C∗i . Summarizing the above discussion, ALADIN does not
necessarily take full steps close to the optimal solution but there are situations in which
this behavior is desired. Thus, the goal of the following convergence analysis is to show
that the globalization routine never applies step (b) whenever (x, λ) is in a sufficiently
small local neighborhood to a regular KKT point (x∗, λ∗). The corresponding result
is summarized in the theorem below.

Theorem 4. Let (x∗, λ∗) be a regular KKT point of problem (3.1) as well as
Hi = H∗i and Ci = C∗i (Hi → H∗i and Ci → C∗i ). If the conditions from Lemma 3 are
satisfied and if (x, λ) is in a sufficiently small neighborhood of (x∗, λ∗), Algorithm 2
in combination with Algorithm 3 chooses in every step either α1 = α2 = α3 = 1 or
α1 = α2 = 0 but α3 = 1.

Proof. The local convergence analysis of inexact SQP methods [18] ensures that

Φ(x+) ≤ Φ(y)

for α1 = α2 = α3 assuming that (x, λ) is in a sufficiently small neighborhood of
a regular minimizer. Thus, whenever the conditions of Step (b) of the globalization
routine from section 6 are satisfied the conditions from step (a) are satisfied, too. This
implies that the globalization routine never applies step (b) in a local neighborhood
of an optimal solution proving the statement of the theorem.

In order to avoid confusion about this result, notice that for x 6= x∗, Algorithm 3
applies the globalization step (c) at most for a finite number of iterates. As the above
theorem excludes that step (b) is applied close to the solution, Algorithm 3 must
apply a full step after every finite number of iterations. That is, the norm ‖x − x∗‖
does not necessarily contract quadratically (superlinearly) in every step, but it does
after a finite number of iterations.

8. Numerical case study. This section illustrates the practical performance of
ALADIN versus conventional SQP methods. A circular sensor network localization
problem with N = 25,000 sensors is considered. Let χi ∈ R2 denote the unknown
position of the ith sensor, i ∈ {1, 2, . . . , 25,000}, and ηi ∈ R2 a measurement of
χi. The variance of the measurement error ηi − χi is assumed to have a Gaussian
distribution with given variance σ2

i I2×2. Moreover, let η̄i ∈ R denote the measurement
of the distance between the sensor with index i and the sensor with index i+ 1. The
associated measurement error, given by

‖χi − χi+1‖2 − η̄i ,

is assumed to have a Gaussian distribution with given variance σ̄2
i . Here, the notation

χN+1 = χ1 is introduced, i.e., the distance between the Nth sensor and the first sensor
is measured, too. In order to model this problem, the optimization variable

xi =
(
χT
i , ζ

T
i

)T ∈ R4
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is introduced. Here, ζi is the ith sensor’s estimate of the position of its neighbor. The
coupling constraints can be written in the form

∀i ∈ {1, . . . , N}, ζi = χi+1.

This is equivalent to enforcing the linear coupling equation
∑N
i=1Aixi = 0 with

A1 =



0 I
0 0
0 0
0 0
...

...
0 0
−I 0


, A2 =



−I 0
0 I
0 0
0 0
...

...
0 0
0 0


, A2 =



0 0
0 0
−I 0
0 I
...

...
0 0
0 0


, . . . , AN =



0 0
0 0
0 0
0 0
...

...
−I 0
0 I


.

In order to find the maximum likelihood estimates of all sensor positions, the objective
of sensor i is defined as

fi(xi) =
1

4σ2
i

‖χi − ηi‖22 +
1

4σ2
i+1

‖ζi − ηi+1‖22 +
1

2σ̄2
i

(‖χi − ζi‖2 − η̄i)2

for all i ∈ {1, . . . , N}. Here, the definition ηN+1 = η1 is used recalling that the
first sensor is regarded as a neighbor of the last sensor. Notice that the function fi
is a nonlinear least-squares objective term, which could alternatively be written in
the form fi(xi) = 1

