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Abstract: This work presents the real-time control of 1:43 scale autonomous race cars
using nonlinear model predictive control based on a singularity-free prediction model. This
model allows the car to drive at both low and high speeds and in stop-and-go maneuvers.
Additional constraints are imposed in the optimal control problem to ensure the validity of the
model assumptions. Moreover, the control scheme is capable of avoiding obstacles online. The
experimental results show that the proposed method converges to nearly time-optimal behavior
by maximizing the progress on the track and achieves competitive lap time results.
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1. INTRODUCTION

Autonomous car racing poses a particular challenge for
control methods, because the vehicle is driven at its
handling limits. The objective is to reach the minimal lap
time while keeping the vehicle on the track and avoiding
obstacles. A common approach for testing methods tailored
for this purpose is the use of remote controlled miniature
cars. These are a low cost and low risk alternative with
similar properties and challenges as full-size vehicles.

Many methods for autonomous racing are based on
nonlinear model predictive control (NMPC), because
nonlinear dynamics and dynamical constraints, e.g. velocity
or acceleration limits, can be imposed explicitly. As
computational power increases, it allows for longer
prediction horizons of the NMPC and mitigates the
need for hierarchical architectures such as (Gao et al.,
2010). Therefore, most recent methods use a single-layer
architecture (Perantoni and Limebeer, 2014; Verschueren
et al., 2014; Liniger et al., 2015; Rosolia et al., 2017)
that differs in the approach taken to approximate time-
optimal behavior, avoid obstacles, and model vehicle
dynamics. The latter reach from simple approximate
models (Lima et al., 2018) over sophisticated physical
formulations (Kabzan et al., 2019) to machine learning
based approaches (Hewing et al., 2018).

Related Work: Several NMPC formulations have been
proposed to approximate time-optimal behavior. Liniger
et al. (2015) present a model predictive contouring control
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Fig. 1. Real-world and simulation results: On the left are
simulation results with and without obstacles. On the
right are the same scenarios on the real-world setup.
The scenario without obstacles is also compared to
the offline optimal trajectory illustrated by the dotted
black line. We challenge the proposed approach by a
slalom curve on the chicane (0.5 m to 3 m). Moreover,
we place a road block at 7.2 m which is removed as
soon as the vehicle comes to a complete stop.



that maximizes progress on the track. Verschueren et al.
(2014) use a formulation to minimize the final time for a
fixed-length spatial prediction horizon while Lima et al.
(2018) optimize the longitudinal speed and the lateral
displacement depending on the track’s curvature in order
to maximize progress.

The performance of the NMPC heavily relies on the
prediction model’s accuracy. Liniger et al. (2015) and
Perantoni and Limebeer (2014) derive a detailed model
using Pacejka’s magic formula (Pacejka, 2006). This is a
common approach for modelling tire-ground interaction
and has proven to be working nicely, when operating at
handling limits. Nonetheless, the tire slip angle enters
the formula such that it has a singularity at zero speed.
This introduces high stiffness to a system at low speed.
Verschueren et al. (2014) instead use a slip-free tire
model, but do not account for lateral accelerations which
leads to poor performance at high speed. Kabzan et al.
(2019) use a linear blend between a simple singularity-
free model at low speeds and a detailed model at high
speeds. The model assumptions of Lima et al. (2018)
are similar to the ones in this paper as they utilize a
slip-free tire model and limit the longitudinal and lateral
accelerations. However, the acceleration constraints are
based on the GG-diagram while we treat lateral and
longitudinal accelerations independently.

Polack et al. (2017) investigate the validity of the
slip-free tire model assumption based on the lateral
acceleration. Therefore, they compare a detailed 9-DOF
model with a 3-DOF kinematic model in simulation. They
conclude that the model is accurately matched until 0.5 g
assuming a large friction coefficient. Also Kong et al.
(2015) compare the prediction errors of a kinematic and
a dynamic model and motivate the usage of a kinematic
model in the control design. However, they do not operate
the vehicle at its handling limits.

Contribution: This paper presents an optimal control
approach that maximizes progress on the track and
thereby approximates time-optimal racing on a real-
world 1:43 race car setup. For this purpose, we propose
a singularity-free model and enforce its validity by
limiting the lateral acceleration. Thereby, the setup
is capable of start-stop maneuvers and static obstacle
avoidance at low and high speeds. The obstacles are
modeled as deformations in the road boundary and are
mathematically described by piecewise cubic polynomials.
The proposed approach is validated experimentally in both
simulation and real-world.

