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Abstract— This work investigates the solution of Mixed-
Integer Optimal Control Problems (MIOCPs) for an existing
residential heating network. The network consists of several
buildings that are interconnected through a district heating
network and a biomethane combined heat and power (CHP)
plant. All buildings have access to decentralized heat generation,
in the form of solar thermal collectors on the rooftops of the
buildings. Buildings with surplus heat are intended to transfer
heat to buildings with heating demands in order to prevent
the activation of the CHP plant. Additional storage provide
further flexibility for storage and utilization of heat. Binary
variables represent the exchange relations between buildings
and the CHP plant. For this system, we solve an MIOCP in
two different ways. On the one hand, we keep the system
related nonlinearities and apply the Combinatorial Integral
Approximation (CIA) method to the arising Mixed-Integer
Nonlinear Program (MINLP). On the other hand, we apply a
linear reformulation yielding a Mixed-Integer Linear Program
(MILP), which we solve using a standard MILP solver. We show
that the MINLP approach has a computational advantage over
the MILP approach, while yielding only slightly worse results
in the single-digit percentage range for selected key figures.

I. INTRODUCTION

The building sector has a significant influence on the
achievement of national and international climate targets.
In Germany for example, emissions in this sector must
be reduced by 40 % by 2030 in order to achieve climate
targets [1]. Heating networks based on renewable energies
can achieve significant savings in energy consumption and
reductions in emissions compared to conventional heating
networks [2], [3]. In addition to increasing the energy effi-
ciency of buildings by, e.g. insulating walls and refurbishing
windows, smart operation of the heating network and its
components contribute to strengthening the benefits [4].

District heating networks often incorporate so-called
switched systems. Such systems are characterized by having
continuous-time dynamics and discrete switching events [5].
The operational optimization then leads to the formulation
of Mixed-Integer Optimal Control Problems (MIOCPs). In
order to solve MIOCPs we make use of direct methods as
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these are considered to be preferable to indirect methods [6].
For the case of MIOCPs this leads to Mixed-Integer Linear
Programs (MILPs) or Mixed-Integer Nonlinear Programs
(MINLPs), depending on the problem formulation.

A. Related Work

MINLPs are generally much more difficult to solve than
MILPs. However, the system dynamics may cause a non-
linear formulation, which then require to either solve a
resulting MINLP directly, or to transform it into an MILP.
A common nonlinearity for heating applications is, e.g. the
bilinear relationship between a temperature T and a mass
flow ṁ in energy balances.

To obtain linear approximations of such relations within
formulation of MILPs, e.g. the McCormick relaxation or
other (convex) transformation methods can be applied [7],
[8], [9]. Other approaches may avoid nonlinearities by appli-
cation of piece-wise linear approximations [10]. What unites
all these approaches is that the reformulation leads to a non-
negligible increase in the number of optimization variables
and constraints, which may offset the advantages of linear
functions [10].

Furthermore, application of such techniques for lineariza-
tion of the original MINLP may not always be applicable. In
such case, it is typically not favorable in an optimal control
setting to apply a general MINLP solver [6]. Instead, tailored
solution methods have been presented [6], [11] that facilitate
approximate solution of the original MINLP to obtain a fast,
however, possibly suboptimal solution to the problem.

Within this work, we solve a MIOCP for optimization
of the heat exchange in a residential heating network, once
using a MINLP formulation and once using a MILP for-
mulation of the problem. For obtaining a fast approximate
solution of the MINLP, we apply the Combinatorial Integral
Approximation (CIA) method [11]. The MILP formulation
is solved using a standard MILP solver. We show that the
MINLP approach has a computational advantage over the
MILP approach, while yielding only slightly worse results
regarding selected key figures.

