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Abstract— This paper introduces an extension to the well-
known Real Time Iteration (RTI) for Nonlinear Model Pre-
dictive Control (NMPC). We combine algorithmic ideas of
the RTI, Advanced Step Controller and Multi-Level Iteration
(MLI) framework and get thereby a family of new algorithms
that allow one to trade control performance for computational
efficiency in a flexible way. The main idea is to improve
the linearization point for a new iteration by making cheap
iterations with a new initial parameter prediction. We derive a
general contraction estimate for the new algorithm and show
that this approach yields closer tracking of the optimal solution
manifold and results in better control performance. The efficacy
of our approach is shown on a nontrivial numerical example.

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is becoming
more and more a standard tool in academia and industry
[21]. It enables one to incorporate nonlinear dynamics and
constraints directly into an Optimal Control Problem (OCP).
When using NMPC to control a system, one has to solve on-
line a series of parametric OCPs with different initial states.
In each of these OCPs the latest information about the system
state is incorporated. Solving optimization problems online is
in general a computationally intensive task. However, recent
progress both in software [23] and numerical algorithms [15],
[17], [19] made it possible to achieve computation times in
the range of milli- and micro-second timescales for various
kinds of applications.

Since feedback delays can largely degrade control per-
formance, in many online algorithms the computations are
divided into an expensive and long preparation phase, where
calculations can be performed without the knowledge of the
current measurement, and a short feedback phase [9]. In
the feedback phase just a few calculations are performed
to take into account the new measurement, such that the
feedback delay can be reduced. Examples of such algorithms
are the C/GMRES algorithm [18], the Sequential Quadratic
Programming (SQP)-based Real Time Iteration [8], the Multi
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Level Iteration (MLI) [4] and the interior-point-based Ad-
vanced Step Controller (ASC) by Zavala and Biegler [30].

In online optimization it is usually easy to achieve recur-
sive feasibility between two subsequent optimization prob-
lems with nominal system dynamics. However, ensuring
recursive optimality is a more challenging task [21]. Since in
online optimization the feedback has typically to be delivered
at a fixed rate, in practice there is usually enough time to
perform few additional calculations in the preparation phase,
which should be used to ensure also recursive optimality in
the nominal case.

A. Contributions and Outline

This paper presents a new variant of the Real Time
Iteration, which we denote as the Advanced Step Real Time
Iteration (AS-RTI). The main idea is to do inexact Newton
steps or only predictor steps on an advanced problem to
improve the linearization point for the next Real Time
Iteration. An advanced problem is an OCP with a predicted
initial value, based on the last control input and the last actual
measurement. Instead of doing simple post iterations, i.e.
further iterations with the fixed old state estimate, we do a
few cheap iterations as in the MLI [4], but on the advanced
problem as in the Advanced Step Controller [30]. This
allows us to combine the benefits of both approaches and
thereby one can assemble a large number of different NMPC
schemes. The benefits of this simple idea are formalized in
Theorem 6 and further explained in the discussion thereafter.

In Section II, we introduce the NMPC problem and
algorithm class we aim to tackle. This is followed by a
brief presentation of the RTI, MLI and the Advanced Step
Controller in Section III, which serve as building blocks for
our new algorithm. In Section IV, we present the AS-RTI and
variants of it and describe the algorithmic features in detail,
followed by Section V, where we prove a general contraction
estimate for the new family of algorithms. In Section VI, we
show the efficacy of our approach on a nontrivial numerical
example where we show better performance compared to the
standard RTI using the same sampling time.

II. NONLINEAR MODEL PREDICTIVE CONTROL AND
CONTINUATION METHODS

In this paper, we will consider the following discrete time
OCP, which can e.g be obtained with the Direct Multiple
Shooting parameterization [5] of a continuous time OCP:



min
u0,...,uN−1
x0,..xN

N−1∑
i=0

li(xi, ui) + lN (xN ) (1a)

s.t. x0 − ξ = 0, (1b)
xi+1 − f(xi, ui) = 0, i = 0, . . . , N − 1, (1c)
h(xi, ui) ≥ 0, i = 0, . . . , N − 1, (1d)
r(xN ) ≥ 0. (1e)

Here, N is the horizon length, the optimization variables are
xi ∈ Rnx , ui ∈ Rnu , and the objective function contributions
li : Rnx × Rnu → R and lN : Rnx → R. The function
f : Rnx × Rnu → Rnx is the state transition map which is
usually obtained by numerical integration. The two functions
h : Rnx × Rnu → Rnh and r : Rnx → Rnr define the
inequality constraints. The vector ξ denotes the initial value
for the state vector. We assume all functions to be at least
two times continuously differentiable.