2 ‖Fi(xi)‖
2
2 for appropriately defined functions Fi. This implies in

particular that Gauss–Newton Hessian approximations of the form

Hi = ∇xi
F (xi)∇xi

F (xi)
T ≈ ∇2

xi
fi(xi)

can be computed easily. In order to make the problem slightly more challenging,
additional inequality constraints of the form

hi(xi) = (‖χi − ζi‖2 − η̄i)2 − σ̄2
i ≤ 0

are introduced. These inequalities model additional information about the maximum
error of the distance measurements. In this case study, measurements of the form

ηi =

(
N cos

(
2iπ
N

)
N sin

(
2iπ
N

) )+ ei and η̄i = 2N sin
( π
N

)
+ di

are constructed, where ei and di are randomly generated measurement errors using
the above mentioned Gaussian probability distributions with σi = σ̄i = 10 for all
i ∈ {1, . . . , N}. Figure 1 shows the convergence of ALADIN versus conventional SQP.
The SQP method and ALADIN have been implemented by using the programming
language JULIA. Both methods have been started with the same initial values and
both methods use the above Gauss–Newton Hessian approximation. ALADIN uses
the constraint Jacobian approximations Ci = 0 as well as the constant penalty param-
eter ρ = 1. Both the SQP method and ALADIN have a linear convergence rate, since
Gauss–Newton Hessian matrix approximations are used. Notice that the optimization
problem comprises 4N = 105 primal optimization variables as well as 2N = 7.5 · 104

dual variables. A major advantage of ALADIN compared to conventional SQP with
distributed linear algebra can be observed during the first three iterates after which
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ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 1121

Fig. 1. The norm ‖x− x∗‖∞ of the difference of the current primal iterate x and the optimal
solution x∗ versus the iteration number for SQP (black triangles) and ALADIN with ρ = 1 (red
circles) applied to a sensor network localization problem with N = 25,000 sensors.

ALADIN achieves a primal accuracy of ‖x − x∗‖∞ < 10−3, while the corresponding
SQP iterate satisfies ‖x − x∗‖∞ > 1. The numerical conditioning of SQP and AL-
ADIN is very similar: in this implementation both methods cannot achieve accuracies
less than ‖x−x∗‖∞ ≈ 10−11 as numerical errors cannot be avoided on machines with
finite precision arithmetic. Notice that SQP solves a coupled inequality constrained
QP during each iteration. This is more expensive than solving the coupled equality
constrained QP during the ALADIN iteration. For this particular optimization prob-
lem, ALADIN converges faster than conventional SQP in terms of both run-time and
number of iterations.

9. Conclusions. This paper introduced an augmented Lagrangian based alter-
nating direction inexact Newton algorithm, named ALADIN, that can solve large-scale
and potentially distributed optimization problems of the form (1.1). Here, the main
contribution is that this algorithm has been established to converge to local minimiz-
ers even if the objective and constraint functions are nonconvex. This is in contrast to
state-of-the-art distributed optimization algorithms such as dual decomposition meth-
ods or ADMM that are in general applicable only to convex optimization problems.
Moreover, the proposed ALADIN algorithm has desirable local convergence properties
that can in this form not be obtained with standard variants of ADMM. We have also
discussed the connections of the proposed algorithms with centralized optimization
method such as SQP and augmented Lagrangian methods, which leads to a better
understanding of similarities and differences between existing distributed and central-
ized optimization algorithms. A numerical case study for a sensor network localization
problem indicates that ALADIN performs well in practice. The advantages of AL-
ADIN compared to conventional SQP methods have been illustrated numerically.
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Appendix A. Equivalence to dual decomposition methods for ρ = 0. A
very important property of Algorithm 2 is that if we set ρ = 0, the iterates of this
algorithm are equivalent to a dual decomposition method. This statement might not
be obvious immediately, because dual decomposition methods typically apply gradient
or inexact Newton updates to the optimality condition for the multiplier λ, also known
as price-negotiation steps, which involves communication between the agents. These
updates of the dual variable λ are not explicitly highlighted as part of the steps of
Algorithm 2. However, a closer look at steps 4 and 5 of Algorithm 2 reveals that
solving the QP (3.3) is nothing but an implicit way to implement an inexact Newton
update of the dual variable λ, where the term 1

