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Abstract—Flexible robots may overcome some of the in-
dustry’s major challenges, such as enabling intrinsically safe
human-robot collaboration and achieving a higher load-to-mass
ratio. However, controlling flexible robots is complicated due
to their complex dynamics, which include oscillatory behavior
and a high-dimensional state space. Nonlinear model predictive
control (NMPC) offers an effective means to control such robots,
but its extensive computational demands often limit its appli-
cation in real-time scenarios. To enable fast control of flexible
robots, we propose a framework for a safe approximation of
NMPC using imitation learning and a predictive safety filter.
Our framework significantly reduces computation time while
incurring a slight loss in performance. Compared to NMPC,
our framework shows more than a eightfold improvement
in computation time when controlling a three-dimensional
flexible robot arm in simulation, all while guaranteeing safety
constraints. Notably, our approach outperforms conventional
reinforcement learning methods. The development of fast and
safe approximate NMPC holds the potential to accelerate the
adoption of flexible robots in industry.

I. INTRODUCTION

In recent years flexible robots have been drawing more at-
tention as they might hold the key to the industry’s significant
problems. These problems include increasing the load-to-
mass ratio and making robots intrinsically safer to facilitate
human-robot collaboration. The main reason why flexible
robots have yet to be adopted is the flexibility that causes
oscillations and static deflections, complicating modeling and
control.

Modeling flexible robots is challenging as they have an in-
finite number of degree of freedom (DOF) and are governed
by nonlinear partial differential equations (PDE). Discretiza-
tion converts PDE into ordinary differential equations (ODE),
making them suitable for control and trajectory planning.
There are three main methods for discretizing a flexible link:
the assumed mode method (AMM) [1], [2], the finite element
method (FEM) [3], [4] and the lumped parameter method
(LPM) [5], [6], [7], [8]. All the methods generally assume
small deformations and use the linear theory of elasticity.
The FEM is the most accurate among the three but results
in a higher number of differential equations. The AMM is
often used for one DOF flexible robots; for robots with higher
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DOF, the choice of boundary conditions becomes nontrivial
[9]. The LPM is the simplest among all, but tuning the
parameters of such models takes much work. In this paper,
we leverage the LPM following a formulation defined in
[10], where the method is called the modified rigid FEM
(MRFEM). Section describes the method in detail.

Many control methods have been proposed for controlling
flexible robots, including optimal control methods. Green et
al. [2] applied LQR for trajectory tracking control of a two-
link flexible robot using linearized dynamics. [11] and [12]
used MPC to control a single-link flexible robot and four-link
flexible mechanisms, respectively. In both cases, the authors
linearized the dynamics and used linear MPC, highlighting
the challenge of designing fast NMPC for robots with the
high dimensional dynamics.

To make NMPC available for a broader range of systems,
recently there have been attempts to approximate NMPC
with neural networks (NN) [13]. [14] proposed using su-
pervised learning to approximate robust NMPC, while [15]
proposed a policy search method guided by NMPC without
safety considerations. To ensure that the approximate NMPC
provides safe inputs (that does not violate constraints), [14]
leveraged a statistical validation technique to obtain safety
guarantees. The authors reported that the validation process
is time-consuming. In general, approximating NMPC with
NN fits under the umbrella of imitation learning (IL). [16]
discusses various methods for ensuring the safety of learning
methods. One particular approach to guarantee the safety of a
learned policy is the safety filter (SF) [17]: an NMPC scheme
that receives a candidate input and verifies if it can drive the
system to a safe terminal set after applying the candidate
input. If the answer is positive, the input is applied to the
system; otherwise, it is modified as little as possible to ensure
safety. [18] successfully used SF for a multi-agent drone
setup that was trained with reinforcement learning (RL). To
the best of the authors knowledge, this paper is the first
that investigates whether IL combined with SF can replace
NMPC for safe regulation control of flexible robots. We
show that our particular implementation successfully lowers
computation time of the controller, filters unsafe controls
while operating close to the expert’s performance. In par-
ticular our contributions are: (i) efficient NMPC formulation
for controlling flexible robots; (ii) a framework for safely
approximating NMPC for flexible robots; (iii) simulation
experiments with a baseline RL algorithms.

The paper is organized as follows: Section [II| outlines the
proposed framework, Section [[T]] describes the setup, Section
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Fig. 1: Pipeline for safely approximating NMPC policy by combining imitation learning and a safety filter.

details NMPC and safety filter formulations, as well
as training of IL methods. Section [V] presents simulation
experiments and discusses the results. Finally, in Section [VI}
we make concluding remarks.