Structure: Section 2 states the system model and
validates the model assumptions based on real-world
experiments. Section 3 presents the optimal control
formulation including obstacle avoidance. Section 4 shows
simulation as well as experimental results, while Section 5
summarizes the paper and gives a brief outlook.

2. SINGULARITY-FREE MODEL

The prediction model plays a key role in the design of
NMPC methods. We use a dynamic model that combines
a kinematic model with the longitudinal dynamics only.

2.1 Race Car Model

A generic dynamic bicycle model, similar to the ones used
by Liniger et al. (2015) or Verschueren et al. (2016), is
illustrated in Figure 2. The lateral and longitudinal forces
F r
y, F f

y and F d
x describe the forces acting on the tires. The

parameters lr and lf denote the distance between the rear
and front wheel to the center of gravity (CG), respectively.
The steering angle δ quantifies the deflection of the front
wheel, while the back wheel is fixed. The vehicle’s position
and orientation in the world frame (X-Y -frame) are given
by pX, pY and ψ, respectively. Utilizing Newton’s second
law, the dynamic equations with respect to CG can be
described by

ṗX = vx cos(ψ)− vy sin(ψ), (1a)

ṗY = vx sin(ψ) + vy cos(ψ), (1b)

ψ̇ = ω (1c)

mv̇x = F d
x − F f

y sin(δ) +mωvy, (1d)

mv̇y = F r
y + F f

y cos(δ)−mωvx, (1e)

Izω̇ = F r
ylr − F f

ylf cos(δ), (1f)

where m is the mass of the vehicle, Iz is the inertia while
vx and vy denote the car’s velocity in the vehicle frame
(x-y-frame).
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Fig. 2. Generic dynamic bicycle model.

Similar to Verschueren et al. (2014), a slip-free tire model
is assumed, meaning that the rear and front wheel of the
vehicle fully absorb the lateral forces F f

y and F r
y. In this

case, the movement of the vehicle can be described by a
circular path where the CG moves in the direction ψ + β.
The side-slip angle β is defined as depicted in Figure 2.
Assuming that the steering angle δ is small, β can be
simplified by

β = arctan

(
lr

lr + lf
tan δ

)
≈ lr
lr + lf

δ. (2)

Rotating the reference frame to v and v⊥, we obtain

ṗX = v cos(ψ + β), (3a)

ṗY = v sin(ψ + β), (3b)

ψ̇ =
v

lr
sinβ, (3c)

v̇ = F d
x cosβ. (3d)

Because we assume that there is no tire slip, the lateral

force mv̇⊥ = ma⊥ = F d
x sin(β) + mv2

lr
sin(β) is neglected.

To ensure that this assumption is valid, the lateral force



has to be bounded by a constraint in the optimal control
problem (OCP).

Spengler and Gammeter (2010) derive the longitudinal
force as a function of the duty cycle D, a constant, and a
second order friction term

F d
x = (cm1

− cm2
v)D − cr2v2 − cr0 tanh(cr3v). (4)

2.2 Path-Parametric Reformulation

p

CG

α

γ =

[
pcx
pcy

] ψc

n

Fig. 3. Path-parametric model.

For more compact formulation, we follow the approach
of Frasch et al. (2013), where the car’s pose is projected
onto the center line of the race track. This is illustrated
in Figure 3. The path of center line γ is parameterized by
the arc length s. The position p and orientation α relative
to the path are given by

r(s, t) = p(t)− γ(s), (5)

α(s, t) = ψ(t)− ψc(s), (6)

where ψc is the heading of the center line. We describe the
position s∗ on the center line that is closest to p as

s∗(t) = arg min
s

1

2
||r(s, t)||22, (7)

which states an optimization problem itself that can be
solved under the assumption that s∗ is known at the initial
time t = 0. The speed on the center line ṡ is then given by

ṡ =
v(t) cos(α(s, t) + β)

1− n(s, t)κc(s)
, (8)

where κc describes the center line’s curvature and n is
the minimal distance between the vehicle and the center
line. The curvature κc is a continuous function of s, which
we approximate by a third-order B-spline. To guarantee
uniqueness of the projection, nκc < 1 must hold. The
minimal distance to the center line n is given by

n(s, t) =

[
cos(ψc(s))
− sin(ψc(s))

]T [
py(t)− pcy(s)
px(t)− pcx(s)

]
. (9)

The resulting dynamic model has the states x = [s, n, α, v]
T

and is given by

ṡ =
v cos(α+ β)

1− nκc
, (10a)

ṅ = v sin(α+ β), (10b)

α̇ = ψ̇ − κcṡ, (10c)

v̇ =
F d
x

m
cos(β). (10d)

In contrast to Verschueren et al. (2014), we do not conduct
a complete spatial reformulation, but discretize the model
with respect to physical time t. This leads to a singularity-
free model that is not restricted to ṡ > 0. A disadvantage
is, however, that we cannot formulate the obstacles as
simple state bounds.

