
Numerical Methods for
Optimal Control of Nonsmooth
Dynamical Systems

q

v

=

t

Armin Nurkanović

November 30, 2023

University of Freiburg, Faculty of Engineering
Department of Microsystems Engineering
Systems Control and Optimization Laboratory

Numerical Methods for Optimal Control of
Nonsmooth Dynamical Systems

Armin NURKANOVIĆ

Dean: Prof. Dr. Frank Balle

Examination committee:

First reviewer: Prof. Dr. Moritz Diehl
Second reviewer: Dr. Bernard Brogliato
Observer: Prof. Dr. Lars Pastewka
Chair of committee: Prof. Dr. Oliver Paul

Dissertation zur Erlangung des Doktor-
grades der Technischen Fakultät der
Albert-Ludwigs-Universität Freiburg
im Breisgau

November 30, 2023

© 2023 University of Freiburg – Faculty of Engineering
Self-published, Armin Nurkanović, Georges-Köhler-Allee 102, 79110 Freiburg in Br. (Germany)

Alle Rechte vorbehalten. Alle Inhalte dieses Werkes, insbesondere Texte, Fotografien und Grafiken, sind
urheberrechtlich geschützt. Das Urheberrecht liegt, soweit nicht ausdrücklich anders gekennzeichnet, bei der
Albert-Ludwigs-Universität Freiburg.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from Albert-Ludwigs-Universität Freiburg.

Acknowledgments

My PhD years were an exciting and very happy time of my life. This is due to
some good fortune and many great people who supported me during this time,
to whom I would like to express my deepest gratitude.

First and foremost, I would like to thank Moritz Diehl for his exceptional
supervision, and many great discussions about science and beyond. I thank
Moritz for supporting me in my work, for constantly pushing me to do my best,
which improved my skills, but also all of our joint papers. With his mathematical
ingenuity, scientific integrity, and optimism, but also his exceptionally friendly
and warm character, he is a true role model for me. Our collaboration has been
a true privilege and I have enjoyed every moment of it. Moritz also created a
very friendly, healthy, productive, and stimulating research environment at the
Systems Control and Optimization Laboratory (syscop). I am very grateful to
him for this.

Before moving to the University of Freiburg in October 2021, I was employed
as an external PhD student at Siemens Research in Munich. This was only
possible because Sebastian Albrecht supported me and believed in me. I thank
him for introducing me to optimal control in the first place and defining the
topic of my PhD thesis, about which I have become obsessed in the past few
years. I also thank him for the wonderful supervision during the Siemens years.

I wish to express my gratitude to Bernard Brogliato for reading and reviewing
my thesis. Moreover, I thank him for teaching me a lot about nonsmooth
mechanics while working on our Automatica paper.

At this point, I would like to thank all my dear Siemens colleagues with whom I
had great discussions and many beautiful moments. I thank Georg von Wichert
for creating a healthy environment at Siemens T-FOA-ASY-DE. I would like
to thank my PhD peers at that time (in alphabetical order): Amer Mešanović,
Bernd Kast, Florian Wirnshofer, Philipp Sebastian Schmitt, Sarah Braun, Simon
Ackermann, Sissi Bazan Santos, Stefan Löw and Vincent Dietrich. I enjoyed

i

ii

our scientific discussions, coffee and lunch breaks, and table soccer games. I
thank Andrei Szabo for the collaboration in the SynErgie project. I thank Amer
Mešanović and the MoreNet team from IWR Heidelberg: Hans Georg Bock,
Ekaterina Kostina, Andreas Potschka, Robert Scholz, and Jürgen Gutekunst,
for the fruitful collaboration on NMPC for microgrids.

Working at syscop is a true privilege. It is mainly because of all the kind and
smart people I have had the opportunity to work with and become friends
with. I would like to thank our past and present team members (in alphabetical
order): Adrian Bürger, Andrea Ghezzi, Andrea Zanelli, Anton Pozharskiy,
Arne Groß, Benjamin Stickan, David Kiessling, Dimitris Kouzoupis, Florian
Messerer, Gianluca Frison, Jakob Harzer, Jochem De Schutter, Jonathan Frey,
Katrin Baumgärtner, Léo Simpson, Manuel Kollmar, Mikhail Katliar, Per
Rutquist, Rachel Leuthold, Robin Verschueren, Rudolf Reiter, Tobias Schöls,
and Tommaso Sartor. I thank Andrea Zanelli for his great support in writing my
first papers and for teaching me a lot about NMPC and optimization in my early
PhD days. I thank Jonathan Frey and Jochem De Schutter for proofreading
my thesis. Their comments and feedback (also beyond this thesis) are always
very valuable and constructive. I thank Jonathan Frey and Anton Pozharskiy
for significantly improving nosnoc, and creating nosnoc_py. Thank you for
being valuable and supportive co-authors on all nosnoc-related papers, and for
helping to prepare our summer school on nonsmooth optimal control. I owe my
sincere gratitude to our team assistant, Christine Paasch, for always quickly
solving any problems that arose alongside our research, and for her patience
and pragmatism in preparing our summer school. Moreover, I wish to thank
Christian Kirches for giving three great lectures in the summer school and for
the numerous pleasant interactions we had over the years.

One of the most rewarding parts of the PhD work is mentoring bright young
students. I thank all my brilliant master students from whom I have learned a
lot (in alphabetical order): Anton Pozharskiy, Christian Dietz, Jonas Hall, Léo
Simpson, and Mario Sperl.

I thank my friends Jakob Ungerland, Miloš Katanić, Mirco Theile, and Smajil
Halilović for countless fruitful discussions about PhD life and beyond. I would
like to thank my dear family for their love and support. I thank my dear parents,
Suada and Mirzet, for their support throughout my life and for teaching me
how to be persistent in important life matters. As well as my dear brothers
Semin and Admir, for their support and love. Last but not least, I would like
to thank my wonderful wife Elmira for her love and patience. Thank you for
your unconditional love and support in my academic journey. Thank you for
learning German and moving to Freiburg for me! Hvala vam od srca, volim vas.

Freiburg, Armin Nurkanović

Abstract

This thesis regards algorithmic, theoretical, and software aspects of numerically
solving Optimal Control Problems (OCPs) subject to nonsmooth dynamical
systems. When solving an optimal control problem, one selects the optimal
control action while explicitly considering constraints and system dynamics. The
ability to consider constraints and system dynamics increases the expressiveness
in the controller design process. This expressiveness is further improved by
considering hybrid systems. Hybrid systems are a class of nonsmooth dynamical
systems characterized by closely coupled continuous and discrete behavior. This
coupling results in dynamical systems with continuous but nondifferentiable
vector fields, systems with discontinuous vector fields, and systems with state
jumps. This allows, for example, the formulation of OCPs for complex robotic
tasks or to incorporate Boolean logic relations between parts of the system.
However, from a numerical point of view, such OCPs are difficult to solve.

Standard direct methods for solving smooth OCPs applied to nonsmooth OCPs
suffer from some fundamental limitations. We develop a toolchain of algorithms
and reformulation methods that overcome these limitations and allow one to
solve all mentioned classes of nonsmooth OCPs in a unified way. All methods
in this toolchain are implemented in the open-source software package nosnoc.

Some fundamental limitations of standard direct methods, including time-
stepping discretizations, mixed-integer reformulations, and smoothing are
highlighted. It is shown that all these approaches suffer from the same
limitations unless the discontinuities are explicitly treated by switch detection.
They will achieve only first-order accuracy, and the discrete-time numerical
sensitivities do not converge to the correct values. As a consequence, the
algorithms may converge to spurious local solutions or make almost no progress
from a given initial guess. Furthermore, it is discussed why standard direct
methods sometimes lead to feasible or seemingly reasonable solutions. In general,
obtaining a highly accurate solution with some of these approaches may require
a prohibitive computational effort.

iii

iv ABSTRACT

The application of direct optimal control methods, based on Newton-type
optimization, requires the accurate numerical simulation of nonsmooth systems
and the computation of numerical sensitivities. This thesis presents the Finite
Elements with Switch Detection (FESD) method for Filippov systems, which
achieves these two goals and thereby overcomes the fundamental limitation of
standard methods. The focus is on Filippov systems, as they provide a sound
solution concept for ODEs with a discontinuous right-hand side. The proposed
approach reformulates these systems into equivalent Dynamic Complementarity
Systems (DCSs). After the time discretization, mathematical programs with
complementarity constraints are obtained, which can be solved efficiently with a
homotopy approach using standard nonlinear programming solvers. We provide
a detailed theoretical analysis of the FESD method and show that it is superior
to time-stepping methods in terms of computation time and accuracy. For
example, we achieve in an OCP benchmark up to one million times more
accurate solutions for the same computational time.

Systems with state jumps are not Filippov systems. Therefore, they cannot
be treated with the methods developed for this class of nonsmooth systems.
We introduce the time-freezing reformulation, which transforms systems with
state jumps into equivalent Filippov systems. The main idea of time-freezing
is to define a clock state and an auxiliary ODE in the infeasible region of
the state space of the original system. The endpoints of the trajectory of the
auxiliary ODE satisfy the state jump law of the original system. Moreover, the
evolution of the clock state is frozen during the runtime of the auxiliary ODE.
By considering only the parts of the trajectory where the clock state evolves,
one can reconstruct the solution of the original system with state jumps. This
allows one to seamlessly apply the FESD method and the theory of Filippov
systems to systems with state jumps.

As a somewhat isolated contribution from the topics above, we present several
new real-time algorithms for nonlinear model predictive control for smooth
dynamical systems. We extend the well-known Real-Time Iteration (RTI), by
combining the algorithmic ideas from the Multi-Level Iteration (MLI) and the
Advanced Step Controller (ASC). We call this method the Advanced-Step Real-
Time Iteration (AS-RTI). The main idea is to improve the current linearization
point between two samples by iterating with some MLI variant on an advanced
problem with a predicted state while waiting for the next state estimate. The
AS-RTI scheme bridges the gap between the two well-established algorithmic
paradigms: the ASC which solves the OCP to convergence at every sampling
time and the RTI which performs only one Newton-type iteration.

Kurze Zusammenfassung

Diese Arbeit befasst sich mit algorithmischen, theoretischen und softwaretech-
nischen Aspekten der numerischen Lösung von Optimalsteuerungsproblemen
(Englisch: Optimal Control Problem (OCP)), mit nicht-glatten dynamischen
Systemen. Bei der Lösung eines OCPs wird der optimale Steuerungseingang
unter expliziter Berücksichtigung von Nebenbedingungen und der Systemdy-
namik ausgewählt. Der Entwurfsprozess eines Reglers auf der Grundlage
von OCPs ist durch die explizite Formulierung der Systemdynamik und der
Nebenbedingungen besonders ausdrucksstark. Diese Ausdrucksfähigkeit wird
weiter verbessert, wenn sogenannte “hybride Systeme“ berücksichtigt werden.
Hybride Systeme sind eine Klasse nicht-glatter dynamischer Systeme, die sich
durch eng gekoppeltes kontinuierliches und diskretes Verhalten auszeichnen. Dies
führt zu dynamischen Systemen mit kontinuierlichen, aber nicht differenzierbaren
Vektorfeldern, Systemen mit diskontinuierlichen Vektorfeldern und Systemen
mit Zustandssprüngen. Dadurch wird beispielsweise die Formulierung von
OCPs für komplexe Robotikaufgaben oder die Abbildung logischer Beziehungen
zwischen Systemteilen ermöglicht. Aus numerischer Sicht sind solche Probleme
jedoch schwierig zu lösen.

Herkömmliche direkte Methoden zur Lösung glatter OCPs, angewendet auf
nicht-glatte OCPs, haben grundlegende Einschränkungen. In dieser Arbeit
wird eine Werkzeugkette von Algorithmen und Umformulierungsmethoden
entwickelt, um diese Einschränkungen zu überwinden und die einheitliche
Lösung aller zuvor genannten Arten von nicht-glatten OCPs zu ermöglichen.
Alle Methoden dieser Werkzeugkette sind in dem Open Source Softwarepaket
nosnoc implementiert. Es werden einige grundlegende Einschränkungen
konventioneller direkter Methoden aufgezeigt, einschließlich der Diskretisierung
mit Zeitschrittmethoden, gemischt-ganzzahliger Umformulierung und Glättung,
um nur einige Beispiele zu nennen. Es wird gezeigt, dass alle diese Ansätze unter
den gleichen Einschränkungen leiden, es sei denn, die Unstetigkeiten werden
explizit durch Schalterkennung behandelt.

v

vi KURZE ZUSAMMENFASSUNG

Herkömmliche direkte Methoden erreichen nur eine Genauigkeit erster Ordnung,
und die zeitdiskreten numerischen Sensitivitäten konvergieren nicht zu
den richtigen Werten. Infolgedessen können die Algorithmen zu lokalen
Scheinlösungen konvergieren oder von einer gegebenen Lösungsschätzung kaum
Fortschritte machen. Es wird auch diskutiert, warum konventionelle direkte
Methoden manchmal zu scheinbar vernünftigen Lösungen konvergieren. Im
Allgemeinen kann das Erreichen einer hochgenauen Lösung mit einigen dieser
Ansätze einen inakzeptablen Rechenaufwand erfordern.

Direkte Methoden zur Lösung von OCPs, die auf Newton-basierten Opti-
mierungsalgorithmen basieren, erfordern die genaue numerische Simulation
von nicht-glatten Systemen und die Berechnung numerischer Sensitivitäten.
In dieser Arbeit wird die Finite Elemente Methode mit Schalterkennung
(FESD) für Filippov Systeme entwickelt, die beide Ziele erreicht und damit die
grundlegenden Einschränkungen der Standardmethoden überwindet. Filippov-
Systeme sind von besonderem Interesse, da sie ein solides Lösungskonzept
für gewöhnliche Differentialgleichungen mit diskontinuierlicher rechter Seite
liefern. Unser Ansatz besteht darin, diese Systeme in äquivalente dynamische
Komplementaritätssysteme (Englisch: Dynamic Complementarity System
(DCS)) umzuformulieren. Nach der zeitlichen Diskretisierung erhält man
mathematische Programme mit Komplementaritätsbeschränkungen (Englisch:
Mathematical Program with Complementarity Constraints (MPCC)), die mit
einem Homotopie-Ansatz unter Verwendung von Standardlösern für nichtlineare
Optimierung effizient gelöst werden können. Eine detaillierte theoretische
Analyse der FESD-Methode wird vorgestellt und es wird gezeigt, dass diese
den Zeitschrittmethoden in Bezug auf Rechenzeit und Genauigkeit überlegen
ist. Beispielsweise werden in einem OCP-Benchmark bis zu einer Million Mal
genauere Lösungen bei gleicher Rechenzeit erreicht.

Systeme mit Zustandssprüngen sind keine Filippov-Systeme. Daher können sie
nicht mit den Methoden behandelt werden, die für diese Klasse von nicht-glatten
Systemen entwickelt wurden. Um diese Beschränkung zu überwinden, wird die
Time-Freezing-Reformulation eingeführt, um Systeme mit Zustandssprüngen
in äquivalente Filippov-Systeme umzuformulieren. Die Hauptidee des Time-
Freezing besteht darin, einen Uhrenzustand und eine Hilfsdifferentialgleichung
im unzulässigen Bereich des Zustandsraums des ursprünglichen Systems zu
definieren. Die Endpunkte der Trajektorie der Hilfsdifferentialgleichung erfüllen
das Zustandssprunggesetz des ursprünglichen Systems. Außerdem ist die
Evolution des Uhrzustands während der Laufzeit der Hilfsdifferentialgleichung
eingefroren. Betrachtet man nur die Teile der Trajektorie, in denen sich der
Uhrenzustand entwickelt hat, so kann man die Lösung des ursprünglichen
Systems mit Zustandssprüngen rekonstruieren. Dies ermöglicht die Anwendung
der FESD-Methode und der Theorie der Filippov-Systeme auf Systeme mit

KURZE ZUSAMMENFASSUNG vii

Zustandssprüngen.

Als etwas isolierter Beitrag zu den oben genannten Themen werden mehrere
neue Echtzeit-Algorithmen für nichtlineare modellprädiktive Regelung für glatte
dynamische Systeme vorgestellt. Die bekannte Real-Time Iteration (RTI) wird
erweitert, indem die algorithmischen Ideen der Multi-Level Iteration (MLI)
und des Advanced Step Controllers (ASC) kombiniert werden. Diese neue
Methode wird Advanced-Step Real-Time Iteration (AS-RTI) genannt. Die
Hauptidee besteht darin, den aktuellen Linearisierungspunkt zwischen zwei
Samples zu verbessern, indem eine MLI-Variante auf einem fortgeschrittenen
Problem mit einem vorhergesagten Zustand iteriert wird, während auf die
nächste Zustandsschätzung gewartet wird. Der AS-RTI-Algorithmus schließt
die Lücke zwischen zwei etablierten Algorithmen: dem ASC-Algorithmus, der
das OCP in jedem Sample bis zur Konvergenz löst, und dem RTI-Algorithmus,
der nur eine Newton-Iteration durchführt.

Contents

Contents ix

1 Introduction 1
1.1 Classification of nonsmooth dynamical systems 3
1.2 Contributions and outline . 7

1.2.1 Software contributions - nosnoc 7
1.2.2 Outline and specific contributions 8

1.3 List of publications . 14
1.4 Notation . 18

2 Nonlinear Optimization with Complementarity Constraints 21
2.1 Smooth nonlinear optimization: theory and algorithms 22

2.1.1 Optimality conditions 22
2.1.2 Nonlinear programming algorithms 29

2.2 Variational inequalities and complementarity problems 32
2.2.1 Variational inequalities and generalized equations 32
2.2.2 Complementarity problems 34
2.2.3 Nonsmooth equations 36

2.3 Mathematical programs with complementarity constraints . . . 38
2.3.1 Introduction to MPCCs 38
2.3.2 First-order optimality conditions for MPCCs 41

2.4 MPCC solution methods . 49
2.4.1 NLP solution methods 50
2.4.2 Regularization methods 52
2.4.3 Exact penalty methods 56
2.4.4 Lifting methods . 58
2.4.5 Combinatorial methods 59
2.4.6 Implicit methods . 59
2.4.7 Summary of MPCC methods 60

ix

x CONTENTS

3 Direct Optimal Control Methods 63
3.1 Controlled dynamical systems 64

3.1.1 Ordinary differential equations (ODEs) 64
3.1.2 Differential algebraic equations (DAEs) 65

3.2 Numerical integration methods 67
3.2.1 Runge-Kutta methods 69
3.2.2 Sensitivity computation 76

3.3 Numerical optimal control . 78
3.3.1 Solution methods for OCPs 80
3.3.2 Direct optimal control 81

4 Nonsmooth Dynamical Systems 87
4.1 Introduction . 88

4.1.1 Hybrid versus nonsmooth dynamical systems 90
4.1.2 Why nonsmooth dynamical systems? 92
4.1.3 Numerical simulation of nonsmooth systems 93

4.2 Phenomena specific to nonsmooth dynamical systems 95
4.2.1 Infinitely many switches in finite time - Zeno’s phenomenon 95
4.2.2 Reduced system dimensions and sliding modes 97
4.2.3 Stability and instability due to switches and jumps . . . 97
4.2.4 Numerical chattering . 98
4.2.5 Order integration of accuracy 99
4.2.6 The sensitivities are discontinuous 105

4.3 Modeling frameworks for nonsmooth dynamical systems 107
4.3.1 Some basics from nonsmooth and set-valued analysis . . 107
4.3.2 Differential inclusions 110
4.3.3 Differential variational inequalities 113
4.3.4 Dynamic complementarity systems 114
4.3.5 Discontinuous ODEs and Filippov systems 115
4.3.6 Projected dynamical systems 117
4.3.7 Moreau’s sweeping processes 118

4.4 Conclusions and further reading 119

5 Limitations in Nonsmooth Direct Optimal Control 121
5.1 Survey on direct optimal control methods for nonsmooth systems 122
5.2 Fundamental limitations of standard direct methods for NSD2

systems . 127
5.2.1 A bimodal NSD2 system 128
5.2.2 The numerical sensitives are wrong independent of the

step size . 129
5.2.3 Smooth approximations of NSD2 systems 131
5.2.4 The bimodal system as a DCS 132
5.2.5 Failure of standard direct optimal control 134

CONTENTS xi

5.3 Limitations of direct methods for NSD3 systems 138
5.4 Conclusion and summary . 140

6 Reformulation of Filippov Systems into Dynamic Complementarity
Systems 143
6.1 Piecewise smooth and Filippov systems 144

6.1.1 Piecewise smooth differential equations 146
6.1.2 Filippov convexification 147

6.2 Stewart’s reformulation . 148
6.2.1 How to obtain Stewart’s indicator functions? 150
6.2.2 Fixed active set . 152
6.2.3 Active-set changes and continuity of λ and µ 154
6.2.4 Predicting the new active set 156
6.2.5 Sum of Filippov systems 159
6.2.6 Sensitivities with respect to parameters and initial values 161

6.3 Heaviside step reformulation . 163
6.3.1 Set-valued Heaviside step functions 164
6.3.2 Aizerman–Pyatnitskii differential inclusions 165
6.3.3 Filippov set expressed via Heaviside step functions . . . 166
6.3.4 Active-set changes and continuity of λp and λn 169
6.3.5 Fixed active set in the Heaviside step formulation . . . 170
6.3.6 Predicting a new active set 173
6.3.7 Efficient modeling with Heaviside step functions 174
6.3.8 A lifting algorithm for the multi-affine terms 175
6.3.9 Comparisons of Stewart’s and the Heaviside step refor-

mulation . 178
6.4 Conclusions and summary . 180

6.4.1 Relations between different formalisms 180
6.4.2 Summary . 181

7 Finite Elements with Switch Detection 184
7.1 Introduction and related work 185
7.2 FESD for Stewart’s reformulation 186

7.2.1 Standard Runge-Kutta discretization 187
7.2.2 The step-sizes as degrees of freedom 189
7.2.3 Cross complementarity 190
7.2.4 Step size equilibration 194
7.2.5 The FESD discretization 195

7.3 Convergence theory of FESD for Stewart’s reformulation 197
7.3.1 Main assumptions . 197
7.3.2 Solutions of the FESD problem are locally isolated . . . 199
7.3.3 Convergence and order of FESD 203
7.3.4 Illustrating the integration order 210

xii CONTENTS

7.3.5 Convergence of discrete-time sensitivities 213
7.3.6 Illustration of numerical sensitivity convergence 215

7.4 FESD for the Heaviside step representation 218
7.4.1 Standard Runge-Kutta discretization 218
7.4.2 Cross complementarity 221
7.4.3 Step size equilibration 223
7.4.4 The FESD discretization 225

7.5 FESD in direct optimal control 226
7.5.1 A multiple shooting-type discretization 227
7.5.2 A numerical optimal control example 228

7.6 Conclusions and summary . 232

8 The Time-Freezing Reformulation for Nonsmooth Mechanical Systems235
8.1 Introduction . 236

8.1.1 Complementarity Lagrangian systems 239
8.1.2 Related work . 242

8.2 The time-freezing reformulation 243
8.2.1 A guiding example . 243
8.2.2 Main ideas behind time-freezing 246

8.3 Time-freezing for elastic impacts 249
8.3.1 The time-freezing system 249
8.3.2 Auxiliary dynamics for elastic impacts 251
8.3.3 Auxiliary dynamics for nonlinear constraints 253
8.3.4 Solution relationship . 254

8.4 Time-freezing for inelastic impacts 256
8.4.1 The time-freezing reformulation 256
8.4.2 Solution relationship . 266
8.4.3 Frictional impact . 270

8.5 Numerical optimal control of time-freezing systems 280
8.5.1 Continuous-time OCP with a CLS 280
8.5.2 Continuous-time OCP with a time-freezing system . . . 281
8.5.3 Discrete-time OCP with the time-freezing system 284

8.6 Numerical examples with time-freezing 286
8.6.1 Ball inside a box - elastic impacts 286
8.6.2 A hopping robot - inelastic impact with friction 289
8.6.3 Manipulation task - inelastic impacts 293

8.7 Conclusions and outlook . 294

9 The Time-Freezing Reformulation for Nonsmooth Systems with
Hysteresis 299
9.1 Hybrid systems with hysteresis 300

9.1.1 Introduction . 300
9.1.2 Model equations . 302

CONTENTS xiii

9.2 The time-freezing reformulation for hybrid systems with hysteresis302
9.2.1 The time-freezing system 303
9.2.2 A tutorial example . 306

9.3 Solution equivalence . 308
9.4 Numerical example: time-optimal problem of a car with turbo

charger . 309
9.5 Conclusion . 311

10 The Advanced Step Real-Time Iteration for Nonlinear Model
Predictive Control 313
10.1 Introduction to real-time NMPC 314
10.2 NMPC and continuation methods 315

10.2.1 Predictor-corrector path-following methods 316
10.2.2 Algorithmic ingredients 318

10.3 The advanced step real-time iteration 321
10.4 Contraction theory for the AS-RTI 324

10.4.1 Contraction estimate for abstract real-time algorithms . 324
10.4.2 Contraction properties of the AS-RTI scheme 327

10.5 Numerical example . 330
10.6 Conclusion . 333

11 Conclusions and Future Research 335
11.1 Summary and conclusions . 335
11.2 Future research directions . 338

Bibliography 343

Curriculum Vitae 369

Chapter 1

Introduction

Mathematical optimization is an indispensable tool in almost all fields of science
and engineering. It enables us to naturally express what we almost always
want to achieve: find the best solution to our problem, given an objective
and constraints. To write an optimization problem in terms of equations, we
need a model, which is a simplified description of the real world that quantifies
some of its aspects that are relevant for the considered purpose. Moreover, it
helps one to make more or less accurate predictions of the future, and to study
some non-obvious properties of the phenomenon that one is modeling. A rich
family of mathematical models are dynamical systems, which describe the time
evolution of a system. They are often based on underlying physical laws, and
they can be very accurate.

Having a (physical) system and its mathematical model at hand, we may want
to behave in a certain way by influencing what we can influence. Moreover,
we want it to work reliably without our frequent intervention. This gives rise
to the field of automatic control, where based on our current knowledge (the
system’s state), we decide what actions to take (the control inputs) to achieve
our goal. Determining the system’s state and deciding on the control input can
be arbitrarily difficult. Inevitably, we want to do this in the best possible way.
This gives rise to Optimal Control Problems (OCPs).

Formally, OCPs are infinite-dimensional problems that we solve open loop
starting from a fixed initial state. However, our model might be inaccurate,
unforeseen changes may happen in the state or in external factors that we cannot
model accurately (the weather, stock prices, states of other systems, etc.). To
some extent, this can be alleviated by Model Predictive Control (MPC), where
at every sampling instant a new OCP with the most recent state estimate

1

2 INTRODUCTION

as initial value, is solved. MPC is becoming a standard control technique in
academia and industry. Its main advantages are: that the control goal can be
directly formulated as the objective of an optimization problem, constraints on
the system and control are part of the problem formulation, and a model for
predicting the future is explicitly considered in the search for a control input.
In the case that our models are sufficiently regular and smooth functions, MPC
is a mature and reliable control technique. In practice, direct methods have
proven highly effective. They discretize the infinite-dimensional OCP and then
solve a finite-dimensional problem. They offer real-time capable algorithms, a
mature theory, and sophisticated software implementations.

To improve real-world performance or to automate more complex tasks, we
must use increasingly sophisticated models. For example, we may want to have
if-then or either-or conditions within our model, or we may want to approximate
complex microscopic physical phenomena with nonsmooth macroscopic empirical
laws as in Coulomb’s friction law. This gives rise to so-called hybrid systems.
In this case, the discrete and continuous dynamics do not just coexist but are
closely interconnected. Mathematically, this leads to nonsmooth dynamical
systems. In simple terms, they arise whenever the functions defining the
underlying differential equations are not differentiable anymore. This opens the
possibility to have more sophisticated models or to simplify the formulation
of the problem. However, a general rule seems to be: the more expressive the
model, the more difficult the optimization problems become. Even the simplest
nonsmooth dynamical system is extremely nonlinear, and the resulting OCPs
are necessarily difficult nonconvex optimization problems.

Traditional mixed-integer optimal control selects control inputs from a finite set
of values. These problems are also discrete-continuous. The optimizer explicitly
chooses which discrete value the control input should take. In contrast to that,
in nonsmooth dynamical systems, the discrete decisions are implicit and state
dependent. This highlights that these systems are different, and we will see in
this thesis that it might not be beneficial to treat nonsmooth OCPs with mixed-
integer reformulations. An alternative and obvious approach to solving OCPs
subject to nonsmooth systems is to smooth the problem and apply standard,
well-established methods. However, accurate smooth approximations lead to at
least equally difficult problems. We will show that standard smoothing methods
fail in surprising and non-obvious ways. We argue that attempting to smooth
out all nonsmoothness is not the way to go, as it often seems from a numerical
perspective that smooth approximations behave the same as nonsmooth systems.
Moreover, smoothing hides the nonsmoothness from the problem, which usually
appears in a very structured way and should be exploited.

Complementarity conditions frequently appear as a form of structured
nonsmoothness. Given two scalars x, y ∈ R, a complementarity condition

CLASSIFICATION OF NONSMOOTH DYNAMICAL SYSTEMS 3

reads as

0 ≤ x ⊥ y ≥ 0,

which means that both x and y have to be nonnegative but they cannot be
both positive simultaneously, i.e., xy = 0. They appear, for example, in the
well-known Karush-Kuhn-Tucker (KKT) conditions, which provide necessary
conditions for a local minimizer of an optimization problem. Beyond that, they
enable us to model numerous combinatorial structures. From a numerical point
of view, what makes them so practical is that they can be very efficiently treated
with Newton-type methods without any enumeration. In this thesis, we will
often end up solving complementarity problems.

1.1 Classification of nonsmooth dynamical systems

Not all nonsmooth optimal control problems are equally difficult. Depending
on where and how the nonsmoothness appears, the systems allow for different
algorithms and theoretical conclusions. In this thesis, we classify the nonsmooth
dynamical systems depending on the smoothness of the vector field and the
solution trajectory. Given an ODE ẋ(t) = f(x), with the right-hand side (r.h.s.)
f(x), we distinguish between Nonsmooth Dynamics (NSD) of three levels:

(NSD1) Continuous, but nondifferentiable r.h.s.- continuously differentiable
solutions.

(NSD2) Discontinuous r.h.s. - continuous solutions.

(NSD3) Jump discontinuity in the solutions.

We illustrate these classes with a few examples to highlight some of their main
qualitative properties. Figure 1.1 shows sample solutions of our examples. An
NSD1 system with a continuous r.h.s. is:

ẋ = 1 + |x|.

This system already poses difficulties to standard methods, as the derivatives of
the solution map w.r.t. the initial values are nonsmooth, and the integration
methods might lose their accuracy properties.

NSD2 systems have a discontinuous r.h.s., which makes already most nonlinear
analysis tools not applicable. The discontinuities allow for rich behavior, e.g.,
the ODE:

ẋ = 2− sign(x),

4 INTRODUCTION

0 0.5 1 1.5 2
-2

-1

0

1

2

0 0.5 1 1.5 2
-2

-1

0

1

2

0 0.5 1 1.5 2
-2

-1

0

1

2

0 5 10
-5

0

5

Figure 1.1: Example trajectories for NSD1 to NSD3 systems.

results in a trajectory that crosses the surface of discontinuity defined by x = 0,
cf. Figure 1.1(b). On the other hand, in examples such as

ẋ ∈ −sign(x) + 0.5 sin(t),

the trajectories end up in a so-called sliding mode. The trajectories reach
the surface of discontinuity x = 0 and stay there since the vector fields from
both sides push toward x = 0, cf. Figure 1.1 (c). Moreover, standard notions
of solutions are not applicable anymore, and we need to use a set-valued
generalization of ODE. In our example we define, sign(0) = [−1, 1], such that
at x = 0 we have that 0 ∈ 0.5 sin(t) − sign(x) becomes meaningful. This
generalization is an instance of Filippov systems, which we study in great detail
in this thesis. Remarkably, higher-order Runge-Kutta methods applied to NSD2
systems, if they converge, have only first-order accuracy.

Probably the most famous example of an NSD3 system is the bouncing ball. If
q is the ball’s position, g the gravitational acceleration, m = 1 the mass, the
equations of motions are:

q̈ = −g, q̇(t+s) = −ϵrq̇(t−s), if q(ts) = 0 and q(t−s) < 0.

CLASSIFICATION OF NONSMOOTH DYNAMICAL SYSTEMS 5

The second part of the equations is the state jump law, which says: if the
ball hits the ground (q(ts) = 0), then the post-impact velocity is given by
q̇(t+s) = −ϵrq̇(t−s), with ϵr ∈ [0, 1], cf. Figure 1.1 (d).

The nonsmoothness in models creates difficulties in all aspects of optimal control
problems involving such systems. This thesis aims to address these difficulties by
understanding the limitations of existing methods, by developing new tailored
methods that overcome these limitations, by establishing a sound theory for the
proposed methods, and by providing open-source software implementations of
them. To advance the state-of-the-art, we present novel ideas and improvements
to existing approaches for solving OCPs subject to nonsmooth dynamical
systems.

Figure 1.2 depicts the toolchain developed in this thesis. We will briefly explain
its main parts here. Given a dynamical system of NSD1 to NSD3, the objective
function, and constraints, we want to formulate and numerically solve an OCP.
Mathematically, NSD1 systems can be treated as a special case and a more
regular case of NSD2 systems. In both cases, the state space is partitioned into
some regions equipped with different vector fields. In NSD1 the vector fields are
continuous across the region boundaries, and in NSD2 they are not. Moreover,
we introduce the time-freezing reformulation, which enables us to transform
NSD3 into equivalent NSD2 systems. Therefore, we can focus only on NSD2
systems and treat all classes in a unified way. We use Filippov’s notion of solution
as a meaningful and theoretically sound concept for NSD2 systems. Next, we
transform the Filippov systems into dynamic complementarity systems, which
are a coupling of an ODE and a complementarity problem. Complementarity
conditions enable us to encode all nonsmooth and combinatorial structures in
the dynamical system.

The next step is to formulate an OCP and to discretize it. For the time
discretization of the OCP, we develop the Finite Elements with Switch Detection
(FESD) method. This method recovers the properties that Runge-Kutta
methods have for smooth ODEs: high accuracy and correct sensitivities. Leaving
the FESD step out and using a standard time-stepping method leads to some
variants of existing direct methods in the literature. However, we show that they
are doomed to fail and generally cannot lead even to locally optimal solutions.
After discretization, we obtain a Mathematical Program with Complementarity
Constraints (MPCC). This is a degenerate Nonlinear Program (NLP) that
cannot be solved directly with standard NLP solvers. Fortunately, we can solve
a sequence of related and more regular problems with standard optimization
methods in a homotopy loop, and obtain a solution for the initial MPCC. Finally,
this provides a very accurate solution approximation to an OCP subject to an
NSD1, NSD2, or NSD3 system.

6 INTRODUCTION

Fi
lip

po
v

sy
st

em
s

(N
SD

2)
,C

h.
4,

6

N
SD

1
sy

st
em

s,
C

h.
4

D
yn

am
ic

co
m

pl
em

en
ta

rit
y

sy
st

em
,C

h.
4,

6

Sy
st

em
s

w
ith

st
at

e
ju

m
ps

(N
SD

3)
,C

h.
4

O
pt

im
al

co
nt

ro
l

pr
ob

le
m

,C
h.

3,
5-

9

M
at

he
m

at
ic

al
pr

og
ra

m
w

ith
co

m
pl

em
en

ta
rit

y
co

ns
tr

ai
nt

s,
C

h.
2

N
on

lin
ea

r
pr

og
ra

m
,C

h.
2

So
lu

tio
n

Pr
ob

le
m

de
fin

iti
on

,
C

h.
4

T
im

e-
fr

ee
zi

ng
,

C
h.

8,
9 St

ew
ar

t
or

St
ep

,C
h.

6

Fi
ni

te
El

em
en

ts
w

ith
Sw

itc
h

D
et

ec
tio

n,
C

h.
7

R
ef

or
m

ul
at

io
n,

C
h.

2

H
om

ot
op

y,
C

h.
2

Fi
gu

re
1.

2:
O

ve
rv

ie
w

of
th

e
to

ol
ch

ai
n

fo
r

nu
m

er
ic

al
ly

so
lv

in
g

no
ns

m
oo

th
op

tim
al

co
nt

ro
lp

ro
bl

em
s

de
ve

lo
pe

d
in

th
is

th
es

is.

CONTRIBUTIONS AND OUTLINE 7

1.2 Contributions and outline

We give an overview of the content in this thesis and list the most important
contributions. Figure 1.2 provides a graphical illustration of the toolchain
developed in this thesis, with references to chapters where specific parts are
introduced or discussed in more detail.

1.2.1 Software contributions - nosnoc

Open-source implementations make algorithms available, deployable, and
useful. The software contribution of this thesis is the implementation of the
whole toolchain from Figure 1.2 in the open source software package nosnoc
(NOnSmooth Numerical Optimal Control)1. nosnoc for MATLAB is based on the
symbolic framework of CasADi [9]. Recently, the author’s colleagues have also
implemented a version in python, which they have named nosnoc_py2.

We mention some key features. The model functions, constraints, objective, and
switching functions are expressed via CasADi symbolic variables and functions.
The software supports an automatic reformulation of systems with state jumps
into NSD2 systems via the time-freezing reformulation. Additionally, we have
implemented automatic reformulation into dynamic complementarity systems,
and time discretization using FESD or standard time-stepping methods. After
the discretization, we obtain an MPCC. In nosnoc, they are automatically
formulated and solved in a homotopy loop via some standard regularization
method. Both numerical simulation and optimal control problems are supported.
Moreover, automatic reformulation of time-optimal control problems, path
complementarity constraints, various relaxations of terminal constraints, control
of sparsity in complementarity constraints, and different options for the
homotopy loop are supported. Numerous other expert and non-expert options
are available as well.

The methods and software developed in this thesis facilitate the implementation,
prototyping, and solution of optimal control problems involving nonsmooth
dynamical systems. Furthermore, we aim to implement new developments or
additional components in the same software toolchain.

For brevity, we have not included an additional chapter on the implementation
details. However, all mathematical developments are explained in detail in the
subsequent chapters. Moreover, all examples shown in this thesis, and several

1https://github.com/nurkanovic/nosnoc
2https://github.com/FreyJo/nosnoc_py

https://github.com/nurkanovic/nosnoc
https://github.com/FreyJo/nosnoc_py

8 INTRODUCTION

other examples from the literature, are available in nosnoc’s repositories. They
allow us to efficiently explore all possible options and details.

1.2.2 Outline and specific contributions

The main contributions of this thesis are novel numerical methods for solving
optimal control problems subject to NSD1 to NSD3-type nonsmooth dynamical
systems. These contributions, along with introductory material, are discussed
in Chapters 2-9. A secondary and less central contribution of this thesis involves
the development of real-time and accurate numerical methods for nonlinear
Model Predictive Control (MPC) applied to smooth dynamical systems. This
aspect is addressed in Chapter 10. We proceed with a detailed outline and
listing of the specific contributions.

Chapter 2 - Nonlinear Optimization with Complementarity Constraints In
Section 2.1, we discuss the fundamentals of nonlinear programming. Section 2.2
discusses variational inequalities, complementarity problems, and generalized
equations and shows when they are equivalent. It is important to be familiar
with them, as in a dynamic setting they are the sources of nonsmoothness. NLPs
subject to complementarity constraints lead to MPCCs. All numerical methods
for nonsmooth OCPs developed in the thesis require the solution of an MPCC at
some point. They are nonsmooth optimization problems that violate standard
constraint qualifications at all feasible points, which leads to theoretical and
algorithmic difficulties. We review the theory and standard numerical methods
for solving this class of problems in Sections 2.3 and 2.4, respectively. Relaxation,
smoothing, and penalty methods solve a (finite) sequence of related more regular
problems and obtain in the limit a solution of the initial MPCC. They are our
methods of choice as they are easy to implement if one has a robust nonlinear
programming solver implementation. In our case, we use IPOPT [281].