II. SAFE APPROXIMATE NMPC

Let x € R™, u € R™ and z € R™= denote the state,
control inputs, and controlled output of a flexible robot.
Furthermore, let the dynamics be defined in state-space form
as

z = f(z,u); )

Our focus lies in addressing the output regulation problem:
steering a robot from an initial rest state xy to a goal
state ™! that corresponds to the output z™f = h(x™f).
Additionally, the controller must respect the constraints of
the robot such as velocity and input/torque constraints as
well as avoid obstacles. This task can be solved by an NMPC
which maps the current state into a control action which
we denote as wxmpc (). However, flexible robots with high
dimensional state-space and highly nonlinear dynamics, pose
substantial challenges to executing NMPC in real-time. This
leads to the main question of our paper:

z = h(x).

How can we approximate the NMPC policy mwyypc(x) for
controlling flexible robots that simultaneously reduces the
computational burden and ensures safety?

In pursuit of a solution, we propose a framework, as
illustrated in Fig. [I] that aims to achieve both objectives.
The approach involves two steps. Initially, it approximates
7nmpc () using a NN through imitation learning, thereby
yielding 7N (). Subsequently, during operational runtime,
our approach filters the output of the learned policy unn
using a safety filter wsg(w), which either accepts or modifies
unN based on predefined safety criteria. The following
subsections describe the fundamental components of the
framework.

A. Nonlinear model predictive control

NMPC is a model-based method that leverages nonlinear
optimization solvers to determine a sequence of control
actions for achieving a specific task, such as regulation.
Typically, NMPC is initially formulated in continuous time,
after which it is discretized and represented as a nonlinear
program (NLP) [19]. Various techniques are available for
translating NMPC into an NLP, and this paper adopts the

direct multiple shooting approach [20], where the decision
variables are both states and control actions. A general NLP
for regulating a flexible robot can be expressed as follows:

= 2 2
D e — 27 o + flui — w5 o)
i=0

minimize
+V(zn)
subject to
():<I>(a:k+1,ack,uk), kiO,...,N*l, (2b)
0 < h(xy), k=0,...,N, (2¢)
ro =%, up €U, k=0,...,N—1, (2d)
T € X, k=0,...,N, (2e)
xy e XS, (2)

In this formulation, N represents the prediction hori-
zon, X [€g,...,xzy] € RwWxV+D and U
[wg,...,un_1] € R™*N are the decision variables for
the state and control, respectively. Additionally, X C R"»
and Y C R™ define the feasible state and control sets.
The cost function (2a) penalizes deviations from the desired
output and control actions, employing squared weighted L?
norms with the weighting matrices @ and R, respectively.
Furthermore, the cost function incorporates a terminal cost,
V(xn), which approximates the cost from N to infinity.

The constraints consist of the discretized nonlinear dynam-
ics of the robot (2b), path constraints like obstacle and self-
collision avoidance (2¢c]), and control and state constraints
as given in equations and (2¢)), respectively. Finally,
a positive invariant safe set X C R"™ is often used
to obtain recursive feasibility. NMPC solves a parametric
NLP iteratively based on the current state & and utilizes
a dedicated solver, such as [21], to compute the optimal
solution. Subsequently, the first control input ug is applied
to the system

B. Imitation learning

The aim of IL is to approximate the NMPC policy mxmpc
(), also referred as the expert policy, by a NN using a dataset
of expert demonstrations D {(unmpc.is 4, 80) 1Y,
where s represents relevant environmental parameters, such
as obstacle representation. Behavioral Cloning (BC) [22] is
a simple IL method that approximates the expert policy by
solving a supervised regression problem on D. However, BC



is limited as it can occasionally make mistakes, causing it
to venture into areas of the state space not covered in D.
This results in unpredictable behavior and poor performance.
The DAgger algorithm [23] addresses the limitations of BC.
It collects additional expert demonstrations Dy, While the
robot interacts with the environment under the state distribu-
tion induced by the learned policy. In other words, DAgger
learns from the expert to correct for the approximation errors
accumulated by the learned policy.

In contrast to IL and DAgger, there exists a family of
methods known as Inverse Reinforcement Learning (IRL).
These methods aim to learn the reward function r of the
expert from the dataset D and train a policy based on this
learned reward function r. Although IRL methods can lead
to more robust policies, they are often challenging to train
due to their adversarial nature. In the Section [V] we train
and compare several IL methods designed to approximate
the expert policy mnmpc(z) for regulating flexible robots.