When using NMPC, we solve the OCP (1) at every
sampling time with a new ξ and use the optimal solution
ū0(ξ) to control the process. This Nonlinear Program (NLP)
can be written in the following compact form:

min
w

φ(w) (2a)

s.t. b(w) + Λξ = 0, (2b)
c(w) ≥ 0, (2c)

where Λ = [−I, 0, . . . ]T is a suitable matrix that embeds
the parameter ξ linearly and w collects all state and control
variables:

w = [xT
0, u

T
0, x

T
1, u

T
1, . . . , x

T
N−1, u

T
N−1, x

T
N ]T ∈ Rnw ,

with nw = (N +1) ·nx+N ·nu. The function b(w) collects
the equality constraints (1b) and (1c), while φ(w) represents
the cost function, and c(w) collects the inequality constraints
(1d) and (1e). The Lagrangian of the NLP (2) reads as

L(w, λ, µ) = φ(w)− λTb(w)− λTΛξ − µTc(w), (3)

where λ ∈ R(N+1)·nx and µ ∈ RN ·nh+nr denote the vectors
containing the Lagrange multipliers.

A. Newton-type Optimization

The NLP (2) can be solved to local optimality with
standard NLP algorithms [16]. Although other approaches
exist [16], in this paper, we will focus on SQP. Assuming
we start with a primal-dual guess (w0, λ0, µ0) close enough
to the solution, a full SQP step is performed as

wk+1 = wk + ∆wk, λk+1 = λkQP, µ
k+1 = µkQP, (4)

where (∆wk, λkQP, µ
k
QP) corresponds to the primal-dual solu-

tion of the Quadratic Program (QP)

min
∆w

1

2
∆wTAk∆w + akT∆w (5a)

s.t. Bk∆w + b(wk) + Λξ = 0, (5b)

Ck∆w + c(wk) ≥ 0, (5c)

where Ak ∈ Rnw ×Rnw is a symmetric matrix representing
the exact Hessian of the Lagrangian (3) or an approximation
of it at the current iterate (wk, λk, µk), ak = ∇wφ(wk) is
the gradient of the cost function and Bk and Ck are the
Jacobians of the constraints b(·) and c(·) at the current iterate
wk.

B. Predictor-Corrector Path-Following Methods

We will consider the parametric NLP (2) and for notational
convenience and simplicity of exposition, assume that we
do not have inequality constraints. The Karush-Kuhn-Tucker
(KKT) [16] conditions of this problem can be written in
compact form as

F (z, ξ) = F̂ (z) + Cξ = 0, (6)

where z := [wT, λT]T ∈ Rnz collects its primal-dual
variables, F̂ : Rnz → Rnz collects the KKT conditions
for the equality constrained NLP and C ∈ Rnz×nz is an
appropriate matrix that embeds the parameter ξ. We assume
F (z, ξ) for a given ξ to be at least once continuously
differentiable. A solution for a given parameter ξ will be
denoted as z̄(ξ). A full exact Newton step for this problem
reads as [16]

zk+1 = zk −
[∂F
∂z

(zk, ξ)
]−1

(F̂ (zk) + Cξ). (7)

Following the presentation in [22], if the parameter ξ enters
F linearly, which can be always achieved via an interme-
diate variable [8], one step of the path-following predictor-
corrector method reads as

zk+1 =zk −
[∂F
∂z

(zk, ξk)
]−1

(F̂ (zk) + Cξk)

+
[∂F
∂z

(zk, ξk)
]−1

C(ξk+1 − ξk)