Chapter 3 - Direct Optimal Control Methods Direct optimal control methods
first discretize an infinite-dimensional OCP subject to a smooth dynamical
system and then solve a finite-dimensional NLP. For the discretization of the
dynamics we require numerical integration methods, and for optimization the
computation of the derivatives. We discuss this in Section 3.2. The chapter
finishes with Section 3.3, where we discuss optimal control problems and solution
approaches, with a focus on direct optimal control. These methods are the
basis for the tailored methods which we develop in this thesis. For example, we
review Runge-Kutta and collocation methods for smooth ODEs and DAEs in
Section 3.2.1, which we generalize to NSD2 systems in Chapter 7.

CONTRIBUTIONS AND OUTLINE 9

Chapter 4 - Nonsmooth Dynamical Systems To numerically solve nonsmooth
optimal control problems, we require the tools from several different fields, cf.
Figure 1.2. Together with Chapters 2 and 3, this chapter completes a self-
contained introduction to the methods developed in this thesis for researchers
with a background either in numerical optimal control or in nonsmooth
dynamical systems. Therefore, we focus on numerical difficulties that arise
with nonsmooth systems and their smooth approximations. In Section 4.1, we
provide a high-level introduction to nonsmooth dynamical systems and answer
some natural questions that arise. Section 4.2 illustrates on tutorial examples
several phenomena encountered only within nonsmooth systems and their time
discretization. In particular, we show, via extensive numerical experiments, the
surprising fact that standard integration methods behave the same on accurate
smooth approximations as on the original nonsmooth systems.

The same set of tools can be used to study both the theoretical and numerical
aspects of sufficiently regular, smooth nonlinear dynamical systems. In the
nonsmooth cases, this is, unfortunately, much more complicated. There are many
ways to model nonsmoothness, resulting in various mathematical frameworks
with different degrees of difficulty and their own theory and numerical methods.
In Section 4.3, we review some basics from nonsmooth analysis and standard
modeling frameworks for nonsmooth systems. We recall some existence and
uniqueness results with a focus on systems studied in this thesis.

Chapter 5 - Limitations in Nonsmooth Direct Optimal Control In this
chapter, we highlight some of the fundamental limitations of standard methods,
which refer to the application of time-stepping methods in direct transcription,
direct multiple, or single shooting. In this case, after discretization one obtains
a nonsmooth NLP. The nonsmoothness can be smoothed explicitly or implicitly,
before or after the discretization. In Section 5.1, we survey direct methods
for nonsmooth OCPs from the literature and highlight their strengths and
weaknesses. Section 5.2 is inspired by the seminal paper of Stewart and Anitescu
[259]. It shows that sensitivities obtained in a direct method paired with a
time-stepping discretization are wrong, no matter how small the step size is, and
that smoothing works only under very restrictive assumptions. Consequently,
the optimizer may make almost no progress from the initial guess. Based
on [203], we show that equivalent formulations of the problem, which lead to
different algorithms, suffer from the same limitations. Section 5.3 shows that
similar limitations exist for direct methods for NSD3-type systems. We also
discuss why these methods still converge to feasible but suboptimal solutions,
which explains their occasional success in practice.

The main contribution of this chapter is to show why standard methods fail

10 INTRODUCTION

and why they sometimes deliver feasible solutions. This shows the necessity
for tailored methods, which we develop in the subsequent chapters, and which
resolve the fundamental limitations of standard methods.

Chapter 6 - Reformulation of Filippov Systems into Dynamic Complementar-
ity Systems In a Piecewise Smooth System (PSS) the state space is partitioned
into regions Ri, and each region has a different vector field fi. In this chapter,
we regard PSS, their Filippov convexification, and their reformulation into
equivalent Dynamic Complementarity Systems (DCSs). These systems allow
us to cover a broad class of practical problems and they have a sound theory.
Sections 6.2 and 6.3 regard Stewart’s [250] and the set-valued Heaviside step
function approach [6, 74] to compute the Filippov convex multiplier as the
solution of a Linear Program (LP), respectively. Using the KKT conditions
of these LPs, Filippov systems can be reformulated into equivalent DCSs. We
study in great detail the favorable properties of these DCS, e.g., the uniqueness
of solutions for a fixed active set and the continuity of the Lagrange multipliers.
The specific contributions are:

• In Section 6.2.1, we provide a generic way to pass from the definition
of regions Ri via standard switching functions ψ(x) to the less intuitive
representation of Stewart given via indicator functions g(x).

• Compared to [250], we provide in Section 6.2.2 a simpler study of the well-
posedness of the ordinary and algebraic differential algebraic equations
obtained from fixing the active set in the DCS.

• In Section 6.2.3, we study the continuity properties of the algebraic
variables in the DCS and recall some results from [250].

• In Section 6.3 we provide a compact representation of regions via switching
functions ψ(x) and prove that we can construct a Filippov set from this
representation via set-valued Heaviside step functions.

• Analogously to Stewart’s case, in Section 6.3.5, we derive well-posedness
results for the step reformulation DCS with a fixed active set.

• We discuss how to compactly derive expressions for Filippov multipliers
via step functions for standard geometries appearing in practice, i.e., when
the regions are defined as unions, intersections, and differences of two or
more sets.

• In the Heaviside step reformulation, the Filippov multipliers θi are
expressed via multi-affine terms, which may become very nonlinear. In

CONTRIBUTIONS AND OUTLINE 11

Section 6.3.8, we introduce a lifting algorithm which automatically defines
intermediate variables that reduce the nonlinearity.

This chapter is based on the articles [207, 208, 213].

Chapter 7 - Finite Elements with Switch Detection In this chapter, we
develop the Finite Elements with Switch Detection (FESD) method, which
can be used for numerical simulation and the discretization of optimal control
problems. In Sections 7.2 and 7.4, we introduce the three main ingredients
of FESD. First, we start with a standard Runge-Kutta (RK) discretization
for the DCS obtained in the previous chapter. Furthermore, inspired by
Baumrucker and Biegler [28], we let the integration step sizes be degrees
of freedom. Second, we introduce additional complementarity conditions (called
cross complementarity conditions) to enable implicit and exact switch detection.
Third, to remove possible spurious degrees of freedom if no switches occur, we
introduce the step equilibration conditions. Notably, FESD is an event-based
integration method that is, unlike other methods from the literature, entirely
equations-based. In Section 7.3, we provide a detailed theoretical analysis of
the method. Section 7.5 discusses how to use FESD in direct optimal control.
More specifically, the main contributions of this chapter are:

• In Section 7.2, we start from a standard RK discretization and derive the
FESD method step-by-step for Stewart’s reformulation from Section 6.2.

• Furthermore, we extend FESD to the step reformulation from Section 6.3.
This makes FESD applicable to differential inclusions obtained via step
functions, which can be more general than Filippov systems.

• In Theorem 7.7, we prove that the FESD subproblems, despite being
always over-determined, have locally isolated solutions.

• In Theorem 7.10, we prove that the FESD method has the same order of
accuracy as the underlying Runge-Kutta (RK) method. Thus, we recover
the high-accuracy properties that RK methods have for smooth ODEs.

• In Theorem 7.12, we prove that the numerical sensitivities converge to
their correct values. This resolves the fundamental issues of standard
methods discussed in Chapter 5.

• All theoretical findings are illustrated on numerical examples. Remarkably,
compared to a standard RK discretization, we show that with FESD, we
can obtain up to one million times more accurate solutions for the same
computational time.

12 INTRODUCTION

This chapter is based on the articles [206, 207, 208, 213].

Chapter 8 - The Time-Freezing Reformulation for Nonsmooth Mechanical
Systems The time-freezing reformulation enables one to transform an NSD3-
type system into an equivalent PSS. This enables the seamless application of
FESD to systems with state jumps and a unified treatment of many systems
from NSD1 to NSD3. In this chapter, we regard Complementary Lagrangian
Systems (CLSs) both with elastic and inelastic impacts with friction. These
systems are ubiquitous in modern robotic applications. Frictional impacts lead
to state jumps in the velocity, which complicates the numerical treatment of
CLS. To transform CLS into an equivalent PSS system, we propose the following.
In the infeasible parts of the CLS, we introduce auxiliary ODEs whose trajectory
endpoints satisfy the point-wise state jump laws. Moreover, we introduce a
clock state that freezes its evolution during the runtime of the auxiliary ODE.
This new system has only discontinuities in the right-hand side of the ODE,
but not in the solution itself anymore. By taking the pieces of the trajectory
when the clock state was running, we recover the solution of the initial system.
In Section 8.1, we provide more background on CLS and discuss related work.
Sections 8.3 and 8.4 develop the time-freezing reformulation for elastic and
inelastic impacts, respectively. Next, in Section 8.5, we formulate an OCP
subject to time-freezing systems and relate it to the OCP subject to the initial
CLS. More specifically, the contributions of this chapter are as follows:

• In Proposition 8.4, we provide a constructive way to derive auxiliary
ODEs for affine constraints and elastic impacts. We extend this to general
nonlinear constraints and prove solution equivalence in Theorem 8.5.

• We extend time-freezing to the inelastic impact case in Section 8.4.
Proposition 8.8 provides a constructive way to find auxiliary ODEs for
general nonlinear constraints.

• Theorem 8.10 shows that the sliding mode of the time-freezing systems is
unique and equivalent to the dynamics of the CLS in persistent contact
mode. Furthermore, we prove in Theorem 8.12 that the initial CLS and
time-freezing system are equivalent.

• Section 8.4.3 extends the developments to inelastic impacts with friction.
We show how to construct auxiliary ODEs in this case.

• Theorem 8.14 generalizes Theorem 8.12 for the case of stick and slip
friction. Moreover, Theorem 8.16 established the solution equivalence in
the frictional cases.

CONTRIBUTIONS AND OUTLINE 13

• Section 8.5 describes how time-transformations can be used in OCPs to
achieve equidistant control grids in physical time, a desirable property in
feedback control. Additionally, we establish the relationship between the
solution of the time-freezing OCP and the solution of an OCP subject to
a CLS.

• Section 8.6 provides several OCP examples, including a hopping robot
and a manipulation task, with time-freezing and FESD. The methods find
surprisingly creative solutions without any hints or sophisticated initial
guesses.

This chapter is mainly based on the articles [212] and [202].

Chapter 9 - The Time-Freezing Reformulation for Nonsmooth Systems with
Hysteresis In this chapter, we extend the time-freezing reformulation to a
class of hybrid automata, namely hybrid systems with a hysteresis. This class
is not closely related to CLS. However, we build upon the same core ideas:
introducing auxiliary dynamics in infeasible regions to mimic state jumps and
freezing the time during their evolution. From a practical perspective, it allows
for the use of FESD, which facilitates highly accurate numerical optimal control
of hybrid systems with hysteresis. The main contributions are as follows:

• In Section 9.2, we develop the time-freezing reformulation for a class of
hybrid systems with hysteresis. We provide constructive ways to derive
auxiliary ODEs and so-called DAE-forming ODEs.

• In Section 9.3, we prove the equivalence between the time-freezing and
the hysteresis system.

• In Section 9.4, we show on a numerical example that time-freezing, together
with FESD delivers faster and more accurate solutions than mixed-integer
formulations.

This chapter is mainly based on the article [205].

Chapter 10 - The Advanced Step Real-Time Iteration for Nonlinear Model
Predictive Control This chapter is isolated from the previous chapters and
treats a different topic. It introduces a family of new algorithms for real-time
nonlinear Model Predictive Control (MPC). We introduce the Advanced Step
Real-Time Iteration (AS-RTI) scheme, which is an extension to the well-known
Real-Time Iteration (RTI) scheme [75, 76]. We combine algorithmic ideas of the

14 INTRODUCTION

RTI, Advanced Step Controller (ASC) [290] and Multi-Level Iteration (MLI) [42].
This approach allows for flexible trade-offs between control performance and
computational efficiency. It provides a way to balance these two factors according
to the needs of a particular application. The main idea is to improve the
linearization point for a new iteration by making cheap iterations with a new
initial parameter prediction.

• The AS-RTI bridges the gap between two well-established algorithmic
paradigms: the ASC that solves the OCP to convergence at every sampling
time, and the RTI that performs only one Newton-type iteration. This
allows flexibility in algorithmic design.

• In Section 10.4, we study the convergence properties and error bounds of
the proposed methods in a quite general setting, i.e., with the presence of
inequality constraints and active-set changes.

• Section 10.5 illustrates the method’s performance on numerical example.

This chapter is based on [214, 215, 204], which introduce the AS-RTI and
extensions to the MLI, and [211, 210], which applies the new methods in
simulations of islanded microgrid control.

Chapter 11 - Conclusions and Future Research This chapter concludes this
thesis and summarizes its contributions. We discuss the main advantages and
limitations of the methods and the theory that has been developed. Furthermore,
we provide several ideas for the improvements of the current methods and discuss
future research directions.

1.3 List of publications

Journal publications (as the main author)

1. Nurkanović, A., Sartor, T., Albrecht, S., Diehl, M. (2020). A time-freezing
approach for numerical optimal control of nonsmooth differential equations
with state jumps. IEEE Control Systems Letters, 5(2), 439-444.

2. Nurkanović, A., Diehl, M. (2022). Continuous optimization for control of
hybrid systems with hysteresis via time-freezing. IEEE Control Systems
Letters, 6, 3182-3187.

LIST OF PUBLICATIONS 15

3. Nurkanović, A., Diehl, M. (2022). NOSNOC: A software package for
numerical optimal control of nonsmooth systems. IEEE Control Systems
Letters, 6, 3110-3115.

4. Nurkanović, A., Albrecht, S., Brogliato, B., Diehl, M. (2023). The time-
Freezing reformulation for numerical optimal control of complementarity
lagrangian systems with state jumps. Automatica, 158, 111295.

5. Nurkanović, A., Frey, J., Pozharskiy, A., Diehl, M. (2024). FESD-J: Finite
Elements with Switch Detection for Numerical Optimal Control of Rigid
Bodies with Impacts and Coulomb Friction. Nonlinear Analysis: Hybrid
Systems, 52, 101460.

6. Nurkanović, A., Mešanović, A., Sperl, M., Albrecht, S., Münz, U.,
Findeisen, R., Diehl, M. (2020). Optimization-based primary and
secondary control of microgrids. at-Automatisierungstechnik, 68(12),
1044-1058.

Journal publications (as co-author)

7. Hall, J., Nurkanović, A., Messerer, F., Diehl, M. (2021). A sequential
convex programming approach to solving quadratic programs and optimal
control problems with linear complementarity constraints. IEEE Control
Systems Letters, 6, 536-541.

8. Gutekunst, J., Scholz, R., Nurkanović, A., Mešanović, A., Bock, H. G.,
Kostina, E. (2020). Fast moving horizon estimation using multi-level
iterations for microgrid control. at-Automatisierungstechnik, 68(12), 1059-
1076.

9. Hall, J., Nurkanović, A., Messerer, F., Diehl, M. (2022). LCQPow–A
Solver for Linear Complementarity Quadratic Programs. Mathematical
Programming Computation (accepted for publication).

10. Reiter R., Nurkanović A., Frey J., Diehl M,. (2023). Frenet-
Cartesian Model Representations for Automotive Obstacle Avoidance
within Nonlinear MPC. European Journal of Control, 100847.

Submitted journal articles (as the main author)

1. Nurkanović, A., Sperl, M., Albrecht, S., Diehl, M. (2022). Finite
elements with switch detection for direct optimal control of nonsmooth
systems. arXiv preprint - arXiv:2205.05337 (under review in Numerische
Mathematik).

16 INTRODUCTION

2. Nurkanović, A., Pozharskiy A., Frey, J., Diehl, M. (2023). Finite Elements
with Switch Detection for Numerical Optimal Control of Nonsmooth
Dynamical Systems with Set-Valued Heaviside Step Functions. arXiv
preprint - arXiv:2307.03482 (under review in Nonlinear Analysis: Hybrid
systems, special issue on Nonsmooth Dynamical Systems: Analysis,
Control and Optimization).

3. Nurkanović, A., Pozharskiy, A., Diehl, M. (2023). Solving mathematical
programs with complementarity constraints arising in nonsmooth optimal
control. arXiv preprint - arXiv:2312.11022 (Submitted for a special issue
in the Vietnam Journal of Mathematics dedicated to Tamás Terlaky’s
70th birthday).

Submitted journal articles (as co-author)

4. Messerer F., Baumgärtner K., Nurkanović A., Diehl M. (2023). Ap-
proximate propagation of normal distributions for stochastic optimal
control of nonsmooth systems. arXiv preprint arXiv:2308.03431 (under
review to Nonlinear Analysis: Hybrid systems, special issue on Nonsmooth
Dynamical Systems: Analysis, Control and Optimization).

Conference publications (as the main author)

1. Nurkanović, A., Zanelli, A., Albrecht, S., Diehl, M. (2019). The advanced
step real time iteration for NMPC. In 2019 IEEE 58th Conference on
Decision and Control (CDC) (pp. 5298-5305).

2. Nurkanović, A., Albrecht, S., Diehl, M. (2020). Limits of MPCC
formulations in direct optimal control with nonsmooth differential
equations. In 2020 European Control Conference (ECC) (pp. 2015-2020).

3. Nurkanović, A., Mešanović, A., Zanelli, A., Frison, G., Frey, J., Albrecht,
S., Diehl, M. (2020). Real-time nonlinear model predictive control for
microgrid operation. In 2020 American Control Conference (ACC) (pp.
4989-4995). IEEE.

4. Nurkanović, A., Zanelli, A., Albrecht, S., Frison, G., Diehl, M. (2020).
Contraction properties of the advanced step real-time iteration for NMPC.
IFAC World Congress, IFAC-PapersOnLine, 53(2), 7041-7048.

5. Nurkanović, A., Frey, J., Pozharskiy A., Diehl, M. (2023). Finite Elements
with Switch Detection for Direct Optimal Control of Nonsmooth Systems
with Set-Valued Step Functions. In 2023 IEEE 62nd Conference on
Decision and Control (CDC).

LIST OF PUBLICATIONS 17

Conference publications (as co-author)

6. Scholz, R., Nurkanović, A., Mešanović, A., Gutekunst, J., Potschka,
A., Bock, H. G., Kostina, E. (2020). Model-based optimal feedback
control for microgrids with multi-level iterations. In Operations Research
Proceedings 2019: Selected Papers of the Annual International Conference
of the German Operations Research Society (GOR), 2019 (pp. 73-79).
Springer International Publishing.

7. Scholz, R., Nurkanović, A., Mešanović, A., Gutekunst, J., Potschka, A.,
Bock, H. G., Kostina, E. (2021). Multi-level iterations for microgrid
control with automatic level choice. In Scientific Computing in Electrical
Engineering: SCEE 2020 (pp. 293-301). Springer International Publishing.

8. Kiessling, D., Zanelli, A., Nurkanović, A., Gillis, J., Diehl, M., Zeilinger,
M., Pipeleers, G., Swevers, J. (2022). A Feasible Sequential Linear
Programming Algorithm with Application to Time-Optimal Path Planning
Problems. In 2022 IEEE 61st Conference on Decision and Control (CDC)
(pp. 1196-1203). IEEE.

9. Simpson, L., Nurkanović, A., Diehl, M. (2022). Direct Collocation for
Numerical Optimal Control of Second-Order ODE. In 2023 European
Control Conference (ECC).

10. Dietz C., Albrecht, S., Nurkanović, A., Diehl M. Efficient Collision
Modeling for Numerical Optimal Control. In 2023 European Control
Conference (ECC).

11. Van Roy, W., Nurkanović, A., Abbasi-Esfeden, R., Frey, J., Pozharskiy,
A., Swevers, J. , Diehl, M. (2023). Continuous Optimization for Control
of Finite-State Machines with Cascaded Hysteresis via Time-Freezing. In
2023 IEEE 62nd Conference on Decision and Control (CDC).

Book chapters

1. Nurkanović, A., Albrecht, S., Diehl, M. (2021). Multi-level iterations for
economic nonlinear model predictive control. Recent Advances in Model
Predictive Control: Theory, Algorithms, and Applications, 65-105.

Patents

1. Albrecht, S., Kast, B., Nurkanović, A., (2022). Method and control device
for controlling a technical system. US Patent 11,378,924, 2022.

18 INTRODUCTION

1.4 Notation

In this section, we review the notation used in this thesis. Sometimes, more
specific notation will be introduced and highlighted in the chapters.

The sets R and Z are the set of real numbers and the set of integers, respectively.
Entries of a vector x are scalar and denoted by xi. The concatenation of
two column vectors x ∈ Rn, y ∈ Rm is denoted by (x, y) := [x⊤, y⊤]⊤, the
concatenation of several column vectors is defined analogously. For a given vector
x ∈ Rn and set I ⊆ {1, . . . , n}, we define the projection matrix PI ∈ R|I|×n,
which has zeros or ones as entries. It selects all components xi, i ∈ I from the
vector x, i.e., xI = PIx ∈ R|I|.

Entries of a matrix A are denoted by ai,j . For some matrix A ∈ Rn×m, its i-th
row is denoted by Ai,• and its j-th column is denoted by A•,j . Given a matrix
A ∈ Rn×m and as set I ⊆ {1, . . . , n}, the matrix AI,• ∈ R|I|×m is a submatrix
of A consisting of the rows Ai,• for i ∈ I. The submatrix A•,J ∈ Rn×|J | is
defined accordingly. The transpose of a matrix is denoted by A⊤. The inverse
of an invertible square matrix is denoted by A−1.

A column vector with all ones is denoted by e = (1, 1, . . . , 1) ∈ Rn, and
its dimension is clear from the context. The identity matrix is denoted by
In ∈ Rn×n. Subscripts may be omitted when clear from the context. A matrix
from Rn×m with all zeroes is denoted by 0n,m.

For a vector x, ∥x∥p := (
∑n
i=1 |xi|p)

1
p denotes the p-norm. If the index is omitted,

then the Euclidean 2-norm is meant. Given a set I, its cardinality is denoted
by |I|. The ϵ-ball centered at x ∈ Rn is the set Bϵ(x) = {y ∈ Rn | ∥x− y∥ ≤ ϵ}.

All vector inequalities are to be understood element-wise. The complementary
conditions for two vectors x, y ∈ Rn read as 0 ≤ x ⊥ y ≥ 0, where x ⊥ y means
x⊤y = 0. The function diag(x), diag : Rn → Rn×n, returns a diagonal matrix
with x ∈ Rn containing the diagonal entries.

We make use of asymptotic notation. We say that f(h) = O(g(h)) as h ↓
0, whenever there exists a constant C > 0 and h0 > 0 such that |f(h)| ≤
Cg(h), provided that 0 < h < h0. Similarly, f(h) = o(g(h)) means that
limh→0

f(h)
g(h) = 0.

For a function f : Rn → Rm we denote by Df(x) = ∂f
∂x (x) ∈ Rm×n the Jacobian

matrix and by ∇f(x) := ∂f
∂x (x)⊤ its transpose.

Given two sets A,B, then the Minkowski set addition is defined as A+B = {c |
c = a+ b, a ∈ A, b ∈ B}. The closure of a set C is denoted by C, its boundary

NOTATION 19

as ∂C, and conv(C) is its convex hull.

We often use the same symbol for different functions, e.g., f(·) is the objective
function in general optimization problems, the right-hand side (r.h.s.) of ordinary
differential equations, the r.h.s. in the differential part of a semi-explicit ODE.
However, which functions are meant by the used symbol is always clear from
the context.

Following the American Mathematical Society Style Guide [176, p. 92], and the
Society for Industrial and Applied Mathematics Style Manual [1, p. 40], we do
not hyphenate mathematical words with the prefix “non“ - e.g., nonnegative,
nonlinear, nonconvex, nonsmooth.

Chapter 2

Nonlinear Optimization with
Complementarity Constraints

The main goal of this thesis is to efficiently solve optimal control problems
that involve nonsmooth dynamical systems. Combinatorial structures and
nonsmoothness in such systems can often be expressed through complementarity
constraints. Such constraints are ubiquitous in the time-discretizations of
nonsmooth dynamical systems. Additionally, when a optimal control problem
is discretized, it leads to a special class of degenerate nonlinear programs
known as Mathematical Programs with Complementarity Constraints (MPCCs).
Fortunately, they can often be solved efficiently by solving a sequence of standard
smooth and more regular optimization problems.

Therefore, solving discretized nonsmooth optimal control problems requires a
background in nonlinear optimization, complementarity problems, and their
combination, i.e., MPCCs.

Outline. In this chapter, we study these three ingredients. Section 2.1
introduces some of the basic concepts and algorithms in constrained optimization
with smooth functions. In Section 2.2 we discuss variational inequalities,
complementarity problems and generalized equations. They are all somewhat
nonsmooth generalizations of standard root-finding problems. Section 2.3 is
devoted to reviewing in detail the theory of MPCCs. The chapter finishes with
Section 2.4, which reviews standard solution methods for MPCCs. We focus on
the algorithms that are implemented in nosnoc.

21

22 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

2.1 Smooth nonlinear optimization: theory and
algorithms

In this section, we provide some basic background on finite-dimensional
constrained optimization problems, which we call from now on nonlinear
programming problems (NLP). We review the first and second-order optimality
conditions and some of the most popular iterative solution methods. Ultimately,
all methods in this thesis require solving NLPs at some point. NLP theory
is also the basis for studying mathematical programs with complementarity
constraints (MPCC), which are also a central topic in this thesis.

For this purpose, we regard an NLP in standard form:

min
x∈Rn

f(x) (2.1a)

s.t. g(x) = 0, (2.1b)

h(x) ≥ 0, (2.1c)

with the vector x ∈ Rn as optimization (decision) variables and the objective
(cost) function f : Rn → R. The functions g : Rn → Rng and h : Rn → Rnh are
the equality and inequality constraint functions, respectively. We assume that
these functions are at least twice continuously differentiable with respect to x.

2.1.1 Optimality conditions

We are interested in geometric and algebraic conditions that characterize an
optimal solution to the problem (2.1). To be able to state these conditions we
state some basic definitions.

Definition 2.1 (Feasible set). The feasible set of the NLP (2.1) is defined as
the set Ω = {x ∈ Rn | g(x) = 0, h(x) ≥ 0} ⊆ Rn. A point x ∈ Ω is called a
feasible point.

Definition 2.2 (Local minimizer). A feasible point x∗ ∈ Ω is called a local
minimizer of the NLP (2.1) if there exists an open ball Bϵ(x∗) with ϵ > 0
such that for all x ∈ Bϵ(x∗) ∩ Ω it holds that f(x) ≥ f(x∗). Furthermore, if
f(x) > f(x∗) for x ̸= x∗, then x∗ it is called a strict local minimizer. The value
f(x∗) at a local minimizer x∗ is called the (strict) local minimum.

Definition 2.3 (Global minimizer). A feasible point x∗ ∈ Ω is called a global
minimizer of the NLP (2.1) if for all x ∈ Ω it holds that f(x) ≥ f(x∗). The
value f(x∗) at a global minimizer x∗ is called the global minimum.

SMOOTH NONLINEAR OPTIMIZATION: THEORY AND ALGORITHMS 23

Alternatively, we call a minimizer x∗ a local (global) solution or optimizer to
the NLP (2.1). If the function g is affine and h convex, then the feasible set is
a convex set. Moreover, if the objective f is a convex function, then the NLP is
a convex optimization problem and every local minimizer is a global minimizer.
An NLP is nonconvex if it is not convex. In this thesis, we deal with nonconvex
problems and we are interested in computing a local minimizer.

First-order optimality conditions

We first provide some useful definitions and first-order optimality conditions
based on the geometric characterization of the set Ω. The subsection finishes
by providing a purely algebraic characterization of a local minimizer.

Definition 2.4 (Tangent Cone). For a closed set Ω and a point x ∈ Ω, a vector
d is said to be tangent to Ω at x if there exists a sequence xk ∈ Ω with xk → x,
along with a sequence of positive scalar tk → 0 such that dk = xk−x

tk
→ d. The

set of all vectors d that are tangent to Ω at a point x ∈ Ω is called the tangent
cone to Ω at x and denoted as TΩ(x).

If the set Ω = {x} is a singleton, then TΩ(x) = {0}. If x is in the interior of Ω,
then TΩ(x) = Rn. At points x at the boundary of Ω it is a more complicated
conic set and as we see below it is not necessarily convex. We now have the
necessary tools to state a first variant of first-order necessary conditions.

Theorem 2.5 (First-order necessary conditions (FONC)). If x∗ is a local
solution of the NLP (2.1), then it holds that

∇f(x∗)⊤d ≥ 0, for all d ∈ TΩ(x∗). (2.2)

A point x∗ satisfying the condition (2.2) is called a stationary point. Next, we
define some cones related to the tangent cone. As it will be useful, we define
some additional cones that can be related to the tangent cone. We can express
FONC conditions with their help as well.

Definition 2.6 (Normal cone). The normal cone to the set Ω at a point x ∈ Ω
is defined as

NΩ(x) = {v ∈ Rn | v⊤d ≤ 0 for all d ∈ TΩ(x)}. (2.3)

Each vector v ∈ NΩ(x) is said to be a normal vector. Furthermore, if x /∈ Ω,
the normal cone is defined as NΩ(x) = ∅.

Example tangent and normal cones at several points of a set Ω are depicted in
Figure 2.1.

24 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Figure 2.1: The normal and tangent cones at several points from a convex set Ω.

Definition 2.7 (Polar cone). The polar cone of a cone C ⊆ Rn is defined as
C◦ = {v ∈ Rn | v⊤d ≤ 0, for all d ∈ C}.

Definition 2.8 (Dual cone). The dual cone of a cone C ⊆ Rn is defined as
C∗ = {v ∈ Rn | v⊤d ≥ 0, for all d ∈ C}.

From the last two definitions, it follows that C∗ = −C◦.

Observe that the definitions and theorems above are only based on the geometry
of the feasible set Ω, but not its algebraic representation. In fact, for checking
the necessary conditions we must verify infinitely many inequalities, cf. Theorem
2.5. To check some properties of the set Ω and to compute a solution to the
NLP, it is more convenient to work with the algebraic characterization of the
set Ω as it consists of a finite set of equations.

Due to continuity, it is clear that in a neighborhood of a point x, strictly satisfied
inequalities hi(x) > 0 will stay strictly satisfied, hence they do not influence the
local algebraic characterization of the feasible set. In this sense the following
definitions are useful.

Definition 2.9 (Active set). An inequality constraint hi : Rn → R is
called active at a feasible point x ∈ Ω if hi(x) = 0. The index set
A(x) = {i ∈ {1, . . . , nh} | hi(x) = 0} of active inequality constraints is called
the active set.

Next, we look at a local algebraic specification of the feasible set at a point x
based on the first-order derivatives of the constraint functions g and h. Moving

SMOOTH NONLINEAR OPTIMIZATION: THEORY AND ALGORITHMS 25

away from x in some of these directions we stay feasible up to the first order.
The set of such directions is defined as follows.
Definition 2.10 (Linearized Feasible Cone). The linearized feasible cone of Ω
at a feasible point x is defined as

FΩ(x) = {d ∈ Rn | ∇g(x)⊤d = 0,∇hA(x)(x)⊤d ≥ 0}. (2.4)

The set FΩ(x) is a closed convex polyhedral cone. It should somewhat replace the
tangent cone TΩ(x) in the theorems above. However, these cones are not always
the same, i.e., TΩ(x) might even be a nonconvex set. The so-called constraint
qualifications (CQ) give sufficient (and sometimes necessary) conditions when
these two cones are equal or how are they are related, if at all. In other words,
they specify conditions under which the algebraically defined set FΩ(x) captures
the local geometry of Ω. Some of the most widely used CQs are listed in the
next definition.
Definition 2.11 (Constraint Qualifications). Let x ∈ Ω be a feasible point to
the NLP (2.1).

• The Linear Independence CQ (LICQ) holds at x if the vectors ∇gi(x), i =
1, . . . , nh and ∇hi(x), i ∈ A(x) are linearly independent.

• The Mangasarian-Fromovitz (MFCQ) holds at x if the vectors ∇gi(x), i =
1, . . . , nh are linearly independent and there exist a vector d ∈ Rn such
that ∇g(x)⊤d = 0 and ∇hi(x)⊤d > 0 for all i ∈ A(x).

• The Abadie CQ (ACQ) holds at x if TΩ(x) = FΩ(x).

• The Guignard CQ (GCQ) holds at x if TΩ(x)◦ = FΩ(x)◦.

The LICQ implies the MFCQ, and the MFCQ implies the ACQ. The ACQ
implies the GCQ. The converses are in general not true. The LICQ and MFCQ
are sufficient for the equality of the linearized feasible cone and tangent cone,
but they are more practical than the ACQ and the GCQ since they can be
verified by using the algebraic specification of the feasible set Ω. We illustrate
the different CQs in a simple example.
Example 2.12. (Constraint Qualifications) Regard the NLP

min
x∈R2

x2
1 + x2

2

s.t. x1 ≥ 0,

x2 ≥ 0,

x1x2 ≤ 0.

26 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Figure 2.2: Illustration of the feasible set, objective function contour lines,
linearized feasible cone, tangent cone, and their polar cones for the NLP of
Example 2.12

The global minimizer of this NLP is x∗ = (0, 0). The cones FΩ(x∗) and TΩ(x∗)
are illustrated in Figure 2.2. It can be verified that TΩ(x∗) = Ω and that
FΩ(x∗) = {d ∈ R2 | d ≥ 0}. Clearly, TΩ(x∗) is nonconvex and we have only the
GCQ to hold at x∗. This example belongs to the class of mathematical programs
with complementarity constraints and it is characteristic for these problems that
only the GCQ has a chance to hold, cf. Section 2.3.

A key function in the theory of constrained optimization is the Lagrange
function.

Definition 2.13 (Lagrange Function/Lagrangian). The function L : Rn ×
Rng × Rnh → R:

L(x, λ, µ) := f(x)− λ⊤g(x)− µ⊤h(x), (2.6)

with Lagrange multipliers λ ∈ Rng and µ ∈ Rnh is called the Lagrangian of the
NLP (2.1).

The next theorem is probably the most famous result in constrained optimization
theory and was independently discovered by Karush [160] and Kuhn and
Tucker [172]. It provides conditions based on the first-order derivatives of the
NLP functions that characterize a local minimizer. Under appropriate CQs it
holds that TΩ(x) = FΩ(x) and from Theorem 2.5 for a local minimizer x∗ it
holds that −∇f(x∗) ∈ FΩ(x)◦. Using now Farka’s lemma, one can derive the
KKT conditions. For a proof and further details see e.g., [201, Chapter 12].

SMOOTH NONLINEAR OPTIMIZATION: THEORY AND ALGORITHMS 27

Theorem 2.14 (Karush-Kuhn-Tucker (KKT) conditions). Let x∗ be a local
minimizer of the NLP (2.1) and assume that LICQ holds at x∗. Then there exist
Lagrange multipliers λ∗ and µ∗ such that the following conditions are satisfied:

∇xL(x∗, λ∗, µ∗) = ∇f(x∗)−∇g(x∗)⊤λ∗ −∇h(x∗)⊤µ∗ = 0, (2.7a)

g(x∗) = 0, (2.7b)

h(x∗) ≥ 0, (2.7c)

µ∗ ≥ 0, (2.7d)

µ∗
i hi(x∗) = 0, i = 1, . . . , nh. (2.7e)

A vector (x∗, λ∗, µ∗) is called a KKT point if LICQ and Eq. (2.7) hold.

The set of equations (2.7) is called the KKT conditions. The last condition
µ∗
i hi(x∗) = 0 states that both terms cannot be nonzero at the same time, which

implies that inactive constraints must have zero multipliers. If there is no i
such that both terms are zero, then we say that strict complementarity holds.
A constraint hi(x∗) for which it holds that µ∗

i = hi(x∗) = 0 is said to be weakly
active.

Second-order optimality conditions If the NLP (2.1) is convex and LICQ
holds at x∗, then the KKT conditions are necessary and sufficient for x∗ to be a
global minimizer. However, for nonconvex problems they are only necessary and
we usually have feasible directions d ∈ FΩ(x∗) of zero slope, i.e., ∇f(x∗)⊤d = 0.
To make further conclusions, we must look at second-order derivatives of the
NLP functions at x∗.

Definition 2.15 (Critical cone). Let (x∗, λ∗) be a KKT point. The set is
defined as

CΩ(x∗, µ∗) = {d ∈ Rn |∇gi(x)⊤d = 0, for all i ∈ {1, . . . , ng},

∇hi(x)⊤d = 0, for all i ∈ A(x∗) with µ∗
i > 0,

∇hi(x)⊤d ≥ 0, for all i ∈ A(x∗) with µ∗
i = 0}

(2.8)

is called the critical cone.

Note that it holds in general that CΩ(x∗, µ∗) ⊆ FΩ(x∗) since the increasing
directions {d ∈ FΩ(x∗) | hi(x)⊤d > 0, for all i ∈ A(x∗) with µ∗

i > 0} are
excluded in the critical cone. If there were no weakly active constraints, then

28 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

the critical cone would be a subspace of Rn. This simplifies the verification
of second-order conditions. Moreover, if the matrix formed by the constraint
normal defining the critical cone has rank n, then the critical cone is the zero
set. The next theorem gives second-order optimality conditions.

Theorem 2.16 (Second-order conditions). Let x∗ ∈ Ω be a feasible point of
the NLP (2.1).

• (Second-Order Necessary Conditions (SONC)) Suppose that x∗ is a local
minimizer of the NLP (2.1) and that the LICQ condition holds at x∗. Then
there exist Lagrange multipliers (λ∗, µ∗) such that the KKT conditions
(2.7) are satisfied, and it holds that

d⊤∇2
xxL(x∗, λ∗, µ∗)d ≥ 0, for all d ∈ CΩ(x∗, µ∗). (2.9)

• (Second-Order Sufficient Conditions (SOSC)) Suppose that for x∗ there
exist Lagrange multipliers (λ∗, µ∗) such that the KKT conditions (2.7) are
satisfied and that the following inequality holds

d⊤∇2
xxL(x∗, λ∗, µ∗)d > 0, for all d ∈ CΩ(x∗, µ∗) \ {0}. (2.10)

Then x∗ is a strict local minimizer of the NLP (2.1).

A short and elegant proof for this theorem can be found in [100, Chapter 9.1].
A longer but more instructive proof is available in [232, Section 8.12].

It might be tempting to assume that we have to look only at the curvature of
the objective ∇2f(x) in the critical directions. However, this consideration does
not capture the curvature of the constraints, and we have to indeed look at the
Hessian of the Lagrange function as we illustrate in the next example.

Example 2.17 (Fiacco-McCormic). Regard the NLP parametrized by the
scalar β:

min
x∈R2

1
2((x1 − 1)2 + x2

2)

s.t. − x1 + βx2
2 = 0.

Since we can explicitly express x1 = βx2
2, our NLP has the same solutions as

the unconstrained reduced problem minx2 f̃(x2) with f̃(x2) = (βx2
2 − 1)2 + x2

2.
Let us regard the point x∗ = 0 for β = 0.25 (for which x∗ is a local minimizer)
and β = 2 (for which x∗ is not a local minimizer), cf. the left plot in Figure 2.3.
Since x∗ = 0 is feasible and ∇f(x∗) = ∇g(x∗) = (−1, 0) the KKT conditions
are satisfied for λ∗ = 1. The critical cone is the set CΩ(x∗, λ∗) = {d ∈ R2 |

SMOOTH NONLINEAR OPTIMIZATION: THEORY AND ALGORITHMS 29

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

Figure 2.3: The feasible set and objective function contour lines (left plot), the
functions f(x), L(x, λ∗) and f̃(x2) for β = 0.25 (middle plot) and the functions
f(x), L(x, λ∗) and f̃(x2) for β = 2 (right plot).

d1 = 0}. The Hessian of the objective function is ∇2
xxf(x) =

[
1 0
0 1

]
is always

positive definite, but obviously, we can draw no conclusions about optimality
using this information. On the other hand, the Hessian of the Lagrangian is

∇2
xxL(x∗, λ∗) =

[
1 0
0 1− 2β

]
, i.e. d⊤∇2

xxL(x∗, λ∗)d = d2
2(1− 2β). For β < 0.5,

the SOSC are satisfied and for β > 0.5, the SONC are violated. The second-
order derivative of the reduced objective at x∗ is ∇2

xxf2(x∗
2) = (1 − 2β) and

has the same sign as d⊤∇2
xxL(x∗, λ∗)d in the critical directions. The functions

f(x), L(x, λ∗) and f̃(x2) are illustrated for different points along the critical
directions in Figure 2.3.