C. Safety filter

The safety filter [17], when applied, ensures the safety
of learned policies and is formulated in a manner nearly
equivalent to but much cheaper computationally. How-
ever, it employs a simpler model, potentially with a lower-
dimensional state space, and has a cost

f/SF(UO) = [luo — uNNHRsF &)

that penalizes the mismatch between the first control input
of the NLP and a potentially unsafe control input unn
proposed by a learned policy that approximates mmpc ().
In this sense, the safety filter can be viewed as an implicit
representation of the safe set. Section [V| elaborates further
on the safety filter employed in this study.

III. SETUP

The simulation setup is a three DOF serial manipulator,
as shown in Fig. ] which was inspired by flexible robots
TUDOR [24] and ELLA [7]. In this setup, the first link
(which is a rotational degree of freedom around Zj) is rigid,
while the second and third links share identical dimensions
and material properties, and they are flexible. It is assumed
that the joints are rigid and directly actuated, meaning
that there are no gearboxes in the actuators. The available
measurements include the positions and velocities of the
actuated joints, as well as the position of the end effector
(EE) to monitor elastic deflections.

A. Modeling

To model the robot, we employ MRFEM [10], which fol-
lows a two-step process. First, it divides the flexible links into
Nseg Segments and lumps their spring and damping properties
at one point (primary division). Then, MRFEM isolates so-
called rigid finite elements (rfes) between massless passive
elastic joints (secondary division), as shown in the Fig.
[2l Mechanics textbooks contain ready-to-use formulas for
computing inertial properties of the rfes, and spring and
damper coefficients for simple geometries. However, for

Fig. 2: Schematic representation of the setup and of the discretiza-
tion method.

more complex geometries, the use of CAD software becomes
necessary.

To derive the equations of motion of a flexible manipulator
using the Lagrange method [25, Ch. 7], we denote the vector
of joint angles ¢ = [ga; qp], where g, € R3 represents the
active joint angles, and q, € R*"== represents the passive
joint angles. Passive joints are typically implemented as
spherical joints to represent compliance in all directions (two
bending deformations and a torsional deformation). However,
in some cases, such as our setup, compliance predominantly
occurs in one direction. In such instances, it is advantageous
to simplify the model by only considering flexibility along
the most compliant direction. In our setup, we model bending
about axes Z; and Zj, as shown in Fig. 2] Applying the
Lagrange method yields the final expression for the flexible
manipulator dynamics discretized using MRFEM

M(q)G+C(q.q9)qd + Kqg+ Dq+g(q) = Bt, (4)

where n,, = 1 + 2(Ngeg + 1); M € R™>X™® s the
symmetric inertia matrix; K € R™ > and D € R™b X"
are the constant diagonal stiffness and damping matrices,
respectively; C' € R™»*™ g the matrix of centrifugal and
Coriolis forces, g € R™ is the vector of gravitational forces,
B € R™»*3 jg the constant control jacobian and 7 € R?
is the torque vector. The model is converted to state-space
form by defining « := [g;¢] and w := T

T = f(x,u, neeg) (5)
= [¢; M(q)"'{BT —Cl(q,4)d — Kq— Dq—g(q)}].

The output map of the system is Y = [¢a; Gu; Pee] Where pee
is the EE position.

B. Simulation and discretization

Roboticists favor MRFEM because existing efficient tools
for rigid-body dynamics can be reused: the articulated body
algorithm (ABA) for forward dynamics and the recursive
Newton-Euler algorithm (RNEA) for the inverse dynamics
[26]. In this paper, we use ABA for the forward dynamics and
the forward path of the RNEA for the forward kinematics,
both generated by Pinocchio [27] as CasADi [28] functions.

As ODE (@) is stiff, commonly used explicit fixed-step
integrators in optimal control, e.g. 4th order Runge-Kutta
integrator, quickly diverge. Implicit integrators, although
more computationally intensive, offer accurate integration
of (B). In this paper, for simulation, we use the backward



differentiation formula as implemented in CVODES [29]
with specified absolute and relative tolerances. As ground
truth dynamics, we consider the model with ng., = 10.