B. Structure of the paper

The paper is organized as follows. The next section
introduces the residential heating network model, where we
state the system description and model setup. In Section III,
the optimal control problem formulation applied to our model
is explained in more detail, followed by descriptions of the
applied methods. Afterwards the results are shown in Section
IV and the paper is wrapped up with the conclusion.
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II. THE RESIDENTIAL HEATING NETWORK

A. System description and objective

The work is inspired by a real heating network located in
Freiburg, Germany [12]. A sketch of the network considered
within this paper is given in Fig. 1. The heating network
consists of several residential buildings with distributed heat
generation and storage facilities. Each building accommo-
dates several housing units and is equipped with solar ther-
mal collectors (STCs) for heat production on their rooftops.
The decentralized heat production varies, depending on the
size of the buildings and amount of housing units. The STC
yield may be used directly for self-consumption, to charge
the storage tank, or to be supplied to another household
within the network. The flexibility of households further
stems from the storage options. The total storage capacity
in the network exceeds the capacity of the pipe network.

The residential heating network can be controlled by a
central unit and operated in two modes. On the one hand,
we speak of the household heating network exchange mode
(HM), when the residential buildings transfer heat among
themselves. On the other hand, if the biomethane combined
heat and power (CHP) plant is in operation, we refer to it as
the district heating network mode (DM). Both modes, HM
and DM, use the same pipes for the heat transfer. Note that
the buildings are not able to feed heat into the grid without
another household receiving it (indicated by the arrows in
Fig. 1). As a limitation, both network modes cannot be
operated at the same time, i.e., if households collaboratively
exchange heat we say that the household heating network
is active and the heat distribution by the CHP plant is
turned off, and vice versa. The heating network furthermore
reacts slowly to changes, which is why there is a minimum
requirement for the quantity, or temperature difference, in
any heat exchange. What also prevents comparatively high
heat losses. The proposed MIOCP formulation should favor
the heat exchange between households and coverage via the
storages over a request for heat from the CHP plant.

Fig. 1. Sketch of the residential heating network.

Fig. 2. Scheme of the building installations. Adapted from [12].

B. Model description

In the following the model for the simulation of the
heating network consisting of Nh households (or buildings)
is described in more detail. The scheme of the building
installations is shown in Fig. 2. All buildings are equipped
in the same way and differ only in the numbers of heat
consumption Q̇load, STC sizes and storage sizes.

The time-varying parameters heat demand profile Q̇load

and mass flow rate ṁload for every household determine the
respective return temperature Tload,ret:

Tload,ret(t) = T1(t)− Q̇load(t)

ṁload(t)cp
. (1)

where cp denotes the specific heat capacity of water and T1
represents the upper storage temperature. In order to cover
the heat demand, it is necessary that the uppermost storage
layer T1 does not drop below a minimum temperature T1,min

at times when there is a heat demand (Q̇load(t) > 0).
Since the specific behavior of the collector cycle is dif-

ficult to model due to the fact that the internal controller
is unknown and cannot be influenced, the solar data is
calculated externally and enters the model as parameters.
This mainly concerns the solar yield Q̇sol and the mass flow
rate ṁsol, which depend, among other factors, on the ambient
temperature and solar irradiation. Both determine the STC
outlet temperature Tsol, depending on the lower storage and
STC inlet temperature T2.

Tsol(t) = T2(t) +
Q̇sol(t)

ṁsol(t)cp
. (2)

The water storage tanks are stratified storages consisting
of two storage layers (Ns = 2). The tanks are intended to
further enhance the self-sufficiency of the heating network
through the flexibility associated with storage options. The
temperature development of the two layers of the storage
tanks of household i, with water mass mi, is determined as
follows:
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dTi,1(t)

dt
=

1

micp

(
ṁload,i(t)cp

(
Ti,2(t)− Ti,1(t)

)
(3a)

+ ṁsol,i(t)cp
(
Tsol,i(t)− Ti,1(t)

)
(3b)

+ bdm,i(t)ṁdmcp
(
Tdm,set − Ti,1(t)

)
(3c)

+
∑

1≤j≤Nh
j 6=i

bhm,ij(t)ṁhmcp
(
Ti,2(t)− Ti,1(t)

)
(3d)

+
∑

1≤j≤Nh
j 6=i

bhm,ji(t)ṁhmcp
(
Tj,1(t)− Ti,1(t)