2.1.2 Nonlinear programming algorithms

Regard the root-finding problem F (w) = 0, where F : Rnw → Rnw . Given
some initial guess w0, Newton’s method generates a sequence of solution
approximations wk by solving a linearized version of the initial problem:

F (wk) +∇F (wk)⊤(wk+1 − wk) = 0.

If the Jacobian ∇F (w)⊤ is invertible and if w0 is sufficiently close to a solution
w∗, then the generated sequence of solutions approximations wk converges to w∗.
In Newton-type methods, instead of the exact Jacobian, an approximation Ak ≈
∇F (wk)⊤ is used. To promote global convergence, i.e., to ensure convergence
from any initial point, a globalization strategy must be used. That is, the step
δwk = (wk+1 − wk) is adapted in some way such that convergence is ensured.

30 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Most NLP solvers try to find a solution candidate (x∗, λ∗, µ∗) by solving the
KKT conditions (2.7). Starting from an initial guess (x0, λ0, µ0), they generate
a sequence (xk, λk, µk)→ (x∗, λ∗, µ∗) as k →∞. If no inequalities are present,
the KKT system reduces to a standard root-finding problem. In this thesis,
we focus on Newton-type algorithms for iteratively finding a solution to the
KKT system (2.7). However, things get more complicated with the presence
of inequality constraints. One of the main distinguishing features of NLP
algorithms is how they treat these constraints. The two most widely used
Newton-type NLP solution methods are Sequential Quadratic Programming
(SQP) and Interior-Point (IP) methods. Several great textbooks cover the broad
topic of Newton-type NLP solution methods [38, 100, 148, 201].

Sequential quadratic programming

The main idea in SQP is, given the current iterate (xk, λk, µk), to construct the
following Quadratic Program (QP), which approximates the NLP (2.1):

min
d∈Rn

1
2d

⊤Akd+∇f(xk)⊤d (2.12a)

s.t. g(xk) +∇g(xk)⊤d = 0, (2.12b)

h(xk) +∇h(xk)⊤d ≥ 0. (2.12c)

The solution of this QP provides a new search direction dk ∈ Rn. The
Lagrange multipliers of the QP equality and inequality constraints are denoted
by λQP and µQP, respectively. The QP is obtained from the first-order Taylor
approximations of the equality and inequality constraints and a quadratic
approximation for the objective function, where Ak is the Hessian of the
Lagrangian or an approximation of it. The KKT conditions of this QP
correspond to a linearization of the KKT conditions of the NLP, but where the
complementarity conditions are structurally linearized such that the two terms
entering the bilinear expression (2.7) are linearized.

The next step is computed as

xk+1 = xk + dk, λk+1 = λkQP, µ
k+1 = µkQP. (2.13)

Under suitable conditions, the generated sequence converges to a local minimizer
of the NLP (2.1).

To implement an SQP method, one requires a QP solver at hand. An overview
of QP solvers tailored to optimal control problems is given in [170]. In practice,
there are many variations to the basic SQP algorithm. Globalization strategies

SMOOTH NONLINEAR OPTIMIZATION: THEORY AND ALGORITHMS 31

adapt the search direction dk to promote convergence from any initial guess.
In line search methods, the step dk is replaced by αdk, α ∈ (0, 1] such that a
sufficient decrease in the objective and/or constraint infeasibility is achieved.
Trust region methods add constraints to bound d in the QP (2.12), such that
both the direction and length of dk are adapted simultaneously. SQP methods
are known for good warm starting properties, that is, given a good initial guess,
the solution is expected to be found in a few iterations.

In practice, instead of the exact Hessian Ak = ∇2
xxL(x∗, λ∗, µ∗), a suitable

approximation is often used. Some approximations as the BFGS and SR1 update
formulae rely on previous iterates, whereas the Gauss-Newton approximation
(suitable only for nonlinear least squares objective functions) depends only
on the current iterate. There exist several variants of inexact SQP methods
where even the first-order derivatives in the QP (2.12b) are approximated. In
general, the approximations slow down the convergence rate but lead to cheaper
iterations. Widely used and robust SQP implementations are SNOPT [111] and
filterSQP [101], and in the field of optimal control MUSCOD-II [81], ACADO
Toolkit [140, 226], and acados [278].

Interior-point methods

Similar to SQP methods, IP methods also solve a sequence of approximate
problems. The main obstacle to directly applying Newton’s method to the KKT
system (2.7) are the nonsmooth complementarity conditions (2.7e). A possible
remedy is to solve a sequence of smoothed KKT systems:

∇xL(x, λ, µ) = 0, (2.14a)

g(x) = 0, (2.14b)

µihi(x) = τ [k], i = 1, . . . , nh, (2.14c)

where τ [k] → 0. Note that here k is the index of the subproblem in the sequence
of smoothed systems, but not the index of the Newton iteration. For every
fixed smoothing parameter τ [k], one finds an (approximate) solution to (2.14)
with a Newton-type method and updates afterward the τ [k]. The Newton
steps are adapted with a fraction-to-boundary line search such that µ, h(x) > 0
is maintained. The smoothing parameter updated strategy (which does not
have to be monotonic), the used line-search and type of Hessian approximation
A ≈ ∇2

xxL(x, λ, µ) are the key to the practical success of interior-point methods.

32 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Eq. (2.14) are the KKT conditions of the following equality-constrained problem:

min
x∈Rn

f(x)− τ [k]
nh∑
i=1

log(h(x))

s.t. g(x) = 0.

A solution to this problem lies in the interior of the feasible set Ω, hence the
name. Some widely used interior-point method implementations are LOQO [276],
KNITRO [58], and IPOPT [281].

2.2 Variational inequalities and complementarity
problems

Variational inequalities (VI) are a generalization of root-finding problems. They
are a powerful modeling tool that provides an efficient way to write down
many problems in science and engineering that have some combinatorial and
nonsmooth structure. For example, we have already used VIs to express
necessary optimality conditions for constrained optimization problems, cf.
Theorem 2.5. Moreover, they provide a convenient way to model constrained
systems of equations, Nash equilibrium problems, frictional contact problems
in mechanics (cf. Chapter 8), traffic equilibrium models, economic equilibrium
problems, and many more [89]. Solution sets of parametric VIs are under
appropriate conditions piecewise smooth functions of the parameter. We
exploit this on several occasions in this thesis for modeling of piecewise smooth
dynamical systems, in particular in Chapter 6. Under mild assumptions, VIs
can be brought into several equivalent forms, namely complementarity problems,
generalized equations, and nonsmooth equations. This facilitates the theoretical
analysis and development of computational methods. In this section we define
the aforementioned concepts, relate them and list some basic theoretical results.
All results given below can be found in [89].

2.2.1 Variational inequalities and generalized equations

We follow the exposition of [270] to motivate the definition of VIs, a
generalization of root-finding problems. Regard the problem of finding x ∈ Rn
with F : Rn → Rn such that:

F (x) = 0.

VARIATIONAL INEQUALITIES AND COMPLEMENTARITY PROBLEMS 33

This is equivalent to the variational problem of finding x ∈ Rn such that

F (x)⊤d = 0, for all d ∈ Rn,

which is further equivalent to finding x ∈ Rn such that

F (x)⊤(y − x) = 0, for all y ∈ Rn,

A general variational inequality has the same form, but now with restricting
x, y to a set K ⊆ Rn.

Definition 2.18. Let K ⊆ Rn and F : Rn → Rn. A variational inequality,
denoted compactly by VI(K,F), is the problem of finding x ∈ Rn such that

x ∈ K, F (x)⊤(y − x) ≥ 0, for all y ∈ K. (2.15)

The set of solutions to this problem is denoted by SOL(K,F).

In most of what follows, we assume that K is a closed convex set and that
F (x) is continuous on K. This is sufficient for our needs and still allows great
generality. For results on variants where these conditions are relaxed, cf. [89].

Geometrically, a vector x ∈ K is a solution of VI(K,F) if and only if either
F (x) = 0 or F (x) forms a nonobtuse angle with every vector y−x for all y ∈ K.
This also reveals that feasible solutions of F (x) = 0 are solutions to the VI,
i.e., F−1(0) ∩K ⊆ SOL(K,F). However, the cases where it is interesting to
analyze VIs are when the zeros of F (x) = 0 (if any exist at all) are not in K,
i.e., F−1(0) ∩K = ∅.

Comparing Definition 2.18 with the definition of the normal cone in Definition
2.6, i.e., NK(x) = {v ∈ Rn | v⊤(y − x) ≤ 0, for all y ∈ K}, it can be seen that
VI(K,F) is equivalent to finding x ∈ K such that:

0 ∈ F (x) +NK(x). (2.16)

This problem is called a generalized equation and was introduced by Robinson
in [231]. Of course, in more general forms, the set-valued normal cone map can
be replaced by some more general set-valued map. For a detailed treatment of
generalized equations, cf. [84]. Conceptually, the problem of satisfying infinitely
many inequality conditions is now replaced by finding the zeros of a set-valued
equation. A geometrical interpretation of the VI (2.15) and the generalized
equation (2.16) is given in Figure 2.4.

We restate a fundamental existence and uniqueness result for VIs.

Theorem 2.19 (Corollaries 2.2.5, 2.2.6 and Theorem 2.2.3 in [89]). Let K ⊆ Rn
be a closed convex set and suppose that F : K → Rn is a continuous function.
Then the following statements hold.

34 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Figure 2.4: Geometric illustration of the VI(K,F). The vector x1 is a solution
since F1(x) = 0, x2 is not a solution. Vectors x3 and x5 are solutions since
−F (x) ∈ NK(x), thus the GE (2.16) is satisfied. The VI is not satisfied at x4.

a) If there exist xref ∈ K such that F (x)⊤(x− xref) ≥ 0 for all x ∈ K, then
the set SOL(K,F) is nonempty.

b) If K is bounded, then the set SOL(K,F) is nonempty and compact.

c) If F (·) is strictly monotone on K, that is (F (x1)− F (x2))⊤(x1 − x2) > 0
for all x1, x2 ∈ K and x1 ̸= x2, then SOL(K,F) has at least one element.

d) If F (·) is ξ−monotone on K with ξ > 1, i.e., there exist a c > 0 such that
(F (x1)−F (x2))⊤(x1 − x2) > c∥x1 − x2∥ξ for all x1, x2 ∈ K and x1 ̸= x2,
then SOL(K,F) is a singleton.

Note that only the second assertion needs a compact K. The other assumptions
are applicable for unbounded sets, e.g., when K is a cone. Monotonicity is a
ubiquitous assumption in the study of VIs. For example, gradients of convex
functions are monotone.

2.2.2 Complementarity problems

An ample number of practical problems are VIs with K being a closed convex
cone. In this case, the VI is equivalent to a cone complementarity problem.
Recall that K∗ = {v ∈ Rn | d⊤v ≥ 0 for all d ∈ K} is the dual cone of K, cf.
Definition 2.8.

VARIATIONAL INEQUALITIES AND COMPLEMENTARITY PROBLEMS 35

Figure 2.5: Geometric illustration of the cone complementarity problem from
Definition 2.20 with two solution examples.

Definition 2.20. Given a closed convex cone K and a mapping F : K → Rn,
the cone complementarity problem is to find x ∈ K such that

K ∋ x ⊥ F (x) ∈ K∗, (2.17)

where this compact notation means that x ∈ K,F (x) ∈ K∗ and F (x)⊤x = 0.

Figure 2.5 provides a geometrical interpretation of this problem. The VI and
the cone complementarity problem (2.17) are equivalent as shown in the next
result.

Proposition 2.21 (Proposition 1.1.3. in [89]). Let K be a closed convex cone.
A vector x ∈ Rn is a solution to VI(K,F) in (2.15) if and only if it is a solution
to the cone complementarity problem (2.17).

Proof. Let x be a solution to the VI(K,F). On the one hand, since K is a cone,
setting y = 0 ∈ K we have from (2.15) that F (x)⊤x ≤ 0. On the other hand,
from the definition of a cone x ∈ K it follows that 2x ∈ K. Again, from (2.15)
and setting y = 2x we obtain that F (x)⊤x ≥ 0. Therefore, F (x)⊤x = 0. We
further exploit that F (x)⊤x ≥ 0, i.e., we can see that F (x)⊤(y− x) ≥ 0 implies
that F (x)⊤y ≥ 0 for all y ∈ K, which is equivalent to F (x) ∈ K∗. Thus we have
proven that x solves also (2.17). Conversely, if x solves (2.17), we have from
the definition that F (x)⊤y ≥ 0 for all y ∈ K and F (x)⊤x = 0. Subtracting
these relations we obtain that the VI (2.15) holds.

36 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

We mention some important special cases related to (2.17). The problem with
K = Rn≥0 is called a Nonlinear Complementarity Problem (NCP). This cone is
self-dual, i.e., Rn≥0 = (Rn≥0)∗.
Definition 2.22. Given a function F : Rn≥0 → Rn, a nonlinear complementarity
problem is to find a vector x ∈ Rn such that

0 ≤ x ⊥ F (x) ≥ 0. (2.18)

The nonnegativity of x and F (x) allows us to write the orthogonality condition
component-wise, i.e., the NCP is equivalent to solving:

x ≥ 0, F (x) ≥ 0,

Fi(x)xi = 0, for all i ∈ {1, . . . , n}.

In the form of inclusion into normal cones, i.e., GEs, this problem reads as
−F (x) ∈ NRn≥0

(x) and −x ∈ NRn≥0
(F (x)).

The NCP is generalized by adding further equality constraints. This can be
interpreted as the cone complementarity problem with K = Rn1 × Rn2

≥0 with
n = n1 +n2. Let G : Rn1×Rn2 → Rn1 , H : Rn1×Rn2 → Rn2 , y ∈ Rn1 , z ∈ Rn2

and x = (y, z) ∈ Rn. The mixed complementarity problem is finding x such
that

0 = G(y, z), (2.19)

0 ≤ z ⊥ H(y, z) ≥ 0. (2.20)

The KKT system in Eq. (2.7) is one of the most famous examples of mixed
complementarity problems.

A widely studied subclass of NCPs is when F (x) = Mx+ q is an affine function.
This gives rise to the Linear Complementarity Problem (LCP):

0 ≤ x ⊥Mx+ q ≥ 0. (2.21)

The solution set of this LCP has the widely used notation SOL(M, q). They play
also a fundamental role in solution methods and the theoretical analysis for VIs
and complementarity problems, as they arise from their structural linearization.
The monograph [69] collects the most important theoretical and algorithmic
results for LCPs.

2.2.3 Nonsmooth equations

Variational inequalities can be written as equivalent generalized equations. Now
we show that VIs can be written also as standard but nonsmooth systems of

VARIATIONAL INEQUALITIES AND COMPLEMENTARITY PROBLEMS 37

-0
.5

-0.5

0

0

0.5

1

1.5

2

-1 0 1 2 3
-1

0

1

2

3

-1-0.5

0

0

0.5

0.5

1

1
1.5

2

-1 0 1 2 3
-1

0

1

2

3 -5-4-3-2-1

0

0

1

1
2

-1 0 1 2 3
-1

0

1

2

3

Figure 2.6: Level curve of C-functions. The left plot shows the min function,
the middle plot the Fischer-Burmeister function, and the right plot the Chen-
Chen-Kanzow function with λ = 0.5.

equations. We start with the simpler step of writing NCP (2.18) as nonsmooth
equation systems. For this purpose, we define the so-called C-functions.

Definition 2.23 (C-Functions). A function ψC : R × R → R is called a
C-function if for any pair (a, b) ∈ R2 the following is satisfied

ψC(a, b) = 0 ⇐⇒ a, b ≥ 0 and ab = 0.

Given two vectors x, y ∈ Rn, the vector-valued C-function ΨC : Rn × Rn → Rn
is defined component-wise, i.e., ΨC(x, y) := (ψC(x1, y1), . . . , ψC(xn, yn)).

In the literature these functions are sometimes called NCP functions [178].
Therefore, the NCP (2.18) is equivalent to finding zeros in the following
nonsmooth system of equations:

ΨC(F (x), x) = 0.

Let us list some of the most popular C-functions. For concrete examples, in
our notation, we replace the C in the subscript with some acronym related
to the name of the C-function. The first example is the min-function, i.e., it
holds that ψmin(a, b) = min(a, b) = 0. This function is differentiable everywhere
except at the line a = b. An equivalent formulation is given via the natural
residual function ψmin(a, b) = ψNR(a, b) = 1

2 (a+ b−
√

(a− b)2). The Fischer-
Burmeister (FB) function is given by ψFB(a, b) =

√
(a2 + b2)− (a+ b). This

function is convex and differentiable everywhere except at (0, 0). The function
ψpFB, with p ≥ 2 is differentiable everywhere, however, has a zero gradient at

38 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

the origin. Another example is the Chen-Chen-Kanzow function ψCCK(a, b) =
ψFB(a, b) − λmax(0, a) max(0, b) with λ > 0. The level curves of our three
examples are depicted in Figure 2.6.

2.3 Mathematical programs with complementarity
constraints

In this section, we turn our attention to Mathematical Programs with
Complementarity Constraints (MPCC). They are a central tool in this thesis
as all discrete-time optimal control problem formulations that we arrive at are
MPCCs.

A large source of MPCCs are so-called bilevel optimization problems. These are
NLPs where the solution set of a lower-level optimization problem is part of the
upper-level feasible set. The upper-level variables enter the lower-level problem
as parameters. Replacing the lower-level problem by its KKT conditions one
ends up with an MPCC.

A more general class are Mathematical Programs with Equilibrium Constraints
(MPEC) which are NLPs with a VI, representing an equilibrium condition, as a
constraint. Solutions of VI are characterized by complementarity conditions.
However, they might be only necessary conditions as in the case of KKT
conditions for nonconvex NLPs. Thus by replacing the VI with complementarity
conditions we obtain an MPCC which is usually a relaxation of the initial
MPEC. Of course, when the complementarity conditions are also sufficient,
the two problems become equivalent. We review the standard MPCC theory
and solution methods. In the literature, the acronym MPEC is often used for
MPCCs, since it is easier to pronounce.

2.3.1 Introduction to MPCCs

The complementarity constraint in an NLP formulation of the MPCC (as Eq.
(2.23)) lead to a violation of standard CQs at all feasible points. This requires
special treatment both from the numerical and theoretical points of view. The
theory presented here has its origins in [96, 104, 151, 187, 236].

We regard an NLP similar to (2.1), but now with additional complementarity
conditions:

0 ≤ G(x) ⊥ H(x) ≥ 0,

MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS 39

where G,H : Rn → Rm are assumed to be twice continuously differentiable
functions. These conditions can be equivalently stated in several ways:

1. G(x) ≥ 0, H(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . .m,

2. G(x) ≥ 0, H(x) ≥ 0, G(x)⊤H(x) ≤ 0,

3. G(x) ≥ 0, H(x) ≥ 0, Gi(x)Hi(x) = 0, i = 1, . . .m,

4. G(x) ≥ 0, H(x) ≥ 0, G(x)⊤H(x) = 0,

5. ΦC(G(x), H(x)) = 0.

In our exposition, we pick to work with the first variant.

Remark 2.24. Several authors [104, 179, 248] introduce slack variables for the
functions G(x) and H(x) to have only linear functions in the complementarity
conditions:

sG = G(x), sH = H(x), (2.22a)

sG ≥ 0, sH ≥ 0, (2.22b)

sG,isH,i ≤ 0, for all i ∈ {1, . . . ,m}. (2.22c)

This does not change any of the theoretical considerations and we stick to
the notation of most of the MPCC-literature [12, 96, 108, 139, 146, 151, 219,
228, 236], where nonlinear functions G(x) and H(x) are treated directly in the
complementarity conditions. However, for the efficacy of numerical solvers it is
often beneficial to introduce the slacks [104], see also Section 2.4.

Regard the following NLP

min
x∈Rn

f(x) (2.23a)

s.t. g(x) = 0, (2.23b)

h(x) ≥ 0, (2.23c)

G(x) ≥ 0, (2.23d)

H(x) ≥ 0, (2.23e)

Gi(x)Hi(x) ≤ 0, i = 1, . . . ,m. (2.23f)

40 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

The feasible set of this NLP is denoted by ΩMPCC. The constraints (2.23d)-
(2.23f) introduce some difficulty that prohibits a straightforward application of
the NLP theory from Section 2.1. Hence, they need to be treated with special
care. We illustrate this with the following example from [236].

Example 2.25 (The global minimum is not a KKT point). Regard the following
MPCC:

min
x∈R3

x1 + x2 − x3

s.t. h1(x) = 4x1 − x3 ≥ 0, | µ1,

h2(x) = 4x2 − x3 ≥ 0, | µ2,

G(x) = x1 ≥ 0, | µG,

H(x) = x2 ≥ 0, | µH ,

G(x)H(x) = x1x2 ≤ 0, | µGH .

It is not difficult to see that x∗ = (0, 0, 0) is the global minimizer of this NLP.
At the solution all inequalities are active. We try to find Lagrange multipliers
µ∗ = (µ∗

1, µ
∗
2, µ

∗
G, µ

∗
H , µ

∗
GH) ≥ 0 such that the KKT conditions (2.7) are satisfied.

Starting with ∇xL(x∗, µ∗) = 0 we have

0 =

 1
1
−1

− µ∗
1

 4
0
−1

− µ∗
2

 4
0
−1

− µ∗
G

 4
0
−1

− µ∗
H

 4
0
−1

+ µ∗
GH

0
0
0

 .
From the nonnegativity of the multipliers and this condition, we obtained that

µ∗
G = 1− 4µ∗

1 ≥ 0, µ∗
1 ∈ [0, 0.25],

µ∗
H = 1− 4µ∗

2 ≥ 0, µ∗
2 ∈ [0, 0.25],

µ∗
1 + µ∗

2 = 1.

We conclude that there are no Lagrange multipliers that satisfy the KKT
conditions. The KKT conditions are not necessary for the global minimizer in
this example.

The reason for the degeneracy in the last example is the absence of CQs. This
is not a pathological example. Typically, most standard CQs are violated for
generic MPCCs (2.23). For example, there is no feasible point x that satisfies
the inequality (2.23f) strictly and this implies that the MFCQ is violated

MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS 41

at every feasible point [236], cf. Definition 2.11. This has several negative
consequences: (a) the set of Lagrange multipliers is necessarily unbounded, (b)
the gradients of the active constraints are linearly dependent at all feasible
points, and (c) the linearization of (2.23) can be inconsistent arbitrarily close to
a stationarity point [99]. The tangent cone is usually a nonconvex cone due to
the complementarity constraints, cf. Example 2.12. Since the linearized feasible
cone is a polyhedral convex cone, in most cases we can only expect the GCQ to
hold [98]. This prohibits us to equate the tangent and linear feasible cone and
to pass from the FONC to the KKT conditions. To resolve these theoretical
difficulties, besides the standard geometric FONC in Theorem 2.5, for MPCC
several tailored stationarity concepts that can characterize local minima are
derived.

2.3.2 First-order optimality conditions for MPCCs

The stationarity concepts for MPCC are defined utilizing several auxiliary NLPs.
We first define the index sets which depend on a feasible point x ∈ ΩMPCC:

I+0(x) = {i ∈ {1, . . . ,m} | Gi(x) > 0, Hi(x) = 0},

I0+(x) = {i ∈ {1, . . . ,m} | Gi(x) = 0, Hi(x) > 0},

I00(x) = {i ∈ {1, . . . ,m} | Gi(x) = 0, Hi(x) = 0}.

For ease of notation, we often omit the argument in the index sets, as it is clear
from the context which point is meant. The set I00 is called the set of degenerate
indices and is usually the source of theoretical and numerical difficulties. If I00
is empty, we say that a solution x∗ satisfies strict complementarity. We proceed
with the definition of the auxiliary NLPs [236].

Definition 2.26 (Auxiliary NLP). Let x∗ ∈ ΩMPCC. We define the following
auxiliary NLPs:

• the Relaxed NLP (RNLP) for x∗ ∈ ΩMPCC is defined as

min
x∈Rn

f(x) (2.24a)

s.t. g(x) = 0, (2.24b)

h(x) ≥ 0, (2.24c)

Gi(x) = 0, Hi(x) ≥ 0, i ∈ I0+(x∗), (2.24d)

Gi(x) ≥ 0, Hi(x) = 0, i ∈ I+0(x∗), (2.24e)

42 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Gi(x) ≥ 0, Hi(x) ≥ 0, i ∈ I00(x∗), (2.24f)

• the Tight NLP (TNLP) for x∗ ∈ ΩMPCC is defined as

min
x∈Rn

f(x) (2.25a)

s.t. g(x) = 0, (2.25b)

h(x) ≥ 0, (2.25c)

Gi(x) = 0, Hi(x) ≥ 0, i ∈ I0+(x∗), (2.25d)

Gi(x) ≥ 0, Hi(x) = 0, i ∈ I+0(x∗), (2.25e)

Gi(x) = 0, Hi(x) = 0, i ∈ I00(x∗). (2.25f)

• Let (I1, I2) be a partition of I00 such that I1 ∪ I2 = I00 and I1 ∩ I2 = ∅.
The Branch NLP (BNLP(I1,I2)) for x∗ ∈ ΩMPCC is defined as

min
x∈Rn

f(x) (2.26a)

s.t. g(x) = 0, (2.26b)

h(x) ≥ 0, (2.26c)

Gi(x) ≥ 0, Hi(x) = 0, i ∈ I+0(x∗) ∪ I1(x∗), (2.26d)

Gi(x) = 0, Hi(x) ≥ 0, i ∈ I0+(x∗) ∪ I2(x∗). (2.26e)

Figure 2.7 illustrates the feasible sets of the auxiliary NLPs for i ∈ I00. We
denote the feasible sets of the RNLP, TNLP, and BNLP(I1,I2) by ΩRNLP,
ΩTNLP and ΩBNLP(I1,I2) , respectively. The usual NLP concepts such as first-
order optimality conditions, stationary points, second-order conditions, and
constraint qualification for MPCC are defined in terms of these auxiliary NLP.
To see that this approach makes sense we look at how these problems and
their solutions are related. It is not difficult to see that the following holds for
x∗ ∈ ΩMPCC [236]:

ΩTNLP =
⋂

(I1,I2)

ΩBNLP(I1,I2) ⊂ ΩMPCC =
⋃

(I1,I2)

ΩBNLP(I1,I2) ⊆ ΩRNLP.

(2.27)

The same relations hold for the corresponding tangent cones at x∗ as well.
Furthermore, for a feasible point of the MPCC (2.23) x∗ ∈ ΩMPCC the following

MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS 43

Gi(x)

H
i(
x
)

(a) TNLP

Gi(x)
H

i(
x
)

(b) RNLP

Gi(x)

H
i(
x
)

(c) BNLP

Gi(x)

H
i(
x
)

(d) BNLP

Figure 2.7: Feasible sets of auxiliary NLP.

can be said [236]. If x∗ is a local minimizer of the RNLP, then it is a local
minimizer of the MPCC. The converse is not true. If x∗ is a local minimizer
of the MPCC then it is a local minimizer of the TNLP. The point x∗ is a
local minimizer of the MPCC if and only if it is a local minimizer of every
BNLP(I1,I2). The last assertion highlights the combinatorial nature of MPCCs,
since 2|I00| branch NLPs must be checked to make conclusions about optimality.
Fortunately, as we will see below, under reasonable assumptions we do not have
to check every branch NLP but only the RNLP or TNLP to characterize a
stationary point of the MPCC.

All these difficulties arise because of the degenerate indices i ∈ I00. If this
set is empty, all auxiliary NLP collapse to the same problem, and there is no
combinatorial structure due to the BNLP anymore. It can be seen that the
tangent cone of ΩMPCC will be convex since there will be no rays that start
from the degenerate point, cf. Example 2.12. Assuming that other constraints
in the MPCC do not cause the violation of the ACQ, then we have that the
standard ACQ holds for the MPCC and thus we can apply the KKT-conditions
to verify the stationarity of x∗ ∈ ΩMPCC in this fortunate case. In other words,
x∗ ∈ ΩMPCC is a local minimizer of the MPCC if and only if it is a local
minimizer of the RNLP/TNLP, which are equal in this case [236].

Next, we define the MPCC Lagrangian, MPCC CQs, and MPCC stationarity
concepts.

Definition 2.27 (MPCC Lagrangian). The function LMPCC : Rn × Rng ×
Rnh × Rm × Rm → R,

LMPCC(x, λ, µ, ν, ξ) := f(x)− λ⊤g(x)− µ⊤h(x)− ν⊤G(x)− ξ⊤H(x), (2.28)

with the MPCC Lagrange multipliers λ ∈ Rng , µ ∈ Rnh , ν ∈ Rm and ξ ∈ Rm,
is called the MPCC Lagrangian function of the MPCC (2.23).

44 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

The MPCC Lagrangian is the standard Lagrangian for the RNLP/TNLP. It
differs from the standard Lagrangian from Definition 2.13 for the MPCC (2.23)
in omitting the bilinear terms Gi(x)Hi(x) ≤ 0 and their multipliers.

If I00 ≠ ∅, then the linearized feasible cone cannot locally capture the structural
nonconvexity of the complementarity constraints. To have a more handy tool,
the MPCC linearized feasible cone FMPCC

ΩMPCC
(x) is used [96, 219, 236].

Definition 2.28 (MPCC linearized feasible cone). The MPCC linearized feasible
cone of ΩMPCC at a feasible point x is defined as

FMPCC
ΩMPCC

(x) = {d ∈ Rn |∇g(x)⊤d = 0,

∇hi(x)⊤d ≥ 0, for all i ∈ A(x),

∇Gi(x)⊤d = 0, for all i ∈ I0+(x),

∇Hi(x)⊤d = 0, for all i ∈ I+0(x),

0 ≤ ∇Gi(x)⊤d ⊥ ∇Hi(x)⊤d ≥ 0, for all i ∈ I00(x)}.

The combinatorial structure is kept for the degenerate index set I00 and this
cone is nonconvex.

Since the standard CQs fail to hold for MPCCs, the KKT conditions are usually
not applicable for characterizing a stationary point. Note that the purely
geometric standard FONC of Theorem 2.5 can still be used, as it does not
require any CQs. Stationary points that satisfy these conditions are in the
MPCC community called geometric Bouligand stationary points [98, 165]. Some
other concepts rely on the auxiliary NLPs and their Lagrange multipliers. They
are summarized in the next definition.

Definition 2.29 (Stationarity concepts for MPCCs). Let x∗ be feasible for the
MPCC (2.23).

• Geometric Bouligand Stationarity (Geometric B-Stationarity) [98, 187]: A
point x∗ ∈ ΩMPCC is called geometric B-stationary if the following holds:

∇f(x∗)⊤d ≥ 0, for all d ∈ TΩMPCC(x∗).

• Algebraic Bouligand Stationarity (or just B-Stationarity) [187, 236]: A
point x∗ ∈ ΩMPCC is called B-stationary if d = 0 is a solution of the

MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS 45

following linear program with complementarity constraints:

min
d∈Rn

∇f(x∗)⊤d (2.29)

s.t. d ∈ FMPCC
ΩMPCC

(x∗). (2.30)

• Weak Stationarity (W-Stationarity) [236]: A point x∗ ∈ ΩMPCC is called
weakly stationary if the corresponding TNLP admits the satisfaction of
the KKT conditions, i.e., there exist Lagrange multipliers λ, µ, ν and ξ
such that:

∇xLMPCC(x∗, λ∗, µ∗, ν∗, ξ∗) = 0,

g(x∗) = 0,

0 ≤ µ∗ ⊥ h(x∗) ≥ 0,

G(x∗) ≥ 0, ν∗
i = 0, for all i ∈ I+0(x∗),

H(x∗) ≥ 0, ξ∗
i = 0, for all i ∈ I0+(x∗),

Gi(x∗) = 0, ν∗
i ∈ R, for all i ∈ I0+(x∗) ∪ I00(x∗),

Hi(x∗) = 0, ξ∗
i ∈ R, for all i ∈ I+0(x∗) ∪ I00(x∗).

• Strong Stationarity (S-stationarity) [236]: A point x∗ ∈ ΩMPCC is called
S-stationary if it is weakly stationary and ν∗

i ≥ 0, ξ∗
i ≥ 0 for all i ∈ I00(x∗).

In other words it is a KKT point of the corresponding RNLP.

• Clarke Stationarity (C-stationarity) [236]: A point x∗ ∈ ΩMPCC is called
C-stationary if it is weakly stationary and ν∗

i ξ
∗
i ≥ 0 for all i ∈ I00(x∗).

• Mordukhovich Stationarity (M-stationarity) [236]: A point x∗ ∈ ΩMPCC
is called M-stationary if it is weakly stationary and if either ν∗

i > 0 and
ξ∗
i > 0 or ν∗

i ξ
∗
i = 0 for all i ∈ I00(x∗).

• Abadie Stationarity (A-stationarity) [96]: A point x∗ ∈ ΩMPCC is called
A-stationary if it is weakly stationary and ν∗

i ≥ 0 or ξ∗
i ≥ 0 for all

i ∈ I00(x∗).

The feasible sets for the MPCC multipliers ν∗ and ξ∗ are depicted in Figure 2.8.
Note that S-stationarity corresponds to the KKT conditions of the RNLP. If x∗

is M-stationary, then the KKT conditions of at least one BNLP can be satisfied
at x∗ [165]. The many different stationarity concepts might be confusing and

46 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

8i

9 i

S-Stationarity

8i

9 i

W-Stationarity

8i

9 i

C-Stationarity

8i

9 i

M-Stationarity

8i

9 i

A-Stationarity

Figure 2.8: Sign restrictions for MPCC multiplier in different stationarity
concepts.

one might be wondering if some of them are needed at all. Some of them might
even not be necessary as they allow trivial descent directions. We illustrate this
with the following counterexample from [180].

Example 2.30 (Descent direction for M-stationarity). Regard the following
MPCC:

min
x∈R2

(x1 − 1)2 + x2
2(x2 + 1)

s.t. x1 ≥ 0,

x2 ≥ 0,

x1x2 ≤ 0.

At the point x∗ = (0, 0) we have that

0 = ∇xLMPCC(x∗, ν∗, ξ∗) =
[
−2
0

]
− ν∗

[
1
0

]
− ξ∗

[
0
1

]
,

is satisfied for the multipliers ν∗ = −2 and ξ∗ = 0. Hence, x∗ is M-, C-, A-,
and W-stationary. The directions d = {(d1, 0) | d1 > 0} are descent directions.

However, these stationarity concepts are crucial for studying numerical methods
for MPCC. As we will see in the next section, MPCCs are usually solved by
solving a (finite) sequence of related and more regular NLPs. Depending on the
underlying assumptions, the accumulation points of these methods are some of
the stationarity points defined above. Therefore, it is important to understand
under which conditions these stationarity concepts are indeed necessary for
optimality. It turns out that all of them can be necessary for local optimality if
some additional specialized CQs hold [104, 236]. As in the regular NLP case,
some of the CQs might be strong but too restrictive, or weak but too difficult
to verify in practice.

MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS 47

Similar to the discussion after introducing the auxiliary NLP, we note that most
difficulties vanish if there are no degenerate indices. Observe that if I00 = ∅,
then all multiplier-based stationarity concepts collapse to the same. The next
definition lists some of the most popular MPCC-tailored CQs [151, 241].

Definition 2.31 (MPCC constraint qualifications). Let x be a feasible point
for the MPCC (2.23).

• The MPCC-LICQ holds at a point x if the LICQ holds for the RNLP at x.

• The MPCC-MFCQ holds at a point x if the MFCQ holds for the RNLP
at x.

• The MPCC-ACQ holds if and only if FMPCC
ΩMPCC

(x) = TΩMPCC(x).

• The MPCC-GCQ holds if and only if FMPCC
ΩMPCC

(x)◦ = TΩMPCC(x)◦.

The following implications hold [151, 241]:

MPCC-LICQ =⇒ MPCC-MFCQ =⇒ MPCC-ACQ =⇒ MPCC-GCQ.

Note that the first two constraint CQs are defined in terms of the RNLP. The
linearized feasible cone of these NLPs is always convex and we can expect the
standard ACQ to be violated. This motivated the definition of the MPCC-ACQ
and MPCC-GCQ in terms of the nonconvex cone FMPCC

ΩMPCC
(x) [95, 96, 97, 98].

Interestingly, Flegel and Kanzow [98] prove that under the MPCC-LICQ the
standard GCQ holds for a generic MPCC (2.23).

The MPCC-CQs are needed for establishing when some stationarity concept
is necessary for a local minimizer of an MPCC. The results from [104, 151,
187, 217, 236] are summarized in the diagram in Figure 2.9. This diagram
was inspired by [175, Theorem 5.13] and [165, Figure 2]. The implications
between different stationarity concepts involving multipliers follow from their
definition [236]. For the missing CQ definitions see [151, 241]. We make a few
comments on the relations. As already discussed, if the ACQ does not hold, the
KKT conditions are not applicable for characterizing a Geometric B-stationarity
point. B-stationarity always implies geometric B-stationarity, the converse
requires additionally the MPCC-GCQ to hold [96]. S-stationarity corresponds
to the KKT conditions of the RNLP and it implies B-stationarity because of the
inclusion relation in Eq. (2.27). Conversely, if the MPCC-LICQ holds, then B-
stationarity implies also S-stationarity [236]. This is unfortunately not anymore
true if the MPCC-LICQ is replaced by weaker CQs. For a counterexample, one
can verify that in Example 2.25 the MPCC-LICQ is violated at x∗, where the
weaker MPCC-MFCQ holds [241]. This means that B-stationary points that

48 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Geo. B-stationarity B-stationarity

S-stationarity

local minimizer M-stationarity

C-stationarity ∩ A-stationarity

W-stationarity

MPCC-GCQ

M
P

C
C

-L
IC

Q

GCQ for all BNLP(I1,
I2)

MPCC-LICQ

MPCC-GMFCQ

MPCC-MFCQ
MPCC-ACQ

GCQ
for at least one BNLP

(I
1 ,I

2)

Figure 2.9: Diagram summarizing MPCC-CQs and necessity of different
stationarity concepts for optimality.

are not S-stationary can not be identified via any stationarity concept based on
the auxiliary NLPs [277]. Instead, an exponential number of linear programs
(2.29) must be solved to verify B-stationarity.

As seen from the discussion above, the desired and easy-to-verify concept is
S-stationarity. It does not allow trivial descent directions and requires no
combinatorial exploration. Arguably, the needed assumptions might be too
restrictive [180, 169]. To this end, we restate a remarkable theorem that relates
S-stationary and B-stationary points. It additionally relates the MPCC and
standard Lagrange multipliers. It was independently derived in slightly different
forms in [104, Proposition 4.1], [12, Theorem 2.2] and [146, Proposition 1]. We
denote the standard Lagrange multipliers for the complementarity constraint
in (2.23) by (µG, µH , µGH) and remind the reader that the relevant MPCC
multipliers are denoted by (ν, ξ).