C. Flexible robot environment

Our investigation necessitates an environment for training
IL algorithms to approximate 7nyvpc. We developed a
custom Gym Environment that incorporates the ground truth
dynamics of the flexible robot, as specified in the previous
subsection. In addition to the robot, this environment features
a wall, which serves both to mimic an industrial setting
(where constraints like these are commonly encountered) and
to represent a safety-critical constraint along with the ground.
Both, the wall and the ground constraint form the feasible set
F(o) in the shape of a wedge, i.e., a convex set that results
from the intersection of two half spaces. This feasible set
can be written as

Flo) = {pe R3

wx—;vrall(p - bwall) > -0 (6)
wg—,!;ound (p - bground) > —0 ’

where ¢ > 0 can be a slack parameter that is used for
numerical robustness in optimization algorithms and which
is zero in the optimal solution. Hyperplane parameters for
the wall are defined by wy.y = [0 1 0]7 and by =
[0 —0.15 0.5]" and for the ground by Werouna = [0 0 1]7
and bgyouna = [0 0 0], respectively.

Given that the value of ng, may vary between the
control model and the simulation model, and considering
the presence of simulated measurement noise, we equipped
the environment with a state estimator, specifically a discrete-
time Extended Kalman Filter (EKF). It infers the states of the
control model from the outputs y of the simulation model.
The EKF leverages the flexible robot model and utilizes
automatic differentiation, which is available in CasADi, to
linearize the model. In summary, the observation o provided
by the environment consists of the estimated state &, the cur-
rent and goal positions of the end-effector pe. and Pee, goals
respectively, as well as the hyperplane representation of the
wall, denoted by w and b.

IV. IMPLEMENTATION

This section details NMPC and safety filter formulations of
the proposed framework, and discusses the model discretiza-
tion sufficient for those components. In addition, the section
compares different IL. methods for approximating NMPC.

A. Expert NMPC

In addition to the generic NMPC of Sec. we define
the controlled output of the robot as algebraic variables Z =
[20,-..,2n] € R®*N which is the Cartesian coordinates
of the EE 2z := pe.(z) € R3. The cost function penalizes
the deviation from the EE reference 2! = pi¢f(z), and as
an regularization, also the reference state 2" and reference
torque u"f using an L? norm. Given the EE position,
the reference states and and controls are approximately
computed via the inverse kinematics of a low dimensional
approximation of the robot.

To discretize the continuous time system dynamics, a four-
stage implicit Runge—Kutta method with a sampling time
At ms was employed, resulting in the equality constraints
0 = ®(xpy1,xk, ug). Upper w and lower uw bounds on
controls (torques), the upper " and lower * bounds on
states (joint angles and velocities) were formulated as box
constraints. Safety critical bounds were formulated for the
EE and elbow positions by pee(x) € F(0°°) and pep(x) €
F(o°™) (6) using the slack variables ¢ € R and o°!* €
R. To avoid constraint violation due to noisy measurements
and the model mismatch, we performed a simple heuristic-
based constraint tightening via slack variables. In particular,
based on the knowledge about the measurement noise, we
assumed a safety margin §, € R* for the state constraints
T =T" — 6, x = " + 6., and dee and Sgboy for the
output and elbow constraints, respectively. The tightening of
the output and elbow constraints are implemented by setting
bounds on the slack variables 0°® and o°!"°%, respectively.

State and obstacle constraints were formulated using slack
variables ¥ = [o0,...,on]" € R¥>N with o}, =
[0 o ofP"]T € R3, which were penalized in the
cost function by L'- and squared L2-norms (by weights
s € R3 and S € R3*3, respectively). The matrix A =
[0 ee dembow] ® 11x v, which repeats the vector [0 dee derbow]
for NV times, was used to formulate the slack bounds con-
cisely.

Since the optimization problem was formulated for a finite
horizon, a simple safe terminal set was used to guarantee
recursive feasibility. A safe set of zero angular velocities
was chosen and formulated with the matrix H that selects
the angular velocity states ¢ = Hx of the state vector =
and written as S* = {x € R"=|Hx = 0}. Notably, the
constraints on the positions were already formulated for each
stage, thus do not need to be included in the terminal safe
set. With the estimated state &, the final nonlinear program
reads as

minimize L(X,U,Z,3) (7a)
X, U, Z.%

subject to

o = &, T +A>0, xy €S (7b)
0= F(xpi1,Tr, ug), k=0,....N—1, (7¢)
2k = [Pee(®) T, Petbow () ']T, kE=0,...,N, (7d)
xz—of <z, <T+of, k=0,...,N, (7e)
u < up <, k=0,....,.N—1, (7f)
Pee(x) € F(0°%), k=0,...,N, (7g)
Pelbow () € F(a°PO), k=0,...,N (7h)

where the objective function is

N-1
LX.U 2.2 =Y [Jax— |, + |lux — |, +
k=0

2 = 2|2+ ol + ol + [ — 25, +

lzw = 2[5, + lowlls + ol . ®)