))
(3e)

dTi,2(t)

dt
=

1

micp

(
ṁload,i(t)cp

(
Tload,ret − Ti,2(t)

)
(4a)

+ ṁsol,icp
(
Ti,1(t)− Ti,2(t)

)
(4b)

+ bdm,i(t)ṁdmcp
(
Ti,1(t)− Ti,2(t)

)
(4c)

+
∑

1≤j≤Nh
j 6=i

bhm,ij(t)ṁhmcp
(
Tj,2(t)− Ti,2(t)

)
(4d)

+
∑

1≤j≤Nh
j 6=i

bhm,ji(t)ṁhmcp
(
Ti,1(t)− Ti,2(t)

))
(4e)

for i, j = 1, ..., Nh. The upper storage temperature Ti,1
is influenced by the mass flow rate and the temperature
difference of the upper and lower storage layer. The share
of STC generation is represented by (3b) and (4b). Line
(3c) refers to the obtained heat from the CHP plant. The
binary variable bdm indicates whether heat from the CHP
plant is obtained at a point in time (bdm(t) = 1) or not
(bdm(t) = 0). We furthermore assume that the CHP plant
provides heat at a constant temperature Tdm,set. Due to the
mixing of the storage tank, the temperature of the lower layer
changes according to (4c).

In addition to the CHP plant, buildings may also attempt
to meet heating demands through the preferred option in
the optimization via appropriate individual exchanges among
themselves. The binary variable bhm,ij determines whether
there is a heat flow from building i to building j (bhm,ij(t) =
1). All heat releases taking place from building i to one or
multiple buildings j and the return flows are summed up, cf.
(3d), (4d). The same holds for building i receiving heat from
one or multiple other buildings j, cf. (3e), (4e). The mass
flow rate between the buildings ṁhm and from the CHP plant
ṁdm are assumed to be constant. We note that the Ordinary
Differential Equation (ODE) is linear in states T and that we
only have binary controls. This leads to the special structure
of (9b) as shown later.

III. OPTIMAL CONTROL FORMULATION OF THE HEATING
NETWORK

In this section we formulate the MIOCP of the model
introduced in Section II, followed by the two approaches to
solve the optimization problem exploiting its special form.

A. Optimal control problem

The goal of the optimization is to minimize the requested
heat from the CHP plant. According to the problem defini-
tion, the CHP plant should be active only when the heat
demand of the buildings exceeds the stored amount and
generated heat. This could be achieved, for example, through
predetermined time slots, such as times when there is no
STC output. This would, however, restrict the optimization
to a greater extent, and we instead leave the decision of
the activation of the CHP plant to the solver. In order to
determine the activation of the CHP plant with only one
variable, we introduce an auxiliary binary variable bcp for
the on/off status of the CHP plant, making use of a so-called
big-M constraint:

Nh∑
i=1

bdm,i(t) ≤M · bcp(t). (5)

Otherwise, we would have to check every single binary
variable of each household for sourcing heat from the CHP
plant (bdm). This constraint results in the CHP plant being
on (bcp(t) = 1) if at least one building obtains heat from
the CHP plant, otherwise the CHP plant remains off and
accordingly bcp(t) = 0. The value of M is chosen large
enough so that bcp becomes 1 if the CHP plant must be
activated.

While we have fairly little constraints for activating the
CHP plant, there are several conceivable ways to restrict
activation for the household exchange. We may allow only
one transfer between two households at each point in time.
However, this is a very strong restriction and may lead to
an increased use of the CHP plant, which is not desirable.
Then again, we could impose no constraints at all and,
similarly to the CHP plant, allow all buildings to trade
with each other at any time when the household mode is
active. In real-life applications, this may not be desirable
either, especially when the two exchanging households are
not in close neighborhood and the heat exchange over longer
distances would lead to significant heat losses. This becomes
more relevant the larger the network is.

Within this work, we impose that the buildings can transfer
heat in multiple 1:1-relationships at a point in time.