Theorem 2.32. A point x∗ is strongly stationary for the MPCC (2.23) if and
only if it is stationary for the RNLP (2.24). Furthermore, if (µ∗

G, µ
∗
H , µ

∗
GH) are

standard Lagrange multipliers associated with x∗, then the MPCC-multipliers

MPCC SOLUTION METHODS 49

(ν∗, ξ∗) can be computed by

ν∗
i = µ∗

G,i − µ∗
GH,iHi(x∗) (2.31a)

ξi = µ∗
H,i − µ∗

GH,iGi(x∗). (2.31b)

Conversely, if (ν∗, ξ∗) are MPCC-multipliers associated with x∗, then any
(µ∗
G, µ

∗
H , µ

∗
GH) satisfying (2.31) with

µ∗
GH ≥ µ̄GH = max

(
0, max
i∈I0+

− ν∗
i

Hi(x∗) , max
i∈I+0

− ξ∗
i

Gi(x∗)

)
, (2.32)

are standard Lagrange multipliers of (2.23) associated with x∗.

The proof follows from the direct comparison of the KKT conditions of the
RNLP and the MPCC. This theorem reveals that if MPCC-LICQ holds, which
implies the uniqueness of the multipliers (ν∗, ξ∗), then the standard multipliers
of (2.23) are the unbounded ray defined by (2.31) with the origin at µ̄GH . An
interesting interpretation of the result is given in [104]. The standard multipliers
(µ∗
G, µ

∗
H , µ

∗
GH) must be nonnegative, whereas the MPCC multipliers (ν∗, ξ∗) can

become negative for a sufficiently large µ∗
GH . This suggests that a constraint

regarded as an inequality should be treated as an equality constraint. Of course,
such an analysis is only a posteriori possible.

There exist also second-order optimality conditions tailored to MPCCs. They are
defined in terms of S-stationary points and the corresponding MPCC multipliers.
We omit their statement for brevity and reefer the reader to [228, 236] for more
details.

2.4 MPCC solution methods

In this section, we review some standard MPCC solution methods. As seen
in Section 2.1.2, the core of most NLP solvers are Newton-type methods for
finding zeros of the KKT conditions of a regular NLP satisfying LICQ or MFCQ.
Newton-type methods usually assume locally isolated solutions for superlinear
convergence [149]. This assumption is not satisfied for MPCCs since due to the
violation of MFCQ, the set of Lagrange multipliers is necessarily unbounded.

In the last three decades, many tailored MPCC solution methods were proposed.
A recent survey of MPCC methods is given in [165]. The references [106, 139,
159] provide comparisons of several solutions strategies. Good overviews are
also provided in the PhD theses [175] and [277]. We classify the MPCC solution
methods as:

50 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

(I) NLP solution methods,

(II) regularization methods,

(III) exact penalty methods,

(IV) lifting methods,

(V) implicit methods,

(VI) combinatorial methods.

Some authors treat the methods from I-IV as a single class [165, 175], as they
mainly use standard NLP methods. The availability of robust NLP codes makes
their implementation easy and practical. Thus, we make a finer distinction
and look closer at their properties. In this thesis, they are used for solving the
discrete-time optimal control problems derived in Chapters 7 to 9. Most of
them are implemented in the open-source package nosnoc [206].

Methods from classes I-IV require solving a sequence of related and more regular
NLPs, which are parameterized by a parameter σ > 0. We denote the solution
of the initial MPCC (2.23) by x∗ and the solution of the regularized NLP by
x∗(σ). The obvious goal is that x∗(σ)→ x∗ as σ → 0.

In this thesis, we do not use methods from classes V and VI for several reasons.
They are more difficult to implement than methods from classes I to IV and
there are currently no mature open-source software implementations available.
Moreover, they require tools from nonsmooth optimization or they might not
be applicable to the MPCCs arising form discretizing optimal control problems.
Nevertheless, we provide several references for these approaches.

2.4.1 NLP solution methods

Methods from this class simply threats the MPCC as a nonlinear program
and applies directly standard NLP techniques such as SQP and IP methods
for solving (2.23) [102, 103, 178, 185]. Despite the degeneracy discussed at
the beginning of the last section (ill-conditioning, inconsistent linearizations),
this approach can perform surprisingly well in practice. However, they tend
to have convergence difficulties or to converge to spurious stationary points
if the MPCC-LICQ does not hold. Depending on how the complementarity
constraints enter the NLP, we distinguish between direct solution methods and
NCP reformulations.

MPCC SOLUTION METHODS 51

Direct solution This approach consists of the straightforward application of a
standard NLP solver to the MPCC (2.23), possibly with alternative equivalent
formulations of the complementarity constraints (2.23d)-(2.23f). Fletcher and
Leyffer study the practical performance of SQP methods on numerous MPCCs
in [101] and investigate their local convergence properties in [103]. Under the
assumptions that the MPCC-LICQ and MPCC-SOSC hold, that all QPs remain
feasible, and other technical assumptions, they show quadratic convergence
to S-stationary points. The use of slack variables sG and sH in Eq. (2.22) is
necessary for this result.

Moreover, in practice the lumped formulation s⊤
GsH ≤ 0 gives better performance

than the component-wise sG,isH,i ≤ 0, i = 1, . . . ,m. A possible explanation is
that the lumped complementarity constraint allows nonmonotonous changes in
the complementarity pairs during the iterates, which improves the convergence
[179]. The equality constraint formulation of the bilinear term usually results
in worse performance. The authors show with several counterexamples [103]
that their assumptions cannot be relaxed.

Interior-point methods perform reasonably well if applied directly to the NLP
formulation (2.23) [266, 267]. However, their performance improves when paired
with relaxation and exact penalty formulations, as we will highlight several
times below.

NLP formulations with NCP functions In this approach the complementarity
constraints (2.23d)-(2.23f) are replaced by a C-functions ΨC(G(x), H(x)) = 0.
The resulting NLP is solved by a standard globalized NLP solver. The use
of SQP methods in such formulations was studied by Leyffer [178]. Since the
C-functions are not differentiable (0, 0), their subgradient is used. Evidently,
using squared versions (or higher powers) of C-functions will not improve the
situation and lead to a violation of LICQ at (0, 0) since we obtain a zero-
gradient at this point. Similar to [103], assuming MPCC-LICQ, MPCC-SOSC,
Lipschitz continuity of the NLP functions and their derivatives and other
technical assumptions, local superlinear convergence to S-stationary points was
shown. Leyffer tests this approach on a wide number of test problems and
shows that different NCP functions can lead to large differences in performance.
Similar to the first approach, lumping all NCP functions in one constraint, i.e.,
e⊤ΨC(G(x), H(x)) ≤ 0 often gives better performance.

52 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

2.4.2 Regularization methods

Regularization methods involve relaxing or smoothing the complementarity
constraints using a parameter σ > 0. This results in a more standard and regular
NLP that typically satisfies the standard MFCQ. As a result, the regularized
NLP can be solved using a readily available solver. A smaller value of σ yields
a better approximation to the original problem. When σ = 0, the problem
becomes equivalent to the initial mathematical program with MPCC defined in
equation (2.23).

In these approaches, a sequence of the relaxed NLPs for σk → 0 is solved. If
the problems are solved exactly, under mild assumptions, accumulation points
of the sequence of solutions x∗(σk) are C-stationary points [237, 228, 139].
Hoheisel et al. [139] provide a detailed numerical and theoretical comparison of
several methods from this family. Solving the NLPs inexactly usually weakens
the convergence results [159]. Of course, stronger assumptions also result in
convergence to M- or S-stationary points. We provide details for some of the
most popular regularization methods, which we use in this thesis.

Global relaxation/smoothing method by Scholtes [237] This is probably the
easiest-to-implement approach and relaxes the bilinear constraint (2.23f) as

Gi(x)Hi(x) ≤ σ, for all i ∈ {1, . . . ,m}.

An illustration of the relaxed feasible set is given in Figure 2.10. Alternatively,
the bilinear term might be smoothed

Gi(x)Hi(x) = σ, for all i ∈ {1, . . . ,m}.

Lumped versions G(x)⊤H(x) ≤ σ or G(x)⊤H(x) = σ are also used
frequently [237]. Observe that in contrast to the smoothed variant, the relaxed
version contains the feasible set ΩMPCC, and one might find with it a stationary
point without driving σ → 0. Assuming MPCC-LICQ, Scholtes [237] shows
convergence to C-stationary points. Hoheisel et al. [139] obtain the same result
under the weaker MPCC-MFCQ. Ralph et al. [228] study the convergence
speed of this approach and show that, under rather strict assumptions, the
local solution map x∗(σ) of the relaxed formulation is a piecewise continuous
function and that the solution converges with a rate O(σ). Milder assumptions
(MPCC-MFCQ and RNLP-SOSC) result in the rate O(σ 1

2) for the relaxed
variant and O(σ 1

4) for the smoothed variant.

For more efficacy, Raghunathan and Biegler [227], Liu and Sun [185] propose
interior-point methods where the relaxation parameter σ is proportional to the

MPCC SOLUTION METHODS 53

Figure 2.10: Illustration of the regularized complementarity sets.

barrier parameter τ . Under some stronger assumptions, the former strategy is
shown to converge quadratically to S-stationary points. The next four more
sophisticated regularization schemes converge to M-stationary points under
fairly mild conditions and perform reasonably well in practice [139].

The smooth relaxation method by Lin and Fukushima [182] This method is
similar to Scholtes’ regularization and replaces the complementarity conditions
(2.23d)-(2.23f) by:

Gi(x)Hi(x) ≤ σ2, for all i ∈ {1, . . . ,m},

(Gi(x) + σ)(Hi(x) + σ) ≥ σ2, for all i ∈ {1, . . . ,m}.

Figure 2.10 (b) shows an illustration of the feasible set. Lin and Fukushima
obtain similar convergence results as Scholtes [237]. Hoheisel et al. [139] extend
this result by proving convergence to C-stationary points under the MPCC-
MFCQ. Moreover, they show that the feasible points of the relaxed NLP satisfy
the MFCQ in a neighborhood of a point x ∈ ΩMPCC.

The local relaxation method by Steffensen and Ulbrich [248, 277] Almost
all regularization methods make global changes to the feasible set. Motivated
by the fact that most difficulties arise for degenerate complementarity pairs
i ∈ I00, Steffensen and Ulbrich follow a different approach. Their main idea
is to relax the complementarity constraint only locally at the corner of the
L-shaped set arising from the complementarity constraints.

The relaxation is achieved with the following steps: the L-shaped set is rotated
with a linear transformation by π

4 counterclockwise for every complementarity
pair, and one obtains the graph of the abs-function. On the interval [−σ, σ],
the kink is replaced by a sufficiently smooth function such that the continuity
of the functions and their derivatives is preserved at the interval boundaries.
Finally, the inverse transformation is carried out, and a locally relaxed set is

54 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

obtained, cf. Figure 2.10 (c). This reasoning expressed in equations reads as

ΦSU(Gi(x), Hi(x), σ) ≤ 0, for all i ∈ {1, . . . ,m},

where ΦSU : R × R × R → R is defined in terms of the auxiliary functions
ϕaSU : R× R→ R and ϕbSU : [−1, 1]→ R as follows

ΦSU(y1, y2;σ) = y1 + y2 − ϕaSU(y1 − y2, σ),

ϕaSU(z, σ) =
{
|z|, if |z| ≥ σ,
σϕbSU(zσ), if |z| < σ.

The function ϕbSU satisfies the following properties:

(i) ϕbSU it is twice continuously differentiable on [−1, 1],

(ii) ϕbSU(1) = ϕbSU(−1) = 1,

(iii) d
dzϕ

b
SU(−1) = −1 and d

dzϕ
b
SU(1) = 1,

(iv) d2

dz2ϕ
b
SU(−1) = d2

dz2ϕ
b
SU(1) = 0,

(v) d2

dz2ϕ
b
SU(z) > 0 for all z ∈ (−1, 1).

Examples of such functions are ϕbSU(z) = 1
8 (−z4 + 6z2 + 3) and ϕbSU(z) =

2
π sin(z π2 + 3π

2) + 1 [248].

Under the MPCC-CRCQ (cf. [139, Defintion 2.4]) convergence to C-stationary
and under the MPCC-LICQ to M-stationary points is shown [248]. A lumped
version

∑m
i ΦSU(Gi(x), Hi(x), σ) ≤ 0 can be used as well.

The nonsmooth relaxation method by Kadrani et al. [157] Another
interesting relaxation reads as:

Gi(x) ≥ −σ, Hi(x) ≥ −σ, for all i ∈ {1, . . . ,m}

(Gi(x)− σ)(Hi(x)− σ) ≤ 0, for all i ∈ {1, . . . ,m}.

Figure 2.10 (d) illustrates the nonsmooth feasible set obtained from the
constraint above. The convergence study of [157] is carried out assuming
the MPCC-LICQ. Once again, Hoheisel et al. [139] improve the result and show
convergence to M-stationary points under the MPCC-CPLD (cf. [139, Defintion
2.4], a CQ weaker than the MPCC-MFCQ and stronger than the MPCC-ACQ).
It is evident from the structure of the feasible set of this relaxation that verifying
standard CQs is more difficult. Thus, only standard GCQ is shown under the
MPCC-LICQ [157, 139, 98].

MPCC SOLUTION METHODS 55

The relaxation method by Kanzow and Schwartz [158] This relaxation has
stronger theoretical properties than the previous one and a more satisfactory
shape of the feasible set, cf. Figure 2.10 (e). In contrast to the approach of
Kadrani et al., it contains the feasible set of the MPCC. This relaxation is
modeled with the following equations:

ΦKS(Gi(x), Hi(x), σ) ≤ 0, for all i ∈ {1, . . . ,m},

with ΦKS : R × R × R → R and ϕKS : R × R → R where ΦKS(y1, y2, σ) =
ϕKS(y1 − σ, y2 − σ) and

ϕKS(y1, y2) =
{
y1y2, if y1 + y2 ≥ 0,
− 1

2 (y2
1 + y2

2), if y1 + y2 < 0.

The function ϕKS is a continuously differentiable C-function [158]. Under the
MPCC-CPLD (cf. [139, Definition 2.4]) convergence to M-stationary points is
shown [158, 139]. The relaxed NLP is shown to satisfy at least the GCQ.

Smoothed NCP functions Early MPCC algorithms considered smoothed and
everywhere differentiable variants of C-functions from the Definition 2.23. We
denote them by Φ̃C(a, b, σ). For example, the smoothed Fischer-Burmeister
functions read as Φ̃FB(a, b, σ) = a + b +

√
a2 + b2 + σ2. Facchinei et al. [88]

show the convergence of this approach to C-stationary points.

Two sided-relaxation method by DeMiguel et al. [72] All methods above
are governed by a single scalar parameter σ. The relaxation of DeMiguel et al.
works with the slack formulation (2.22) and uses three nonnegative parameters
σG, σH , σGH ∈ Rm:

sG ≥ −σG, sH ≥ −σH ,

sG,isH,i ≤ σGH,i, for all i ∈ {1, . . . ,m}.

The parameters are updated in each iteration depending on the sign of the
multipliers to enforce convergence to S-stationary points. Either σG and σH or
σGH are reduced, but never both at the same time. This relaxation is paired
with an interior-point algorithm. Convergence to S-stationary points is given
under MPCC-LICQ and strong SOSC. Milder assumptions result in convergence
to C-stationary points [72].

56 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

2.4.3 Exact penalty methods

Exact penalty reformulations are one of the most often used approaches to treat
degenerate NLPs [33, 57, 111]. It is no surprise that these ideas are adapted
to MPCCs. In exact penalty algorithms, the bilinear term (2.23b) is added to
the objective in some suitable form and multiplied by a penalty factor ρ. To be
consistent with our notation above and the implementations in nosnoc [206], we
use ρk = 1

σk
. Assuming sufficient regularity of other constraints and having the

bilinear term in the objective, we obtain a regular NLP that usually satisfies the
MFCQ. Under suitable regularity assumptions and for a sufficiently large and
finite ρ, the solution x∗(σ) matches the solution x∗ of the initial MPCC after
a single NLP solve. In practice, a sequence of NLP is solved to improve the
convergence and to estimate the correct penalty parameter value. We discuss
several of the most widely used formulations below.

ℓ1-exact penalty formulation This formulation penalizes the G(x)⊤H(x),
which corresponds to the ℓ1 norm of the complementarity residual in the
objective and solves a sequence of the following NLPs

min
x

f(x) + ρkG(x)⊤H(x) (2.33a)

s.t. g(x) = 0, (2.33b)

h(x) ≥ 0, (2.33c)

G(x) ≥ 0, H(x) ≥ 0. (2.33d)

The formulation with the complementarity slacks (2.22) is also used frequently,
where the term ρs⊤

GsH is added to the objective. This approach was first
proposed in [91] for solving practical problems. Anitescu [11] provided the first
convergence analysis for the ℓ1 penalty approach paired with active-set SQP
methods. Remarkably, Ralph et al. [228] show that an MPCC solution x∗ is
also a solution to (2.33) for a sufficiently large ρ and that regularity conditions
of the MPCC (e.g., MPCC-LICQ) imply regularity of the NLP (2.33). However,
if the local minimizers are only B-stationary but not S-stationary points, the
penalty parameter must grow to infinity [165].

Leyffer et al. [179] propose an interior-point algorithm to solve the NLP (2.33)
while dynamically updating the penalty parameter ρ. For each fixed ρk, the
barrier subproblem is solved inexactly to a tolerance proportional to the barrier
parameter τk. Strategies to steer the penalty parameter that avoid too large
increases and unbounded subproblems are proposed as well. Convergence to

MPCC SOLUTION METHODS 57

an S-stationary point is shown under the MPCC-LICQ, RNLP-SOSC. Under
additional conditions, a superlinear convergence rate is proved.

Fukushima et al. [107] suggest an SQP method paired with a penalized
NCP function. Hu and Ralph [145] relate relaxation methods of [237]
and give conditions for convergence to B-stationary points. They study
more general formulations than (2.33) and suggest for example to use∑m
i=1 ΦFB(Gi(x), Hi(x))3 as a penalty function. Furthermore, by comparing

the KKT conditions, Leyffer et al. [179] show that there exists a one-to-one
correspondence between the iterates of a smoothing and penalty approach.

Hall et al. [127, 128] proposes a Sequential Convex Programming (SCP)
method for solving the penalty problem arising from quadratic programs with
complementarity constraints. In particular, the method makes use of the fact
that QP matrices do not need to be re-factorized in an SCP approach, which
enables fast and cheap iterations. The algorithm is paired with an exact analytic
line search. The same convergence results as in [228] can be applied.

The great practical difficulty in exact penalty methods is steering the penalty
parameter. Byrd et al. [57] introduce a line-search SQP ℓ1-exact penalty method
for general degenerate NLPs. They propose penalty update rules based on
solving LPs and QPs with a trust region to predict the decrease of the merit
function. Favorable theoretical properties and good numerical performance on a
series of test problems including MPCCs are reported. Unfortunately, a robust
open-source implementation is still not available. Thierry and Biegler [266, 267]
adapt the ℓ1 strategy of Byrd et al. [57] including the penalty steering rules,
to solve degenerate problems with IPOPT [281]. Good practical performance
is reported on the MacMPEC test set [177] with an improvement in terms of
speed and robustness compared to a direct application of IPOPT.

ℓ∞-exact penalty formulation As in general nonlinear programming, using an
ℓ∞ penalty function for MPCC is also very common [33]. Thereby a sequence
of the following NLPs needs to be solved

min
x,s

f(x) + ρks

s.t. g(x) = 0,

h(x) ≥ 0,

G(x) ≥ 0, H(x) ≥ 0,

Gi(x)Hi(x) ≤ s, i = 1, . . . ,m,

58 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

0 ≤ s ≤ s̄.

where s ∈ R is a slack variable and s̄ > 0 is its upper bounds. This enables
us to express the ℓ∞ norm smoothly. Observe that if the bilinear terms are
lumped together, and we use the constraint G(x)⊤H(x) ≤ s, we end up with
an ℓ1 formulation.

Anistescu’s elastic mode [12, 16] A mixture of the approaches above is the
elastic mode, which takes an ℓ1 norm of the bilinear complementarity terms and
an ℓ∞ penalization of the relaxation of the standard equality and inequality
constraints. The elastic mode NLP reads as

min
x,s

f(x) + ρk(G(x)⊤H(x) + s)

s.t. − s ≤ gi(x) ≤ s, for all i ∈ {1, . . . , ng},

hi(x) ≥ −s, for all i ∈ {1, . . . , nh},

G(x) ≥ 0, H(x) ≥ 0,

0 ≤ s ≤ s̄,

where s ∈ R is the elastic mode variable and s̄ is its upper bound. Usually, a
sequence of NLPs is solved inexactly with an increasing ρk. Anitescu et al. [16]
show under the MPCC-LICQ and other assumptions the global convergence of
an elastic mode SQP approach to C-, M- and S-stationary points. The elastic
mode with a fixed penalty parameter is implemented in SNOPT as a fallback
strategy if an infeasible or unbounded QP is detected [112].

Finally, we mention the family of augmented Lagrangian methods for MPCC,
which also belong to the class of penalty methods [106, 150]. We do not treat
them in detail here. Assuming the MPCC-LICQ, and that the sequence of
Lagrange multipliers is bounded, convergence to S-stationary points is shown
in [106, 150].

2.4.4 Lifting methods

Lifting methods are somewhat in between relaxation and penalty methods. The
main idea is to introduce lifting variables and regard a more regular feasible
set in a higher-dimensional space whose orthogonal projection is the L-shaped
set, coming from the complementarity constraints. Some of them require
penalization of the lifting variables to recover the solution of the initial problem

MPCC SOLUTION METHODS 59

[131], and others might require additional regularization [249]. Unfortunately,
they have weaker theoretical properties than regularization methods, cf. Section
2.4.7. Thus, we do not implement these methods and do not treat them in
further detail there. We mention the methods of Stein [249], Hatz et. al [131],
and Izmailov et al.[150].

2.4.5 Combinatorial methods

The methods explicitly treat the combinatorial nature of the complementarity
constraints (2.23d)-(2.23f). They have the strongest convergence properties
as they are usually guaranteed to converge to B-stationary points. They
can be subdivided into branching methods [165, 23], active-set methods
[180, 169, 165, 110] and pivoting methods [165]. These methods rely on
guessing the correct active set by solving a linear program with complementarity
constraints (LPCC) from the definition of algebraic B-stationarity [180, 169],
cf. Definition 2.29. If d = 0 solves the LPCC, a B-stationarity point is found.
To promote faster convergence rates, based on the active-set guess, an equality-
constrained QP can be solved [180, 169]. As the solution of an LPCC can
be computationally expensive, Kirches et al. [169] regard LPCC only with
complementarity and bound constraints, which in turn can be solved with
linear complexity. They suggest to treat the remaining equality and inequality
constraints in an augmented Lagrangian fashion. This is later done by Guo
and Deng [120], where convergence to M-stationary points is proven. The
main practical drawback of this method class is the lack of robust open-source
implementations. For more references we refer the reader to [175, Section 5.6.2]
and [165, Section 3.2].

2.4.6 Implicit methods

Implicit methods are tailored to bilevel optimization problems. The lower-
level optimization problem is parameterized by the upper-level optimization
variables. It is assumed that for every choice of upper-level variables, the lower-
level problem has a (locally) unique solution. Hence it can be viewed as an
implicit function of the upper-level variables with locally isolated branches. The
lower-level variables are eliminated via their KKT conditions, and a reduced
nonsmooth optimization problem is solved, e.g., via semi-smooth Newton
methods. An overview of such methods is provided in [218].

60 NONLINEAR OPTIMIZATION WITH COMPLEMENTARITY CONSTRAINTS

Type Method CQ for MPCC Limiting
Point

Subproblem
NLP satisfies

Citation

Direct Fletcher et al. MPCC-LICQ S GCQ [104, 103]
Leyffer MPCC-LICQ S GCQ [179]

Regular- Scholtes MPCC-MFCQ C MFCQ [237, 139]
ization Lin-Fukushima MPCC-MFCQ C MCFQ [182, 139]

Kadrani et al. MPCC-MFCQ M GCQ [139, 157]
Steffensen-Ulbrich MPCC-CPLD C ACQ [139, 248]
Kanzow-Schwartz MPCC-CPLD M GCQ [139, 158]

Raghunathan-Biegler MPCC-LICQ S MFCQ [227]

Lifting Stein MPCC-LICQ C LICQ [249]
Izmailov-Solodov MPCC-LICQ C LICQ [147]

Hatz et al. MPCC-LICQ S GCQ [131]

Penalty ℓ1-Penalty MPCC-LICQ S LICQ [228, 178]
Leyffer et al. MPCC-LICQ C LICQ [178, 228]
ℓ∞-Penalty MPCC-LICQ S LICQ [228, 33]

Elastic mode MPCC-LICQ C MFCQ [12, 16]

Table 2.1: Overview of convergence properties of MPCC tailored methods from
groups I to IV.

2.4.7 Summary of MPCC methods

With a standard NLP solver at hand the methods from classes I-IV are easy
to implement. Table 2.1 provides an overview of known convergence results
for direct, regularization, lifting, and penalty methods. Together with the
commutative diagram after Definition 2.31, it might help one to decide which
algorithm to choose to compute a stationary point of the MPCC (2.23). The
strongest multiplier-based stationarity concept is S-stationarity, followed by M-,
C-, A- and W-stationarity, sorted from stronger to weaker. One should not
be discouraged by the weaker limiting points of the relaxation methods. In
contrast to the other methods, these results are obtained under much weaker
assumptions. More restrictive assumptions give a better result. For example,
the global relaxation method by Scholtes [237] converges to B-stationary points
under the MPCC-LICQ and the upper-level strict complementarity, cf. [228,
Definition 2.6].

We note that all methods converging to an S-stationary point under the
MPCC-LICQ also assume other restrictive assumptions as the upper-level strict
complementarity [104, 131, 178, 227]. In practice, one never solves the NLP
subproblems exactly, due to the solver tolerances and finite arithmetic precision.
However, solving the NLPs in the sequence inexactly can weaken convergence
results [159, 16]. For example, under inexact solves the methods of Kadrani et
al., Kanzow-Schwartz [158] and Steffensen-Ulbrich [248] converge only to W-

MPCC SOLUTION METHODS 61

stationary points. Surprisingly, the methods of Scholtes and Lin-Fukushima are
immune to this, and they still converge to C-stationary points [159]. However,
if some stronger assumptions are not satisfied, usually the MPCC-LICQ, they
can experience slow convergence rates and converge to M-stationary points or
weaker. This motivated the development of combinatorial methods, for which
currently no mature open-source implementations are available.

Chapter 3

Direct Optimal Control
Methods

In direct optimal control approaches, we first discretize the infinite-dimensional
optimal control problem and solve a finite-dimensional NLP, e.g., with some
of the methods from the previous chapter. From now on, we call the direct
optimal control methods for smooth dynamical systems standard methods. The
standard methods are already at a very mature stage with many real-world
applications [38, 78, 229]. However, the theory and algorithms for smooth
systems do not naturally extend to nonsmooth systems, and standard methods
may fail in surprising ways, as we will explore in later chapters. Despite these
challenges, numerical discretization and direct optimal control methods for
smooth dynamical systems serve as the starting point for the generalizations we
aim to develop in this thesis. Hence, it is necessary to be familiar with them.
Optimal solutions of nonsmooth optimal control problems consist usually of
piecewise smooth functions, where the approximations of the smooth parts can
essentially be obtained by the established methods. In this chapter, we present
concepts which are used as building blocks in the development of numerical
methods for nonsmooth dynamical systems in this thesis.

Outline. This chapter is structured as follows. In Section 3.1 we provide some
basic definitions regarding controlled dynamical systems. Section 3.2 discusses
some standard numerical simulations and sensitivity computation for ODEs
and differential algebraic equations. The chapter concludes with Section 3.3,
where we discuss optimal control problems and common solution approaches,
with a focus on direct optimal control methods.

63

64 DIRECT OPTIMAL CONTROL METHODS

3.1 Controlled dynamical systems

We start with regarding smooth controlled dynamical systems, i.e., a system
where an external control function (also called control input, manipulated
variable, input, or just control) enters the right-hand side and thus manipulates
the evolution of the differential and algebraic states. In this thesis, we will solve
optimal control problems to compute these control inputs (or approximation of
them).

For the exposition in this section, we assume that the control input is known
and sufficiently regular (e.g., measurable or continuous). In particular, we are
interested in Ordinary Differential Equations (ODE) and Differential Algebraic
Equations (DAE). We review some standard numerical integration methods with
a focus on implicit Runge-Kutta methods. The section finishes by reviewing
some facts about sensitivity propagation for smooth ODEs.

3.1.1 Ordinary differential equations (ODEs)

Definition 3.1. Let t ∈ R be the time, x(t) ∈ Rnx the differential states and
u(t) ∈ Rnu a given control function. Denote by ẋ(t) = dx(t)

dt the derivative of
the differential state w.r.t. time. Let F : R × Rnx × Rnx × Rnu → Rnx be a
function such that the Jacobian ∂F

∂ẋ (·) is invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0, (3.1)

is called an ordinary differential equation. Given a function f : R×Rnx×Rnu →
Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)), (3.2)

is called an explicit ordinary differential equation.

Note that an explicit ODE (3.2) can be always written as an implicit ODE
(3.1) by defining F (t, ẋ(t), x(t), u(t)) = ẋ(t) − f(t, x(t), u(t)). To simplify our
exposition, we focus on explicit ODEs from now on. We will often call explicit
ODEs just a differential equations or dynamical systems or simply dynamics.
The function f(·) is often called the right-hand side (r.h.s.) of the ODE or
vector field. In this chapter, we additionally assume that the functions F (·) and
f(·) are sufficiently smooth in all arguments, e.g., in direct optimal control (see
Section 3.3) we need them to be twice continuously differentiable.

The explicit dependence on t in F (·) and f(·) can always be removed by
introducing a differential clock state y with the dynamics ẏ(t) = 1. Similarly, if

CONTROLLED DYNAMICAL SYSTEMS 65

there is a dependence on a time-independent parameter p, an auxiliary state p
with the dynamics ṗ = 0 can be introduced to remove the explicit dependence.

Definition 3.2 (Initial Value Problem). Regard a time interval t ∈ [0, T] and
suppose the control function u(t) is known. The ODE from Eq. (3.2) together
with a given an initial condition x(0) = x0 ∈ Rnx is called an Initial Value
Problem (IVP) and is usually written as

x(0) = x̄0, (3.3a)

ẋ(t) = f(t, x(t), u(t)), for all t ∈ [0, T]. (3.3b)

As for any system of equations, the question of the existence and uniqueness of
solutions plays a central role also for IVPs. Answers to them are provided in
the famous Picard-Lindelöf Theorem.

Theorem 3.3 (Picard-Lindelöf Theorem). Regard the IVP from Definition 3.2
and suppose that the function f(·) is Lipschitz continuous in x and continuous
in t and u. Then there exists some ϵ > 0 such that the IVP (3.3) has a unique
solution x(t) on the time interval t ∈ Bϵ(0).

3.1.2 Differential algebraic equations (DAEs)

Many practical problems are more intuitively and easier modeled by DAEs. An
extensive list is given in [47]. Formally, DAEs arise when the Jacobian ∂F

∂ẋ (·) in
(3.1) is singular. Given an IVP arising from a DAE, it is useful to distinguish
between differential and algebraic states. For the differential states an initial
value x0 is provided, whereas the algebraic variables can usually be expressed
as functions of the differential states and controls, hence, they do not need an
initial value. DAEs are formally defined as follows.

Definition 3.4 (Differential Algebraic Equations). Let t ∈ R be the time,
x(t) ∈ Rnx the differential states, z(t) ∈ Rnx the algebraic states and u(t)Rnu
the control function. Given F : R× Rnx × Rnx × Rnz × Rnu → Rnx the system
of equations:

F (t, ẋ(t), x(t), z(t), u(t)) = 0. (3.4)

is called a differential algebraic equation.

If we could find an explicit expression for z as a function of x and u we
could transform the DAE into an ODE. It turns out that sometimes one has to
differentiate the equation (3.4) several times w.r.t. time until z can be extracted,

66 DIRECT OPTIMAL CONTROL METHODS

e.g., by algebraic manipulations. As we will see later, the number of times
that we need to differentiate does not only determine the properties of the
solutions but also the quality of numerical approximations obtained by standard
integration methods applied to the DAE. This leads to the following definition
that serves as a handy criterion for classifying DAEs.

Definition 3.5 (Differential index [125]). The DAE (3.4) has the differential
index m, if m is the minimal number of analytic differentiations such that the
set of differential equations

dm
dtmF (ẋ(t), x(t), z(t), u(t)) = 0,

corresponds to an ODE as defined in Definition 3.1.

Semi-explicit DAEs

The DAE (3.4) is fully implicit. In practice, one encounters more often so-called
semi-explicit DAEs. For example, the smooth pieces of solution trajectories of
nonsmooth systems studied in this thesis are often described by semi-explicit
DAEs. We will focus on them in the sequel and provide their canonical form
for indexes one to three.

Given the functions f : R× Rnx × Rnz × Rnu → Rnx and g : R× Rnx × Rnz ×
Rnu → Rnz , such that the Jacobian ∂g

∂z is nonsingular, the system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)), (3.5a)

0 = g(t, x(t), z(t), u(t)), (3.5b)

is called a semi-explicit DAE of index 1. The invertibility of the Jacobian
∂g
∂z (·) guarantees via the implicit function theorem the existence of a locally
single-valued z(x), hence, an ODE is easily obtained.

Given the functions f : R×Rnx×Rnz×Rnu → Rnx and g : R×Rnx×Rnu → Rnz ,
such that the Jacobian ∂g

∂x
∂f
∂z is nonsingular, the system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)), (3.6a)

0 = g(t, x(t), u(t)), (3.6b)

is called a semi-explicit DAE of index 2 [125]. In the study of so-called sliding
modes of nonsmooth dynamical systems we often locally encounter DAEs of
index 2, cf. Chapters 4 and 6.

NUMERICAL INTEGRATION METHODS 67

Suppose now that we have the differential states x ∈ Rnx and y ∈ Rny and
the algebraic state z ∈ Rnz . Given the functions fx : R × Rnx × Rny → Rnx ,
fy : R× Rnx × Rny × Rnz × Rnu → Rny , and g : R× Rnx × Rnu → Rnz , such
that the Jacobian ∂g

∂x
∂fx
∂y

∂fy
∂z is nonsingular, the system of equations:

ẋ(t) = fx(t, x(t), y(t)), (3.7a)

ẏ(t) = fy(t, x(t), y(t), z(t), u(t)), (3.7b)

0 = g(t, x(t), u(t)), (3.7c)

is called a semi-explicit DAE of index 3. The Euler-Lagrange equations for
constrained multi-body systems result in DAEs of index 3 [125]. In mechanical
systems with state jumps studied in Chapter 8, DAEs of this kind play a central
role.

Note that a higher-index DAE can usually be replaced by a DAE of a lower
index paired with consistency conditions, i.e., the initial value must satisfy the
algebraic equations that are replaced by equations obtained by differentiating
them by time. This procedure is often used for theoretical and computational
considerations and is called index reduction. The existence and uniqueness
results for ODEs can be extended to DAEs [230].

3.2 Numerical integration methods

Even though we know that a solution to the IVP associated with ODE (3.2) or
the DAE (3.5) exists, we can compute it analytically only in some special cases.
Therefore, one is usually forced to find approximations of the true solution at
discrete points in time. A continuous time approximation can be constructed
based on the computed values at these points. The computation of a numerical
approximation is called a simulation of the differential equation, or numerical
integration. The excellent textbooks [18, 47, 122, 125] provide a broad and
detailed overview of the field.

More precisely, we regard the integration interval [0, T] and compute solution
approximations xn ≈ x(tn) at N discrete time-points 0 = t0 < t1 < . . . < tN =
T . Thereby the integration interval is split into the integration subintervals
[tn, tn+1] where tn+1 = tn + hn and hn is called the integration step size. In
this section, for ease of notation we assume a constant integration step size,
i.e., hn = h = T

N for all n = 0, . . . , N − 1. Moreover, we assume the control to
be known and for simplicity, we set u(t) = u0 for t ∈ [0, T]. The extensions to
more sophisticated control parametrizations are straightforward.

68 DIRECT OPTIMAL CONTROL METHODS

Standard integration methods rely on linear combinations of previously
computed values and function evaluations f(·). There are several distinguishing
features of standard integration methods. If the methods use several previously
computed values xn, xn−1, . . ., then we speak of multi-step methods. These
methods require a reliable starting procedure for computing the first few
points [124]. On the other hand, single-step or one-step methods only use
the previous value xn, but evaluate the function f(·) at stage points inside the
integration subintervals to achieve better accuracy. Furthermore, both method
classes can be explicit or implicit. Explicit methods rely only on function
evaluations to compute the next step, whereas implicit methods require the
solution of a root-finding problem. The latter is more computationally expensive
per step but is usually more accurate for given number of stage points and has
better stability properties and allows larger step sizes.

In this thesis, we focus on one-step methods and their most famous example,
namely the Runge-Kutta (RK) methods. Runge-Kutta methods can be applied
generically to ODEs and even high-index DAEs. Note that for special classes
of smooth ODEs such as Hamiltonian systems [126, 123] or highly oscillatory
systems [130, 123] tailored integration methods exist.

Before we proceed with some basic definitions for one-step methods, we want to
highlight that in numerical optimal control, it is often instructive to think of any
integration method as a discrete-time dynamical system. In this sense, given
x0 = x̄0, a one-step integration method that recursively generates a sequence of
approximations xn for x(tn) is compactly represented by

xn+1 = ϕf (xn, zn, u0), (3.8a)

0 = ϕint(xn, zn, u0). (3.8b)

Here zn collects all internal variables of the integration method, including the
discrete-time approximations of the algebraic variables. The function ϕf (·) is
the state-transition map and Eq. (3.8b) collects all internal equations of the
method. Depending on the underlying IVP and the chosen integration method,
the function ϕint(·) determines the internal variables zn either explicitly or
implicitly. Several examples of such methods are given below. We will use the
discrete-time system representation (3.8) for all discretization methods in this
thesis, for smooth and nonsmooth systems as well. We proceed with defining
the notions of convergence and accuracy for one-step methods.

Definition 3.6 (Numerical integration error). Let x(t) be the exact solution to
the IVP from Definition 3.2 on [0, T], with the initial value x(0) = x0. Regard
the one-step method (3.8) for computing an approximation xn of x(t) at time
tn, with the given control u(t) = u0 and internal integration methods variables

NUMERICAL INTEGRATION METHODS 69

zn−1. The local integration error at the time points tn is defined as

e(tn) = ∥x(tn)− ϕf (x(tn−1), zn−1, u0)∥.

The global or transported integration error at tn is defined as

E(tn) = ∥x(tn)− xn∥,

where xn is computed recursively using (3.8) starting with x0 = x̄0.

The local error tells us about the mismatch of a single integration step. The
consistency measures the difference between the true slope and the approximate
slope arising from the integration method. Finally, the global error measures
the overall accumulated error during the simulation.
Definition 3.7 (Order of accuracy/convergence). A numerical integration
method is said to be convergent, if all its points xn converge to the exact solution
x(tn) for h→ 0, that is limh→0 suptn ∥E(tn)∥ = 0. The method is said to have
order p > 0 if the local errors satisfy

lim
h→0

sup
tn

∥e(tn)∥ = O(hp+1). (3.9)

The errors and orders of convergence for the algebraic variables z are defined
accordingly.

3.2.1 Runge-Kutta methods

Runge-Kutta (RK) methods are the most famous class of one-step methods.
They are the starting point for tailored numerical methods for nonsmooth
differential equations that are developed in Chapter 7. We first define them for
explicit ODEs as in (3.2) in two different variants and give afterwards extensions
to the case of semi-explicit DAEs (3.5).
Definition 3.8 (Runge-Kutta method in differential form). Consider the IVP
from Definition 3.2. Let ns be a positive integer, called the number of stages.
Given the matrix A ∈ Rns×ns with the entries ai,j for i, j ∈ {1, . . . , ns}, and the
vectors b, c ∈ Rns . The system of equations:

kn,i = f(tn + cih, xn + h

ns∑
j=1

ai,jkn,j , u0), for all i ∈ {1, . . . , ns}, (3.10a)

xn+1 = xn + h

ns∑
i=1

bikn,i, (3.10b)

is called a ns-stage Runge-Kutta (RK) method in the differential form.