2.3 Model Identification and Validation

A simple but accurate model is key to reach good
performance with NMPC methods. This includes the
identification of model parameters that commonly involves
solving nonlinear and nonconvex optimization problems.
The parameters for the kinematic model, lr and lf , can
be measured directly. Moreover, the parameters governing
longitudinal dynamics are acquired by acceleration and
deceleration experiments. The identified parameters can
be found in Table 1.

Table 1. Identified parameters

Parameter m cm1 cm2 cr0 cr2 cr3
Unit kg kgm/s2 kg/s kgm/s2 kg/m s/m
Value 0.043 0.28 0.05 0.006 0.011 5

The use of a slip-free tire model as described above
reduces the model complexity, but it has a limited validity
range that needs to be enforced. In order to identify the
limits of this assumption, we conduct an experimental
comparison between simulation and real-world. Similar
to Polack et al. (2017), we track a circle with constant
radius R and different speed references leading to a certain
later accelerations a⊥. We then determine the discrepancy
between the required steering angle δ in simulation and in
the real-world.

Figure 4 compares the effective steering angles obtained in
simulations to measurements from real-world experiments
depending on the lateral acceleration a⊥. With increasing
a⊥, we observe an under steering behavior of the car which
is not covered by the model. Experimental validations of
the closed-loop behavior show that a threshold of 4 m/s2

achieves best performance for our setup. Note that this
threshold is imposed as nonlinear constraint in the OCP
formulation in (11g).
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Fig. 4. Influence of the lateral acceleration a⊥ on the
effective steering angle δ in simulation and real-world.
These results were obtained by tracking a circle of
constant radius R. We report the measured average
steering angle δ for a fixed lateral acceleration a⊥.
The results show an increasing discrepancy between
simulation and real-world for increasing a⊥ due to an
understeering behavior of the car.

3. PROBLEM FORMULATION AND SOLUTION

We formalize the general obstacle-free periodic time-
optimal racing problem that minimizes the lap time T as



min
x(·),u(·), T

T (11a)

s.t. x(0) = x(T ), (11b)

T ≥ 0, (11c)

ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (11d)

u ≤ u(t) ≤ u, t ∈ [0, T ], (11e)

n ≤ n(t) ≤ n, t ∈ [0, T ], (11f)

a⊥ ≤ a⊥(x(t)) ≤ a⊥, t ∈ [0, T ], (11g)

a‖ ≤ a‖(x(t)) ≤ a‖, t ∈ [0, T ], (11h)

where x = [s, n, α, v]
T

and u = [D, δ]
T

denote the race
car’s states and controls respectively and f is a model
of the race car’s dynamics. The controls are bounded
by u and u. The lateral displacement is limited by the
left and right track boundaries that are described by n
and n, respectively. Additionally, we bound the lateral
acceleration by a⊥ and a⊥ as well as the longitudinal
acceleration by a‖ and a‖.

3.1 Progress-Maximization NMPC Formulation

In order to approximate time-optimal behavior online,
we reformulate and discretiye the OCP stated in (11).
We propose a quadratic objective function that tracks a
reference sk,ref which is chosen to be slightly out of reach

sk,ref = s0 +
sN,ref

N
k, k = 0, . . . , N, (12)

where s0 is the current track progress of the car, k indicates
the step in the prediction horizon and N is the total
number of steps. This formulation allows us to utilize
efficient algorithms that use the generalized Gauss-Newton
method. By maximizing the progress on the track we
approximate time-optimal behavior. In each iteration, we
then solve the following nonlinear program (NLP):

min
x0,...,xN ,

u0,...,uN−1

N−1∑
k=0

∥∥xk − xk,ref

∥∥2
Q

+ ‖uk‖2R +
∥∥xN − xN,ref

∥∥2
QN

(13a)

s.t. x0 = xc, (13b)

xk+1 = F (xk,uk,∆t), k = 0, . . . , N − 1, (13c)

u ≤ uk ≤ u, k = 0, . . . , N − 1, (13d)

a⊥ ≤ a⊥(xk) ≤ a⊥, k = 0, . . . , N, (13e)

a‖ ≤ a‖(xk) ≤ a‖, k = 0, . . . , N, (13f)

D ≤ Dk ≤ D, k = 0, . . . , N, (13g)

δ ≤ δk ≤ δ, k = 0, . . . , N, (13h)

n(sk) ≤ nk ≤ n(sk), k = 0, . . . , N − 1, (13i)

where xc is the car’s current state and Q,R,QN � 0 are
positive definite weighting matrices. The constraints (13e)
and (13i) are softened using slack variables that are tied
to an L1 penalty term in the cost function to ensure
feasibility. To obtain smooth controls, we extend the state

vector to x = [s, n, α, v, D, δ]
T

and replace the controls

by u =
[
Ḋ, δ̇

]T
such that constraints (13g) and (13h) get

state bounds.