Nh∑
i=1

bhm,ij(t) ≤ 1, j = 1, .., Nh, i 6= j. (6)

Moreover, we have to exclude via a constraint that two
buildings do not send heat quantities back and forth to each
other, since our model formulation would not prevent that.

bhm,ij(t) + bhm,ji(t) ≤ 1, i, j = 1, ..., Nh, i 6= j. (7)

Using the auxiliary binary variable bcp for the CHP plant
(5), we make sure that both the household mode (HM) and
the CHP plant (DM) are not operated at the same time:

bhm,ij(t) ≤ 1− bcp(t), i, j = 1, ..., Nh, i 6= j. (8)

Let x ∈ Rnx be the differential states of a nonlinear
system, u ∈ Rnu the continuous controls, b ∈ {0, 1}nb
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the binary controls, c ∈ Rnc time-varying parameters, and
s ∈ Rns a number of slack variables with nx, nu, nc, ns ∈ N.

The number of differential states for the residential
heating network depends on the number of buildings.
The model contains nx = Ns · Nh states, with Ns being
the number of storage layers and Nh the number of
households, i.e. for two storage layers (Ns = 2) and three
households (Nh = 3) we get nx = 6. We therefore have
for the state vector x> = [T1,1 T1,2 T2,1 T2,2 T3,1 T3,2].
The amount of decision variables solely depends on
the number of buildings. For the case of Nh = 3
households, we have a total of nb = 10 binary controls,
since every building has one variable for the CHP plant
(bdm,i(t)), two variables for the household exchange
possibilities, e.g. building 1 can transfer heat to building
2 and building 3, and the additional auxiliary variable
bcp. The decision variable vector is hence defined as b> =
[bcpbdm,1bdm,2bdm,3bhm,12bhm,13bhm,21bhm,23bhm,31bhm,32].
Note that the model consists of only binary
controls. The number of time-varying parameters is
nc = 4Nh, namely c> = [Q̇load,{1...Nh}, ṁload,{1...Nh},

Q̇sol,{1...Nh}, ṁsol,{1...Nh}]. Following the model description
and the listed constraints, we obtain the MIOCP for the
heating network as:

min
x(·),b(·),
s(·)

∫ tf

t0

(
c>b b(t) + c>s s(t)

)
dt (9a)

s.t. for t ∈ [t0, tf ] :

dx(t)

dt
= A0x(t) + E0c(t)

+

nb∑
i=1

bi(t)
(
Aix(t) + Eic(t)

)
,

(9b)

(5)− (8), (9c)
Tlb − s(t) ≤ x(t) ≤ Tub + s(t), (9d)
b(t) ∈ {0, 1}nb , (9e)
s(t) ≥ 0, (9f)
x(t0) = x̄0. (9g)

The objective minimizes the sum of all binary variables, as
well as the slack variables, both weighted by a corresponding
cost vector cb ∈ Rnb and cs ∈ Rns , with ns = nx. The
weighting vector cb is chosen to the extent that the activation
of the CHP plant is priced more highly than the household
exchange. The system dynamics introduced in equations (3)
and (4) can be expressed as a switched system, shown in
(9b). Equation (9c) refers to the conditional constraints (5)-
(8). Bounds on the states, augmented by slack variables, are
given by (9d). Equation (9e) represent the binary constraint,
while (9f) restricts the value of the slack variables to be
positive and (9g) determines the initial state.

For the solution of the above optimization problem, we
compare two methods exploiting the special form of the
system dynamics. Since problem (9) contains an infinite
number of values in the time horizon t ∈ [t0, tf ], the infinite-
dimensional MIOCP has to be discretized at some point

[13]. We use for both methods the direct multiple shooting
approach [14] incorporating a 2-step implicit Euler method.