70 DIRECT OPTIMAL CONTROL METHODS

The coefficients ci specify the stage points tn + cih, while ai,j are the internal
coefficients and bi are the weights. To have a useful RK method, the coefficients
ai,j , bi and ci have to satisfy certain properties [124]. To have a method that
converges it must hold that

ns∑
i=1

bi = 1.

The internal coefficients ai,j should satisfy the consistency conditions, i.e.,

ns∑
j=1

ai,j = ci.

Some additional conditions lead to well-defined problems whose solutions provide
coefficients for concrete RK methods [56, 122, 124]. To relate Eq. (3.10) to
the general form in (3.8), note that the internal variables in (3.10) are zn =
(kn,1, . . . kn,ns) ∈ Rnsnx . The equations (3.10a) are the internal computations
summarized in ϕint(xn, zn, u0) = 0 and the state transition map reads as
ϕf (xn, zn, u0) = xn + h

∑ns
i=1 bikn,i.

The formulation in Definition 3.8 is called differential since the derivatives of
the states at stage points ki are the unknowns. Alternatively, the values of the
states at the stage points xn,i ∈ Rnx can be the unknowns, which brings us to
the integral form.

Definition 3.9 (Runge-Kutta method in integral form). Consider the IVP
from Definition 3.2. Let ns be a positive integer, called the number of stages.
Given the matrix A ∈ Rns×ns with the entries ai,j for i, j ∈ {1, . . . , ns}, and the
vectors b, c ∈ Rns . The system of equations:

xn,i = xn + h

ns∑
j=1

ai,jf(tn + cjh, xn,j , u0), for all i ∈ {1, . . . , ns} (3.11a)

xn+1 = xn + h

ns∑
i=1

bif(tn + cih, xn,i, u0), (3.11b)

is called a ns-stage Runge-Kutta (RK) method in integral form.

The extension of RK methods to nonsmooth ODEs developed later in Chapter 7
is implemented both in integral and differential form in the open-source package
nosnoc.

NUMERICAL INTEGRATION METHODS 71

It is very common to characterize RK methods by their Butcher tableau [55]:

c1 a1,1 a1,2 . . . a1,ns

c2 a2,1 a2,2 . . . a2,ns
...

...
... . . .

...
cns ans,1 ans,2 . . . ans,ns

b1 b2 . . . bns

c A
b⊤

The sparsity pattern of the matrix A determines if the method is explicit or
implicit. For Explicit RK (ERK) methods only the entries below the diagonal
of A are nonzero, i.e., A is strictly lower triangular. For ns ≤ 4, the number of
stages in the best ERK methods matches their order. Beyond that, the number
of stages grows faster than the order. ERK methods are usually good for nonstiff
problems as they are computationally cheap and provide good accuracy.

If A is not strictly lower triangular we speak of an Implicit RK (IRK) method.
A subclass of IRK methods are semi-implicit RK methods. In this case, the
matrix A has a sparsity pattern that can be computationally exploited, see
[226, Chapter 2] and [195, 122] for details. For computing an integration step
with IRK methods, Newton’s method must be employed for obtaining the value
ki to compute xn+1. Note that since already a root-finding algorithm is used,
IRK methods are also suitable for implicit ODEs and DAE formulations from
Definitions 3.1 and 3.4, respectively.

Implicit methods are computationally more expensive per step, but they have
in general a higher accuracy order for the same number of stages. Nevertheless,
they can be more efficient depending on the required accuracy. They have
also superior properties when it comes to the simulation of DAEs and stiff
ODEs [122]. Informally speaking, stiff problems are differential equations for
which explicit methods do not work well [126]. They are differential equations
that have largely different time scales. For more details on stiff differential
equations and definitions, cf. [56, Section 112] and [126]. Closely related to the
notion of stiffness is the notion of numerical stability of integration methods.
Intuitively, if the analytic solution is bounded the numerical solution of a stable
method should also be bounded for a reasonable step size. Formally, a few
different stability concepts exist, e.g. A-stability, L-stability, cf. [56, 126].

The existence of solutions to IVPs does not automatically imply the existence
of solutions to its discrete-time counterpart obtained via the IRK equations.
Fortunately, only mild additional conditions are required. In general, besides
the smoothness assumptions on the function f(·), sufficiently small step sizes h
are sufficient to guarantee invertiblity of the Jacobian of the residual function
in the IRK equations ∂ϕint

∂(x,z) (·). More on this topic can be found in [126, Section
14].

72 DIRECT OPTIMAL CONTROL METHODS

Collocation methods

An interesting subclass of IRK methods often used in practice and also in this
thesis are collocation methods. The main idea is to approximate the solution
x(t) of the IVP (3.3) on every interval [tn, tn+1] by a polynomial qn(t) of degree
ns. The polynomial satisfies the differential equations at the collocation points
(i.e., stage points) and matches the initial value at t = tn. This is summarized
in the next definition.
Definition 3.10 (Collocation methods). Consider the IVP from Definition
3.2. Let ns be a positive integer and c1, . . . , cns ∈ [0, 1] distinct numbers. The
corresponding collocation polynomial qn(t) of degree ns is implicitly defined by

qn(tn) = xn,

q̇n(tn + cih) = f(tn + ci, qn(tn + cih), u0), for all i ∈ {1, . . . , ns}.

The numerical approximation xn+1 is given by xn+1 = qn(tn+1). The time
points tn + cih are called the collocation points.

The choice of the collocation points ci uniquely determines the IRK method and
its properties. Note that in contrast to general RK methods, ci must be distinct
numbers. Moreover, the collocation polynomials qn(t) provide a continuous
time approximation of x(t) on the interval [tn, tn+1]. The accuracy order inside
the interval is at least ns and less or equal to the accuracy order p of the method
(defined for the endpoint tn+1). In general, the accuracy order of collocation
methods at grid points tn is ns ≤ p ≤ 2ns [126].

There are several mathematically equivalent ways to represent the polynomial
qn(t). In practical implementations, it is common to use an interpolating
polynomial through the initial value and state values at the collocation
points [38]. In this case, it is necessary that c1 ̸= 0 (which is e.g., violated for
Lobatto collocation). Another similar, but more general and less restrictive
representation, which also simplifies the relation to IRK methods is commonly
used in the exposition of collocation methods [122, 126, 229]. Thereby, qn(t) is
parametrized by xn and the state derivatives at the collocation points:

qn(t) = xn +
∫ t

tn

q̇n(τ)dτ.

The polynomial q̇n(t) of degree ns − 1 is expressed using the Lagrange
interpolating polynomials ℓi(t):

q̇n(t) =
ns∑
i=1

ℓi

(t− tn
h

)
f(tn + ci, qn(tn + cih), u0)︸ ︷︷ ︸

=kn,i

=
ns∑
i=1

ℓi

(t− tn
h

)
kn,i,

NUMERICAL INTEGRATION METHODS 73

0 0.5 1

t

-1

0

1

2

` i
(t

)

`1(t)
`2(t)

`3(t)

0 0.5 1

t

-3

-2

-1

0

_q n
(t

);
_x
(t

)

_x(t) _qn(t)

0 0.5 1

t

0

0.2

0.4

0.6

0.8

1

q n
(t

);
x
(t

)

x(t) qn(t)

Figure 3.1: Illustration of the Lagrange interpolating polynomials ℓi(t) with
ns = 3 (left plot) The functions q̇n(t) and ẋ(t) (middle plot). The functions
qn(t) and x(t) (right plot). The vertical dashed lines correspond to the stage
points ci.

where the polynomials ℓi are defined as

ℓi(τ) =
ns∏

j=1,i̸=j

τ − cj
ci − cj

.

By direct computation and comparing to (3.10), the missing coefficient for the
Butcher tableau is computed by:

ai,j =
∫ ci

0
ℓj(t)dt, bi =

∫ 1

0
ℓi(t)dt, for all i, j ∈ 1, . . . , ns.

Two very popular classes of collocation/IRK methods are the Gauss-Legendre
(GL) and Radau IIA methods. GL methods are optimal in terms of accuracy,
i.e., they have the highest possible accuracy order p = 2ns for a given number of
stages ns and they are A-stable [126]. On the other hand, Radau IIA methods
have an accuracy order of p = 2ns−1 and are L-stable. L-stability is a desirable
property when one needs to integrate very stiff systems [126]. Moreover, for
Radau IIA methods it holds that cns = 1. This property is favorable for tailored
methods for nonsmooth Filippov systems, as it simplifies their implementation
and theoretical analysis, cf. Chapter 7. Another interesting family of collocation
methods with cns = 1 are Lobatto methods, cf. [126].

Example 3.11. The derivation of the collocation method is illustrated for the
example ẋ(t) = −3x, x(0) = 1 and T = 1. The analytic solution to this IVP
is x(t) = e−3t. We use a Radau IIA method with ns = 3 and take a single
integration step with h = 1. The stage points are and c1 = 4−

√
6

10 , c2 = 4+
√

6
10

and c3 = 1. Figure 3.1 illustrates the Lagrange polynomials (left plot), the

74 DIRECT OPTIMAL CONTROL METHODS

polynomial q̇n(t) compared to the time derivative of the exact solution ẋ(t)
(middle plot) and the polynomial qn(t) compared to the exact solution x(t) (right
plot). It can be seen that the error inside the interval (tn, tn+1) is greater than
on the boundary for t = tn+1.

Runge-Kutta methods for DAEs

We turn our attention now to RK methods for semi-explicit DAEs. The
extension is conceptually straightforward but their theoretical properties for
DAE of different indexes are heterogeneous. Even though one can apply ERK
methods to DAE, the DAEs are often stiff. Therefore, it is more natural to
consider IRK methods. They also have superior theoretical properties for DAEs
compared to ERK. Moreover, in this thesis, direct transcription methods are
often used for discretizing optimal control problems, cf. Section 3.3.2. This
means that the IRK equations end up being constraints of an NLP, which is
anyway numerically solved with a Newton-type method.

The IRK equations for the semi-explicit DAE of index 1 (3.5) read as

kn,i = f(tn + cih, xn + h

ns∑
j=1

ai,jkn,j , zn,i, u0), i ∈ {1, . . . , ns}, (3.12a)

0 = g(tn + cih, xn + h

ns∑
j=1

ai,jkn,j , zn,i, u0), i ∈ {1, . . . , ns}, (3.12b)

xn+1 = xn + h

ns∑
i=1

bikn,i, (3.12c)

0 = g(tn+1, xn+1, zn+1, u0). (3.12d)

Here zn,i, i ∈ {1, . . . , ns} are the stage values for the algebraic variables and
zn+1 is the approximation of z(tn+1). To obtain the latter, the equation
(3.12d) is added. For IRK methods cns = 1 it is automatically satisfied. All
standard results about order and convergence for IRK methods hold also for the
formulation (3.12) [125]. The RK equations (3.12) are stated in their differential
form. The integral form is obtained similar to (3.11) by having instead of kn,i
the stage values xn,i as degrees of freedoms. Note that in both forms the
algebraic variables are kept in integral form, i.e., the unknowns are zn,i.

IRK methods for index-2 DAEs (3.6) are formulated similarly. It is assumed
that the initial values xn and zn are consistent, i.e.,

g(tn, xn, u0) = 0,

NUMERICAL INTEGRATION METHODS 75

∇xg(tn, xn, u0)⊤f(tn, xn, zn, u0) = 0.

The IRK equations read as

kn,i = f(tn + cih, xn + h

ns∑
j=1

ai,jkn,j , zn,i, u0), i ∈ {1, . . . , ns}, (3.13a)

0 = g(tn + cih, xn + h

ns∑
j=1

ai,jkn,j , u0), i ∈ {1, . . . , ns}, (3.13b)

xn+1 = xn + h

ns∑
i=1

bikn,i. (3.13c)

Note that for methods with cns ≠ 1 the boundary value zn+1 cannot be
computed as simply as in the previous case. To compute this value we need a
fully differential representation. Thereby, the algebraic stage value in (3.13) are
replaced by

zn,i = zn + h

ns∑
i=1

ai,jk
z
n,i, i ∈ {1, . . . , ns},

where kzn,i are the derivatives of the algebraic variables at the stage points.
Then, zn+1 is computed via

zn+1 = zn + h

ns∑
i=1

bik
z
n,i.

The IRK equations for the DAE of index 3 in Eq. (3.7) are similar to (3.13).
We omit the full statement for brevity here, but details can be found in [122,
Chapter 6].

Summary for Runge-Kutta methods

Fixed step size Runge-Kutta methods are very popular in numerical optimal
control for several reasons [226]. They are fairly easy to implement, the
computations have a bounded and deterministic runtime and they have good
theoretical properties (high accuracy, can handle stiff problems, etc.). Lobatto
and Radau methods for DAEs, which have the right boundary point as a
stage point are sometimes easier to implement. As we will see in the next
chapter, their straightforward generalizations to nonsmooth systems lose many
of the beneficial properties, e.g., accuracy order and convergence of sensitivities.

76 DIRECT OPTIMAL CONTROL METHODS

However, they still serve as a basis for tailored methods where these properties
can be recovered. We provide in Table 3.1 an overview of accuracy orders for
the IRK methods used in this thesis.

3.2.2 Sensitivity computation

In Newton-type optimization, we need to compute first and often second-
order derivatives. More concretely, in numerical optimal control, we need
the derivatives of IVP solution approximations w.r.t. to the initial value and
controls. These derivatives are called (numerical) sensitivities. We discuss here
briefly how to compute first-order sensitivities. An excellent reference that
treats numerical sensitivity propagation in great detail is the PhD thesis of R.
Quirynen [226]. Details on higher-order sensitivities can be found in [7, 226].

Let us regard the IVP from Definition (3.2) on the time interval [0, T] with
the initial value x(0) = x̄0. We assume a constant control input u over this
interval. This corresponds to a single control interval in a discretized OCP with
a piecewise constant control parametrization, which is a common choice in direct
optimal control, cf. Section 3.3. Next, denote the solution (or its approximation)
by x(t;x0, u). We are interested in the sensitivities at t = T w.r.t x0 and u, i.e.,
the partial derivatives ∂x(T ;x0,u)

∂x0
∈ Rnx×nx , ∂x(T ;x0,u)

∂u ∈ Rnx×nu . Additionally,
one could be interested in the case of DAEs in the sensitivities of the algebraic
variables, or in adjoint sensitivities. We omit these cases here for brevity and
refer to [226, Chapter 2].

Nowadays derivatives of differentiable functions are usually computed via
automatic differentiation. Thereby, an expression graph for the function

Method ns
ODE DAE index 1 DAE index 2
x x z x z

Gauss-Legendre odd 2ns 2ns ns ns + 1 ns−1
even 2ns 2ns ns + 1 ns ns−2

Radau IA odd/even 2ns − 1 2ns − 1 ns ns ns−1
Radau IIA odd/even 2ns − 1 2ns − 1 2ns − 1 2ns − 1 ns

Lobatto IIIA odd 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns−1
even 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns

Lobatto IIIC odd/even 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns−1

Table 3.1: Overview of accuracy orders for some IRK methods for ODEs, DAEs
of index 1 and 2 [122].

NUMERICAL INTEGRATION METHODS 77

is created and by applying the chain rule, every expression in the graph
is differentiated. For more details see e.g., [115]. Efficient and accurate
computation of derivatives of solution approximations to IVPs is slightly more
involved and requires some care. In the following we discuss in more detail the
two main strategies for computing sensitivities:

1. differentiate-then-discretize,

2. discretize-then-differentiate.

Differentiate-then-discretize

This approach consists of augmenting the IVP problem by two additional matrix
differential equations, which are linear in the sensitivities and which are called
Variational Differential Equations (VDEs) [62]. The forward sensitivities are
obtained as solutions of:

Ṡx(t) = ∂f

∂x
(t, x(t), u(t))Sx(t), Sx(0) = Inx , (3.14a)

Ṡu(t) = ∂f

∂x
(t, x(t), u(t))Su(t) + ∂f

∂u
(t, x(t), u(t)), Su(0) = 0, (3.14b)

where Sx(t) := ∂x(t)
∂x0

∈ Rnx×nx and Su(t) := ∂x(t)
∂u ∈ Rnx×nu . This approach

consists of a continuous-time propagation of the sensitivities, which can be
discretized with any accuracy. However, in dynamic optimization, we need
accurate sensitivities of the solution approximations, but not necessarily of
the analytic solution itself. If no care is taken, it is clear that Sx(T) is not
necessarily identical to the derivative of the solution approximation ∂x(T ;x0,u)

∂x0
.

The same holds for the derivative w.r.t. u. One can also compute backward
or adjoint sensitivities via a similar system of equations to (3.14) [61]. This
system is then simulated backward in time.

Discretize-then-differentiate

Guided by the fact that the derivatives of the solution approximation are
needed, one could differentiate the integration method itself. Complementary
to the previous approach, this can be interpreted as a discrete-time sensitivity
propagation and there are a few approaches to doing these computations. The
simplest way from a implementation perspective is to use finite differences. We
remind the reader that x(t;x0, u) is the numerical solution approximation of

78 DIRECT OPTIMAL CONTROL METHODS

the IVPs. We can regard this function as a black box and call it as often as
needed. A partial derivative w.r.t. x0,i at t = T is computed by

∂x(T ;x0, u)
∂x0,i

≈ x(T ;x0 + hδi, u)− x(T ;x0, u)
h

,

where δi ∈ Rnx is a vector which has a one at the i-th entry and zeros otherwise.
In the literature, this approach is known as external numerical differentiation [7,
229]. Note that if an adaptive step size integrator is used, the values x(T ;x0 +
hδi, u) and x(T ;x0, u) might be coming from two different discretized functions.
To avoid interference with the step size control that causes such discontinuities,
one has usually to sacrifice accuracy and use a larger h [7]. To avoid such pitfalls
Bock has proposed the principle of internal numerical differentiation [39, 41].
Thereby, the nominal trajectory for x0 is computed adaptively, and for all other
function calls the adaptive parts of the method (step size, number of Newton
iterations, etc.) are frozen. This results in a differentiable integrator code.

Alternatively, instead of using finite differences, one can apply Automatic
Differentiation (AD) to the resulting integrator code. Thereby, one can apply
AD either to the whole code (known as external AD) or apply AD independently
to each part of the integrator (known as internal AD), see e.g., [226] for details.
The latter is usually more efficient in terms of runtime as some problem structure
can be exploited [7, 226].

In the end, one obtains a code that can be interpreted as a discrete time VDE.
We write this discrete time system in a similar style as it is done for integration
methods in Eq. (3.8):

Sxn+1 = ψxSx(xn, Sxn, Yn, u), 0 = ψx,int(xn, Sxn, Yn, u), (3.15a)

Sun+1 = ψSu(xn, Sun , Yn, u), 0 = ψu,int(xn, Sun , Yn, u), (3.15b)

where Yn are internal variables, Sxn = ∂xn
∂x0

and Sun = ∂xn
∂u . Similar to Eq. (3.8),

the functions ψx,int(·) and ψu,int(·) collect all internal computations. Clearly,
in this case, SxN is the exact derivative of the solution approximation and is
thus equal to ∂x(T ;x0,u)

∂x0
. Of course, the same is true for the derivatives w.r.t.

u. Interestingly, the differentiated equations of an explicit RK method with a
fixed step size are equivalent to the equations obtained by applying the same
RK method to the VDE equations (3.14) [282].

3.3 Numerical optimal control

Many of the ideas that we review in the following are in some way applicable
to the more difficult case of nonsmooth optimal control problems. Thus it is

NUMERICAL OPTIMAL CONTROL 79

necessary to be familiar with them. For ease of exposition let us regard an
explicit and sufficiently smooth ODE, e.g., as introduced in Section 3.1. An
optimal control problem is the optimization problem:

min
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt+M(x(T)) (3.16a)

s.t. x(0) = x̄0, (3.16b)

ẋ(t) = f(t, x(t), u(t)), for almost all t ∈ [0, T], (3.16c)

0 ≤ gp(t, x(t), u(t)), for almost all t ∈ [0, T], (3.16d)

0 ≤ gt(x(T)), (3.16e)

This is an infinite-dimensional optimization problem since the decision variables
x(·) and u(·) are infinite-dimensional. The functions gp : Rnx × Rnu → Rngp

and gt : Rnx → Rngt define the path and terminal constraints, respectively. We
have also infinitely many constraints as (3.16c) and (3.16d) must be satisfied
for all t ∈ [0, T]. This interval is called the control horizon and we assume for
now T > 0 to be fixed. The first term in the objective (3.16a), defined by the
function L : Rnx × Rnu → R are the stage/running costs. They are also known
as the Lagrange term. The function M : Rnx → R defines the terminal cost,
which is sometimes called the Mayer term. Finally, x̄0 ∈ Rnx is the initial value
that we assume to be fixed, but it can also be a degree of freedom.

The integral term in the objective (3.16a) is often replaced by a terminal cost
term xq(T) of a quadrature state xq(t) ∈ R. The dynamics of the quadrature
state reads as:

ẋq(t) = L(x(t), u(t)), xq(0) = 0.

This simple state augmentation enables e.g., to easily integrate the objective
and the dynamics with the same integrator code.

Time transformations and numerical time

In time optimal control problems the goal is to minimize the final time T . An
OCP formulation where this is possible is obtained by re-scaling the dynamics
in (3.16c) and letting T be a degree of freedom. Instead of regarding the IVP
over the time interval [0, T] we regard a re-scaled system over τ ∈ [0, 1]. We
call throughout this thesis t the physical time, and τ the numerical time. Time
derivatives w.r.t. the numerical time τ are compactly denoted by dx(τ)

dτ = x′(τ).

80 DIRECT OPTIMAL CONTROL METHODS

The physical and numerical time are related via t = τT or:

dt(τ)
dτ = T. (3.17)

Therefore, we have

dx(τ)
dτ = dx

dt
dt
dτ ,

and the re-scaled dynamics read as

x′(τ) = Tf(τ, x(τ), u(τ)), τ ∈ [0, 1]. (3.18)

Remark 3.12. The time transformation is also applicable in multi-stage OCPs.
For example, in dynamic walking problems [240], given a fixed order of contact
configurations of a walking biped, one can optimize the length of every step to
generate an optimal walking or running motion.

Some of the core ideas of this thesis will leverage this separation into numerical
and physical time. It is useful to think of T in (3.18) as a speed-of-time variable.
The numerical time τ runs with a speed of one and the physical time with a
speed of T . In this setting, a trivial consideration is to set the speed of both
times to one and regard τ ∈ [0, T], i.e., numerical and physical time are equal,
which matches the usual case without time transformations. In the treatment of
nonsmooth systems, we will sometimes stop the evolution of physical time and
make the r.h.s. in (3.17) discontinuous. This technique is part of time-freezing
and it allows one to transform nonsmooth systems with discontinuous solutions
in t into systems with continuous solutions in τ , cf. Chapters 8 and 9.

3.3.1 Solution methods for OCPs

In general, there is no closed-form solution for the OCP (3.16). Consequently,
the OCP is in practice solved numerically, which means that at some point a
finite-dimensional problem needs to be solved. Numerical methods for solving
the OCP (3.16) are divided into three large groups:

1. dynamic programming methods,

2. indirect methods,

3. direct methods.

NUMERICAL OPTIMAL CONTROL 81

It is well-known that dynamic programming methods suffer from the curse
of dimensionality. Indirect methods are the most accurate one of the three,
however they require solving a difficult two-point boundary problem, which
is in practice often prohibitively difficult [229]. On the other hand, direct
methods are based on the mature standard time-discretization and nonlinear
optimization methods. They allow for simple initialization of the problem and
provide reliably locally optimal solutions with good accuracy. Therefore, we
mainly focus on direct methods in this thesis and thus we discuss the first two
only briefly. A comparison of all approaches can be found e.g., in [36, 80].

Dynamic programming methods are based on Bellman’s principle of
optimality [29]. They propagate the optimal cost-to-go function backward
in time. To obtain a solution of the OCP (3.16) in continuous time one has
to solve the Hamilton-Jacobi-Bellman partial differential equation [184]. In
discrete time, a dynamic programming recursion is regarded [35]. In contrast to
the other two, this approach always finds the global minimizer. However, this
requires a tabulation of the cost-to-go function in a discretized space, which
quickly becomes computationally intractable for state dimensions more than
three to five.

Indirect methods are mostly based on Pontryagin’s maximum principle [224],
which gives first-order necessary optimality conditions for the OCP (3.16) in
continuous-time. These optimality conditions are a boundary-value problem
that is solved numerically. Hence, this approach is often called first-optimize-
then-discretize. Indirect methods provide general solution approximations of
high accuracy but require a good initial guess. In practice, one often uses the
more robust, but less accurate direct methods to find such an initial guess.

In contrast to the indirect methods, within direct methods, one first discretizes
the OCP (3.16) and solves afterwards a finite-dimensional NLP. They are often
called first-discretize-then-optimize methods. We follow this approach also for
OCPs with nonsmooth dynamics. Therefore, we take a closer look at some of
the most popular direct methods in the next section.

3.3.2 Direct optimal control

There are several reasons for the popularity and success of direct methods.
The resulting NLP has the form of (2.1) and can be solved with any available
NLP code. Moreover, many tailored real-time feasible algorithms for feedback
control exist [78]. Very good and mature implementations of direct methods
have facilitated their application [9, 81, 170, 140, 278]. The resulting NLPs
are often easy to initialize and have good convergence properties [229]. Direct
methods parameterize the state and control trajectories, which results in an

82 DIRECT OPTIMAL CONTROL METHODS

NLP that is a discrete-time approximation of (3.16). Depending on how this
is done, we usually distinguish between direct transcription, direct single, and
direct multiple shooting.

For ease of exposition we pick in all three approaches the same control
parametrization. The prediction horizon [0, T] is divided in N − 1 equidistant
control intervals defined by the grid 0 = t0 < t1 . . . < tN = T . For simplicity,
we pick a piecewise constant control parametrization for all control intervals:

u(t) = ui, t ∈ [ti, ti+1) , for all i ∈ {1, . . . , N − 1}.

The discrete-time control variables are collected in U = (u0, . . . , uN−1) ∈ RNnu .
Extensions to more elaborate control parametrizations, e.g., via polynomials,
and to non-equidistant control discretization grids are straightforward.

Direct transcription

In direct transcription methods, the dynamics (3.16c) are replaced by the
integration method equations (3.8) on every control interval. One of the key
advantages of this class of methods is that they do not require an additional
solver for the DAE. Moreover, the sensitivities are automatically computed
within the NLP solver, since the discretization equations are constraints of
the NLP. To avoid confusion, we remind the reader that in Section 3.2, in the
exposition of integration methods, we regarded a single control. Here we consider
N control intervals and perform on each of these intervals Nint intermediate
integration steps. Of course, the number of intermediate steps can be different
on every control interval but we keep them the same to reduce the notational
overhead. Denote by si the approximation of the state x(t) at the control grid
points ti for all i ∈ {0, . . . , N} and by xi,n the approximations obtained by
single integration steps within the control interval, where n ∈ {1, . . . , Nint}. As
in Section 3.2 a single integration step is compactly represented by

xi,n+1 = ϕf (xi,n, yi,n, ui),

0 = ϕint(xi,n, yi,n, ui),

where yi,n collects internal variables of the n-th integration step in the i-th
control interval. We go a step further and collect all Nint integration steps over
the i-th control interval in the discrete-time system representation:

si+1 = Φf (si, Yi, ui), (3.19a)

0 = Φint(si, Yi, ui), (3.19b)

NUMERICAL OPTIMAL CONTROL 83

where Φf (si, Yi, ui) = xi,Nint is the state transition map and Φint(·) collects all
intermediate computations of all integration steps within one control interval.
The vector Yi = (xi,0, yi,0, . . . , xi,Nint−1, yi,Nint , xi,Nint) collects all intermediate
integration variables of the i-th control interval.

In direct methods, the path constraints are not imposed for every t ∈ [0, T], but
only on a finite number of points to have a finite number of inequalities. Often,
these constraints are imposed just on the control grid points:

gp(si, ui) ≥ 0, for all i ∈ {0, . . . , N − 1}.

To avoid violation of the constraint in between these points, one could
additionally impose the path constraints on all intermediate integration and
stage points or even on some other points obtained by interpolation.

Finally, the objective function (3.16a) is approximated by a discrete-time sum∑N−1
i ℓ(si, Yi, ui) +M(sN). The term ℓ(si, Yi, ui) can efficiently be computed

by introducing the quadrature state xq(·) as discussed above.

Bringing all these steps together, we obtain from the OCP (3.16) the following
structured and sparse NLP:

min
S,Y,U

N−1∑
i=1

ℓ(si, Yi, ui) +M(sN) (3.20a)

s.t. s0 = x̄0, (3.20b)

si+1 = Φf (si, Yi, ui), for all i ∈ {0, . . . , N − 1}, (3.20c)

0 = Φint(si, Yi, ui), for all i ∈ {0, . . . , N − 1}, (3.20d)

0 ≤ gp(si, ui), for all i ∈ {0, . . . , N − 1}, (3.20e)

0 ≤ gt(sN), (3.20f)

where S = (s0, . . . , sN) collects all state variables at the control grid point and
Y = (Y0, . . . , YN−1) collects all intermediate variables.

Direct transcription is a fully simultaneous approach to optimal control as the
optimization and simulation problem are solved at the same time [38, 78, 229].
Thus, the discrete-time states S and control trajectory U are feasible only at
a converged solution when the simulation problem equations and inequality
constraints are satisfied. One of the most popular direct transcription methods
is direct collocation based on Gauss-Legendre and Radau IIA IRK methods [37,
78, 226, 229].

84 DIRECT OPTIMAL CONTROL METHODS

Direct multiple shooting

The direct multiple shooting method for solving optimal control problems was
introduced by Bock and Plitt [44]. Nowadays, this method is widely used and
implemented in several popular software packages such as MUSCOD-II[81], ACADO
[140] and acados [278], to name a few.

In shooting methods the internal integration variables Yi are hidden from the
optimizer. Instead, for a given control ui and initial value si an external
integrator code solves Ψint(si, Yi, ui) = 0 in (3.19) for Yi, i.e., we obtain
Yi(si, ui) and define the maps Φ(si, ui) := Ψf (si, Yi(si, ui), ui) and ℓ̂(si, ui) :=
ℓ(si, Yi(si, ui), ui). Depending on the underlying integration method, this can
be done explicitly or implicitly. We express the resulting map as

si+1 = Φ(si, ui), for all i ∈ {0, . . . , N − 1}. (3.21)

The integrator reports to the optimizer function values and their derivatives w.r.t.
to the initial value ∂Ψ(si,ui)

∂s and controls ∂Ψ(si,ui)
∂u . A proper implementation

takes care of all the sensitivity-related pitfalls discussed in Section 3.2.2.
Moreover, Ψ(·) can be more general and represent even an adaptive step size
integrator. Note that the use of such integrators in a direct transcription method
is significantly more involved [37, 223]. This highlights one of the advantages of
direct multiple shooting.

The constraints and objective are discretized as in the previous section and
with direct multiple shooting we obtain the following NLP:

min
S,U

N−1∑
i=1

ℓ̂(si, ui) +M(sN) (3.22a)

s.t. s0 = x̄0, (3.22b)

si+1 = Φ(si, ui), for all i ∈ {0, . . . , N − 1}, (3.22c)

0 ≤ gp(si, ui), for all i ∈ {0, . . . , N − 1}, (3.22d)

0 ≤ gt(sN), (3.22e)

Same as direct transcription, direct multiple shooting enables an easy
initialization as all the state values si at all control grid discretization points
are explicitly available. Moreover, this also enables us to perform all integrator
calls for all nodes in parallel. Continuity of the overall final trajectory is ensured
via the constraints (3.22c).

NUMERICAL OPTIMAL CONTROL 85

Direct single shooting

Using the currently available control vector U and initial value x̄0, direct single
shooting completely removes the variables S from the NLP (3.22). For simplicity,
we evaluate the path constraints on the same grid as in the previous cases. Let
us denote the obtained state values, at the control discretization grid points
by s̃i(s̃0, U) and we highlight here the dependence on U and the initial value
s̃0. These values are computed by recursive calls of the integrator in Eq. (3.21).
We obtain the following NLP:

min
s̃0,U

N−1∑
i=1

ℓ(s̃i(s̃0, U), ui) +M(s̃N (U)) (3.23a)

s.t. s̃0 = x̄0, (3.23b)

0 ≤ gp(s̃i(s̃0, U), ui), for all i ∈ {0, . . . , N − 1}, (3.23c)

0 ≤ gt(s̃N (s̃0, U)), (3.23d)

The initial value constraint (3.23b) could also be removed, however, it is very
useful when one has to solve quickly several related parametric NLPs [75]. Direct
single shooting is a sequential approach as the simulation and optimization
problem iterations are carried out sequentially. Direct multiple shooting is
a simultaneous approach, sometimes also considered to be hybrid, i.e., both
sequential and simultaneous as parts of the computations are performed outside
of the optimization routine.

Obviously, the NLP (3.23) has less variables than (3.20) or (3.22). But
in contrast to these problems, it is dense and has no significant sparsity
structure. Having the intermediate integration variables si and Yi explicitly
in the optimization problems is an example of lifting [8]. Informally speaking,
the additional variables help to distribute the nonlinearities. For example,
in a recursive call of an integrator in direct single shooting the nested
integrator functions in s̃i+1(s̃0, U) = Φ(Φ(Φ(· · · (Φ(s̃0, u0), u1), · · ·), ui−1), ui)
might reinforce the nonlinearity and significantly harm the convergence. This
gives an intuition for the often observed better convergence rate of the
simultaneous approaches. Direct multiple shooting performs often better for
unstable dynamical systems [229]. If the integration steps on every shooting
interval are decoupled, all function and derivative evaluations can be performed
in parallel. Interestingly, the cost per iteration (function evaluations and linear
system solve) in a Newton-type method can be shown to be the same for
both direct single and multiple shooting [8]. We use the lifting technique also
to reduce the nonlinearity of some smooth parts of nonsmooth systems, cf.
Section 6.3.

Chapter 4

Nonsmooth Dynamical
Systems

This chapter provides an introduction to nonsmooth dynamical systems. We
regard ODEs whose vector fields and solutions do not have strong continuity
and differentiability properties. We start by outlining differences between hybrid
and nonsmooth dynamical systems. Both notions are often used to model the
same problems, which my lead to confusion. Nonsmoothness inevitably causes
some numerical and theoretical difficulties. Therefore, we motivate and justify
why nonsmoothness is sometimes necessary. Moreover, we show why smoothing
the discontinuities may not lead to satisfying results. We highlight several
qualitative and numerical phenomena which appear with the introduction of
nonsmoothness in ODEs and which can not be encountered within smooth
dynamical systems.

Outline. The content of this chapter is as follows. Section 4.1 provides a
high-level introduction to the field. Section 4.2 illustrates on simple examples
numerous phenomena encountered within nonsmooth systems and their time
discretization, which are not encountered with smooth systems. In Section
4.3, we review some basics from nonsmooth analysis and nonsmooth dynamical
system formulations. We recall some basic existence and uniqueness results.
Section 4.4 concludes the chapter and provides further references for related
topics not covered here.

87

88 NONSMOOTH DYNAMICAL SYSTEMS

4.1 Introduction

Hybrid and nonsmooth dynamical systems exhibit both continuous and discrete
behavior. The discrete and continuous dynamics do not just coexist but are
closely interconnected. They usually arise when first principle models are coupled
with if-then or either-or conditions or from empirical laws such as Coulomb
friction. This leads to some circumstances that are never encountered in smooth
dynamical systems. The discrete events cause switches in the dynamics and/or
jumps in the solution trajectories. After a switch, the system might even evolve
in a lower dimensional subspace. In many mathematical modeling frameworks,
discrete states are introduced, which are constant between two switches. The
dynamics for a fixed discrete state are called mode of the overall hybrid system.

In the literature, the terms nonsmooth and hybrid systems are often used
interchangeably, or the differences are often not clarified enough. In the next
section, we precisely describe the conceptual differences between nonsmooth
and hybrid dynamical systems. In an introductory discussion, one can regard
them to be the same. We proceed with some classifications and descriptions of
the main properties of the arising classes.

The first big classification is based on how the discrete events or switches, are
triggered. We distinguish between:

1.) Internal switches: triggered implicitly, depending on the systems’
differential state,

2.) External switches: triggered explicitly, independent of the differential
state.

Some typical solutions of a hybrid or nonsmooth system with internal switches
are illustrated in Figure 4.1. We regard some set Ri ⊂ Rnx and a well-defined
smooth ODE, e.g., with a Lipschitz continuous vector field, defined on this set.
Starting at some initial value x(0) ∈ Ri the system evolves locally according to
the given dynamics for some time until it reaches the boundary ∂Ri. This is
called an event or switch. The corresponding time is called the event time or
switching time. In this instance of time, a discrete and instantaneous change in
the trajectory happens, and the system changes its mode. There are several
typical outcomes. The trajectory might continue to evolve in a new region
Rj ⊂ Rnx equipped with another vector field. This causes a kink in the solution
and is illustrated in Figure 4.1 (a). Or it could slide on the boundary between
the two regions as shown in Figure 4.1 (b). Furthermore, some parts of the state
space might be even infeasible as often encountered in mechanical systems with
unilateral constraints, cf. Chapter 8. In such cases, the trajectory x(t) might

INTRODUCTION 89

Figure 4.1: Illustration of typical solutions of nonsmooth dynamical systems.
The blue curve is the solution trajectory x(t). The red-shaded area is infeasible
for the dynamical system. The blue dashed line is not a part of the trajectory
but indicates that there is a state jump.

need to jump to some place in Ri or another region Rk ⊂ Rnx and then evolve
continuously with the same or a different vector field, respectively, see Figure
4.1 (c). We see here that the switches and jumps are triggered by reaching some
surface in the state space. We speak of state-dependent, autonomous, implicit,
or internal switches and jumps. These systems are the central topic of this
thesis, and various aspects of modeling, reformulations, numerical methods, and
direct optimal control are the topics of the forthcoming chapters. Of course,
the simple illustration above does not cover the rich behavior of nonsmooth
systems, and throughout this thesis, we will introduce more details and study
some specific features of such systems.

The second class consists of dynamical systems with external, explicit or
controlled switches and jumps. Typical examples are systems from the field of
engineering with discrete actuators where on and off decisions are made. In
optimal control problems, such systems are readily modeled via ODEs that
are smooth in the states and equipped with integer-valued control functions.
Consequently, the resulting optimal control problems require the solution of
mixed-integer optimization problems which are in general very difficult to solve.
However, in the last two decades, the field of mixed-integer optimal control
has enjoyed great successes in the development of the theory and numerical
methods [235, 30, 167, 175, 53]. For a recent survey, cf. [193]. Many tailored
algorithms enable even real-world applications with sampling times in the range
of minutes and seconds [54, 193]. In general, a dynamical system might have
both internal and external switches, which is a particularly difficult class of
systems.

The rich behavior of nonsmooth dynamical systems allows many other
classifications. E.g., depending on the mathematical framework (cf. Section 4.3)

90 NONSMOOTH DYNAMICAL SYSTEMS

that is used or the continuity properties of the solutions and their derivatives.
The solution trajectories of nonsmooth dynamical systems, modeling the physical
world, are usually smooth function pieces joined by kinks and jumps. Hence, the
discontinuities arise either in the trajectory or its time derivatives. This leads
to one possible classification which covers numerous, but not all, mathematical
frameworks for nonsmooth ODEs. It regards the continuity of the trajectory
x(t;x0) and its time derivatives. A similar classification is used in [174]. We
distinguish NonSmooth Dynamics (NSD) with the following properties:

(NSD1) continuous, but nonsmooth r.h.s., jump discontinuity in the 2nd time
derivative - continuously differentiable solutions, e.g., ẋ = 1 + |x|,

(NSD2) discontinuous r.h.s., jump discontinuity in the first time derivative -
absolutely continuous solutions, e.g., ẋ ∈ 2− sign(x),

(NSD3) jump discontinuity in the trajectory - solutions are functions of bounded
variation, e.g., the bouncing ball, q̈(t) = −9.81, q̇(t+) = −eq̇(t−) if q(t) = 0
and q̇(t−) < 0, e ∈ [0, 1].