=zk −
[∂F
∂z

(zk, ξk)
]−1

(F̂ (zk) + Cξk+1),

(8)

where zk+1 ≈ z̄(ξk+1) is now an approximate solution
for the new parameter value ξk+1, given zk ≈ z̄(ξk).
This corresponds to a standard Newton step with the new
parameter ξk+1. Note that if we keep the parameter fixed,
i.e. ξk+1 = ξk, the last equation reduces to a standard full
Newton step (7), often referred to as corrector step, and if
zk = z̄(ξk) holds, then equation (8) reduces to

zk+1 = zk −
[∂F
∂z

(zk, ξk)
]−1

C(ξk+1 − ξk), (9)

which is denoted as a predictor step, i.e. a first-order approx-
imation of z̄(ξk+1) where the sensitivities can be obtained
via the implicit function theorem. Therefore, equation (8)
has both predictive and corrective capabilities. In practice,
instead of the exact Jacobian J(zk) := ∂F

∂z (zk, ξk) and
its factorization, one often uses a Jacobian approximation
Mk ≈ J(zk) and thereby we get a Newton-type step

zk+1 = zk −M−1
k (F̂ (zk) + Cξk+1). (10)

If we consider the inequality constraints in (2), the map z̄(ξ)
is not smooth, but the solution manifold has smooth parts



where the active set does not change and nondifferentiable
points whenever the active set changes [14]. Furthermore, a
generalized tangential predictor can be obtained by solving
the QP (5). Such a predictor is a piecewise affine one, i.e.
the QP can ”jump” over active set changes, for more details
see [6], [22].

III. ALGORITHMIC INGREDIENTS

In this section we review the three algorithmic approaches
that are the basis for the new algorithm presented in the
subsequent section.

A. Standard Real Time Iteration

An algorithm based on the predictor-corrector method in
the SQP framework is the Real Time Iteration (RTI) intro-
duced in [8]. The RTI does not distinguish between OCPs
with different parameters ξ and iterates while the problem
changes. Only one full SQP iteration is done per sampling
time, so that the algorithm never iterates to convergence for
a fixed value of ξ, which ensures that it always works with
the most recent state estimate and does not loose time by
working on outdated information. Stability and convergence
for a stable active set have been proven in [7], [10].

In general, the value of the current state ξ will not be equal
to the optimization variable x0, but, since (1b) is linear in
x0, the constraint is satisfied after the first full Newton step.
The idea to linearly embed the initial value into the NLP
is known as Initial Value Embedding (IVE) [6]. Moreover,
in the RTI framework, each SQP iteration is divided into
a long preparation phase and a short feedback phase. This
reordering of the computations does not create any additional
overhead per iteration. In those two phases the following
calculations are performed.

Preparation Phase: Functions and derivatives are evalu-
ated at the available linearization point zk = (wk, λk, µk).
Sometimes the linearization point for a new iterate is adapted,
e.g. with a shifting strategy [9]. Since the new measurement
ξ enters the OCP linearly, the Hessian of the Lagrangian Ak,
the gradient of the cost function ak and the Jacobians of the
constraints Bk and Ck do not depend on ξ, hence they can
be evaluated before a new measurement is available.

Feedback Phase: When the current state of the system ξ
is available, the possibly condensed QP (5) is solved and the
new control input uk+1

0 = uk0 + ∆uk0 can be passed to the
process. Thereby, the feedback delay is reduced to solving a
single QP. A single RTI is summarized in Algorithm 1.

B. Multi-Level Iteration

In [4], an extension of the RTI, the Multi-Level Iteration
has been introduced. The main idea is to update the matrices
and vectors of the QP (5) at different time scales since
different calculations have different computational loads. The
modes or levels of the MLI can be run in parallel and
the levels can exchange information in various ways, see
e.g. [25]. The feedback rate is determined by the fastest
level. We will briefly explain the version presented in [4],
further extensions can be found in [17], [25]. For the lowest

Algorithm 1: SINGLE REAL TIME ITERATION

Input: Last iterate zk

Output: New iterate zk+1

Preparation Phase:
1 Postprocess and possibly adapt the last iterate by
shifting

2 Evaluate all functions and derivatives at zk

3 Possibly condense the QP (5)
Feedback Phase:
4 Embed current state estimate ξ into the QP (5)
5 Solve QP, compute next iterate zk+1 via (4) and
send first control uk+1