B. Combinatorial Integral Approximation

In order to solve the MINLP arising from the discretiza-
tion, we make use of the so-called Combinatorial Integral
Approximation (CIA) method [6], [11]. The method, as
stated in [15], is summarized in Algorithm 1. The idea of
CIA is to solve discretized MIOCPs by decomposing the
original problem into a sequence of three subproblems. First,
a relaxed MINLP, where the binary variables are relaxed
(brel ∈ [0, 1]nb ) and thus a NLP (NLPrel) is solved. Using
the solution of NLPrel, the so-called CIA problem [11]
is solved to yield approximations of the binary controls
bbin ∈ {0, 1}nb . In the third step, the NLP is solved again
with the approximated binary controls fixed b = bbin, to
adjust the remaining optimization variables such as states,
continuous controls, and (if necessary) slack variables to the
obtained binary solution. Bounds for the rounding error are
supported by a theorem by Sager et al. [16]. With regard
to real-world applications and the use of model predictive
control, the slack variables have an even greater importance
as these can be used to soften the path constraints to ensure
a feasible solution [13].

Algorithm 1: CIA decomposition algorithm for so-
lution of MIOCPs

Input : Discretized MIOCP (MINLP), initial
guesses for x, u, b.

Output: Local optimal variables x∗, u∗, b∗, s∗ with
objective F ∗ = F (x∗, u∗, b∗, s∗).

1 Solve relaxed MINLP (NLPrel) → x, u, brel, F ;
2 Solve CIA problem for brel → bbin;
3 Solve MINLP with b = bbin fixed

(NLPbin)→ x, u, Fbin;
4 return (x∗, u∗, b∗, s∗, F ∗) = (x, u, bbin, Fbin);

In the problem formulation used in this work, only binary
controls are considered, so that only states and slack variables
are remaining as optimization variables in step 3. In this
special case, the final NLP solution step could also be
replaced by a numerical simulation of the ODE system (9b)
using the initial state x̄0 and the binary controls bbin.

The CIA problem (step 2) itself is a Mixed-Integer Linear
Program (MILP) and defined as:

min
bbin,θ

θ (10a)

s.t. for k = 0, ..., N − 1 :

θ ≥ ±
k∑
j=0

(brel,{j,i} − bbin,{j,i})

· (tj+1 − tj), i = 1, ..., nb,

(10b)

1 ≥
nb∑
i=1

bbin,{k,i}, (10c)

bbin,k ∈ {0, 1}nb . (10d)
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The main idea of CIA is to minimize the maximum
integrated difference θ between the relaxed brel and binary
controls bbin as defined by (10b). Constraint (10c) ensures
that at most one of the considered binary controls can be
active at a time. The CIA problem (10) can be solved, e.g.,
using standard MILP solvers or tailored Branch-and-Bound
(BnB) algorithms [11]. In this work, the Python module
pycombina [17] is used to solve CIA problems. For this
application, we solve multiple CIA problems, one for each
set of mutually exclusive binary variables. The NLPs are
implemented in CasADi v3.5.5 [18] using Python and solved
using Ipopt [19] with linear solver MA57 [20].

C. Discretized Linear Reformulation

As MINLPs are generally hard to solve, we have resorted
to an approximate solution, using the CIA method. Yet,
the results of the CIA method do not guarantee an optimal
solution. In order to exploit optimality and the use of linear
programs, we introduce a Discretized Linear Reformulation
(DLR) of the problem (9) in the following. This mainly
concerns the reformulation of the non-linearity of our model,
consisting of the product of a binary control b and a contin-
uous state x.

Assuming that we have nb binary controls bi, each dy-
namic system is linear in states x, and the overall set of
admissible states X is compact and nonempty. Then one
can introduce additional algebraic controls zi, such that an
equivalent system equation that is linear in zi with convex
constraints coupling zi and x is obtained [21]. We recall the
switched system formulation of the system dynamics:

dx(t)

dt
= A0x(t) + E0c(t)

+

nb∑
i=1

bi(t)
(
Aix(t) + Eic(t)

) (11)

with x ∈ X and X being a compact set. Defining the auxiliary
variables zi as:

zi(t) := bi(t)x(t), (12)

leads to the system equation being reformulated as:

dx(t)

dt
= A0x(t) + E0c(t)

+

nb∑
i=1

(
Aizi(t) + bi(t)Eic(t)

)
.