µ can be interpreted as a Levenberg–
Marquardt regularization parameter. In order to elaborate on this aspect, we assume
for a moment that the functions fi are strictly convex and the functions hi convex.
In this case, the objective of the dual optimization problem

max
λ

V (λ) with V (λ) =

N∑
i=1

di(λ)− λTb(A.1)

coincides with the objective value of the original optimization problem (3.1), i.e., we
have no duality gap.6 Here, the functions di are for all i ∈ {1, . . . , N} defined as the
optimal values of the decoupled optimization problems

di(λ) = min
yi

fi(yi) + λTAiyi s.t. hi(yi) ≤ 0.(A.2)

The functions di are once differentiable if the minimizer is unique [4, 60], but they
are typically not twice continuously differentiable. Here, the gradient of the function
V is given by

∇V (λ) =

N∑
i=1

Aiyi − b ,(A.3)

assuming that y denotes the optimal solution of the decoupled problems (A.2). Thus,
one way of implementing dual decomposition methods is by solving the dual opti-
mization problem (A.1) with a semismooth Newton method of the form

λ+
DD = λ− α

(
M − 1

µ
I

)−1

∇V (λ).(A.4)

Here, α ∈ (0, 1] is a line-search parameter and 1
µ can be interpreted as a Levenberg–

Marquardt regularization parameter, which can be used to ensure that λ+
DD leads to

a sufficient ascent before updating λ ← λ+
DD and continuing with the next iteration.

Moreover, M is assumed to be a symmetric and negative semidefinite scaling matrix.
For example, the choice M = −I corresponds to a standard gradient (or “steepest
ascent”) method. However, on the other hand, for all points λ for which the minimizer
of problem (A.2) is a regular KKT point, di is twice continuously differentiable and

6Notice that it is enough to assume convexity of fi and hi is sufficient to ensure that there is no
duality gap. This is due to the fact that the duality statement is made with respect to the linear
equality constraints only; that is, this statement also holds if Slater’s constraint qualification for the
decoupled inequality constraints is violated [8].
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we have

(A.5)

∇2V (λ) = −
N∑
i=1

{
Ai

[
(H∗i )−1 − (H∗i )−1(C∗i )T

[
C∗i (H∗i )−1(C∗i )T

]†
Ci(H

∗
i )−1

]
AT
i

}
assuming that the matrices H∗i = ∇2

(
fi(yi) + κTi hi(yi)

)
denote the exact Hessians

and
[
C∗i (H∗i )−1(C∗i )T

]†
the pseudo inverse of the matrix C∗i (H∗i )−1(C∗i )T. This has,

for example, been established in [25]. Consequently, if we are at such a point where
V is twice continuously differentiable, we can set M = ∇2V (λ)—or at least choose M
in such a way that the difference M −∇2V (λ) is small—in order to improve the local
convergence rate of the dual updates. Notice that even in the case that we use exact
dual Hessians, it is advisable to adjust the Levenberg–Marquardt parameter 1

µ in such

a way that the matrix ∇2V (λ) − 1
µI is negative definite and not too ill-conditioned

for numerical purposes.7

Lemma 5. Let the functions fi and hi be twice continuously differentiable with the
fi being strictly convex and the hi being convex. If Algorithm 2 is based on constraint
Jacobian approximations Ci ≈ C∗i with full row rank and positive definite Hessian
approximations Hi ≈ H∗i as well ρ = 0 and α3 = α, then the iterate λ+ as computed
in step 5 of Algorithm 2 coincides for all µ > 0 with the iterate λ+

DD that is obtained
by applying the (inexact) dual Newton step (A.4) with

M = −
N∑
i=1

{
Ai

[
H−1
i −H

−1
i CT

i

[
CiHiC

T
i

]†
CiH

−1
i

]
AT
i

}
(A.6)

for solving the dual optimization (A.1), i.e., we have λ+
DD = λ+.