4.1.1 Hybrid versus nonsmooth dynamical systems

This section aims to clarify what is usually meant by hybrid and nonsmooth
dynamical systems in the literature. These terms cover all kinds of systems
with continuous and discrete dynamics. This description is not restrictive
and permits numerous modeling frameworks to capture essentially the same
features of a dynamical system. However, this sometimes leads to ambiguity
and confusion. For example, many articles and textbooks [113, 186, 189], when
they speak of hybrid systems have a very concrete modeling framework in mind
that has a very precise definition.

The applied mathematics community usually deals with nonsmooth dynamical
systems [3, 4, 49, 186, 93, 19, 273, 258]. Here, the coupling between the
discrete and continuous parts is rather implicit and represented via nonsmooth
and set-valued (even unbounded) maps. This gives rise to the notions of
differential inclusions, dynamic complementarity systems, differential variational
inequalities, and more. They are all particular instances of nonsmooth dynamical
systems. In the analysis of nonsmooth systems, one can often rely on the powerful
tools for static problems from the fields of convex analysis, mathematical
programming, and nonsmooth analysis [19, 89, 234].

A different approach, most often taken in the control community, is to represent
the coupling between discrete and continuous parts of the systems explicitly.
The explicit interconnection is readily represented via finite hybrid automata

INTRODUCTION 91

[186, 272], which are finite state machines accompanied by an ODE and DAE
for every discrete state. In this case, one usually speaks of hybrid (dynamical)
systems. Transitions are triggered by so-called guards, i.e., switching conditions.
They may be accompanied by reset maps, i.e., state jump laws. One of the
main benefits of this approach is that it is often not too difficult to define
meaningful notions of solutions and to study properties such as the existence,
uniqueness of solutions, and stability of the controlled dynamical system [186].
There are several formal definitions for hybrid automata which only differ in
details, e.g., [188, Definition II.1], [272, Definition 1.2.3], [186, Definition 3.1],
[113, Definition 2.2], [24] to name a few. Some of these frameworks introduce
hybrid time domains, i.e., distinct clocks for the continuous and discrete states
[113]. A very similar notion is hybrid inclusions, which are often used to study
standard control theoretical questions [113]. It is important to realize that
all relations, modes, and mode transitions are explicitly stated. On the one
hand, this might simplify the analysis as nothing is hidden. On the other hand,
constructing a hybrid automaton might be cumbersome and error-prone, since
all possible relations must be stated explicitly.

As the terms nonsmooth and hybrid are not restrictive, it is difficult to
define them rigorously and to highlight all differences explicitly. However,
we can summarize the main differences as follows. The discrete nature in
nonsmooth dynamical systems is encoded implicitly via nonsmooth and set-
valued equations. In contrast, in hybrid automata (in the literature often just
called hybrid systems), integer states are introduced, and all transitions are
expressed explicitly, e.g., with the help of reset, guard maps and automata.

Both approaches, together with their strengths and weaknesses, are very useful
and have their place in lively research areas. A classical example that highlights
the advantages of the nonsmooth over hybrid modeling approach is granular
matter. For m particles n = m(m−1)

2 complementarity conditions are needed to
represent the contact conditions between all particles. The combinatorial nature
is hidden in the complementarity constraints. For deriving a hybrid automaton,
one needs to explicitly treat all 2n modes. In this example, the hybrid systems
approach leads to an exponential growth in relations. On the other hand, the
generality of hybrid automata enables easier modeling of some problems. For
example, systems with hysteresis are easy to represent via a hybrid automaton,
and the formulation as a nonsmooth dynamical system is nontrivial. In this
thesis, we focus on nonsmooth dynamical systems. In particular, we always
express the discrete parts via complementarity conditions at some point.

92 NONSMOOTH DYNAMICAL SYSTEMS

4.1.2 Why nonsmooth dynamical systems?

Combining first principles with logical expressions necessarily leads to nonsmooth
dynamical systems. Many smooth dynamical systems cannot be stabilized with
smooth control functions [68, 229]. Sophisticated control strategies, such as
MPC, result in control laws that are at best piecewise smooth functions [229].
Physical systems can have qualitatively different modes. Idealizing the mode
changes to be instantaneous leads to discontinuities in the differential equations.
In the literature, one can find very extensive lists of applications of nonsmooth
models, e.g., [3, 4, 51, 68, 155, 186].

Mechanics and robotics provide one of the largest sources of nonsmooth
dynamical systems. Contact between perfectly rigid bodies introduces
discontinuities in the velocities. In nature, no perfectly rigid bodies exist.
However, the compression and decompression phases during contact happen at
much shorter time scales compared to other motions of the bodies. Such time
scales are beyond the resolutions of practical sensors, and resolving them with
numerical integration methods is computationally very expensive. Moreover,
estimating all parameters that describe the complex phenomena of contacts with
friction is very difficult. It turns out, regarding the rigid limits, which introduce
discontinuities in the model, is sufficiently physically accurate and numerically
beneficial [49, 174, 255]. To describe the impacts of rigid bodies, we only need to
estimate the friction coefficient and coefficient of restitution. Other examples of
such modeling are ideal diodes and power electronics in general [3]. In this case,
very nonlinear voltage-current characteristics are replaced by complementarity
conditions. One of the main strengths of nonsmooth systems is their simplicity
of formulation.

Nonsmoothness leads to difficulties that are not encountered with smooth
dynamical systems. Therefore, a related question is: Why not just smooth
everything? Indeed, smoothing and using an adaptive step-size integrator is often
useful, when it comes to quickly obtaining a simulation result with moderate
accuracy. However, the error is dominated by the smoothing parameter, and
for good accuracy, very stiff ODEs must be treated, which quickly becomes
impractical. For instance, frequent switches or sliding modes will require very
small step sizes in the integration. The numerical experiments in Section 4.2.5
reveal many pitfalls of smoothed models that cannot be resolved even with
the use of very advanced adaptive step-size integrators. Moreover, Section 4.2
shows many phenomena that only occur in the presence of nonsmoothness.
Smoothing removes such effects, which might blur the overall picture. E.g.,
smoothing a Coulomb friction model might lead to slipping of the rigid body
in situations where it should be at rest. More importantly, in the case of
direct optimal control, smoothing and standard methods for smooth systems

INTRODUCTION 93

have some non-obvious fundamental limitations. For example, the numerical
sensitivities of smoothed systems only converge to the correct value if the step
size shrinks faster than the smoothing parameter [259]. As a consequence, many
optimization variables are needed for accurate solutions. We can conclude that
using nonsmooth dynamical systems combined with tailored numerical methods
can be of great practical benefit.

4.1.3 Numerical simulation of nonsmooth systems

Efficient numerical integration methods are necessary to make some classes
of models practically useful. Proper time discretization is crucial in standard
direct methods for solving OCPs with nonsmooth ODEs. It is well-known that
standard integration methods applied to nonsmooth dynamical systems have
only first-order accuracy [4]. State jumps and the lack of uniqueness of solutions
complicate the computations even more. Moreover, even if the numerical
approximations converge to the true solutions, the numerical sensitivities usually
do not [203, 259], cf. Chapter 5.

There are several ways to discretize and simulate a nonsmooth ODE, and they
can be divided as follows:

1.) switch-detecting, event-driven, active-set methods [4, 213, 250],

2.) time-stepping methods, event-capturing [3, 4, 199, 255],

3.) smoothing and penalty methods [4, 203, 259].

In the following, we highlight their main features. In Section 4.2.5, we compare
all three approaches in a numerical example and highlight their strengths and
weaknesses.

Switch-detecting methods

The first approach is the only one of the three that is designed to deliver
solutions of higher-order accuracy. It follows a simple idea: use a high-accuracy
smooth ODE or DAE solver until a switching event is detected. Consequently,
the concerned time interval is equal to the union of a finite number of a priori
unknown subintervals on which the mode of the system is unchanged. For
switch detection, a look at the signs and possibly the derivatives of a switching
function is needed. The solution approximation is interpolated, and a root-
finding method finds the switching time. Afterwards, the integration is restarted

94 NONSMOOTH DYNAMICAL SYSTEMS

and continued with a smooth ODE or DAE solver, possibly with the new model
and initial value. If the solution is nonunique, an adequate mode is selected, or
the user is allowed to choose. Note that for external switches, the switching
times are known in advance, and the simulation is less difficult. Selecting the
correct mode after a switch might not be straightforward. In [272], this difficulty
is illustrated with the following example. Imagine a pile of boxes subject to
Coulomb friction between each of them. Remove the support from one side
such that the boxes start to move due to gravity. Determining which boxes slide
or stick with respect to each other is nontrivial. Most high-accuracy methods
assume that the trajectory crosses the discontinuity or only passes through two
regions at a time [4]. An exception is Stewart’s high accuracy method, which
can deal with almost all switching cases [250, 252].

Higher-order accuracy schemes should always be preferred in direct optimal
control. First, the numerical error should not dominate over the modeling error.
Second, fewer optimization variables are needed for the same accuracy. Using
an integrator with a complicated switch detection and mode selection procedure
within an optimization code is often prohibitive. In Chapter 7, we introduce an
event-based method that overcomes these limitations.

Time-stepping methods

The second approach does not try to exactly detect the switching times and
provides, in general, only first-order accuracy [4]. Time-stepping methods
advance the integration with a fixed step size and are good at capturing
multiple simultaneous switching events. They usually require solving a linear or
nonlinear complementarity problem and thus preserve the nonsmoothness. They
are especially powerful and fast in simulating large or fast systems with many
switches [15, 4, 3, 255], e.g., in the simulation of granular matter. However,
they always deliver wrong numerical sensitivities [259, 292] and thus are not a
suitable choice for direct optimal control. Convergence of standard Runge-Kutta
methods with order one is studied in [83, 161, 264, 258].

Smoothing methods

The last approach essentially considers smooth approximations of the original
system. This might yield a very stiff ODE. However, they are easy to implement
and are often useful for quick tests or the generation of good initial guesses for
more elaborate methods. For example, in nonsmooth mechanics (cf. Chapter
8), the non-penetration constraints that cause discontinuities in the velocity
are replaced by repulsion laws [49]. To achieve reasonable accuracy with such

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 95

an approach, very stiff repulsion laws are needed, which in turn require very
small-step sizes.

4.2 Phenomena specific to nonsmooth dynamical
systems

The presence of nonsmoothness leads to numerous interesting phenomena.
Before giving formal definitions for several classes of nonsmooth dynamical
systems, we provide a series of simple examples where each highlights some
property inherent to nonsmooth systems. The goal of these examples is to make
the reader aware of some limitations of standard approaches, and to provide
more intuition for nonsmooth dynamical systems.

4.2.1 Infinitely many switches in finite time - Zeno’s
phenomenon

We have seen above that nonsmooth systems encounter switches and jumps.
Some models encounter even infinitely many switches or jumps in a finite time
interval. In the literature, this is called the Zeno phenomenon [49, 186, 272].
We provide two examples of this. The first has infinitely many state jumps,
and the second has infinitely many switches, i.e., discontinuous changes in the
vector field.

Regard the dynamics of a one-dimensional bouncing ball with elastic impacts:

q̇(t) = v(t),

m v̇(t) = −g,

v(t+) = −ϵrv(t−), if v(t−) ≤ 0 and q(t) = 0.

Here, m = 1 is the ball’s mass, g = 9.81 is the gravitational acceleration, and
e ∈ (0, 1] is the coefficient of restitution. For simplicity, let us assume that
q(0) = 0 and v(0) > 0. Then, the first impact happens at t1 = 2v(0)

g , the second
after t2 = t1 + 2ϵrv(0)

g . It can be seen that the time between two impacts is
∆k+1 = tk+1 − tk = 2ϵkr v(0)

g . Since ϵr < 1, we see that the resulting geometric
series converges, i.e.,

∑∞
k=1 ∆k <∞. Thus, we have infinitely many impacts in

finite time. An example trajectory is given in Figure 4.2.

96 NONSMOOTH DYNAMICAL SYSTEMS

0 2 4 6

t

-0.1

0

0.1

0.2

0.3

0.4

q(
t)

0 2 4 6

t

-2

0

2

v
(t

)

Figure 4.2: The position q(t) of the one dimensional bouncing ball (left). The
right plot shows the discontinuous velocity of the ball v(t).

-1 0 1

x1

-1

0

1

x
2

-0.1 0 0.1

x1

-0.1

0

0.1

-0.01 0 0.01

x1

-0.01

0

0.01

-1 0 1

x1 #10!3

-1

0

1

#10!3

Figure 4.3: Two solution trajectories of the Filippov system in Eq. (4.1). The
plots from left to right show the origin zoomed in.

Zeno behavior can also happen with systems without jumps but with a
discontinuous right-hand side. Regard the following discontinuous ODE [272,
Eq. (1.12)]:

ẋ1(t) ∈ −sign(x1(t)) + 2sign(x2(t)), (4.1a)

ẋ2(t) ∈ −2sign(x1(t))− sign(x2(t)). (4.1b)

Example trajectories for several initial values are depicted in Figure 4.3. The
trajectories always end up spiraling down to the origin.

Of course, real physical systems do not experience the Zeno phenomenon.
However, some practical models still can experience this kind of behavior [291].
Thus, it is important to investigate conditions under which infinitely many
switches occur or not in finite time [60, 243, 291]. Simulating Zeno systems
with an accurate event-driven method is also impractical as it requires many
restarts of the integrator. On the other hand, time-stepping methods do not
have difficulties with such systems [4, 255].

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 97

4.2.2 Reduced system dimensions and sliding modes

Another very interesting property of some nonsmooth dynamical systems is that
they can reduce their dimension along the trajectory. This dimension reduction
is very common for ODEs with a discontinuous r.h.s. when they are cast into
Filippov systems, cf. Section 4.3 and Chapter 6. If the trajectory needs to
evolve on the surfaces of discontinuity, we speak of sliding modes. An example
trajectory was given in Figure 4.1 (b).

4.2.3 Stability and instability due to switches and jumps

The stability of the modes of a nonsmooth dynamical system does not imply the
stability of the overall system. We illustrate this fact with an example from [46].
It consists of a piecewise linear system with two modes of operation:

ẋ =
{
A1x, if x1x2 ≤ 0,
A2x, if x1x2 > 0.

(4.2)

with

A1 =
[
−1 10
−100 −1

]
, A2 =

[
−1 100
−10 −1

]
.

It can be seen that both linear subsystems are stable. However, the overall
nonsmooth system is unstable. Example trajectories are given in Figure 4.4.
Interestingly, the time-reversed version of the example above is stable.

-0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

-0.5 0 0.5 1

0

0.5

1

1.5

2

0 0.5 1
-200

-150

-100

-50

0

Figure 4.4: The left plot shows a trajectory for the linear systems ẋ = A1x, the
square marks the initial point and the cross the final point. The middle plots
show a trajectory of the system ẋ = A2x. The right plot shows a trajectory of
the unstable system (4.2).

98 NONSMOOTH DYNAMICAL SYSTEMS

4.2.4 Numerical chattering

Simulating systems with sliding modes is more difficult as it can lead to undesired
chattering of the numerical solution around the surface of discontinuity. We
consider the following example to illustrate this:

ẋ(t) ∈ −sign(x(t)), (4.3)

with x(0) ̸= 0. We use the explicit Euler, Runge-Kutta 4 method and MATLAB
adaptive step-size integrators ode45 and ode89. MATLAB defines sign(0) = 0,
but in the simulation example, this value is never reached. Figure 4.5 shows the
simulation results with several standard integration methods. In Figure 4.6, we
can see that lowering the step size or the tolerance of the adaptive integrator does
not improve the situation but makes the chattering only faster. Interestingly,
even very sophisticated adaptive step-size codes fail to deliver qualitatively good
approximations even for such simple examples.

We see from the example above that not only the integration order but also
the qualitative behavior plays an important role. Next, we compare the explicit
and implicit Euler methods. The explicit Euler discretization with the step-size

0 0.2

t

-0.01

0

0.01

x
(t

)

Explicit Euler

0 0.2

t

-0.01

0

0.01

x
(t

)

RK4

0 0.1 0.2

t

-0.01

0

0.01

x
(t

)

ode45

0 0.1 0.2

t

-0.01

0

0.01

x
(t

)
ode89

Figure 4.5: Simulation results for the example in (4.3) obtained with several
integration methods.

0 0.2

t

-0.01

0

0.01

x
(t

)

Explicit Euler

0 0.2

t

-1

0

1

x
(t

)

#10!3 RK4

0 0.1 0.2

t

-1

0

1

x
(t

)

#10!3 ode45

0 0.1 0.2

t

-1

0

1

x
(t

)

#10!3 ode89

Figure 4.6: Simulation results for the example in (4.3) obtained with several
integration methods, now with a smaller step size and tolerance for the adaptive
integrators.

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 99

0 0.1 0.2 0.3

t

-0.01

0

0.01

x
(t

)

Explicit Euler

0 0.1 0.2 0.3

t

-0.01

0

0.01

x
(t

)

Implicit Euler

Figure 4.7: Simulation results for the example in (4.3) obtained with explicit
and implicit Euler methods.

h for our example reads as:

xk+1 = xk − hsign(xk).

The sign(·) function can be expressed as a solution map to a Linear Program
(LP)

s ∈ arg min
ŝ
−xŝ s.t. − 1 ≤ ŝ ≤ 1.

Using the KKT conditions of this LP allows us to derive a more sophisticated
implicit Euler discretization for the example [4, 3, 258]:

xk+1 = xk − hsk+1,

0 = −xk+1 − λL
k+1 − λU

k+1,

0 ≤ 1 + sk+1 ⊥ λL
k+1 ≥ 0,

0 ≤ 1− sk+1 ⊥ λU
k+1 ≥ 0.

In general, implicit methods for nonsmooth ODEs require solving a nonlinear
complementarity problem at every time step. The simulation results of the two
Euler schemes described above are compared in Figure 4.7. Even if both explicit
and implicit Euler discretizations converge to the solution of a nonsmooth
system [27, Propositions 2.7 and 4.4], their qualitative behavior might be very
different if sliding modes occur. The implicit Euler discretization yields in many
cases provably chattering-free sliding motions [5]. Already this simple example
suggests that tailored implicit integrators are needed for discretizing nonsmooth
ODEs.

4.2.5 Order integration of accuracy

Due to the lack of smoothness, standard higher-order integration methods for
smooth ODEs applied to nonsmooth system experience in general first-order

100 NONSMOOTH DYNAMICAL SYSTEMS

accuracy [4], cf. Definition 3.7. We study the behavior of three integration
approaches for nonsmooth ODEs described in Section 4.1.3 on the example of
an ODE with a discontinuous right-hand side.

Regard the initial value problem:

ẋ =
{
A1x, ∥x∥2

2 < 1,
A2x, ∥x∥2

2 > 1,
(4.4)

with A1 =
[

1 ω
−ω 1

]
, A2 =

[
1 −ω
ω 1

]
, ω = 2π and x(0) = (e−1, 0) for

t ∈ [0, T]. The solution of the IVP is given in Figure 4.8. It can be shown that
the switch happens at ts = 1 and that

x(T) =
[
e(T−1) cos(2π(T − 1))
−e(T−1) sin(2π(T − 1))

]
,

for T > ts. Thus, given a numerical approximation x̂(t), we can determine
the global integration error E(T) = ∥x(T)− x̂(T)∥ and observe the accuracy
order of the integrator. We take an irrational number for T = π

2 so that ts = 1
never coincides with the integration grid. Thereby, we avoid accidental switch
detection via the discretization grid of the integrator, which would blur the
results.

We regard solution approximations to this IVP obtained by MATLAB’s state-
of-the-art adaptive step-size integrators ode15s, ode23, ode45 and ode89. To
vary the minimum step size and have control over the error we change the
tolerances of the integrator. The relative tolerance reltol is varied from 1

0 0.5 1 1.5

t

-3

-2

-1

0

1

2

3

x
(t

)

x1(t)
x2(t)

-1 0 1

x1

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

Figure 4.8: Illustration of the solution to the nonsmooth IVP given by (4.4).

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 101

10!10 10!5 100

reltol

10!10

10!5

100

E
(T

)

ode45

ode15s

ode23

ode89

10!10 10!5 100

hmin

10!10

10!5

100

E
(T

)

ode45

ode15s

ode23

ode89

O(h)
O(h2)

Figure 4.9: Integration error E(T) = ∥x(T) − x̂(T)∥ as a function of reltol
for several MATLAB integrators (left plot). The integration error E(T) as a
function of hmin (right plot).

0 1

t

10!10

100

h

ode15s

reltol=1e-1
reltol=1e-4
reltol=1e-10

0 1

t

10!10

100
ode45

0 1

t

10!10

100
ode23

0 1

t

10!10

100
ode89

Figure 4.10: The integration step sizes of several MATLAB integrators over
time for different relative tolerances.

to 10−10 and the absolute tolerance is set to abstol=reltol/10 At the k-
th integration step the integrator estimates the local error e(k). The step is
accepted if the error satisfies: ∥e(k)∥ ≤ max(reltol∥x(k)∥, abstol), where
x(k) is the current solution approximation, cf. https://de.mathworks.com/
help/matlab/ref/odeset.html. The integration errors E(T) are plotted over
the minimum step-size hmin that the integrator takes during simulation.

In the first experiment, we directly apply the integrators as time-stepping
methods to the nonsmooth ODE (4.4). The discontinuity is not treated explicitly.
The errors as a function of the relative tolerance and the minimum step-size
hmin are given in Figure 4.9. It can be seen that all integrators achieve only
first-order accuracy and thus lose their high-accuracy properties. In Figure 4.9,
we plot the step sizes that the integrator takes over time for different values of
reltol. It can be seen that all integrators must reduce their step size drastically
around the switch to achieve the prescribed tolerance. Of course, in the case of

https://de.mathworks.com/help/matlab/ref/odeset.html
https://de.mathworks.com/help/matlab/ref/odeset.html

102 NONSMOOTH DYNAMICAL SYSTEMS

10!10 10!5 100

hmin

10!10

10!5

100

E
(T

)

ode45

ode15s

ode23

ode89

O(h)
O(h2)
O(h4)
O(h8)

Figure 4.11: The integration error E(T) vs. hmin, now with switch detection.

0 1

t

10!10

100

h

ode15s

reltol=1e-1
reltol=1e-4
reltol=1e-10

0 1

t

10!10

100
ode45

0 1

t

10!10

100
ode23

0 1

t

10!10

100
ode89

Figure 4.12: The integration step sizes of several MATLAB integrators over
time for different relative tolerances, now with switch detection.

many switches, this makes the integration very expensive.

In the second experiment, we use explicit switch detection options of the
integrators. Otherwise, we do not change anything compared to the previous
experiment. The integration accuracy plots are given in Figure 4.11. They
reveal that all integrators recover their high-accuracy properties. Similarly,
we plot the step sizes over time in Figure 4.12. In contrast to Figure 4.9, we
see that the integrators do not have to make unreasonably small step sizes to
achieve high accuracy. Event-detection methods restart the integration process
after a switch is detected. MATLAB’s integrators usually take a very small
integration step at the beginning of the simulation. This explains the step sizes
being sometimes smaller around the switch. We remind the reader that deciding
with which mode to proceed with the integration after a switch is detected is
sometimes a nontrivial task, cf. the discussion in Section 4.1.3.

In our last experiment, we investigate if smoothing improves the situation. After
all, a smooth ODE is obtained and the integrators are expected to work well
when applied to it. We regard a smooth approximation of the ODE (4.4), where

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 103

10!10 10!5 100

hmin

10!10

10!5

100

E
(T

)

(a) < = 10!2

ode45

ode15s

ode23

ode89

O(h)
O(h2)

10!10 10!5 100

hmin

10!10

10!5

100

E
(T

)

(b) < = 10!6

ode45

ode15s

ode23

ode89

O(h)
O(h2)

Figure 4.13: The integration error E(T) vs. hmin with smoothing.

0 1

t

10!10

100

h

ode15s

reltol=1e-1
reltol=1e-4
reltol=1e-10

0 1

t

10!10

100
ode45

0 1

t

10!10

100
ode23

0 1

t

10!10

100
ode89

Figure 4.14: The integration step sizes of several MATLAB integrators over
time for different relative tolerances, now with smoothing and σ = 10−2.

0 1

t

10!10

100

h

ode15s

reltol=1e-1
reltol=1e-4
reltol=1e-10

0 1

t

10!10

100
ode45

0 1

t

10!10

100
ode23

0 1

t

10!10

100
ode89

Figure 4.15: The integration step sizes of several MATLAB integrators over
time for different relative tolerances, now with smoothing and σ = 10−6.

we replace a sign(x) function with tanh(x/σ). The smooth approximation reads
as:

ẋ =
1− tanh

(
∥x∥2

2−1
σ

)
2 A1x+

1 + tanh
(

∥x∥2
2−1
σ

)
2 A2x.

104 NONSMOOTH DYNAMICAL SYSTEMS

The experiments are performed for the values σ = 10−2 and σ = 10−6. Under
mild conditions, the solution of the smoothed ODE converges to the true solution
with the rate O(σ) [259]. The results are depicted in Figure 4.13. It can be seen
that for the smaller value of σ, the integrators perform well. However, it is no
surprise that the smoothing error dominates the overall error, and decreasing
the tolerance cannot improve the situation further. On the other hand, for
very small values of the smoothing parameters, we obtain a very fast transition
around the discontinuity. This makes the system very stiff, and the integrator
shows similar behavior to the case when the nonsmooth ODE (4.4) is considered.
The high integration orders are lost even for ode15s which is well suited for
stiff systems. The step sizes over time are depicted in Figure 4.14 and 4.15 for
σ = 10−2 and σ = 10−6, respectively. We can see that in these cases very small
steps are taken around the switch and there is almost no difference to the case
of a discontinuous system, cf. in Figure 4.9. We can see that for a sufficiently
small step size, here h = o(σ), the integrators recover their order properties.
Therefore, when high accuracy is required, we gain nothing with smoothing.

One could argue that smoothing is still useful for moderate accuracy since
smaller steps are taken only at the transition. However, in the presence of
sliding modes, most adaptive step size integrators have serious difficulties. To
illustrate this, we simulate a smoothed version of the chattering example in
Eq. (4.3):

ẋ = − tanh
(x
σ

)
. (4.5)

We take σ = 10−5. The step sizes over time that the integrators take are
given in Figure 4.16. We can see that even though the dynamics for x = 0 is
trivial, all integrators except ode15s take extremely small steps. This makes the
integration unreasonably computationally expensive. The integrator ode15s,
which deals well with stiff systems performs quite well. However, having a large
step size and small smoothing parameter with standard integration methods

0 0.5 1

t

10!10

100

h

ode15s

reltol=1e-1
reltol=1e-4
reltol=1e-10

0 0.5 1

t

10!10

100
ode45

0 0.5 1

t

10!10

100
ode23

0 0.5 1

t

10!10

100
ode89

Figure 4.16: The integration step sizes of several MATLAB integrators over
time for the ODE (4.5).

PHENOMENA SPECIFIC TO NONSMOOTH DYNAMICAL SYSTEMS 105

-5 -4 -3 -2 -1 0 1 2
-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2

-0.5

0

0.5

1

1.5

2

Figure 4.17: The final value x(T ;x0) as function of the initial value x0 for the
ODE (4.6) (left plot). The sensitivity of the solution w.r.t. x0 (right plot).

for smooth ODEs leads necessarily to wrong numerical sensitivities [259]. This
makes this approach practical for the simulation of sliding modes, but almost
useless for direct optimal control.

To summarize, our experiments reveal that besides switch detection, there is
no simple way to achieve high accuracy with standard methods or smoothing.
High-accuracy discretizations are desirable in direct optimal control as they
result in a much smaller number of degrees of freedom in the NLP to be solved.
On the other hand, using off-the-shelf event-detection methods in direct optimal
control is difficult. These methods include complicated routines such as switch
detection and mode selection, which are not readily included in the optimization.
In Chapter 7, we develop an event-detecting method that performs all these
steps implicitly by solving a nonlinear complementarity problem. This resolves
all the issues discussed in this section. We will repeat this experiment with the
new methods in Section 7.3.4.

4.2.6 The sensitivities are discontinuous

As discussed in Section 3.2.2, the sensitivities of ODE solutions w.r.t. the initial
values or parameters are of crucial importance in direct optimal control. By
now, it is no surprise that their computation becomes more complicated for
nonsmooth dynamical systems. In the next chapter, we show that they cannot
be computed correctly by the plain application of time-stepping methods. In
the case of smoothing, they are correct only under quite restrictive assumptions
on the smoothing parameter. Here, we illustrate with two examples that the
sensitivities are discontinuous. Later in Chapter 6, a more formal discussion
about nonsmooth sensitivities is given.

106 NONSMOOTH DYNAMICAL SYSTEMS

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.18: Example trajectories for the 2D particle with elastic impacts (left
plot). The final positions q(T) as function of the initial horizontal position q1(0)
(right plot).

As a first example, we regard a simple ODE with a discontinuous r.h.s.:

ẋ = 2− sign(x). (4.6)

We look at the solution of this ODE for t ∈ [0, 1] for different values of the
initial values x(0) = x0. Figure 4.17 shows the final value x(T ;x0) as function
of the initial value x0 and the nonsmooth sensitivity ∂x(T ;x0)

∂x0
. Depending on

the initial value, the system is in either of the two possible modes of operation
without switching or a switch taking place. This discrete behavior is also seen
in the nonsmooth dependence of the final value w.r.t. the initial value.

Similar difficulties arise for systems with state jumps. To illustrate this, we
consider a frictionless 2D particle with elastic impacts, with a coefficient of
restitution of ϵr = 0.9. The particle approaches a “corner“ where the vertical
wall makes an obtuse angle with the floor, with the velocity v(0) = (−1,−1).
The dynamic equations read as:

q̈ =
[

λ1
−g + λ2

]
,

0 ≤ f1(q) ⊥ λ1 ≥ 0,

0 ≤ f2(q) ⊥ λ2 ≥ 0,

if fi(t) = 0 and ∇qfi(q(t))⊤v(t−) ≤ 0, then

∇qfi(q(t))⊤v(t+) = −ϵr∇qfi(q(t))⊤v(t−), i ∈ {1, 2},

with f1(q) = q2 + 2q1 and f2(q) = q2.

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 107

Three example trajectories are depicted in the left plot of Figure 4.18. The
initial position is varied along the black dashed line. The final position of the
ball as a function of the initial horizontal position is plotted in the right plot of
Figure 4.18. It can be seen that the end position is a discontinuous function
of the initial position and that the sensitivity is nonsmooth. For the special
case when the walls are orthogonal in the previous example, the end position
may be continuous functions [49]. However, in general, we have more complex
geometries, and friction complicates the situation even more.

4.3 Modeling frameworks for nonsmooth dynamical
systems

In this section, we review some of the most widely used mathematical modeling
frameworks for nonsmooth dynamical systems. Historically, their development
had different motivations. Hence, all of them have their own tailored numerical
methods and theory. It depends on the problem at hand what is the best choice.
Of course, they are not completely unrelated. We have seen in Section 2.2 that
variational inequalities, projection operators, complementarity problems, and
inclusions into normal cones are closely related. It is no surprise that there
exists a strong link between their dynamic counterparts. Some notions are very
general and encompass many of the more specialized concepts that we treat
here. We highlight some relations and give references for more elaborate studies
about the relationships and equivalences. The goal of this section is not to give
an exhaustive list of all known formalisms. For more details, we refer the reader
to monographs [3, 4, 19, 49, 51, 246, 258].

4.3.1 Some basics from nonsmooth and set-valued analysis

In this section, we provide some elementary definitions from set-valued analysis
that we need to define nonsmooth dynamical systems and to state some standard
existence and uniqueness results. We have already encountered set-valued (or
multi-valued) maps in the definitions of generalized equations and variational
inequalities in Section 2.2. In this section, we consider more general maps. For
more details on this topic, we refer the reader to the excellent monograph by
Rockafellar and Wets [233].

Single-valued mappings take a vector as an input and give a singleton as an
output. A natural generalization is to consider sets as outputs. Thereby, we
consider a map F that associates with any input vector x ∈ X ⊆ Rn a set
F (x) ∈ Y ⊆ Rm. Here, F maps from X to the set of all subsets of Y , i.e., P(Y).

108 NONSMOOTH DYNAMICAL SYSTEMS

There are two common notations for this, F : X→→Y and F : X → P(Y). We
use the latter. Set-valued maps are conveniently characterized via their graphs:

grF = {(x, y) ∈ X × Y | y ∈ F (x)}.

The domain and range of F : X → P(Y) are defined as:

domF = {x | F (x) ̸= ∅},

imgF = {y | there exists x ∈ X such that y ∈ F (x)}.

The inverse map is F−1 : Y → P(X) is defined as

F−1(y) = {x ∈ X | (x, y) grF}.

Continuity

The notion of continuity for set-valued functions is more complicated than
for single-valued functions. Two common notions are outer and inner semi-
continuity. In the literature they are sometimes called upper and lower semi-
continuity for set-valued maps [19, 246]. However, if F (x) is always a singleton
these definitions do not reduce to the definitions of upper and lower semi-
continuity for single-valued functions and this might cause confusion. For
a discussion accompanied by examples, we refer to [4, Section 2.1.2]. Some
equivalent, arguably more complicated, definitions via notions of set convergence
can be found in [234, Chapter 5]. These notions can be defined with different set-
convergence concepts, cf. [233, Chapter 4]. Here, we use simpler but equivalent
definitions which do not need set convergence.

Definition 4.1 (Outer and inner semi-continuity). A set-valued map F (·) is
called outer semi-continuous (OSC) (resp. inner semi-continuous (ISC)) at
x0 ∈ X if for every ϵ > 0 there exists a δ > 0 such that F (x) ⊂ F (x0) + ϵB(0)
(resp. F (x0) ⊂ F (x) + ϵB(0)) for all x ∈ x0 + δB(0). A set-valued map F (·) is
said to be outer semi-continuous (resp. inner semi-continuous) if it is so for all
x0 ∈ X.

A well-known result is that the set-valued map F (·) is outer semi-continuous if
and only if grF is a closed set in X × Y . A simple example of OSC functions
are all single-valued continuous functions.

Definition 4.2 (Continuity). A set-valued map F (·) is called continuous at
x0 ∈ X if it is both OSC and ISC at this point. A set-valued map F (·) is said
to be continuous if it is so for all x ∈ X.

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 109

0 1 2

x

-0.5

0

0.5

1

1.5
F

(x
)

0 1 2

x

-0.5

0

0.5

1

1.5

F
(x

)

0 1 2

x

-0.5

0

0.5

1

1.5

F
(x

)

Figure 4.19: Examples illustrating the different notions of continuity for set-
valued maps.

There exist set-valued extensions for other notions of continuity, e.g., Lipschitz
continuity. We omit the restating here.

To provide some intuition for the last three definitions we provide some examples
and non-examples in Figure 4.19. In the first plot from left to right, the function
is at x = 1 OSC but not ISC. Otherwise, it is continuous. Similarly, in the
second plot, the function is ISC at x = 1 but not OSC. The function in the
third plot is OSC at x = 1, however, it is not convex valued at this point. A
selection f of F is a single-valued mapping such that f(x) ∈ F (x) for all x ∈ X.
Note that OSC functions do not necessarily have continuous selections. We
will encounter such examples in the sequel for the case of differential inclusions
arising from ODEs with a discontinuous r.h.s..

We have seen in Theorem 2.19 that the monotonicity of single-valued functions
plays an important role in the existence of solutions of generalized equations.
The monotonicity of set-valued maps is also important in the analysis of evolution
problems with such maps.

Definition 4.3 (Maximal monotone maps). A set-valued map F : X → P(Y)
is said to be monotone on X if for all pairs (x1, y1) and (x2, y2) in grF it holds
that:

(x1 − x2)⊤(y1 − y2) ≥ 0.

It is strictly monotone if the last inequality is strict for all x1 ≠ x2. It is
maximal monotone if grF is not properly contained in the graph of any other
monotone mapping.

Continuous and monotone maps are also maximal monotone. For example,
the third plot from left to right in Figure 4.19 is monotone but not maximal
monotone. By filling in the gap at x = 1 we would obtain a maximal monotone
map.

110 NONSMOOTH DYNAMICAL SYSTEMS

The one-sided Lipschitz condition

The last notion we introduce in this section is the one-sided Lipschitz (OSL)
condition. Lipschitz continuity is one of the most important properties in the
study of ODEs, cf. Theorem 3.3. Similarly, the OSL condition is crucial for
proving the uniqueness of solutions of many kinds of nonsmooth dynamical
systems discussed below [68].
Definition 4.4 (Lipschitz continuity). A function f : Rn → Rn is called
Lipschitz continuous if there exists a nonnegative Lipschitz constant L ≥ 0 such
that, for all x1, x2 ∈ Rn:

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ (4.7)

Definition 4.5 (One-sided Lipschitz condition). A function f : Rn → Rm is
said to be one-sided Lipschitz if there exists a constant l ∈ R such that, for all
x1, x2 ∈ Rn:

(f(x1)− f(x2))⊤(x1 − x2) ≤ l∥x1 − x2∥2. (4.8)

Note that there are no significant restrictions on l. However, some authors
require l to be nonnegative [68]. Notably, the OSL condition can be satisfied
even by discontinuous functions. This OSL condition was introduced in
numerical analysis in the study of stiff differential equations. One-sided Lipschitz
constants are usually smaller than Lipschitz constants and provide thus sharper
bounds [125, 56], e.g., it is useful for sharp Gronwall-type inequalities [126,
Lemma 12.1]. Continuity of the vector field and OSL are sufficient to prove
uniqueness of solutions for ODEs, cf. [68, Proposition 2]. Thus the assumptions
of Theorem 3.3 (Picard-Lindelöf) can be relaxed. A vector field violating the
OSL can still have a unique solution, cf. [68, Example 8]. However, there exist
examples that violate the OSL and have nonunique solutions, cf. [68, Example
7].

The definition of OSL for set-valued maps is extended as follows.
Definition 4.6 (One-sided Lipschitz condition). The set-valued map F : Rn →
P(Rn) satisfies the one-sided Lipschitz condition with the constant ρ if for all
x1 and x2 and all selections y1 ∈ F (x1) and y2 ∈ F (x2) it holds that

(y1 − y2)⊤(x1 − x2) ≤ ρ∥x1 − x2∥2. (4.9)

4.3.2 Differential inclusions

A very general class of nonsmooth dynamical systems arises by replacing the
right-hand side of a smooth ODE with a set. We obtain nonsmooth dynamical

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 111

systems called Differential Inclusions (DI):

ẋ(t) ∈ F(t, x(t)) for almost all t ∈ [0, T], (4.10)

Here F : R× Rnx → P(Rnx) is a set-valued map which assigns to any point in
time t and x ∈ Rnx a set F(t, x) ⊆ Rnx . An element y ∈ F(t, x(t)) for a fixed
(t, x(t)) is called a selection.