In constraint (11f) the upper and lower bound n and n are
constants. To account for obstacles placed on the track,
we make these bounds depended on sk (13i). Obstacles are
thus modeled as a reduction of the track width. Note that
we assume a supervisory control to allocate an obstacle to
the left or right boundary. We implement n(s) and n(s) as

piecewise cubic polynomials ηj with respect to the track
progress s

ηj(s) = pj,1s
3 + pj,2s

2 + pj,3s+ pj,4, j = 1, . . . ,M, (14)

where j indicates the section of the piecewise polynomial,
M the number of sections on the track and pj,i are the
respective coefficients. We compute the coefficients based
on four boundary conditions illustrated in Figure 5. Two
boundary conditions correspond to the track width wj and
wj at the beginning s and the end of the section s. Those
are adjusted according to the obstacles. Moreover, the first
derivative η′j(s) is zero at the transition of the polynomials

leading to a C2 continuous inequality condition.

sj

wj
sj

wj

Fig. 5. Obstacles are described as a reduction of the
track width. Therefore, the deformation of the
track boundary is formulated by piecewise cubic
polynomials.

4. RESULTS

In this section, we compare the results of the OCP
formulation in (13), both in simulation and the real-world.
We compare two scenarios, one related to obstacle-free
racing and one to static obstacle avoidance including a
stop-and-go maneuver.

4.1 Experimental Setup

The validation is conducted on the experimental setup
used by Verschueren et al. (2014) which is located at
the Department of Microsystems Engineering in Freiburg.
The experiments were conducted using Kyosho dNaNo
cars, which have rear wheel drive and use front wheel
steering. They can achieve a forward velocity of more than
3 m/s. Illustrated in Figure 1, the vehicle starts at position
s = 0 m and races clockwise. It first enters a chicane,
followed by a U-turn and a longer straight section. The
total length of the center line is 8.71 m.

The schematics of the experimental setup are presented
in Figure 6. The position of the vehicle is detected
with the RGB-camera XIMEA xiQ with 100 frames per
second. The vehicles position and heading are found by
image processing. Subsequently, the vehicles states x are
estimated by a Kalman filter. Because the closed-loop
system is affected by a considerably delay of approximately
80 ms, we compensate for it by forward prediction. The
control signals u are sent to the vehicle via a 2.4 GHz
remote control. The framework is embedded into the open-
source software ROS (Quigley et al., 2009) and operates
on a desktop computer with an Intel Xeon(R) E5-2687W
at 3.1 GHz running Ubuntu 18.04.

4.2 Implementation

In order to solve the NLP in (13) online, we use the optimal
control framework acados (Verschueren et al., 2019). We
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Fig. 6. Schematic of the race cars setup.

solve the NLP approximately using the well-known real-
time iteration (RTI) scheme with an sequential quadratic
programming (SQP) method (Diehl et al., 2002). The
resulting quadratic programs (QPs) are solved by HPIPM
which is based on BLASFEO (Frison et al., 2018). An
efficient partial condensing method is combined with an
explicit Runge-Kutta method of order 4.

We use a prediction horizon of 1 s and a sampling time of
20 ms. This results in 50 intervals with 100 controls and
300 states in total. Moreover, the piecewise polynomials in
(13i) introduce 512 parameters. We choose the reference
for the track progress sN to be 3 m. The weights are
selected as

Qk = diag ([0.1, 1e−8, 1e−8, 1e−8, 1e−3, 5e−3]) (15a)

Rk = diag ([1e−3, 5e−3]) (15b)

QN = diag ([5, 100, 1e−8, 1e−8, 1e−3, 5e−3]) . (15c)

4.3 Simulation

First, we present the simulation results in order to assess
the theoretical limits for the real-world setup.

We consider two scenarios: an obstacle-free scenario and
one with obstacles. The scenario with obstacles include a
slalom parcour from 0.5 m to 3.5 m during the chicane and
a temporary road blocking at the last straight line at 7.2 m
which is removed when the vehicle comes to a full stop. In
all scenarios, we consider a warm start of the vehicle.