Proof. As we assume that the exact Hessians Hi are positive definite, the QP
problem (3.3) can be solved via its associated dual optimization problem, given by

max
λQP

min
∆y,s

N∑
i=1

{
∆yTi Hi∆yi

2
+ gTi ∆yi + λTQPAi(yi + ∆yi)

}

+
µ ‖s‖22

2
− (λQP − λ)Ts− λTQPb

s.t. Ci∆yi = 0 , i ∈ {1, . . . , N}.

Clearly, the minimization problem over the slack variable s can be simplified explicitly.
Moreover, we directly substitute (A.3) and write the above dual QP in the form

max
λQP

min
∆y

N∑
i=1

{
∆yTi Hi∆yi

2
+ gTi ∆yi + λTQPAi∆yi

}
+ λTQP∇V (λ)− 1

2µ
(λQP − λ)2

s.t. Ci∆yi = 0 , i ∈ {1, . . . , N}.

Next, due to step 1 of Algorithm 2 and our assumption ρ = 0, we observe that yi
must satisfy the stationarity condition associated with problem (A.2) given by

0 = ∇fi(yi) +AT
i λ+ (C∗i )Tκi = gi +AT

i λ+ CT
i κi ,

7Recall that the matrix ∇2V (λ) is always negative semidefinite as the dual function V is concave.
However, ∇2V (λ) is not necessarily negative definite.
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since gi = ∇fi(yi) + (C∗i − Ci)Tκi. Multiplying this equation by ∆yTi from the left
and exploiting the constraint Ci∆yi = 0 allows us to simplify the above QP further,
yielding the equivalent form

max
λQP

min
∆y

N∑
i=1

{
∆yTi Hi∆yi

2
+ (λQP − λ)TAi∆yi

}
+ λTQP∇V (λ)− 1

2µ
‖λQP − λ‖22

s.t. Ci∆yi = 0 , i ∈ {1, . . . , N}.

Finally, we solve the remaining minimization problem over ∆y explicitly and substi-
tute (A.6), which yields

λQP = argmax
λQP

1

2
(λQP − λ)TM(λQP − λ) + λTQP∇V (λ)− 1

2µ
‖λQP − λ‖22

= λ−
(
M − 1

µ
I

)−1

∇V (λ).

Since we define λ+ = λ+ α(λQP − λ) with α = α3 in steps 5 and 6 of Algorithm 2, a
comparison with (A.4) yields the relation λ+ = λ+

DD.

Notice that as a consequence of the above lemma, Algorithm 2 is equivalent to
dual decomposition if we choose ρ = 0, since for this particular choice the decoupled
optimization problems from step 1 of Algorithm 1 coincide with the decoupled opti-
mization problems (A.2). This implies in particular that convergence of Algorithm 2
for ρ = 0 and sufficiently small α3 = α can be established in analogy to dual de-
composition methods, as long as we assume that the functions fi and hi are strictly
convex and convex, respectively. This convergence statement holds independent of
how “bad” the approximations Hi and Ci of the Hessian and constraint Jacobian ma-
trices are as long as the matrices Hi are positive definite. The only difference between
the proposed ALADIN code and existing dual decomposition methods is the term
ρ
2 ‖yi − xi‖

2
Σi

in the objective of the decoupled optimization problems. However, this
additional term is important, as it turns out to be the key for transferring the idea of
dual decomposition methods to nonconvex optimization problems.

Another interesting aspect of Lemma 5 is that the penalty parameter µ, which
has previously been interpreted as an augmented Lagrangian parameter, can alterna-
tively be interpreted as the inverse of a Levenberg–Marquardt regularization param-
eter. From this perspective, we may state that a regularization based on augmented
Lagrangians corresponds to a dual Levenberg–Marquardt regularization.
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