(13)

This then allows us to impose the following linear conditions
on the auxiliary variable z:

x(t)− zi(t) ∈
(
1− bi(t)

)
· X, (14a)

zi(t) ∈ bi(t) · X. (14b)

Using this reformulation approach and applying the im-
plicit Euler integration scheme with time step ∆t =

tf−t0
N

results in the following discretized linear problem formula-
tion:

min
x,z,
b,s

N−1∑
k=0

∆t(c>b bk + c>s sk) + c>s sN (15a)

s.t.

xk,1 = xk,0 +
∆t

2

(
A0xk,1 + E0ck

+

nb∑
i=1

(Aizk,i,0 + bk,iEick)
)
, k = 0, ..., N − 1,

xk+1,0 = xk,1 +
∆t

2

(
A0xk+1,0 + E0ck

+

nb∑
i=1

(Aizk,i,1 + bk,iEick)
)
, k = 0, ..., N − 1,

(15b)

(5)− (8), k = 0, ...N − 1, (15c)
Tlb − sk ≤ xk ≤ Tub + sk, k = 0, ..., N, (15d)
bk ∈ {0, 1}nb , k = 0, ..., N − 1, (15e)
sk ≥ 0, k = 0, ..., N, (15f)
(1− bk)Tlb ≤ xk − zk ≤ (1− bk)Tub,

k = 0, ..., N − 1,
(15g)

bkTlb ≤ zk ≤ bkTub, k = 0, ..., N − 1, (15h)
x0 = x̄0. (15i)

The DLR approach is also implemented in CasADi v3.5.5
[18] using Python. The MILP is solved using Gurobi 9.1.2
with default settings via CasADi [22]. All computations were
performed on an Intel(R) Core(TM) i5-10310U 1.70GHz
CPU and 16GB RAM running Ubuntu 20.04.

IV. COMPARISON OF RESULTS

In this section we present the solution of the MINLP using
the Combinatorial Integral Approximation method (CIA-
MINLP) and the solution of the MILP resulting from the
Discretized Linear Reformulation (DLR-MILP).

We tested both methods on a variety of heating network
configurations. This mainly includes the optimization for
different amount of buildings within the network. The heat
demands, storage sizes and solar yield are adapted depending
on the number of participants in the network. However, to
ensure comparability the only difference between the MINLP
and MILP is the reformulation of the nonlinearities. The
respective heat demands over the period of the optimization
horizon (24 hours) for Nh = 4 are shown in Fig. 3.

It is assumed that most buildings are mainly home to
households with their specific heat patterns of an early
summer day. This is indicated by the orange curve (Q̇load,2)
and the dashed red curve (Q̇load,4). The exemplary heating
demand of building 2 and 4 correspond to an average sized
household determined by the ambient temperature and hence
more likely to be higher during nighttimes and very low
during the day as shown in the graph. We furthermore assume
that there are some occasional facilities that require a rather
constant and permanent heat demand throughout the day
(Q̇load,1) and buildings that have more heat demand during
the day (Q̇load,3). Each optimization period is one day (24
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Fig. 3. Exemplary heat demand of actors of the residential heating network.

hours), starting at midnight, with N = 24 equidistant time
points and hence ∆t = 1 h.

The results for both methods are depicted in Fig. 4.
Two plots are presented for each building. The upper plots
show the temperature evolution in the hot water tank, while
the lower plots represent the values of the binary control
variables. The arrows in the legend regarding the binary
control variables indicate the direction of heat transfer, e.g.
b1→2 means that building 1 transfers heat to building 2,
while bdm means that the respective building draws heat
from the CHP plant. The results obtained using CIA are
shown as solid curves, and the dotted lines correspond to
the solution from the DLR approach. The figure shows that
both methods lead to identical system behavior, at least until
the seventh hour of the optimization. For both methods, all
buildings have to draw heat from the CHP plant starting
at the beginning of the horizon until 2 o’clock and again
another two hours after a short break with no heat exchange
of 1 hour duration. The first deviating behavior between the
two methods is, when building 2 supplies heat to building 3
from 7 to 8 o’clock for the CIA case, which is not done for
the DLR case. The different actions of the buildings can also
be seen in the clearly deviating temperature development of
building 4 starting at around 13 o’clock.