Tlseg dg, /dée tge/tée {MPC/EK/IPC tﬁ%xc/t;\n/[;xé :
3 1.008 0.955 1.653 1.589
5 1.026 0.974 2.95 2.940

TABLE I: Performance comparison of NMPC controllers with
different models. Evaluation metrics are measured relative to the
NMPC with nseg = 2, denoted with superscript *.

with Q@ = diag(q) € R"*"= R = diag(r) € R"*"u
and P = diag(p) € R™=*"= being stage cost weighting
matrices; and Qn € R"=*"= and Py € R"*"= being
terminal cost weighting matrices. For solving (7), we used
the real-time NMPC solver acados [21] with the high
performance QP solver HPIPM [30]. The parameters of the
NMPC are provided in the projects repository.

To analyze the influence of the model fidelity, i.e., the
number of segments, on the controller performance, we
compared the NMPC for ng, = {0,1,2,3,5,10}. The
performance was evaluated by measuring the computation
time t\pc, the time ¢g, that NMPC needed to steer the EE
into an epsilon ball Hz(t) - zrefH < € around the reference
position 2! (¢ = 1073 in our case) and the distance

dg, = mdin | z(t) — szH <d st.t>3s. (9
For {0,1} segments, the solver did not converge and for
ten segments, the computation time was unacceptably long.
As shown in Tab. [l the average mean computation time
tmpc and the maximum computation time MbC increase
drastically with the number of segments. However, the
performance measured in terms of g, and dg, does not
significantly improve. Therefore, we selected ng, = 3 as
a compromise between performance and computation time
for for further use with IL algorithms.

B. Safety filter

As briefly mentioned in Section safety filter can be
interpreted as an implicit formulation of the safe set, which
is closely related to the formulation of an NMPC. How-
ever, since the safety filter is used only for projecting NN
control actions into a safe set, the model it uses can be
simpler, faster to integrate and the prediction horizon shorter.
The proposed safety filter policy mgp : R™* x R"» — R"
projects the NN output unny € R™* to a safe control ugy =
7sr(TsE, unn) € Usp € R™ by using the same formula-
tion as in (7), but with modified cost Lgr, a lower fidelity
model zgp i1 = Pgr(xsr,q, usr,;) with just one segment
and a shorter horizon.The safety filter cost function

Lsp(Xsr, Usr, Xgr) =

Nsp—1
luo —wnnlle + D llunllpg, +
P 5 (10a)
Nsr 9 )
f
Z Ha)k -z ||QSF + ||Uk||SSF + Ho’k”LSsF ’
k=0

mainly penalizes the deviation from the proposed control
unN, besides other terms that are used for regularization
and numerical robustness.
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Fig. 3: The distribution of the final distance-to-goal of IL and RL
algorithms on 100 test tasks.

C. Imitation learning

To approximate NMPC, we compared BC [22], DAgger
[23] and three IRL methods: GAIL [31] and AIRL [32],
and a two-step IRL method. GAIL and AIRL both employ
adversarial approaches to jointly learn the reward function
and the policy. The two-step IRL method first learns the
reward function using kernel density estimation on the expert
demonstrations, similar to the approach in [33], then, uses
learned reward function to train a SAC agent agent.

For training, a dataset D of 100 expert demonstrations
were collected using NMPC. All algorithms were trained for
2M steps. DAgger additionally collected 500 more demon-
strations during its training phase. Every 5000 gradient step,
the algorithms were evaluated using three rollouts in order
to save the checkpoint with the highest reward. These check-
points were then used for final evaluations and experiments
that are presented in the Section Key hyperparameters
employed during training are provided in project repository
on GitHukﬂ due to space constraints.

For comparing IL algorithms, 100 regulation tasks were
randomly generated by randomly sampling initial robot con-
figurations and final end-effector positions in a workspace of
the robot. Fig. {] reveals that DAgger by far outperforms all
the other algorithms. Based on these results, in the further
experiments we use DAgger for approximating NMPC.

V. SIMULATION EXPERIMENTS

To test the proposed approach, we conducted three dif-
ferent simulation experiments. The first experiment tested
the ability of the policies to accomplish the regulation task:
reach randomly sampled EE goal position from a randomly
sampled initial configuration of the robot. The second ex-
periment tested safety of the policies by randomly sampling
the goal position near the obstacle, the wall. The third and
final experiment tested the robustness of the policies to the
model uncertainty — reduction in the stiffness parameters
of the flexible robot by 10%, in particular the K matrix
in @ For evaluation, we considered metrics such as the
final distance to the goal at the end of each episode/rollout,
policy evaluation time (inference time), and the number of
constraint violations during an episode.