0 to the process

level, denoted as level A, we assume that a reference QP
(5) with fixed Â, â, B̂, b̂, Ĉ and ĉ is given. The iterations
start from a reference solution (ŵ, λ̂, µ̂), where the reference
QP is provided by higher levels of the MLI. The goal of
the lowest level of the MLI is to provide feedback as fast
as possible and to take at least the active set changes into
account. All matrices and vectors of the reference QP are
held unchanged, only a new initial value ξ is embedded and
the feedback û0 +∆uk0 is sent to the process. In a predictor-
corrector setting this level has just a predictor part and is
equivalent to linear Model Predictive Control (MPC) [6].
In combination with higher levels of the MLI scheme, the
reference QP changes and level A can be interpreted as an
adaptive linear MPC [4], see also [13]. Level B changes the
vectors of the QP (5) b̂, ĉ, i.e. new function evaluations are
performed, and â is updated in an approximate fashion, see
[4]. These iterations converge to a suboptimal, but feasible
solution of the original NLP (2). Local stability properties
of such an approximate policy are proven in [26] and [27].
Moreover, due to the fact that the linearization point is kept
unchanged, an efficient algebraic elimination that can speed
up integration, condensing and QP solution can be used [27].
Level C iterations are based on an adjoint SQP algorithm [4],
where in contrast to level B, ak is calculated as

ak = ∇wL(wk, λk, µk) + B̂Tλk + ĈTµk. (11)

Here, the Jacobians of the constraints do not need to be
evaluated, ∇wL(wk, λk, µk) can be computed efficiently
with the reverse mode of automatic differentiation with a
cost approximately five times higher than for the evaluation
of (3) [12]. Level C iterations can be shown to converge to
optimal solutions of the original problem [4]. Finally, the
level D iterations are the standard RTI. Various extension of
level C and D iterations and other extensions to MLI are
discussed in [17].

C. The Advanced Step Controller

When using the RTI or MLI approach, one might need
to sacrifice optimality to achieve fast feedback. In order to
avoid the possible convergence issues of a predictor-corrector
algorithm performing just one iteration and to avoid subop-
timal solutions, in the Advanced Step Controller [30] a more



conservative approach is taken. For each new measurement ξ
the NLP (2) is solved to convergence using an Interior-Point
algorithm. Obviously, this is computationally more expen-
sive, but yields an accurate locally optimal solution. In order
to take the feedback delay into account, this online algorithm
solves an advanced problem in the preparation phase with a
predicted state ξ̃ as initial value. Furthermore, the solution is
not applied directly to the process, but an additional linear
system solve based on the last Newton iteration’s matrix
factorization is performed in the feedback phase to get a
tangential predictor to correct for the mismatch between
the predicted ξ̃ and actual measurement ξ. While such a
tangential predictor can not ”jump” over active set changes
solving a linear system is often cheaper than solving a QP.
Furthermore, the scheme relies on having an accurate model
to predict the state at the next sampling time.

IV. THE ADVANCED STEP REAL TIME ITERATION

One could also apply the same strategy to an RTI and get
what we call an Advanced Step Real Time Iteration (AS-
RTI). Thereby, an advanced problem would be solved in
the preparation phase with an SQP method, and afterwards,
for the delay compensation, an extra QP is solved to get a
generalized tangential predictor to compensate the mismatch
between the predicted and actual measurement. Obviously,
this approach is computationally more expensive than the
standard RTI, but it alleviates the possible convergence issues
and suboptimality of solutions and delivers a predictor that
can ”jump” over active set changes. However, solving the ad-
vanced problem to convergence increases the computational
burden of the preparation phase significantly.

Instead of doing so, we propose to use some of the levels
of the MLI to iterate on the advanced problem to get an
improved guess z̃k+1. The aim of the new algorithm is to
combine the benefits of both paradigms explained above. The
MLI scheme contains all the ingredients one needs to refine
a solution while still keeping the computational burden low.

The limiting cases would be: (a) doing just one level A
iteration in the preparation phase, and (b) the full convergent
SQP as explained above. In between there is a wide family of
possible algorithms as we can now assemble the preparation
phase in a different fashion. This approach is summarized in
Algorithm 2.

In practice, we will usually extend the preparation phase
with a few adjoint SQP iterations, since they are compu-
tationally cheap, they yield optimality improvement and no
new matrix factorizations are needed while solving the QP
[4]. It is reasonable to assume that, if ξ̃k+1 is close to
ξk+1, we might have fewer active set changes between the
corresponding parametric NLPs. Hence, with AS-RTI we
determine the active set of the advanced problem, so QP
solvers that can be warm-started as qpOASES [11] or first
order methods as OSQP [2] will have a better initial guess
and the feedback delay is reduced.