A comparison of key figures for both methods is recorded
in Table I. It is noticeable that for all scenarios the objective
value obtained by CIA is notably higher than the one from
DLR. This is easily explainable, though. Since the CIA
method has to exploit the purpose of slack variables, the
objective value is significantly higher due to the high pricing
of slack variables. The DLR-MILP on the other side does
not utilize any slack variables. However, further interesting
numbers are the computation time and the drawn heat from
the CHP plant (

∑Nh

i=1

∑N
k=1Qdm). For the computation time,

we can state that CIA has a clear advantage over DLR.
Please note, that we interrupt the Gurobi solver after a time
limit of 600 seconds and specify the calculated solution and
lower bound until then. It could be that the latest found
integer solution is already optimal, and the lower bound
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Fig. 4. Binary solution of CIA-MINLP (solid lines) and DLR-MILP (dotted
lines) for Nh = 4.

would further converge towards the upper bound. Regarding
the total drawn heat from the CHP plant, the CIA method
performs slightly worse. However, the difference is nearly
negligible with deviations of around 1 − 4 % (for up to
Nh = 5). The deviation of the computation time clearly
outweighs the marginal difference of the drawn heat.

Once the network size reaches six households, the DLR-
MILP approach struggles to find a feasible solution within
our set time limit of 600 seconds. This may be mainly caused
by the significant increase of the problem size compared
to the CIA-MINLP approach. While the number of states
nx has a linear relationship with the number of households
and storage layers, the number of binary variables increases
quadratically with every further household. The number of
z variables for the linear reformulation approach is even
expressible as a cubic function. Thus, the DLR-MILP gets
much larger with an increase of households. In numerical
terms, this means for the case of Nh = 5, or Nh = 6
households, an increase in the number of states from nx,5 =
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TABLE I
COMPARISON OF SELECTED KEY FIGURES

Objective value Computation time (s)
∑Nh

i=1

∑N
k=1 Qdm (kWh) maxk=1,...,Nsk (◦C)

Nh CIA-MINLP DLR-MILP Lower
Bound

CIA-MINLP DLR-MILP CIA-MINLP DLR-MILP CIA-MINLP DLR-MILP

2 1.15e+03 3.20e+02 3.20e+02 0.9 9.9 17.9 17.3 0.36 0.0
3 1.00e+03 3.60e+02 3.10e+02 1.6 600 21.6 21.0 0.45 0.0
4 1.17e+03 4.70e+02 2.10e+02 3.1 600 33.5 33.0 0.57 0.0
5 2.40e+03 5.70e+02 1.90e+02 9.2 600 43.9 42.5 0.40 0.0
6 1.70e+03 - 1.90e+02 11.1 600 54.0 - 0.52 -

10 to nx,6 = 12, an increase in the number of binary control
variables from nb,5 = 25 to nb,6 = 36 and an increase in the
number of z variables from nz,5 = 90 to nz,6 = 132.

V. CONCLUSION

Within this work we examined and compared the results of
two methods for optimal control of switched linear systems
applied to a residential heating network. Keeping the system-
related nonlinearities and solving the resulting MINLP via
the CIA method leads to slightly worse key figures, but a
shorter computation time compared to the DLR-MILP. We
showed that using the linear reformulation does not give a
real advantage for this application. The much higher compu-
tation time with only minimal better values is, especially with
regard to possible MPC applications a clear disadvantage.
The need of z variables and further constraints leads to an
increased problem size compared to CIA-MINLP and makes
it hard to find a feasible solution for networks of more than
five households within a reasonable time.

Future work could therefore include trying to speed up
the DLR-MILP. Providing feasible warm-starts and careful
tuning of solver settings may result in faster computation.
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