There are many motivations to work with such a mathematical object [246].
Clearly, any ODE ẋ = f(t, x) can be rewritten as a DI by setting F(x, t) =
{f(t, x)}. A set of differential inequalities ẋ ≤ fi(t, x) for i ∈ {1, . . . , n}
can be written in the form of (4.10). If we consider a fully implicit ODE,
g(ẋ, x, t) = 0, finding a (locally) unique explicit ODE ẋ = f(t, x) is not always
possible. However, in the settings of DIs, there always exist an explicit DI
ẋ ∈ F(t, x) = {v | g(v, x, t) = 0}. They are also useful if the r.h.s. of an ODE is
not accurately known. A solution x(·) to the ODE ẋ = f(x) is also a solution of
the DI ẋ ∈ f(x) + Bϵ(0). A control system of the form ẋ = f(t, x, u) and u ∈ U
can be rewritten as DI ẋ ∈ ∪u∈Uf(t, x, u). The theory of DIs is very useful
to prove the existence of optimal controls, cf. [246]. Many discontinuous laws
arise in the study of mechanical and electronic devices. Often it is impossible
to study ODEs with a discontinuous right-hand side with standard methods
from analysis and DIs are an indispensable concept for their analysis. We come
back to this in more detail in Section 4.3.5 and Chapter 6. We can conclude
that DIs are both a powerful tool for modeling and mathematical analysis.

Same as for ODEs, some standard questions naturally arise also for DIs. For
example, one is interested in the questions of the existence and uniqueness of
solutions, the dependence of solutions on initial conditions and parameters,
and the computation of accurate numerical approximations to solutions. The
theory of DI is mature and detailed answers to the questions above can be
found in the literature [4, 19, 246]. As with any system of equations, a DI
(4.10) has in its full generality no solution. However, by making some not-too-
restrictive assumptions, the existence of solutions can be guaranteed. Moreover,
these assumptions on F(t, x) determine the properties of the time-discretization
methods and which tools from the analysis are applicable. The next assumption
summarizes some standard conditions [19].

Assumption 4.7 (Basic assumptions for DI). The function F : [0, T]×Rnx →
P(Rnx) has the following properties:

i) ∥y∥ ≤ C(t)(1+∥x∥) for all t, x and y ∈ F(t, x), where C(·) is an integrable
function,

ii) F(t, ·) is OSC in x for all t,

112 NONSMOOTH DYNAMICAL SYSTEMS

iii) the set F(t, x) is nonempty, closed and convex for all t and x.

Next, we restate a standard existence result.

Theorem 4.8 (Existence of solution, Theorem 4, p. 101 in [19].). Regard the
initial value problem related to the DI (4.10) with the initial value x(0) = x0.
Suppose that the function F : [0, T]× Rnx → P(Rnx) satisfies the conditions of
Assumption 4.7. Then there exists an absolutely continuous solution x(·) to this
initial value problem.

We briefly discuss the conditions of Assumption 4.7. The boundedness condition
i) ensures that the solution does not go to infinity in finite time. It turns out that
it is difficult to relax the other two conditions to prove existence. E.g., showing
existence with a nonconvex set on the r.h.s. is significantly more difficult, see
[19] and [246] for detailed discussions on this matter. At this point, nothing can
be concluded about uniqueness. Consider the DI ẋ ∈ [−1, 1] from [4, Example
2.14]. Any x = at, with a ∈ [−1, 1] is a solution.

However, even if F(·) is set-valued, one should not always think of multiple
solutions. Most DIs coming from practical problems have unique solutions.
Of course, some additional assumptions are needed. The uniform one-sided
Lipschitz condition guarantees the uniqueness of solutions [161].

Assumption 4.9. The function F : [0, T]×Rnx → P(Rnx) satisfies the uniform
one-sided Lipschitz (UOSL) condition with the constant ρ:

(y2 − y1)⊤(x2 − x1) ≤ ρ∥x2 − x1∥2, (4.11)

uniformly for all t and all selections y2 ∈ F(t, x2) and y1 ∈ F(t, x1).

Theorem 4.10 (Uniqueness of solution, Theorem 2.5 in [161]). Regard the
initial value problem related to the DI (4.10) with the initial value x(0) = x0.
Suppose that the function F : [0, T]× Rnx → P(Rnx) satisfies the conditions of
Assumptions 4.7 and 4.9. Then there exists a T > 0 such that x(·) is a unique
solution to the initial value problem on [0, T].

A widely studied subclass of DIs is when the function −F is maximal monotone,
cf. Definition 4.3. In the case of maximal monotone DIs, existence and
uniqueness can be proven even if F(t, x) is not a compact subset of Rnx anymore.
Examples are inclusions into normal cones to convex sets, cf. Section 4.3.7. We
omit here restating some classical results related to maximal monotone DIs and
refer the reader to [19, Chapter 3].

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 113

Measure differential inclusions

The theorems above regard DIs whose solutions x(·) are in the class of absolutely
continuous functions. Most classic literature treats such DIs, and they are
sometimes called ordinary DIs [19, 246]. However, many applications result
in models where x(·) must be a discontinuous function of time. This gives
rise to the so-called Measure Differential Inclusions (MDI). They were formally
defined by Moreau [196, 197, 198]. In MDIs, a solution x(·) is not anymore
continuous but usually a function of bounded variation. The right-hand side is
a closed, convex, but unbounded set. An additional question that arises with
discontinuous x(·) is: What values should x(t+) take at points of discontinuity
t? This is usually resolved by state jump laws, cf. Chapter 8. Much more on
MDIs can be found in e.g., [4, 49, 51, 197, 198, 258].

4.3.3 Differential variational inequalities

Given an initial value x(0) = x0, a Differential Variational Inequality (DVI)
[220] is the problem of finding functions x : [0, T]→ Rnx and z : [0, T]→ Rnz
such that

ẋ(t) = f(t, x(t), z(t)), (4.12a)

z(t) ∈ K, for almost all t, (4.12b)

0 ≤ (ẑ − z(t))⊤F (t, x(t), z(t)), for all ẑ ∈ K and for almost all t. (4.12c)

The function f : [0, T]× Rnx × Rnz → Rnx defines the main dynamics of the
system. The algebraic variable z(·) is determined by the VI (4.12c) defined
by the function F : [0, T] × Rnx × Rnz → Rnz and the closed convex set K.
DVIs were formally introduced by Pang and Stewart [220], although many
special cases of DVIs were studied many decades before. This will become
apparent from the discussion in the sequel. The formulation in Eq. (4.12) is very
general and further assumptions on f(·), F (·) and K determine the existence,
uniqueness, and qualitative properties of x(·) and z(·). A DVI is more than
a simple coupling of an ODE and a VI, see [258, Section 5.2.2.] for examples
where the VI has a unique solution for all x(t) but the associated DVI does not.

DVIs have more structure than DIs and are a useful abstraction for studying
many practical and theoretical problems. For example, they can be used for
studying Filippov systems, cf. Chapter 6. Real-time MPC algorithms can be
interpreted as time-discretization schemes for DVIs [17]. Several important
models fit into this form, most prominently rigid bodies with friction and impact
[255, 258] (cf. Chapter 8) and electric circuits with electronic devices [3]. We

114 NONSMOOTH DYNAMICAL SYSTEMS

refer the reader to [51, 220, 258] for an extensive collection of theoretical results
and application examples.

From the sole definition in Eq. (4.12), we cannot conclude anything about the
qualitative properties of the solutions, e.g., to which class, NSD1 to NSD3, would
a DVI fit into, cf. Section 4.1. One way to classify DVI is their index [220], that
is how many times F (t, x(t), z(t)) = 0 has to be differentiated w.r.t. time t to
find z(t) as a function of x(t). This definition is similar to the Definition 3.5 for
the index of DAEs. A similar concept is the relative degree, cf. [51, Appendix C].
Index zero DVIs have continuously differentiable solutions and fall into NSD1
[220, Proposition 5.1]. Index one DVIs have in general absolutely continuous
solutions [258] and correspond to NSD2 systems. Index two systems are systems
with state jumps [258, Chapter 6] and fit into NSD3. The specification in (4.12)
is not sufficient to calculate a solution of a DVI of index 2, and we need to
specify state jump laws. In general, for higher index DVI solutions fail to exist
[258], and if they exist they are distributions [51]. Such cases are beyond the
scope of this thesis.

When it comes to the uniqueness and existence of solutions, the uniqueness of
solutions of index zero systems is proven in [220]. Uniqueness for some index
one DVIs is proven by Stewart [256]. For index two DVIs only existence can be
proven [253]. For examples of nonuniqueness see [258, Chapter 6].

DVI can be easily cast into differential inclusions [258]. Denote the set of all
solutions, parameterized by x(t), of the VI (4.12c) by SOL(F (t, x(t), ·),K). The
DVI (4.12) reads as:

ẋ(t) ∈ f(t, x(t),SOL(F (t, x(t), ·),K)), x(0) = x0.

Depending on the properties of the set SOL(F (t, x(t), ·),K) this can also be an
MDI, e.g., in the case of index two differential variational inequalities. Making
further assumptions on the set K, we arrive at different formalisms. In the
trivial case of K = {0}, we have that z(t) = 0 and (4.12) reduces to an ODE.
Similarly, if K = Rnz , then z ∈ Rnz and F (t, x(t), z(t)) = 0 and the DVI (4.12)
reduces to an DAE. An interesting subclass of DVIs arises if K is a convex cone,
which we regard in the next section.

4.3.4 Dynamic complementarity systems

If the set K is a convex cone, then a VI is equivalent to a complementarity
problem, cf. Proposition 2.21. This gives rise to a very practical class of
nonsmooth dynamical systems, namely the Dynamic Complementarity Systems

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 115

(DCS):

ẋ(t) = f(t, x(t), z(t)), x(0) = x0, (4.13a)

K ∋ z(t) ⊥ F (t, x(t), z(t)) ∈ K∗, for almost all t, (4.13b)

Obviously, DCS can be studied with the tools for DVIs. However, from
a computational point of view, it is easier to treat a finite number of
complementarity conditions instead of infinitely many inequalities in the VI.
Depending on the complementarity problem and main dynamics, there are
several classes of DCS, e.g., Linear Complementarity Systems (LCS), Mixed
LCS, nonlinear complementarity systems, gradient complementarity systems,
and so on. For an overview see [3, Section 2.4.3] or [51]. Some references
studying the existence of solutions and other properties are [48, 52, 133, 257]. In
particular, LCSs are extensively studied in [59, 244, 273, 134]. DCSs can also be
seen as nonsmooth differential algebraic equations (DAEs) [51] if the conditions
(4.13b) are expressed as the zero level set of a C-function, cf. Definition 2.23.
In this thesis, we are mainly interested in the case of K = Rnz≥0. We show in
Chapter 6 that Filippov systems can be rewritten as DCS. In Chapter 7, we
develop discretization methods for these DCS with many favorable theoretical
and practical properties. From the discussions above, the following implications
are apparent: DI ⊃ DVI ⊃ DCS ⊃ ODE.

4.3.5 Discontinuous ODEs and Filippov systems

ODEs with discontinuous r.h.s. (or discontinuous systems for short) are a class
with mature theory. Now, we regard an ODE with a discontinuous right-hand
side and study the following IVP

ẋ(t) = f(t, x(t)), x(0) = x0. (4.14)

This class of systems is ubiquitous in the application of nonsmooth dynamical
systems. The pioneering work of Filippov provided a solid theoretical foundation
for their study [93]. It turned out that standard tools of analysis were not
sufficient to study the existence and uniqueness of solutions. Even the concept
of solutions needed refinement.

Recall that classical solutions x(·) to (4.14) on an interval [0, T] are continuously
differentiable. Clearly, with a discontinuous f(·), this is impossible. If one gives
up the requirement of continuous differentiability, new notions of solutions can
be defined. For example, for Carathéodory solutions the ODE should be satisfied
in integral form x(t) = x(0) +

∫ t
0 f(t, x(t))dt for t > 0, where the integral is

the Lebesgue integral. This allows discontinuities of f(·) in x. Therefore, in

116 NONSMOOTH DYNAMICAL SYSTEMS

some situations, a Carathéodory solution might be of use, as x(·) is absolutely
continuous, and it requires (4.14) to be satisfied for almost all t ∈ [0, T] [68].
However, this relaxation is not always sufficient to have a solution. For the sake
of illustration, consider the following initial value problem from [68, Example
5]:

ẋ =
{

1, x < 0,
−1, x ≥ 0,

(4.15)

with x(0) = x0. For x0 > 0, there exist the solution x(t) = x(0)−t for t ∈ [0, x0).
Similarly, for For x0 < 0, there exist the solution x(t) = x(0) + t for t ∈ [0,−x0).
For t larger then |x0| in both cases, each solution reaches the point x(t) = 0 and
cannot leave it as the vector fields from both sides push towards it. However,
since ẋ = 0 ̸= −1, we have no solution in the classical or Carathéodory sense.

To study discontinuous ODEs, we need a generalized solution concept. In
the case of a continuous right-hand side, it should coincide with the classical
solution, and it should have a solution for every initial value. How to proceed
is a modeling step, and Filippov suggested to embed the ODE (4.14) into the
following DI [93]:

ẋ(t) ∈ FF(t, x(t)), x(0) = x(0), (4.16)

where the set-valued map FF : R× Rnx → P(Rnx) is defined as:

FF(t, x(t)) :=
⋂
δ>0

⋂
µ(N)=0

convf(t, x+ δB(x) \N) (4.17)

The DI (4.16) is a so-called Filippov system. An absolutely continuous function
x(·) is said to be a Filippov solution if it is a solution to the IVP (4.16). Given
a point x, the idea behind this definition is to regard the closed convex hull
of all neighboring values in a ball x ∈ δB(x) instead of only f(x). Thereby,
all values of f(·) on the sets N of measure zero are neglected. By definition,
this set is convex. If f(·) is bounded, the set-valued map FF(·) is compact
and outer semi-continuous. Moreover, if f(·) is continuous at x we obtain
FF(t, x(t)) = {f(t, x(t))}. A proof for the last assertions can be found in [19,
Proposition 1, p. 102]. This means that the conditions of Assumption 4.7
are satisfied, and Theorem 4.8 implies the existence of solutions. If further
Assumption 4.9 holds, Theorem 4.10 is also applicable. Several specialized
theorems for the uniqueness of Filippov systems can be found in the monograph
[94]. There are several other extensions applicable to (4.14). For an excellent
survey on this topic with many illustrative examples the reader is referred
to [68].

MODELING FRAMEWORKS FOR NONSMOOTH DYNAMICAL SYSTEMS 117

We revisit the example in (4.15) and apply Filippov’s extension to it. We obtain

ẋ ∈

{1}, x < 0,
[−1, 1], x = 0,
{−1}, x ≥ 0,

(4.18)

It can be seen that this DI has a solution for any x(0) and for all t ∈ [0,∞),
since for t > |x0| we have that ẋ = 0 ∈ [−1, 1].

A closely related solution concept is the one of Krasovskĭı [171]. The only
difference to Filippov’s extension is that it does not ignore sets N of measure
zero in (4.17). The following example from [4, Eq. (2.17)] illustrates the
significance of this detail. Regard the ODE with a discontinuous r.h.s.:

ẋ =
{

1, if x ∈ Q,
0, if x ∈ R \Q.

(4.19)

The set of rational numbers Q has a measure of zero in R. Filippov DI is
trivial and reads ẋ ∈ {0} and has always a unique solution. On the other hand,
Krasovskĭı’s DI reads as ẋ ∈ [0, 1] and has infinitely many solutions.

In practice, one does not often encounter systems as (4.19), but ones with some
special structure that should be exploited. As we see in the forthcoming chapters,
a great number of practical nonsmooth systems have a piecewise smooth vector
field. These systems are called Piecewise Smooth Systems (PSS). They are
closely related to the classes of switched and variable structure systems [51].
Many results related to PSS are collected in the monographs [34, 155]. A generic
PSS reads as

ẋ(t) = fi(x(t)), if x(t) ∈ Ri ⊂ Rnx , i ∈ J := {1, . . . , nf}, (4.20)

where Ri are disjoint open sets and fi(·) are smooth functions on an open
neighborhood of Ri, nf is a positive integer. Note that the ODE is not defined
on the boundaries ∂Ri. However, Filippov extensions ignore these sets, and this
causes no trouble. In fact, one can assign any value to ∂Ri without changing
the corresponding Filippov DI (4.16). On the other hand, the extensions of
Krasovskĭı are not applicable for (4.20). We study this class of systems and
their Filippov extensions in great detail in Chapter 6.

4.3.6 Projected dynamical systems

Projected Dynamical Systems (PDS) regard a closed convex set K and a vector
field f(·) whose domain contains K. In the interior of K, the flow is governed

118 NONSMOOTH DYNAMICAL SYSTEMS

by −f(·), and on the boundary of K, the vector field is changed such that x(t)
stays in K. In equations, this reads as:

ẋ ∈ projTK(x(t))(−f(x(t))), for almost all t ∈ [0, T] (4.21)

where projTK(x(t))(·)) is the projection operator and TK(·) is the tangent cone
defined in Definition 2.4. Using tools from convex analysis for the projection
operator, several other equivalent definitions are possible, cf. [51, Section 2.5].
Note that the r.h.s. is in general a discontinuous function, and one cannot
expect the existence of a classical solution. Solutions x(·) to IVPs related to the
PDS (4.21) are usually absolutely continuous. Thus, PDS belong to the class
of NSD2. Under continuity of f(·) and some other conditions, the uniqueness
of solutions is shown in [50, Theorem 1]. Under appropriate assumptions, a
PDS can be rewritten as a DCS [135]. Brogliato et al. [50] show that a PDS is
equivalent to the following DI:

−ẋ(t) ∈ f(x(t)) +NK(x(t)), (4.22)

which is related to a type of DI that we discuss next.

4.3.7 Moreau’s sweeping processes

Sweeping processes are a particular class of differential inclusions first introduced
by J.J. Moreau [196, 197]. They are inclusions into normal cones of moving
convex sets C(t). A moving set is a set-valued function C : [0, T] → P(Rnx),
that for every t ∈ [0, T] is a nonempty closed convex set. Note that the set can
possibly change its shape over time. The name sweeping process is inspired by
the fact that such DI model particles that are swept in the space by the moving
set.

The first-order sweeping process is a differential inclusion and reads as

−ẋ(t) ∈ NC(t)(x(t)), for almost all t ∈ [0, T], x(0) = x0 ∈ C(0). (4.23)

Assuming continuity of C(t), a solution to the last problem satisfies the following
properties: x(t) ∈ C(t) for all t ∈ [0, T], x(·) is differentiable for almost all
t ∈ (0, T) and x(·) satisfies the inclusion for almost all t ∈ [0, T]. They find
application in nonsmooth mechanics, and electronics [4, 3, 51] and have mature
theory and simulation methods [49, 199].

A related class is the perturbed sweeping process which reads as

−ẋ(t) ∈ NC(t)(x(t)) + f(t, x(t))), for almost all t ∈ [0, T],

x(0) = x0 ∈ C(0),

CONCLUSIONS AND FURTHER READING 119

Note that the PDS (4.22) can be interpreted as a perturbed sweeping process
with a constant set C(t) = K. The assumptions of convexity can be relaxed,
and some other definitions of the normal cone might be used, which results in
more general DIs than (4.23), cf. [271]. Note that if the set C(t) jumps, then
the solution x(t) must jump as well, cf. [4, Section 2.2] for more details.

The normal cone to a convex set is an unbounded set and thus Theorem 4.8 is
not applicable. However, the existence and uniqueness of absolutely continuous
solutions under appropriate assumptions were already proven by Moreau in
[197]. Furthermore, the existence and uniqueness of an absolutely continuous
solution of the perturbed sweeping process are proven in [87, Theorem 1].

The so-called second-order sweeping processes [197, 198] are also widely used
in practice. They have been developed for Lagrangian systems with unilateral
constraints, cf. Chapter 8. Thereby, the velocity states are usually discontinuous
functions of bounded variation and the position states are absolutely continuous
functions of time. Electric circuits with idealized electronic elements can also
be recast into this form, cf. [3, Section 2.5.4]. We omit an exposition of these
systems and refer the reader to [49, Chapter 5] for more details.

4.4 Conclusions and further reading

This chapter provides an introduction to nonsmooth dynamical systems, which
are the main topic of this thesis. However, the broad terms nonsmooth and
hybrid are used often interchangeably in the literature for essentially the same
class of systems and this might cause confusion. We clarify the subtle differences
in introductory discussions, discuss strengths and weaknesses and provide some
illustrative examples. The discrete-continuous nature in dynamical systems is in
the nonsmooth dynamical systems community usually expressed via nonsmooth
mappings. On the other hand, hybrid dynamical systems are usually represented
by some kind of hybrid automaton. Both modeling approaches have their
strengths and weaknesses, which we discussed and illustrated in some examples.

The nonsmoothness in the dynamics gives rise to some phenomena not seen in
smooth dynamical systems, e.g., Zeno behavior, and nonsmooth sensitivities, to
name a few. Moreover, this causes some numerical difficulties not encountered
when dealing with smooth dynamical systems. We investigate these difficulties
in a series of simple examples and illustrate the somewhat surprising limitations
of standard simulation methods. This motivates further the development of
tailored methods in later chapters of this thesis.

We finish this chapter by reviewing several standard modeling frameworks

120 NONSMOOTH DYNAMICAL SYSTEMS

for nonsmooth dynamical systems. This list is far from extensive, and we
provide only a brief overview that fits our needs in this thesis. We restate
some well-known existence and uniqueness results for these systems. Some links
between the formalisms above are highlighted as well. However, the connections
might be non-obvious and difficult to obtain. An extensive summary of the
relationships between various nonsmooth dynamical systems is provided in [51].
Of course, there are many details and possible classifications for automaton-
based representations of hybrid systems. To learn more about these topics, we
refer the reader to [113, 186].

Finally, we list some references with more details on nonsmooth dynamical
systems. For an introduction to set-valued and nonsmooth analysis, the reader
might look into the textbook by Rockafellar and Wets [234]. To learn more
about differential inclusions (possibly with a nonconvex set in the r.h.s.) with
absolutely continuous solutions, see the textbooks by Aubin and Cellina [19]
and by Smirnov [246]. Of course, a great reference is also Filippov’s classic text
[94]. The theory and numerical methods for differential variational inequalities
are extensively treated in Stewart’s monograph [258]. One of the largest sources
of nonsmooth dynamical systems comes from nonsmooth mechanics. A great
collection of results is provided by Brogliato [49]. Other good references on
this topic are [174, 4, 258], to name a few. Numerical methods for nonsmooth
dynamical systems are treated in great detail by Acary and Brogliato [4] and
Acary et. al. [3]. Dynamical systems with a discontinuous r.h.s. are reviewed
in great detail in [68]. Sweeping processes are discussed in detail by Brogliato
[49] and, of course, in Moreau’s work [197, 198].

Chapter 5

Limitations in Nonsmooth
Direct Optimal Control

In this chapter, we look closer at standard direct methods for optimal
control problems subject to nonsmooth dynamical systems. By standard
we mean the application of time-stepping methods in direct transcription
or direct multiple shooting. In this case, after discretization one obtains a
nonsmooth nonlinear program. Usually, one can smooth the nonsmoothness
before or after the discretization explicitly, or the smoothing might happen
implicitly in the NLP solution method. For example, the latter happens if one
applies relaxation methods for solving an MPCC (cf. Section 2.4.2), which is
obtained by discretizing an OCP subject to a dynamic complementarity system.
Alternatively, the nonsmoothness can be treated by appropriate mixed-integer
reformulations. However, taking these steps without care might lead to spurious
and inaccurate solutions. In this chapter, we discuss some non-obvious, but
fundamental limitations of these standard methods.

We show on counterexamples from the literature that the numerical sensitivities
obtained in a direct method paired with a time-stepping discretization are wrong,
no matter how small the step size is. Moreover, we show that the sensitivities of
the smooth approximation of nonsmooth systems converge to correct value, only
if the step size h is shrinks faster than the smoothing parameter σ. These two
facts were for NSD2 systems first shown in the seminal paper of Stewart and
Anitescu [259]. We show that similar difficulties arise also for NSD3 systems.
This highlights the necessity of the tailored methods developed in the later
chapters of this thesis.

121

122 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

Outline. We start the chapter by surveying standard direct methods for OCP
with nonsmooth dynamical systems in Section 5.1. In Section 5.2, we discuss
the fundamental limitations of standard discretization and smoothing methods
in direct optimal control of NSD2-type systems. Similarly, in Section 5.3 we
study the limitations of direct methods for NSD3-type systems. Section 5.4
summarizes the findings and concludes this chapter. This chapter is partially
based on [203].

5.1 Survey on direct optimal control methods for
nonsmooth systems

In this section, we provide an overview of direct optimal control methods found
in the literature. This survey can not cover all existing methods but highlights
some standard approaches with a focus on methods that solve an MPCC at
some point. More references can be found in [43, 51, 293]. Most direct methods
discussed here either solve a nonsmooth NLP, e.g., an MPCC obtained after a
possibly sophisticated discretization of the nonsmooth dynamical system, or a
mixed-integer nonlinear program. Some heuristic approaches try to guess the
switching sequence and formulate a multi-stage OCP, which results in a smooth
NLP after discretization.

We compare them by several criteria. First, what kind of optimization problem
needs to be solved, e.g., NLP, MPCC, or a mixed-integer program? Second,
we regard the accuracy of the discretization scheme. As we have seen in the
previous sections, most discretization methods for nonsmooth systems have only
first-order accuracy. Third, we analyze if the numerical sensitivities are correct,
and if so, we state under which condition. As a last criterion, we compare for
which classes of systems (NSD1 to NSD3) the method at hand is suitable.

A summary of the methods we survey is given in Table 5.1. In the sequel,
we provide more detailed comments on each of these methods and mention
some similar ones, which are not listed in the table. Moreover, we discuss some
specific advantages and limitations not shown in the table.

Several fundamental problems within direct optimal control of nonsmooth
dynamical systems are revealed in the seminal paper by Stewart and
Anitescu [259]. They reveal that standard direct methods with fixed step sizes
are doomed to fail since the numerical sensitivities obtained by differentiating
the result of a simulation are wrong, no matter how small the step size
is. We study their counterexample in detail in the next section. It is also
shown that the numerical sensitivities of a smooth approximation of an ODE

SURVEY ON DIRECT OPTIMAL CONTROL METHODS FOR NONSMOOTH SYSTEMS 123

Method Optimization
problem

Discretization
accuracy

Sensitivities
correct

Classes
covered

Citation

Stewart and Anitescu NLP first-order no* NSD1, NSD2 [259]
Kirches NLP higher-order yes NSD1-NSD3 [166]

Lin and Othsuka MPCC first-order no* NSD1-NSD3 [183]
Baumrucker and Biegler MPCC higher-order yes NSD1,NSD2 [28]

Nurkanović et al. MPCC higher-order yes NSD1-NSD3 [213]
Caspari et al. MPCC first-order no* NSD1, NSD2 [64]

Sperl MPCC/NLP higher-order yes NSD1, NSD2 [247]
Mayer, Schlöder et al. MPVC first-order no* NSD1-NSD3 [43,

168]
Vieira et al. MPCC first-order no* NSD1, NSD2 [279]

Posa and Tedrake MPCC first-order no NSD3 [225]
Bemporad MILP first-order yes NSD1-NSD3 [32]

Avraam MINLP higher-order yes NSD1-NSD3 [20]
*Some methods may include implicit smoothing of the dynamics either while solving the MPCC
with a homotopy approach or explicit smoothing before the discretization. In such cases, the
sensitivities are correct if the step size is smaller than the smoothing parameter.

Table 5.1: Overview of direct methods for solving optimal control systems with
nonsmooth dynamical systems.

with a discontinuous r.h.s. are only correct if the step size approaches zero
faster than the smoothing parameter. This makes accurate approximations
computationally expensive since for moderate accuracy a very small step size is
needed. Nevertheless, smoothing paired with a homotopy approach can lead to
decent solutions.

Section 4.2.6 shows that the parametric sensitivities of nonsmooth ODEs have
jump discontinuities when the trajectory passes through or enters a surface
of discontinuity. High-accuracy event-based integration methods, which hide
the external switch detection procedure from the optimizer, can be applied
within a direct multiple shooting setting [44]. Kirches [166] follows such
a line of thought and regards an event-detecting integrator that can treat
switched systems (possibly with state jumps) within a direct multiple shooting
approach. Moreover, this integrator computes correct numerical sensitivities by
appropriately updating the sensitivities at points of discontinuity, cf. Section
6.2.6. However, there are several pitfalls. On the one hand, derivative-based
optimization algorithms will likely fail due to the non-Lipschitz sensitivities. On
the other hand, at points of discontinuity, the sensitivities are not even defined.
To circumvent the mentioned difficulties in the convergence of an SQP method,
the switching sequence is not allowed to change, which implies locally smooth
sensitivity.

124 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

Recently, Lin and Ohtsuka [183] have proposed a non-interior-point homotopy
method for optimal control problems with differential variational inequalities.
The core of their approach is a tailored solver for MPCCs arising from the
discretization of OCPs with DVIs. In their setting, the set K in the DVI
(4.12) is assumed to be a box. This covers many systems from NSD1 to
NSD3, including DCS with state jumps and Filippov systems. The DVI is
discretized with the implicit Euler method, hence, only first-order accuracy
can be obtained. On the one hand, the complementarity constraints in the
MPCC arising from the DVI are treated with a Scholtes relaxation [237], cf.
Section 2.4.2. On the other hand, the complementarity constraints in the
KKT conditions of the MPCC are replaced by a smoothed Fischer-Burmeister
function, cf. Definition 2.23. For computing a Newton-step for perturbed
MPCC’s KKT conditions an efficient Riccati recursion is utilized. Note that
the relaxation of the complementarity constraints implicitly smooths the DVI
[203], and the sensitivities are only correct if the step size approaches zero faster
than the smoothing parameter [259]. The authors report faster computation
times and fewer iterations compared to using IPOPT [281] together with Scholtes
regularization.

One of the most remarkable methods is presented by Baumrucker and
Biegler [28]. They consider piecewise smooth systems with a single switching
surface (or multiple independent switching surfaces, cf. Section 6.2.5), i.e.,
NSD2-type systems. The PSS is treated as a Filippov system and transformed
into an equivalent DCS. The key novelty is that they allow variable step sizes and
modify further the complementarity conditions. In numerical examples, they
demonstrated that this yields exact switch detection, higher-order integration
accuracy, and correct numerical sensitivities. Unfortunately, a formal proof of
the appealing properties of the method is not provided in [28]. Moreover, having
the step sizes left to the optimizer as a degree of freedom, without additional
conditions, results in under-determined systems of equations. As a consequence,
the optimizer can play with the discretization accuracy, possibly in an undesired
way.

The method of Baumrucker and Biegler [28] inspired the development of the
Finite Elements with Switch Detection (FESD) [213], cf. Chapter 7. This
method generalizes the ideas of [28], provides a sound theory, and overcomes
some of the mentioned drawbacks. Moreover, two different ways to transform a
Filippov system into a DCS are used, which are discussed in detail in the next
chapter.

Several other authors transform a Filippov system into a DCS and solve an
MPCC after the discretization. For example, Caspari et al. [64] treat the same
class of systems as [28]. Their main idea is to use a C-function (cf. Definition
2.23) to pass from a DCS to a nonsmooth DAE. Furthermore, the C-function is

SURVEY ON DIRECT OPTIMAL CONTROL METHODS FOR NONSMOOTH SYSTEMS 125

further smoothed, and a nonlinear DAE is obtained. The authors use direct
single shooting for solving the resulting smooth OCPs. This approach of solving
the discrete-time OCP is solving an MPCC with a smoothed C-function, as
discussed in Section 2.4.1. Of course, the same strategy can be applied in
a direct multiple shooting approach. However, the method suffers from the
same issues as other smoothing approaches for ODEs with the discontinuous
right-hand side. Namely, the sensitives are only correct if the step size is smaller
than the smoothing parameter. The authors also notice that updating the
smoothing parameter in a homotopy loop improves the convergence.

This improved convergence property is investigated in [203]. This work shows
that the problems revealed by Stewart and Anitescu [259] carry over to DCS that
is smoothed while solving an MPCC with a relaxation or smoothing strategy,
cf. Section 2.4.2. The homotopy can help to converge to better local minima,
since in the earlier stages of the homotopy for larger values of the smoothing
parameter the sensitivities are still correct. Solving these more regular problems
can bring the optimizer closer to the correct solution without getting stuck in
artificial local minima due to the wrong sensitivities. We investigate this state
of affairs in detail in the next section.

Motivated by the fact that the early stages of the homotopy have sub-problems
with correct sensitivities and lead to convergence to good local solutions led to
the development of a two-stages approach in the master thesis of Sperl [247].
Again, the same class of problems as in [28, 64, 203] is regarded. In the first
stage, an MPCC with a relaxation homotopy is solved, as in [213]. The main
assumption is that the optimal active set in the DCS is correct, i.e., the switching
sequence is found correctly by solving an MPCC. Note that the optimizer might
still converge to a spurious local solution due to the wrong sensitivities, but
the switching sequence might be correct. This is exploited in the second stage,
where the switching sequence is fixed, and a multi-stage discrete-time OCP is
formulated. Each stage corresponds to a fixed active set, i.e., fixed mode of the
PSS, and the lengths of the stages are left as degrees of freedom. In other words,
only the switching sequence is fixed but not the switching times. Therefore, high
accuracy and correct sensitivities are obtained. The final problem is a smooth
and regular NLP that can be much easier solved than an MPCC. Sperl [247]
reported promising numerical results, but a convergence analysis was not carried
out.

If the switching sequence is known (or at least a good guess is available),
optimizing for the switching times by solving a multi-stage OCP is a common
approach in nonsmooth optimal control of NSD1-NSD3 systems [162, 240]. In
the literature, several other heuristic two-stage approaches can be found, cf.
[293] for a survey. The first stage determines the switching sequence, and the
second solves a multi-stage OCP. However, most of them do not allow variable

126 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

stage lengths, and neither they provide a sound convergence theory.

Bock et al. [43] use generalized disjunctive programming [117] to enumerate
all modes of a PSS and transform the OCP subject to a PSS into an OCP
with integer controls and smooth ODEs. This allows us to apply the powerful
methods for OCPs as partial outer convexification [235]. This formulation allows
one to treat simultaneously external and internal switches. After discretization,
a Mathematical Program with Vanishing Constraint (MPVC) needs to be
solved. This is a problem class related to MPCCs, which is slightly more
regular. The approach of Bock et al. cannot treat sliding modes generically,
but requires a relaxation of the switching surface into an ϵ−band region with a
nonempty interior. Switch detection is not treated explicitly, only a heuristic
mesh refinement that splits intervals with a switch is provided. Therefore, only
first-order accuracy can be expected in general. Later, Kirches et al. extended
this approach to dynamical systems with state jumps [168].

Many authors derive adaptations of Pontryagin’s conditions for fairly general
formulations of hybrid or nonsmooth dynamical systems [114, 144, 242, 262].
Some authors focus on specific classes of nonsmooth systems, e.g., sweeping
processes [138]. Moreover, some of these references provide iterative methods for
solving the optimality conditions [144, 138, 279]. Guo and Ye [121], and Vieira
et al. [279] study optimal control of a DCS with absolutely continuous solutions,
i.e., NSD2 systems. Furthermore, in [279], direct and indirect methods are
proposed for numerically solving the OCP. Thus, after discretization, an MPCC
is solved via a penalty or relaxation approach, cf. Sections 2.4.2 and 2.4.3. An
implicit Euler discretization is used without an explicit treatment of the switches.
To the best of our knowledge, none of these references focuses explicitly on
computing the correct sensitivities or using higher-order order discretization
methods. Consequently, the numerical sensitivities are not computed correctly,
and only first-order accuracy can be obtained.

In the last decade, Contact-Implicit Trajectory Optimization (CITO) received a
lot of attention in the robotics community. The contact condition between rigid
bodies and friction gives rise to nonsmooth dynamical systems of the type NSD3,
cf. Chapter 8. Trajectory optimization problems subject to such dynamics
result in nonsmooth OCPs, where the contact sequence of the rigid bodies is
discovered fully implicitly. Many authors take a direct approach to solving this
OCP. One of the first works to do so is by Posa and Tedrake [225]. They use
a semi-implicit Euler discretization [260, 15] for the discretization and solve
the MPCC with an SQP method. Similar approaches with different (possibly
smoothed) contact models, adapted time-stepping methods, and MPCC solution
strategies are presented in [263, 63, 142, 141, 191, 86], to name a few. The
recent survey [283] provides a broad overview of the use of optimization in
legged locomotion, including many references on CITO.

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 127

Time-stepping schemes for rigid bodies with impact have only first-order
accuracy [4, 255], and the numerical sensitivities are usually wrong [292].
However, all of these approaches share some properties and their practical
success can be explained by several factors: 1) the CITO problems are so difficult
to solve that even feasible solutions solve complex robotic tasks (spurious local
minima can be found even with wrong derivatives), 2) during the solution of
the discretized OCP, smoothing of the dynamics is done explicitly or implicitly,
which improves the convergence, 3) using finite differences can result in correct
sensitivities, despite the nonsmoothness of the dynamics.

One of the oldest approaches in nonsmooth optimal control is to enumerate all
modes of a nonsmooth system with integer variables. This is already explicitly
done in various hybrid systems formalisms, cf. Section 4.1.1. Bemporad and
Morari [31] provide an elaborate framework to model logical relations between
hybrid systems modes. The modes are assumed to be linear. Moreover, the
modeling is carried out in discrete time with a fixed sampling rate, hence, there
is no switch detection. This can lead to first-order accuracy at best. However,
the resulting optimal control problems are mixed-integer linear programs, which
can often be solved very efficiently. In the PhD thesis of Avraam [20], a more
general approach is proposed. The nonsmooth dynamics are modeled via the
hybrid systems formalism of Barton and Pantelidas [26], which enables one to
model NSD1-NSD3 systems in continuous time. Avraam [20] proposes a direct
collocation approach, where the unspecified switching sequences with variable
stage lengths are expressed via linear integer constraints. This formulation
enables exact switch detection for NSD1-NSD3 systems. The downside is that a
mixed-integer nonlinear program must be solved, which can be computationally
prohibitively expensive.

To summarize, most practical methods use only first-order accuracy
discretization schemes, with possibly incorrect sensitivities. On the other
hand, the high-accuracy ones treat the discontinuity in the integrator, which
complicates the use of derivative-based optimization. They do not treat sliding
modes appropriately or handle only systems with a single switching surface, i.e.,
only two regions.

5.2 Fundamental limitations of standard direct
methods for NSD2 systems

In this section, we show why standard direct methods applied to ODEs with
a discontinuous right hand-side are doomed to fail. We recall some results
from the seminal paper of Stewart and Anitscu [259]. In particular, we show

128 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

on a counterexample, that the numerical sensitivities in a direct approach are
wrong, no matter how small the integrator step size is. Moreover, it is shown
that the numerical sensitivities of the smoothed approximation converge to the
correct value only if the integrator step size shrinks faster than the smoothing
parameter, i.e., h = o(σ). We show that the same difficulties carry over to DCSs,
which are equivalent to the initial discontinuous ODEs. These limitations are
illustrated in a simple optimal control example.

5.2.1 A bimodal NSD2 system

For sake of simplicity, we consider a bimodal piecewise smooth system with a
scalar switching function ψ(x):

ẋ(t) = f(x) =
{
f1(x), ψ(x) < 0,
f2(x), ψ(x) > 0.

The Filippov convexification of this system is the differential inclusion (cf.
Section 4.3.5):

ẋ(t) ∈ F (x) =

{f1(x)}, ψ(x) < 0,
{f2(x)}, ψ(x) > 0,
conv{f1(x), f2(x)}, ψ(x) = 0.

(5.1)

We assume that f1, f2 : Rnx → Rnx and ψ(x) : Rnx → R are sufficiently
smooth, and that ∇ψ(x) ̸= 0, whenever ψ(x) = 0. We are interested in the
following non-degenerate cases:

1. Crossing a discontinuity: we have ∇ψ(x)⊤f1(x) > 0, ∇ψ(x)⊤f2(x) > 0,
whenever ψ(x) = 0, i.e., dψ(x(t))

dt > 0 before and after the switching time
ts, so the dynamical system will not stay on the zero manifold ψ(x) = 0.