In the following, we will briefly analyze the simplest case
of Algorithm 2, namely performing just another QP solve
(level A iteration) with respect to the standard RTI. With the

Algorithm 2: Single Advanced Step Real Time
Iteration

Algorithm 2a: Preparation Phase
Input: zk, ξk, uk0 , all data for the QP at iteration k
Output: New iterate guess z̃k+1

1 Predict ξ̃k+1 with ξ̃k+1 = f(ξk, uk0).
2 Predict (and possibly refine/correct) optimal
solution z̃k+1 for predicted state ξ̃k+1 by iterating
with some mode of the MLI on an advanced
problem corresponding to ξ̃k+1

3 Evaluate all functions and derivatives at z̃k+1

needed for the QP (5)
4 Possibly condense the QP
Feedback Phase:
Algorithm 2b: Feedback Phase
Input: Solution guess z̃k+1, ξk+1

Output: New iterate zk+1, uk+1
0 , all data for the QP

solved at iteration k + 1
5 Embed current state estimate ξk+1 into the QP (5)
6 Solve QP, compute next iterate zk+1 via (4) and
send first control uk+1

0 to the process

next lemma we investigate this simplest variant of the AS-
RTI and show that, for a perfect prediction of the parameter,
the RTI and this AS-RTI variant have the same linearization
points, but still the AS-RTI achieves better tracking of the
solution manifold. Of course, a perfect prediction will never
be available in practice, but we want to show that the
reordering of calculations brings us closer to the solution
manifold. To simplify the analysis, we assume a stable active
set.

Lemma 1: Assuming a single level A iteration at line 2
of Algorithm 2a and a perfect prediction of the parameter ξ,
Algorithms 1 and 2 have the same linearization points.
Proof. A perfect prediction means ξ̃k = ξk, for all k ≥ 0. Let
z̃k be the linearization point at iteration k, then the output of
the feedback phase of the AS-RTI obtained via a predictor-
corrector iteration (8) reads as

zk =z̃k −
[∂F
∂z

(z̃k, ξk)
]−1

(F̂ (z̃k) + Cξk)

−
[∂F
∂z

(z̃k, ξk)
]−1

C(ξ̃k − ξk)

=z̃k −
[∂F
∂z

(z̃k, ξk)
]−1

(F̂ (z̃k) + Cξk),

(12)

i.e. we have just the corrector step since the prediction is
perfect. At the next iteration (k+1), in the preparation phase
of Algorithm 2 we have the linearization point prediction
(line 2) using (9)

z̃k+1 = zk −
[∂F
∂z

(z̃k, ξk)
]−1

C(ξ̃k+1 − ξk)

(12)
= z̃k −

[∂F
∂z

(z̃k, ξk)
]−1

(F̂ (z̃k) + C(ξk + ξ̃k+1 − ξk))

= z̃k −
[∂F
∂z

(z̃k, ξk)
]−1

(F̂ (z̃k) + Cξk+1),
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Fig. 1. Illustration of the results of Lemma 1. On the top left one can see
the iterates, linearization points, outputs and tangential predictors of the RTI
scheme, and on the top right of the AS-RTI with an extra QP solve in the
preparation phase. One can see that, in the case of a perfect prediction, both
schemes ”visit” the same linearization points, but have different outputs for
the corresponding parameters ξ. Furthermore, the AS-RTI is closer to the
solution manifold. Note that in this case we have only a prediction of the
optimal solution z̃k+1 at line 2 of Algorithm 2a, since just one QP solve
is performed. Bottom right shows the AS-RTI without a perfect prediction.
In this case the the RTI scheme (bottom left) does not ”visit” the same
linearization points as the AS-RTI (bottom right). One can see that the new
linearization point is on the same tangent as the output of the previous
iteration.

which is a standard RTI. Using induction, this holds for for
all k ≥ 0.
The ”advanced step” nature of the algorithm is also illus-
trated in Figure 1. Note that in this variant of the AS-RTI
two QPs are solved per sampling time.

V. CONTRACTION ESTIMATE

In this section we want to estimate the contraction between
two subsequent iterations of a more general AS-RTI. First,
we restate some standard assumptions and a theorem from
[28], [22], without proof, which we will use to derive the
contraction estimate for the AS-RTI.