The tracked path for both scenarios are presented in the
left column of Figure 1. The time-optimal path from
(11) in the obstacle-free scenario is illustrated by the
black dotted line. The time-optimal and the progress-
maximization solutions are almost identical with lap
times of 4.85 s and 5.02 s, respectively. In the scenario
with obstacles, the vehicle successfully drives through the
slalom parcour. Thereby, it has to slow down compared
to the obstacle-free scenario. It also comes to a full stop
in front of the road blocking and continues as soon as the
obstacle is removed.

The velocity v and the lateral acceleration a⊥ of the vehicle
for both scenarios are illustrated in Figure 7. The velocity
profile of the obstacle-free scenario is similar to the optimal
one. In the scenario with obstacles, the vehicle slows down
during the chicane. Afterwards, the velocity converges to
the obstacle-free scenario before coming to a full stop at
s = 7.2 m. The lateral acceleration a⊥ shows a bang-bang
behavior within the given constraints. In the scenario with
obstacles, the constraint is not active during the start-stop
maneuver and before entering the slalom parcour.

The average computation time for the NMPC is 12 ms
while the maximum during the test run is 15 ms such
that the sampling time of 20 ms is never missed. The
computation time does not depend on the chosen scenario
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]

obstacle-free with obstacles
time-optimal constraints
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⊥
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2
]

Fig. 7. Velocity and lateral acceleration profiles in
simulation: The proposed approach has a velocity and
lateral acceleration profile similar to the time-optimal
solution for the obstacle-free scenario. In the scenario
with obstacles, the vehicle slows down during the
slalom parcour (0.5 m to 3 m) and comes to a full stop
at 7.2 m.

as the OCP structure is does not change with added
obstacles and we use the RTI scheme.

4.4 Real-World Experiments

In this section, we discuss the results on the race car setup
and compare them to the solution achieved in simulation.

The driven paths for both scenarios are presented in the
right column of Figure 1. For the obstacle-free scenario,
the driven trajectory only slightly differs from the optimal
one. The achieved lap time is 6.5 s which results in an
average speed of 1.22 m/s. This is 1.91 s faster than the
lap time of (Verschueren et al., 2014) and corresponds to
a lap time reduction of 23.2 %. The largest offset from
the optimal curve occurs at s = 3 m. In this case, the car
approaches the curve too much on the inside. Moreover, an
understeering behavior of the vehicle can be observed when
the vehicle operates at the maximum lateral acceleration.
This confirms the investigations in Section 2.3. In the
scenario with obstacles, the vehicle successfully steers
through the slalom parcour and also completes the start-
stop maneuver. The most challenging situation is in the
curve at the top right corner in Figure 1. In this case, the
vehicle approaches the slalom at high speed and needs to
conduct a S-curve. As the vehicle gets close to the right
boundary, it nearly drives into an infeasible area.

Figure 8 presents a comparison of the velocity as well
as the lateral acceleration profile both in the obstacle-
free scenario (a) and the scenario with obstacles (b).
In both cases, the average velocity is a bit slower than
in simulation. Moreover, it can be seen that the lateral
acceleration is not at its handling limits on the longer
straight lines at s ≈ 3.5 m and s ≈ 7 m. Otherwise, the
lateral acceleration also usually operates at its minimum or
maximum in the real-world. In the scenario with obstacles,
the vehicle comes to a full stop close the simulated position
at s = 7.2 m.

5. CONCLUSION

In this paper, we illustrated how to implement a NMPC
control with a tracking formulation that achieves near
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Fig. 8. Velocity and lateral acceleration comparison of
simulation and real-world experiment for the obstacle-
free scenario (a) and the scenario with obstacles
(b). In general, the average speed on the real-
world setup is a bit slower. In the scenario with
obstacles, the vehicle comes to a full stop close to
the simulated position. Similar to the simulation,
the lateral acceleration a⊥ also shows a bang-bang
behavior in the real-world.

time-optimal results in simulation as well as in the real-
world. We used a singularity-free formulation that can
operate at low and high speeds and realize start-stop
maneuvers. The singularity-free prediction model which
only includes the forward dynamics enforces the model
assumptions by constraints. The implementation can be
found as part of the examples of acados on GitHub. Future
research will focus on a singularity-free compensation for
the model mismatch as the lateral acceleration increases
in order to operate closer to its handling limits.

ACKNOWLEDGEMENTS

The authors thank Robin Verschueren for his advice
and for setting up the race track. Further, the authors
acknowledge the fruitful discussions with Alexander Liniger
concerning the model identification.

REFERENCES
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