A. Reinforcement learning baseline

As a model-free RL baselines, we trained SAC [34] and
PPO [35] as strong representatives of offline and online RL

https://github.com/shamilmamedov/flexible_arm
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Fig. 4: The distribution of final distance-to-goal of IL and RL
algorithms on 100 test tasks with and without safety filter

algorithms, respectively. Controlling the flexible robot by
means of RL is not the main focus of this paper; thus, we
did not engineer the reward function r. Moreover, reward
engineering is difficult in practice and can lead to unintended
consequences [36]. Instead, we simply used the Euclidean
distance between the robot’s EE and the target EE positions:
7 = —At||Pec — Pee,goal ||2. Both algorithms were trained for
2M gradient steps. When tested on 100 regulation tasks, the
SAC considerably outperformed the PPO, as shown in the
Fig. 4 therefore, in further experiments only SAC was used.

B. Results

Closed loop performance: Fig. [ reveals that NMPC
outperforms all the learning-based algorithms in the output
regulation of the flexible robot. Introducing the safety filter
significantly decreases the performance of the SAC. One
explanation could be the aggressive policy of the SAC, which
gets substantially filtered by the more conservative SF to fit
within the safe control and state sets. Since DAgger was
trained on 7nmpc (&) demonstrations that fall within the
control and state safety sets, its proposed action distribution
is similar to that of NMPC. Consequently, the SF modifies
the candidate input from DAgger less, resulting in less
performance loss compared to SAC.

Safety evaluation: Both the DAgger and SAC algorithms
violate critical safety constraints, such as the wall and the
ground, as shown in Fig. [5] Importantly, both algorithms
operate without explicit awareness of these constraints. RL
agents gain knowledge of constraints through a scalar reward
function. Since we do not penalize SAC for breaching the
constraints, it is more prone to violations. DAgger, on the
other hand, implicitly acquires knowledge of constraints
from the trajectories of the expert. Through imitation of
7nmpce (€), DAgger manages to violate constraints less fre-
quently. The introduction of SF significantly reduces con-
straint violations, albeit at the cost of decreased performance
and increased computation time. SF, however, does not en-
tirely eliminate all constraint violations by SAC, suggesting
that when combined with SAC, SF should adopt an even
more conservative approach. Regarding computation time,
our proposed framework achieves an eightfold reduction in
evaluation/computation time compared to NMPC.

Robustness analysis: Before discussing the results of this
experiments, it iss worth pointing out that none of the poli-
cies were explicitly trained for robustness. All of them used
the nominal model for generating demonstrations D and for
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Fig. 5: Final distance-to-goal vs constraint violation. Links of
the high flexibility model have 10% reduction in their Young’s
modulus. The marker colors are defined by the inference time
(policy evaluation time).

interaction. That said, Fig. [5] shows that changes in stiffness
parameters affect both performance and constraint violation
frequency. Despite model-plant mismatch, the performance
of the expert NMPC remains consistent, but it does violate
constraints a few times. Surprisingly, the performance of
SAC and SAC combined with SF marginally increases. Simi-
larly, the performance of the proposed framework marginally
improves. Constraint violations by DAgger double because
the trajectories used for training are not valid on the modified
robot.

VI. CONCLUSIONS

This work presents a framework for safely approximating
NMPC for regulating flexible robots. This framework com-
bines imitation learning, specifically DAgger, which approx-
imates NMPC using a neural network (NN) to significantly
reduce the high computation time of NMPC, and a safety
filter (SF), formulated as fast and simple NMPC, to ensure
obstacle avoidance and constraint satisfaction. We conducted
experiments to test the proposed framework using a three
degree of freedom flexible manipulator in simulation. Our
results demonstrate that DAgger combined with the SF
can yield a fast and safe controller. Compared to NMPC,
DAgger+SF achieves a remarkable eightfold improvement
in computation time. However, this efficiency in policy
evaluation comes at a cost in terms of reduced perfor-
mance. Nonetheless, our framework outperforms conven-
tional reinforcement learning algorithms like SAC, and even
SAC combined with SF. When applied to a more flexible
robot, DAgger+SF achieves similar performance levels. The
proposed approach can be extended to trajectory tracking
problems involving flexible robots and control challenges in
soft robotics.
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