Assumption 1: (ω and κ conditions) There exist ω < ∞
and κ < 1 such that, for any given iterate zk and iteration
matrix Mk, the following holds:

1) ‖M−1
k (J(zk)− J(z))‖ ≤ ω‖zk − z‖, ∀z,

2) ‖M−1
k (J(zk)−Mk)‖ ≤ κ.

Let κ and ω be the infimum of all possible constants for
which the above inequalities hold.

Remark 1: Note that, if we use exact Jacobians (Mk =
J(zk)), then κ = 0.

Assumption 2: (Lipschitz continuity) There exists a con-
stant σ such that, for every solution z̄k and z̄k+1 associated
with the parameters ξk and ξk+1, respectively, the following
holds:

‖z̄k+1 − z̄k‖ ≤ σ‖ξk+1 − ξk‖.

Theorem 2: [28] Regard a nonlinear differentiable func-
tion F : Rn → Rn. Let Assumptions 1 and 2 hold. Then, for
the sequence of iterates (zk)k≥0 generated via the Newton-
type predictor-corrector update (10), the following inequality

holds:

‖ek+1‖ ≤
(
κ+ ωσ‖ξk+1 − ξk‖+

ω

2
‖ek‖

)
‖ek‖

+
(
κσ +

ωσ2

2
‖ξk+1 − ξk‖

)
‖ξk+1 − ξk‖,

(13)

where ek+1 := zk+1 − z̄k+1 and ek := zk − z̄k.
Assumption 3: (Initialization) For all algorithms in this

paper we will assume the following: at an initial point z0

and a solution z̄0 the following inequality holds

‖z0 − z̄0‖ ≤ rz < r̄z := 2(1− κ)/ω. (14)
We define the following constants: c1 := ωσ, c2 := ω

2 , c3 :=

κσ, c4 := ωσ2

2 .
Corollary 3: Let Assumptions 1, 2 and 3 hold. Then, for

any k ≥ 0, for the iterates generated via (10), the following
holds:

‖zk+1 − z̄k+1‖ ≤ rz (15)

provided that ‖ξk+1 − ξk‖ ≤ rξ, where

rξ :=

{√
(c3+rzc1)2+4c4(1−κ−c2rz)rz−(c3+rzc1)

2c4
if c4 > 0,

(1−κ−c2rz)rz
c3+rzc1

if c4 = 0.

(16)
Proof. The proof is omitted here for brevity, but follows
similar lines as the proof of Corollary 3.6 in [22].
From now on, the second index denotes what we call an inner
iteration, i.e. the Newton-type iterations (10) where we keep
the parameter ξk fixed (e.g. at line 2 of Algorithm 2a if we
refine the predicted solution). For instance, a Newton-type
step reads as zk,j+1 = zk,j − M−1

k,j (F̂ (zk,j) + Cξk). For
notational convenience let ek+1,j := zk+1,j − z̄k+1. Fixing
the parameter ξ, the well-known Newton-type contraction
estimate proven e.g. in [3] holds.

Corollary 4: Let Assumptions 1 and 3 hold and let the
parameter ξ be fixed. Then, the Newton-type iterations (10)
converge to z̄k and the following contraction estimate holds:

‖ek,j+1‖ ≤
(
κ+

ω

2
‖ek,j‖

)
‖ek,j‖. (17)

Proof. Fixing ξk in (10), (17) follows from (13).
Denote αk,j = κ + ω

2 ‖e
k,j‖ (αk,0 < 1 due to (14)), where

j ≥ 0 is the iteration index for a fixed parameter. Similarly,
we define ẽk,j := z̃k,j − z̄(ξ̃k) and α̃k,j = κ+ ω

2 ‖ẽ
k,j‖.

Lemma 5: Let Assumptions 1 and 3 hold. For the Newton-
type iterations (10) with a fixed parameter ξk, the following
inequality holds:

‖ek,j‖ ≤ (αk,0)
j‖ek,0‖, (18)

where j ≥ 0 is the number of iterations.
Proof. Starting from (17), at the first iteration, we have that

αk,1 = κ+
ω

2
‖ek,1‖

(17)
≤ κ+

ω

2
αk,0︸︷︷︸
<1

‖ek,0‖ < κ+
ω

2
‖ek,0‖︸ ︷︷ ︸

=αk,0

.

Applying this recursively for j ≥ 1 and using inequality
(17) we obtain inequality (18).



Assumption 4: (Predicted parameter) In all iterations of
Algorithm 2 we make a parameter prediction ξ̃k+1 such that,
the following holds

‖ξk+1 − ξ̃k+1‖ ≤ rξ. (19)
The assumption above ensures that we make a reason-
ably good parameter prediction, such that the result from
Corollary 3 can be used. The following theorem gives the
general contraction estimate for two subsequent iterations
of Algorithm 2 with Newton-type iterations at line 2 of
Algorithm 2a.

Theorem 6: Let Assumptions 1, 2, 3 and 4 hold. Fur-
thermore, assume that we make j ≥ 0 inner Newton-type
iterations for a parameter prediction ξ̃k+1 in the preparation
phase of AS-RTI. Then, for the sequence of iterates (zk)k≥0,
the following holds:

‖ek+1‖ ≤ (α̃k+1,0)
j[
βk‖ek‖+ γk‖ξ̃k+1 − ξk‖

]
+ δk‖ξk+1 − ξ̃k+1‖,

(20)

where we have defined the positive constants β̂k, βk, γk, δk,
respectively, as

β̂k := κ+ c1‖ξk+1 − ξ̃k+1‖+ c2(α̃k+1,0)
j‖ẽk+1,0‖, (21)

βk := β̂k
(
κ+ c1‖ξ̃k+1 − ξk‖+ c2‖ek‖

)
, (22)

γk := β̂k
(
c3 + c4‖ξ̃k+1 − ξk‖

)
, (23)

and

δk := c3 + c4‖ξk+1 − ξ̃k+1‖. (24)
Proof. Under the assumptions of the theorem, the contrac-
tion from Theorem 2 holds between any two iterates. In
Algorithm 2, we start from zk and, from the first predictor-
corrector iteration and for the prediction ξ̃k+1 , we have, due
to (13):

‖ẽk+1,0‖ ≤
(
κ+ c1‖ξ̃k+1 − ξk‖+ c2‖ek‖

)
‖ek‖

+
(
c3 + c4‖ξ̃k+1 − ξk‖

)
‖ξ̃k+1 − ξk‖,

(25)

Now, due to (18) in Lemma 5, for all inner iterations, i.e.
for j ≥ 0, we have the following relation:

‖ẽk+1,j‖ ≤ (α̃k+1,0)
j‖ẽk+1,0‖, (26)

and, due to our assumption that (19) holds and Corollary 3,
we have α̃k,j < 1, ∀j ≥ 0,∀k ≥ 0. In the feedback phase
of Algorithm 2, we have one more predictor-corrector step,
now for the true parameter ξk+1. Hence, due to (13), the
following holds:

‖ek+1‖ ≤
(
κ+ c1‖ξk+1 − ξ̃k+1‖+ c2‖ẽk+1,j‖

)
‖ẽk+1,j‖

+
(
c3 + c4‖ξk+1 − ξ̃k+1‖

)︸ ︷︷ ︸
(24)
= δk

‖ξk+1 − ξ̃k+1‖.

Plugging the estimate for ‖ẽk+1,j‖ from (26) into the last
equation one gets

‖ek+1‖ ≤
(
κ+ c1‖ξk+1 − ξ̃k+1‖+ c2(α̃k+1,0)

j‖ẽk+1,0‖
)︸ ︷︷ ︸

(21)
= β̂k

· (α̃k+1,0)
j‖ẽk+1,0‖+ δk‖ξk+1 − ξ̃k+1‖.
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Fig. 2. Comparison of errors of the RTI and AS-RTI on a simple parametric
problem for a simple pendulum model, see Exercise 8.10 in [21].

Now, if we replace ‖ẽk+1,0‖ with its estimate (25), we obtain

‖ek+1‖ ≤ (α̃k+1,0)
j
β̂k ·

[(
κ+ c1‖ξ̃k+1 − ξk‖+ c2‖ek‖

)
· ‖ek‖+

(
c3 + c4‖ξ̃k+1 − ξk‖

)
‖ξ̃k+1 − ξk‖

]
+ δk‖ξk+1 − ξ̃k+1‖.

(27)

Due to the definitions of βk in (22) and γk in (23) the
contraction estimate (20) follows from (27).
We see from the results of the last theorem that the distance
of the new iterate zk+1 to the solution manifold depends on:
(a) the quality of our parameter prediction, (b) how close we
were to the solution in the previous iterate, (c) the number of
inner iterations in the preparation phase and (d) the distance
between two subsequent parameters. Furthermore, the quality
of the derivatives has an effect on the inner iterations since
with smaller κ the term αjk,0 will shrink faster. For instance,
with more inner iterations the first two terms in (20) will
become very small, and depending on the quality of our
parameter prediction and Jacobian approximation, the third
term might be small as well, which means that we can
track the optimal solution manifold closely. In the limiting
case with perfect predictions and j → ∞, we have ideal
NMPC. This is also illustrated in Figure 2. The figure shows
the errors of different AS-RTI schemes applied to a simple
parametric example from [21].

VI. NUMERICAL EXPERIMENTS

As a benchmark, we consider the swing-up of an inverted
pendulum, considered e.g. in [28], which is described by the
differential equations

ṗ
v̇

θ̇
ω̇

 =


v

−ml sin(θ)ω2+mg cos(θ) sin(θ)+F
M+m−m(cos(θ))2

ω
−ml cos(θ) sin(θ)ω2+F cos(θ)+(M+m)g sin(θ)

l(M+m−m(cos(θ))2)

 .



We consider an OCP of the form (1). The discretized dynam-
ics f(·) is obtained by applying multiple shooting and the
explicit Runge-Kutta scheme of order four with fixed step-
size and one integration step. A prediction horizon T = 2
[s] is used and the trajectories are discretized using N = 60
multiple shooting intervals. Simple bounds are imposed on
the control input:

−10 ≤ ui ≤ 10, i = 0, . . . , N − 1.

The cost function for i = 0, . . . , N − 1 reads as

li(xi, ui) =

[
xi − xref
ui − uref

]T [
Q 0
0 R

] [
xi − xref
ui − uref

]
and the terminal cost as

lN (xN ) = (xN − xref)
TQ(xN − xref),

with Q = diag([1, 0.01, 0.002, 0.002]) and R = 0.001.
Finally, the following time-varying reference is used:

xref(t) =

{
[0, π, 0, 0, 0]T, t < 1s,

[0, 0, 0, 0, 0]T, t ≥ 1s.

We compare our algorithm with ideal NMPC which we
obtain via a fully converged solution at every sampling
instant using IPOPT [24] and its interface in CasADi [1]
in MATLAB. The RTI and AS-RTI are implemented in
MATLAB using the ACADO standalone integrators [20] and
qpOASES [11] using its acados interface [23]. A Gauss-
Newton Hessian approximation is used.

Furthermore, we apply a disturbance to the system be-
tween time t1 = 6.0 [s] and t2 = 6.2 [s] by replacing the
optimal input u0 with the perturbed input u0 + 8. Figure 3
depicts the RTI and AS-RTI compared to ideal NMPC. In
this scenario, with the AS-RTI, we make in the preparation
phase 3 adjoint SQP (level C) inner iterations. Comparing the
figures one can see that with little additional computational
effort in the preparation phase of the AS-RTI we get closer
to ideal NMPC, which confirms the results of Theorem 6
and good performance of our algorithm.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a new family of algo-
rithms for NMPC combining the ideas of the Real-Time
Iteration [8], Multi-Level Iteration [4] and the Advanced
Step Controller [30]. We proved in Theorem 6 contraction of
the new algorithms under standard assumptions. A nontrivial
numerical example confirms our theoretical results and it
shows that, with few and cheap additional iterations, we can
get significantly closer to ideal NMPC behavior.

We proved our results under the assumption that the
active set does not change. However, for a more general
analysis, it would be reasonable to extend the results using
the techniques from [22], [29] and generalized equations
to generalize the results of Theorem 6 in the presence of
active set changes. Next, it would be interesting to investigate
theoretically and numerically the influence of suboptimality
iterations, such as level B, which improve feasibility, but not
optimality, on the overall performance of Algorithm 2.
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Fig. 3. Comparison of the closed-loop trajectories of the inverted pendulum
example for controls generated with the RTI, AS-RTI and ideal NMPC.
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