2. Sliding modde: we have ∇ψ(x)⊤f1(x) > 0, ∇ψ(x)⊤f2(x) < 0, whenever
ψ(x) = 0, i.e., when the dynamical system reaches the zero manifold
ψ(x) = 0, it stays there.

The set-valued step functions γ(x) defined as γ(x) = {1} for x > 0, γ(x) = {0}
for x < 0, γ(x) = [0, 1] for x = 0. We denote single-valued selections of γ(x) by
α(x). Using this definition, the ODE (5.1) can equivalently be written

ẋ(t) ∈ f(x) := {f1(x)(1− α(x)) + f2(x)α(x) | α(x) ∈ γ(ψ(x))}. (5.2)

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 129

For the sliding mode case, when the trajectory is trapped on the manifold
ψ(x) = 0, we compute the selection of α(x) ∈ [0, 1], from the condition ψ̇(x(t)) =
∇ψ(x)⊤f(x) = 0, and its value is α(x) = ∇ψ(x)⊤(f1(x)−f2(x))

∇ψ(x)⊤f1(x) . This selects the
unique convex combination of f1 and f2 to keep the trajectory on the manifold
ψ(x) = 0.

5.2.2 The numerical sensitives are wrong independent of the
step size

We illustrate this claim by adapting the counterexample given by Stewart and
Anitescu [259]. For this purpose, we revisit the example from Section 4.2.6:

ẋ ∈ 2− sign(x), x(0) = −1. (5.3)

The goal is to obtain an approximation of ∂x(T,x0)
∂x0

by differentiating the
discretization method, as it is usually required in direct optimal control, cf.
Chapter 3. The analytic solution of (5.3) is:

x(t) =
{
−1 + 3t if t ≤ −x0

3 ,

(t+ x0
3) if t ≥ −x0

3 .
(5.4)

The exact sensitivity at e.g., T = 2 > −x0
3 is ∂x(2,x0)

∂x0
= 1

3 .

Following [259], we regard a θ-method for the discretization of (5.3) with a
fixed step size h

xk+1 ∈ xk − h(2− sign(xk + θ(xk+1 − xk))), (5.5)

where xk ≈ x(tk) is the numerical approximation of x(t) at t = kh. For θ = 0 we
have the explicit Euler method, for θ = 0.5 the midpoint rule and for θ = 1 the
implicit Euler method. These time-stepping methods are known to converge to
the true solution as h ↓ 0 [83, 264]. Depending on the sign of xk + θ(xk+1 − xk)
we have that:

xk+1 =

xk + 3h if xk + θ(xk+1 − xk) < 0,
xk + h if xk + θ(xk+1 − xk) > 0,
− 1−θ

θ xk if xk + θ(xk+1 − xk) = 0.

More explicitly, by using the expressions for xk+1, we obtain that

xk+1 =

xk + 3h if xk < −3hθ,
xk + h if xk > −hθ,
− 1−θ

θ xk if xk ∈ [−3θh,−θh].
(5.6)

130 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Figure 5.1: The objective function value V (x0) for different step size h.

Let N be the number of integration steps, i.e., h = T
N . By the chain rule we

have the approximation ∂x(2,x0)
∂x0

≈ ∂xN
∂x0

= ∂xN
∂xN−1

· · · ∂x1
∂x0

. From equation (5.6),
it follows that ∂xk+1

∂xk
is either 1 or − 1−θ

θ . For example, for the implicit Euler
method with θ = 1, we have ∂xk+1

∂xk
to be zero or one. Similarly, for 1

2 < θ < 1
and xk ∈ [−3θh,−θh] we have that xk+1 = 1−θ

θ xk > 0, i.e., there is at most one
k such that xk ∈ [−3θh,−θh] and ∂xk+1

∂xk
= − 1−θ

θ ̸=
1
3 . Therefore, we conclude

that no matter which θ ∈ [0, 1] and step size h > 0 we pick, we cannot make
∂xN
∂x0

approach the true value of ∂x(2,x0)
∂x0

= 1
3 . In other words, the numerical

sensitivities are always incorrect.

The consequences of this are illustrated on a simple optimal control problem
from [259]:

min
x0,x(·)

∫ T

0
x(t)2dt+ (x(2)− 5/3)2 (5.7a)

s.t. x(0) = x0, (5.7b)

ẋ(t) ∈ 2− sign(x(t)), t ∈ [0, 2]. (5.7c)

Here, the free initial value x0 is the only effective degree of freedom. Denote
by V (x0) the (nonsmooth) objective value for the unique feasible trajectory

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 131

starting at x(0) = x0. The equivalent reduced problem reads as

min
x0∈R

V (x0).

Figure 5.1 show the objective approximation obtained with the midpoint rule
for different step sizes h compared to the exact value. One can observe, by
decreasing the step size h, the objective values converge to the correct values but
the sensitivities do not. Moreover, the wrong sensitivities introduce numerous
artificial local minima.

5.2.3 Smooth approximations of NSD2 systems

An obvious and reasonable approach to solve an OCP with an NSD2 system
is to regard a smooth approximation of the nonsmooth system (5.1) and then
to apply the methods for smooth OCPs from Chapter 3. For this purpose, we
regard smooth approximations of the DI (5.1), as studied in [259, 285].

Definition 5.1. We say that the monotonously increasing function ασ(z) :=
α1(z/σ), with α1(z) ∈ C∞ is a smoothing function if: a) α1(0) = 1/2, b)
lim
z→∞

α1(z) = 1 c) lim
z→−∞

α1(z) = 0, with the smoothing parameter σ ∈ R>0. For
the special case when σ = 0, we define α0(z) : R→ P(R) to be the set-valued
step function, i.e., α0(z) = γ(z).

The function ασ(z) does not need to be exactly one for z ≥ σ and exactly
zero for z ≤ −σ. However, this definition of the smoothing functions simplifies
the analysis [259, 285]. The function must approach quickly the corresponding
value whenever z /∈ [−σ, σ]. Examples of such functions are: ασ(z) = (1 +
tanh(z/σ))/2 or ασ(z) = (z/σ +

√
1 + (z/σ)2)/2

√
1 + (z/σ)2.

The smoothed approximation of (5.1) as

ẋ(t) = f1(x)(1− ασ(ψ(x))) + f2(x)ασ(ψ(x)). (5.8)

Under certain assumptions, the solutions of the smoothed system (5.8) converge
to the trajectories of the DI (5.1), cf. [285, Lemma 1].

To use direct methods for OCPs with the nonsmooth system (5.1) or with its
smooth approximation (5.8), one of the crucial ingredients is to compute the
correct numerical sensitivities. A remarkable result from [259] provides the
condition under which smoothing will deliver meaningful approximations.

Theorem 5.2 (Theorem 2, [259]). Assume that ∇ψ(x)⊤f1(x) > 0 and
∇ψ(x)⊤f2(x) > 0, whenever ψ(x) = 0. Denote by xh(t, x0) the numerical

132 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

approximation of x(t, x0). Assume that we integrate the smoothed model
equation (5.8) using the explicit Euler method with a time step h = o(σ). Then,
the numerical sensitivities denoted by ∂xh(t,x0)

∂x0
converge to the sensitivities of

the original problem ∂x(t,x0)
∂x0

as σ → 0.

A similar result is proven for the trapped case: ∇ψ(x)⊤f1(x) > 0,
∇ψ(x)⊤f2(x) < 0, whenever ψ(x) = 0, cf. [259, Theorem 3]. Unfortunately,
using higher-order integration schemes does not circumvent the condition
h = o(σ) as discussed in [259] and confirmed in the example later in Section 5.2.5.
We remind the reader that we have seen in Section 4.2.5 that higher order
integration methods applied to smooth and stiff approximations recover their
accuracy properties when h = o(σ).

5.2.4 The bimodal system as a DCS

We have seen in Section 4.3 that it is ubiquitous in direct optimal control
to transform the NSD2 system into an equivalent Dynamic Complementarity
System (DCS). Let us derive this reformulation for the bimodal system (5.2).
The set-valued step function α0(ψ(x)) can be expressed as the solution map of
a parametric LP:

α0(z) = arg min
α̂
− zα̂ s.t. 0 ≤ α̂ ≤ 1. (5.9)

Using the KKT conditions of the LP (5.9), the DI (5.2) can be rewritten as a
DCS:

ẋ(t) = F (x(t), α(t)) := f1(x(t))(1− α(t)) + f2(x(t))α(t), (5.10a)

ψ(x) = z(t), (5.10b)

z(t) = λp(t)− λn(t), (5.10c)

0 ≤ λn(t) ⊥ α(t) ≥ 0, (5.10d)

0 ≤ λp(t) ⊥ 1− α(t) ≥ 0. (5.10e)

This is a common approach to rewrite a Filippov system into an equivalent
DCS. We come back to this reformulation for more general piecewise smooth
systems in Chapter 6.

After the time discretization of the OCP subject to the DCS (5.10), we obtain
an MPCC that can be efficiently solved via the methods from Section 2.3. In

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 133

MPCC solutions methods, the discretized complementarity constraints in (5.10)
are smooth or relaxed. We restrict our analysis to the case of Scholtes relaxation
and smoothing method [237], as it is usually the most reliable method from the
ones listed in Section 2.3.

We regard the different representations of the graph of the set-valued function
α0(z), denoted as:

C0 := {(z, α) | α ∈ α0(z)}. (5.11)

The graph of the function described by the LP (5.9) reads as

CDCS
exact :={(z, λn, λp, α) | z = λp − λn, λnα = 0,

λp(1− α) = 0, λn, λp ≥ 0, 0 ≤ α ≤ 1}.
(5.12)

We define the graphs of the corresponding smoothed and relaxed problems,
which fit into Definition (5.1), respectively:

CDCS
smoothed(σ) :={(z, λn, λp, α) | z = λp − λn, λnα = σ,

λp(1− α) = σ, λn, λp ≥ 0, 0 ≤ α ≤ 1},
(5.13)

and

CDCS
relaxed(σ) :={(z, λn, λp, α) | z = λp − λn, λnα ≤ σ,

λp(1− α) ≤ σ, λn, λp ≥ 0, 0 ≤ α ≤ 1}.
(5.14)

Now we highlight a few simple relations between the sets defined above.

Proposition 5.3. The projection of the set CDCS
exact onto R2, where C0 is defined,

is equal to C0.

Proof. This relation can be seen from the LP representation of the function
α0(z) (5.9). For z < 0 we have y = 0 and for z > 0, the solution is y = 1. If we
have z = 0, the solution is the whole feasible set y ∈ [0, 1].

Proposition 5.4. For the sets CDCS
exact, CDCS

relaxed(σ) and CDCS
smoothed(σ), if the same

σ ≥ 0 is used in the latter two, the following holds:

CDCS
exact ⊆ CDCS

relaxed(σ), and CDCS
smoothed(σ) ⊆ CDCS

relaxed(σ).

Proof. The set CDCS
relaxed can equivalently be written as

CDCS
relaxed(σ) :={(z, λn, λp, α) | z = λp − λn, λnα ≤ σ,

λp(1− α) ≤ σ, λn, λp ≥ 0, 0 ≤ α ≤ 1}.
(5.15)

134 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

z

y

CDCS
smoothed

CDCS
exact

CDCS
relaxed

Figure 5.2: Illustrations of the projections of the sets CDCS
exact, CDCS

relaxed and
CDCS

smoothed.

It follows from the definition of CDCS
exact in (5.12) that any vector wexact :=

(z, λn, λp, α) ∈ CDCS
exact satisfies also the equations above, hence wexact ∈ CDCS

relaxed.
Pick any δ > 0 such that δ < σ. Using the definition (5.15) for any wδ ∈
CDCS

relaxed(δ) it also holds that wδ ∈ CDCS
relaxed(σ). We conclude that CDCS

exact ⊂
CDCS

relaxed. Equality follows from picking σ = 0 in (5.15), which concludes the
first part of the proof.

For the second relation, equality follows trivially for taking inequalities as
equalities in (5.14) for the same σ as in (5.13). Furthermore, CDCS

smoothed ⊂
CDCS

relaxed follows with the same argument as in the first part of the proof, by
picking an appropriate δ > 0 and δ < σ.

Figure 5.2 illustrates the result of Proposition 5.4. Proposition 5.3 implies an
equivalence between the solutions of the Filippov DI (5.1) and the DCS in (5.10).
Consequently, the results from Theorem 5.2 for the approximated Filippov DI
(5.8) transfer to the smoothed or relaxed DCS. This means when discretizing a
smoothed or relaxed version of (5.10), we need a step size of h = o(σ) to obtain
correct numerical sensitivities.

5.2.5 Failure of standard direct optimal control

To demonstrate the limits of direct optimal control approaches, we regard a
discretized version of the OCP (5.7). Note that the solution x(t;x0) is piecewise
constant, and the objective is a cubic function of time. Therefore, if there
were locally no switches or if their time of occurrence was known, a third-order

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 135

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
1.4

1.6

1.8

2

2.2

2.4

2.6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 5.3: Value of the objective functions Vs(x0) for the smoothed MPCC (left),
and Vr(x0) for the relaxed MPCC (right), for several values of the homotopy
parameter σ.

method would approximate the solution exactly. To integrate the objective
function with the same accuracy as the trajectory, we introduce the quadrature
state:

ẏ(t) = x(t)2, y(0) = 0.

In the regarded numerical example, we use a Gauss-Legendre method with
two stage points, ns = 2, which has the order four, cf. Section 3.2. We
reformulate the dynamics into DCS as in (5.10) and discretize the OCP (5.7).
This discretization corresponds to direct transcription (cf. Section 3.3.2):

min
w

yN + (xN − 5/3)2 (5.16a)

s.t. y0 = 0, (5.16b)

yk+1 = yk + h

ns∑
j=1

bj(xk,j)2, k = 0, . . . , N − 1, (5.16c)

xk+1 = xk + h

ns∑
j=1

bj(3(1− αk,j) + αk,j), k = 0, . . . , N − 1, (5.16d)

xk,i = xk + h

ns∑
j=1

ai,j(3(1− αk,j) + αk,j), k = 0, . . . , N − 1, i = 1, . . . , ns,

(5.16e)

ψ(xk,j) = λp
k,j − λ

n
k,j , k = 0, . . . , N − 1, j = 1, . . . , ns, (5.16f)

136 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

-2 -1.5 -1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-2 -1.5 -1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-2 -1.5 -1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

Figure 5.4: Value of the optimal solution x∗
0 against different initial values

x0 for which an initial feasible solution The MPCC is solved by a relaxation
method for different initial values of σ. The left plot is for h = 0.1, the middle
for h = 0.05 and the right plot for h = 0.02.

0 ≤ λn
k,j ⊥ λ

p
k,j ≥ 0, k = 0, . . . , N − 1, j = 1, . . . , ns, (5.16g)

0 ≤ λp
k,j ⊥ 1− λp

k,j ≥ 0, k = 0, . . . , N − 1, j = 1, . . . , ns. (5.16h)

In w = (x0, y0, x0,1, α0,1, λ
n
0,1, λ

p
0,1, . . . , x0,ns , α0,ns , λ

n
0,ns , λ

p
0,ns , . . . , yN , xN), we

collect all optimization variables. The NLP (5.16) is an MPCC, which is solved
in a homotopy approach, where the complementarity constraints are smoothed
or relaxed, cf. Section 2.3. For sake of illustration, we use N = 20, which results
in a constant step size of h = 0.01. The NLPs in the homotopy loop are solved
with IPOPT [281] through its CasADi [9] interface.

Figure 5.3 illustrate the values of the objective for the smoothing (Vs(x0), left
plot) and relaxation approach (Vr(x0), right plot), respectively. We can observe
that the values of the objective converge to the analytic solution, but the
derivatives do not. Especially after h ≫ σ, spurious local solutions appear.
Similar to our simulation experiments in Section 4.2.5, we see again that very
nonlinear smooth approximations behave practically as nonsmooth systems.

In our second experiment, we initialize the OCP at feasible solutions
corresponding to different x0 and see to which solution the optimizer converges.
In total we take 200 samples from x0 ∈ [−2,−0.8]. We perform this experiment
for a different number of integration steps N = 20, N = 40, and N = 100, which
results in the step sizes h = 0.1, h = 0.05, and h = 0.02. The MPCCs are solved
with a Scholtes relaxation homotopy approach, with three different values of
the initial homotopy parameter σ0 of 1, 10−1, and 10−4. The final σ is always
10−8 and the homotopy parameter is updated via the rule: σn+1 = 0.1σn, n is

FUNDAMENTAL LIMITATIONS OF STANDARD DIRECT METHODS FOR NSD2 SYSTEMS 137

10-10 10-5 100
10-2

10-1

100

101

10-10 10-5 100
10-2

10-1

100

101

10-10 10-5 100
10-2

10-1

100

101

Figure 5.5: Distance of numerically computed optimal solution x∗
0 to the analytic

solution x̄0, for different initial σ. The left plot is for h = 0.1, the middle for
h = 0.05 and the right plot for h = 0.02.

the number of the problem in the sequence. Figure 5.4 shows the solution of a
relaxed MPCC corresponding to (5.16) for different initial guesses for x0 and
different starting values of σ0. As long as the condition h = o(σ) is satisfied one
can see the NLP solver converges to a unique local solution. As soon as h≫ σ,
the solver converges to the nearest spurious local solution, which results in the
stair-like curves in Figure 5.3. In practice, smoothing and relaxation might
work well due to the homotopy, since for larger values of σ, the derivatives are
correct and the optimizer gets into a “good region“. However, the numerical
sensitivity is wrong as soon as h = o(σ) becomes violated.

In our last experiment, we compare the solution obtained after every homotopy
iteration with relaxed complementarity constraints to the solutions obtained by
a single NLP solve with the same fixed σ. As an initial guess, we take x0 = −1.
In the homotopy approach, the parameter σ is updated with the following rule:
σn+1 = 0.1σn, with σ0 = 1, n is the number of the problem in the sequence.
Figure 5.5 illustrates the results for three different step sizes. One can observe
that with the homotopy we get in a good region, and even for smaller σ, the
approximate solution x∗

0 is close to the analytic solution x̄0. On the other hand,
with the single NLP solve, as soon as h = o(σ) is violated, the NLP converges
to the nearest spurious local solution.

We can see that for h≪ σ, the homotopy approach and single NLP find the same
unique solution. However, as this criterion becomes violated the single NLP
approach makes sometimes almost no progress. Even the homotopy approach
delivers inaccurate solutions, despite a small step size. If the homotopy converges
to the “best artificial minimum“, the error is still of order O(h) since the switches
are not detected. The standard direct methods fail catastrophically even on a

138 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

simple example. Nevertheless, all obtained solutions are at least feasible, which
might explain why these approaches sometimes lead to satisfactory results in
practice. In Section 7.3.6, we repeat the experiments above and manage to
resolve the accuracy issues with a novel discretization method that will be
introduced in Chapter 7.

5.3 Limitations of direct methods for NSD3 systems

In this section, we illustrate that direct methods for systems with state jumps
suffer from the same limitations as in the NSD2 case. We focus on the class of
systems of nonsmooth mechanics, which is arguably the most widely studied
class of NSD3 systems. In Chapter 8, we study these problems in more detail
and develop methods that resolve the issues that we highlight below.

As discussed in Section 5.1, contact implicit trajectory optimization (CITO), i.e.,
direct optimal control with rigid body models subject to impacts and friction is
a topic of growing popularity in the robotics community. This gave rise to many
physics simulations software packages, which essentially have at their core a
time-stepping method [255] for the simulation of the nonsmooth equations of
motion [141, 265, 268, 284]. Most of them provide also sensitivity information
w.r.t. to initial values and controls. In the robotics community, this is often
known under the term differentiable physics. This is somewhat a misnomer
since the sensitivities are nonsmooth, cf. Section 4.2.6. Zhong et. al. [292] show
in several experiments in which the exact sensitivities are known, that none
of the widely used software packages computes them correctly. Moreover, the
results obtained by different open-source implementations do not agree.

Some of the packages detect the switching time (time of impact) explicitly,
which improved the situation only on simple examples. However, on even
slightly more complex tasks, the sensitivities are wrong in all cases [292]. There
is no reason to believe that just detecting the switching time will lead to
the computation of correct sensitivities by differentiating the integrator. The
sensitivity formulae are more complicated, and an explicit jump formula must
be derived from the switching conditions to update the sensitivity past points
of discontinuity [25, 40]. This is also the case for NSD2 systems, cf. Sections
4.2.6 and 6.2.6.

Nevertheless, these methods often perform well in practice. There are several
reasons for this. On the one hand, during the solution process, e.g., in a
homotopy loop, the dynamics are smoothed, and the sensitivities are correct
and direct the solver to a good region. On the other hand, Zhong et al. [292]

LIMITATIONS OF DIRECT METHODS FOR NSD3 SYSTEMS 139

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

Figure 5.6: Several feasible trajectories of the OCP (5.17). The blue trajectory
is an optimal solution that has one state jump.

-6 -4 -2 0 2 4
0

0.5

1

1.5

2

2.5

Figure 5.7: The objective function value V (v0) for different step sizes h. For
values of v0,2 that do not lead to impacts, the system is locally smooth, and
the sensitivities are correct (right part of the graph).

observe that the sensitivities, despite being wrong in their value, have the correct
sign and thus lead to descent directions.

Here, we recall one optimal control example from [292] (Task 2) to illustrate that
the sensitivities do not converge. We refer the interested reader to the excellent
paper of Zhong et al. [292] for more details and further examples. The goal is
to find an initial velocity v0 of a two-dimensional particle such that it reaches
from the initial position q0 = (−0.5, 1) the target position qgoal = (−2, 1.5) in
T = 0.6. The impact is elastic with ϵr = 0.92, and no control forces are applied.
The optimal control problem reads as

min
v0,x(·),λ(·)

∥q(T)− qgoal∥2 (5.17a)

140 LIMITATIONS IN NONSMOOTH DIRECT OPTIMAL CONTROL

s.t. q(0) = q0, v(0) = v0 (5.17b)

q̇(t) = v(t), (5.17c)

v̇(t) =
[
−λ1(t)
−g + λ2(t)

]
, (5.17d)

0 ≤ f1(q(t)) ⊥ λ1(t) ≥ 0, (5.17e)

0 ≤ f2(q(t)) ⊥ λ2(t) ≥ 0, for a.a. t ∈ [0, T], (5.17f)

if fi(t) = 0 and ∇qfi(q(t))⊤v(t−) ≤ 0, then (5.17g)

∇qfi(q(t))⊤v(t+) = −ϵr∇qfi(q(t))⊤v(t−), i ∈ {1, 2}, (5.17h)

with the gap functions f1(q) = 1.6−q1 and f2(q) = q2. The only effective degree
of freedom is the initial velocity v0, and we can look at the reduced problem:

min
v0

V (v0)

We discretize the OCP (5.17) with the Anitescu-Potra method [15], a standard
time-stepping method for elastic impacts, fix the horizontal velocity v0,1 = −2.5
and evaluate the objective function for different v0,2. Figure 5.6 illustrates
numerous feasible trajectories with and without impacts. In Figure 5.7, we
illustrate the reduced objective as a function of v0,2 for different step sizes.
Similar to the NSD2-case, we can observe that the trajectories converge, but
the derivatives do not. Depending on the step size, for v0,2 greater than
approximately one, no impacts happen, and the system is locally smooth. For
the other values, the objective experiences numerous artificial local minima due
to the wrong sensitivities.

5.4 Conclusion and summary

Despite the natural and intuitive way of modeling discrete-continuous effects with
nonsmooth differential equations, it is challenging to handle them numerically in
optimal control. Due to the nonsmoothness most standard numerical simulation
methods have only first-order accuracy [258]. Furthermore, the sensitivities of
the solution trajectories of these dynamic systems are nonsmooth w.r.t. the
initial value and parameters. Because of these difficulties, the powerful tools
from smooth optimization and direct optimal control for smooth differential
equations cannot be readily applied to this class of problems. Reliable tailored
numerical algorithms and accompanying software implementations are not yet

CONCLUSION AND SUMMARY 141

available or not yet as widespread as for optimal control with smooth dynamical
systems.

In this chapter, we have seen that standard direct methods fail on even very
simple optimal control problems. Differentiating time-stepping discretization
yields wrong sensitivities no matter how small the step size is. Smoothing
works only if the step size is sufficiently small to resolve the severe nonlinearity
introduced by smoothing. On the other hand, the smoothed systems can
give accurate numerical sensitivities, provided that h = o(σ). From an
implementation point of view, one can use standard integrator codes in direct
multiple shooting or direct collocation and a standard NLP solver. However,
to obtain a more accurate solution with this approach, one has to take a very
small step size. For example, if one wishes to have an integration accuracy of
10−6, the smoothing parameter has to be in the same order. Since h = o(σ),
for a prediction horizon of T = 1, the discretized optimal control problem has
to have millions of variables. This makes this approach impractical.

Moreover, the wrong sensitivities can lead to artificial local minima, and the
optimizer might get stuck arbitrarily close to the initial guess. Reformulating e.g.,
NSD2 systems into equivalent dynamic complementarity systems and solving
Mathematical Programs with Complementarity Constraints (MPCC) with
tailored methods does not improve the situation at all. Due to the equivalence,
the same difficulties remain. To obtain correct numerical sensitivities, one must
have a step size of h = o(σ), where σ is the relaxation or smoothing parameter
in the MPCC.

Nevertheless, in practice, standard direct methods sometimes deliver satisfactory
results. The reasons is that Newton-type optimization with completely wrong
sensitivities but correct function evaluations leads to convergence to suboptimal
but feasible solutions [42]. This is sometimes called as zero-order optimization,
as only the functions zero-order information (i.e., the function evaluations)
is correct. However, these solutions are not optimal and have only first-
order accuracy. Estimating the loss of optimality in this case is generally not
impossible. Hence, the standard methods can only be considered as heuristics
in this case. Therefore, it is necessary to develop tailored methods with a sound
theory that overcome the fundamental limitations of standard methods.

Chapter 6

Reformulation of Filippov
Systems into Dynamic
Complementarity Systems

Filippov systems are a focal point of this thesis. This chapter examines Piecewise
Smooth Systems (PSS), their embedding into Filippov Differential Inclusions
(DIs), and their connection to Dynamical Complementarity Systems (DCS).
There are several motivations for this. First, Filippov systems arising from PSS
are fairly regular systems with many favorable properties that can be exploited
in algorithmic design. Second, many practical problems can be modeled as PSS.
Moreover, in Chapters 8 and 9 we introduce the time-freezing reformulation. It
provides an exact reformulation of several classes of systems with state jump
(NSD3) into PSS (NSD2). Furthermore, NSD1 systems can be viewed as a
special case of an NSD2 system, where the vector field is continuous across
region boundaries. This enables a unified theoretical and algorithmic treatment
of many systems of types NSD1 to NSD3.

Some basic definitions and properties of DCS and PSS are already discussed
in Sections 4.3.4 and 4.3.5, respectively. However, here we invest some effort
in understanding how to relate Filippov systems to DCS. We explore two
reformulations to pass from a Filippov system to a DCS: Stewart’s approach
[250] and the Heaviside step functions approach [6, 74]. In both cases, solving
a Linear Program (LP) enables the determination of the convex multipliers
required to compute a selection of the Filippov set. Using the KKT conditions
of this LP, we can pass from a Filippov system to an equivalent DCS. We study

143

144 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

these DCSs in detail, i.e., the properties of the Lagrange multipliers in the
DCS, properties of the ODE/DAE obtained from fixing the active set, and
what happens at active-set changes. This pays off as we can use these insights
to develop the Finite Elements with Switch Detection (FESD) method in the
next chapter. This discretization method possesses numerous advantageous
theoretical and computational properties when applied to the resulting DCS.

Outline. The content of this chapter is as follows. First, in Section 6.1, we give
definitions of the PSS, Filippov systems, and the solutions we are interested
in. Next, we study Stewart’s approach [250] to pass from a Filippov system
to a DCS in Section 6.2. In Section 6.3, we perform a similar study for the
reformulation obtained via set-valued Heaviside step functions. The chapter is
concluded in Section 6.4. Section 6.2 is partially based on [213], and Section
6.3 on [207, 208].

6.1 Piecewise smooth and Filippov systems

In this section, we provide some more assumptions and definitions for PSS
and Filippov systems. For ease of reading, we summarize the most important
notation and symbols used throughout the chapter.

Notation

We remind the reader of some notation heavily used in this chapter. For some
matrix A ∈ Rn×m, its i-th row is denoted by Ai,• and its j-th column is denoted
by A•,j . Given a set I ⊆ {1, . . . , n}, the matrix AI,• ∈ R|I|×m is a submatrix
of A consisting of the rows Ai,• for i ∈ I. The submatrix A•,J ∈ Rn×|J | is
defined accordingly. For a given vector x ∈ Rn and set I ⊆ {1, . . . , n}, we
define the projection matrix PI ∈ R|I|×n which has zeros or ones as entries. It
selects all component xi, i ∈ I from the vector x, i.e., xI = PIx ∈ R|I| and
xI = [xi | i ∈ I].

In Table 6.1, we summarize the key symbols used in this chapter.

Table 6.1: Key symbols used throughout this chapter.

Symbol Description First appearance
nx dimension of the differential state x Eq. (6.1)
nf number of regions/modes in the PSS Eq. (6.1)
nu dimension of the control function u Eq. (6.1)

PIECEWISE SMOOTH AND FILIPPOV SYSTEMS 145

nψ dimension of switching functions ψ(x) Sec 6.2.1
nβ number of lifting variables Sec. 6.3.8
nsys number of subsystems in sum of

Filippov systems
Sec. 6.2.5

x differential state Eq. (6.1)
u control function Eq. (6.1)
e vector with all ones Eq. (6.8)
θ Filippov’s convex multipliers Eq. (6.2)
λ Lagrange multipliers in Stewart’s DCS Eq. (6.8)
µ Lagrange multipliers in Stewart’s DCS Eq. (6.8)
ts,n n-th switching point Sec. 6.2.2
S sign matrix for a compact definition of

Ri

Eq. (6.16)

α selection of set-valued step function Sec. 6.3.3
λp Lagrange multiplier in step DCS Eq. (6.44)
λn Lagrange multiplier in step DCS Eq. (6.44)
β Lifting variable in the step DCS Sec. 6.3.8
fi(x, u) modes of the PSS system Eq. (6.1)
g(x) Stewart’s indicator functions Eq. (6.4)
Ψ(·, ·) C-function Def. 2.23, Eq. (6.9)
F (x, u) a matrix in Rnx×nf that collects all

PSS modes
Eq. (6.6)

G(x, θ, λ, µ) algebraic equations in Stewart’s DCS
as nonsmooth DAE

Eq. (6.9)

G(x, θ, α, λp, λn) algebraic equations in the step DCS as
nonsmooth DAE

Eq. (6.45)

ψ(x) switching functions Sec. 6.2.1, 6.3.3
MI(x) Stewart’s matrix for the study of

the fixed-active DCS and active set
prediction LCP

Eq. (6.16)

ψi,j(x) local switching function Eq. (6.23)
Sx(t, 0, x0) sensitivity matrix Sec. 6.2.6
J(x(ts;x0)) sensitivity jump matrix Eq. (6.25)
γ(x) scalar set-valued step function Eq. (6.32)
Γ(x) vector-valued version of the step

function
Eq. (6.32)

WK,I(x) auxiliary matrix used in the study of
the step DCS (6.44)

Sec. 6.3.5

BK,I(α) auxiliary matrix used in the study of
the step DCS (6.44)

Sec. 6.3.5

Gβ(α, β) expression relating α and lifting
variables β

Sec. 6.3.8

146 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

Gθ(θ, α, β) lifted expression for θ Sec. 6.3.8
GLift(θ, α, β) concatenation of Gβ(α, β) and

Gθ(θ, α, β)
Sec. 6.3.8

Ri regions of the PSS Eq. (6.1)
∂Ri boundary of regions of the PSS Sec. 6.1.1
J index set of PSS modes Eq. (6.1)
FF(x, u) Filippov set Eq. (6.2), Eq. (6.3)
FS(x, u) Filippov set via step functions Eq. (6.42)
I(x) active set for Filippov systems Eq. (6.5)
Tn n−th time interval with fixed active

set Tn = (ts,n, ts,n+1)
Sec. 6.2.2

In the fixed active set In = I(x(t)), t ∈ In Sec. 6.2.2
I0
n active set at ts,n, i.e. In,0 = I(ts,n) Sec. 6.2.2
C index set of all switching functions

ψi(x)
Sec. 6.3.3

Ci index set of all switching functions
involved in the definition of Ri

Sec. 6.3.3

K index set of all switching functions
ψi(x) that are zero for a given I

Sec. 6.3.5

6.1.1 Piecewise smooth differential equations

This section introduces some assumptions on the PSS and its Filippov
convexification [93]. We have already discussed ODEs with a Discontinuous
Right-Hand Side (DRHS) in Section 4.3.5. Here we treat piecewise smooth
systems that are such ODEs but where the discontinuities appear in a structured
way. The generic PSS reads as

ẋ(t) = fi(x(t), u(t)), if x(t) ∈ Ri ⊂ Rnx , i ∈ J := {1, . . . , nf}, (6.1)

where Ri are disjoint, connected, and open sets. They are assumed to be
nonempty and to have piecewise smooth boundaries ∂Ri. We assume that⋃
i∈J

Ri = Rnx and that Rnx \
⋃
i∈J

Ri is a set of measure zero. The functions

fi(·) are assumed to be Lipschitz and at least twice continuously differentiable
functions on an open neighborhood of Ri. Furthermore, nf is a positive integer,
and u(t) is a sufficiently regular externally chosen control function.

Many practical problems give rise to ODE as in (6.1), e.g., in sliding mode
control [5], mechanics problems with Coulomb friction [255], state-constrained
ODE derived from Pontryagin’s maximum principle [224], electronic circuits
[3], biological systems [6], vaccination strategies [67], transportation systems
and traffic flow networks [21], constrained optimization algorithms viewed as

PIECEWISE SMOOTH AND FILIPPOV SYSTEMS 147

dynamic systems [132] and many more. Many interesting results about PSS are
collected in the monograph [34]. As we will see in Chapter 8 and 9, systems
with state jumps, including impact mechanics, robotics, and hybrid systems
with hysteresis can be transformed into systems matching the form of (6.1)
via the time-freezing reformulation [202, 205, 212]. Consequently, efficient and
accurate numerical optimal control algorithms for this class of systems are of
great interest.

6.1.2 Filippov convexification

Initial value problems arising from the nonsmooth ODE (6.1) usually fail to
have classic Carathéodory solutions, for a counterexample, cf. Section 4.3.5.
As already discussed, to have a meaningful solution concept for this class of
ODEs, they are replaced by a differential inclusion. Here we follow Filippov’s
embedding of such ODE into DIs as it has many advantageous theoretical
properties, cf. 4.3.5. The main idea of Filippov is to replace the r.h.s. of (6.1)
with a bounded convex set. For the readers convince we restate the definition
in Eq. (4.16) for (6.1) and obtain the following Differential Inclusion (DI):

ẋ(t) ∈ FF(x(t), u(t)) :=
⋂
δ>0

⋂
µ(N)=0

convf(x+ δB(x) \N, u(t)), (6.2)

where B(x) is the Euclidean unit ball at x in Rnx , µ(·) is the Lebesgue measure
on Rnx and conv(·) maps a subset of Rnx to its closed convex hull.

Let I(x) := {i | x ∈ Ri} ⊆ J be the active-set at x ∈ Rnx . Due to the special
structure of (6.1) the Filippov DI (6.2) can be written as

ẋ ∈ FF(x, u) = conv{fi(x, u) | i ∈ I(x)}.

This means that in the interior of the regions Ri, the Filippov set FF(x, u)
is equal to {fi(x)} and on the boundary between regions, we have a convex
combination of the neighboring vector fields. If ẋ exists, functions θi(·) which
serve as convex multipliers can be introduced, and the Filippov DI can be
written as [250]:

ẋ ∈ FF(x, u) =
{∑
i∈J

fi(x, u) θi |
∑
i∈J

θi = 1, θi ≥ 0, θi = 0 if x /∈ Ri,∀i ∈ J
}
.

(6.3)

We call the functions θi(·) Filippov multipliers. As it will be seen later, the
functions θi(·) lack any continuity properties. But it can be shown that they
are at least measurable [92, 250]. Given (6.3), we will compute piecewise active
solutions [250], which are defined as follows.

148 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

Definition 6.1 (Piecewise active solution [250]). For an initial value x(0) = x0,
a given measurable control function u(t) and a compact interval [0, T], a function
x : [0, T]→ Rnx is said to be a solution of (6.2), if ẋ(t) ∈ FF(x(t), u(t)) almost
everywhere on [0, T]. This function is called a piecewise active solution if the
active-set I(x(t)) is a piecewise constant function of time, and it changes its
value only finitely many times on [0, T]. A time point ts ∈ [0, T] is called a
switching point if I(x(t)) is not constant in any sufficiently small neighborhood
of ts.

The overall ODE solution x(t) is continuous and consists of smooth pieces
connected by nondifferentiable points ("kinks") at the switching times ts. Note
that this definition excludes Zeno’s phenomenon, i.e., solutions with infinitely
many switches in finite time, cf. Section 4.2.1.

In the following two sections, we show that, given a finite representation of
the regions Ri via sufficiently smooth constraints functions c : Rnx → Rm, we
can compute the Filippov multipliers θ for every x as the solution of a linear
program. Moreover, we will see that for a constant active set I(x) one can
derive an ODE or Differential Algebraic Equation (DAE) (for sliding modes)
from (6.3).

6.2 Stewart’s reformulation

One elegant way how to compute the Filippov multipliers as a solution of a
Linear Program (LP) is introduced by Stewart in [250, 260]. Using the KKT
conditions of this LP, we can pass from the Filippov system in (6.3) to a
Dynamic Complementarity System (DCS). In the sequel, we study this DCS in
detail, both for a fixed active set and at active-set changes. The properties of
the DCS lay the foundations for the development of high-accuracy discretization
methods in the next chapter.

In Stewart’s reformulation, the main assumption is that the regions Ri are given
as

Ri = {x ∈ Rnx | gi(x) < min
j∈J \{i}

gj(x)}. (6.4)

We call gi(·), i ∈ J Stewart’s indicator functions, and we assume they are at
least twice continuously differentiable. At first look, this reformulation might
not seem to be the most intuitive one. However, such a reformulation is, e.g.,
obtained if the state space Rnx is tessellated into Voronoi regions, cf. Chapter
9. Furthermore, in Section 6.2.1, we provide a constructive way how to pass

STEWART’S REFORMULATION 149

from a more natural representation of Ri via switching functions c(·) to (6.4).
Throughout this thesis we assume additionally that gi(·), fi(·) and ∇gi(·) are
Lipschitz continuous.

Note that due to the definition of the sets Ri in (6.4), the active set can be
defined as

I(x) :=
{
i | gi(x) = min

j∈J
gj(x)

}
. (6.5)

We define the vectors θ = (θ1, . . . , θnf) ∈ Rnf , g(x) = (g1(x), . . . , gnf (x)) ∈ Rnf
and the matrix F (x) =

[
f1(x), . . . , fnf (x)

]
∈ Rnx×nf . Using the specific

representations (6.4), from equation (6.3), one can deduce that the Filippov DI
can be written as

ẋ = F (x, u)θ(x). (6.6)

The algebraic variables θ(x) are a solution of the LP parameterized by x and
denoted by LP(x)

θ(x) ∈ arg min
θ̃∈Rnf

g(x)⊤ θ̃ (6.7a)

s.t. e⊤θ̃ = 1 (6.7b)

θ̃ ≥ 0. (6.7c)

Using the Karush–Kuhn–Tucker (KKT) conditions of LP(x) and (6.6), we
obtain the dynamic complementarity system

ẋ = F (x, u)θ, (6.8a)

0 = g(x)− λ− µe, (6.8b)

1 = e⊤θ, (6.8c)

0 ≤ θ ⊥ λ ≥ 0, (6.8d)

where the algebraic variables λ ∈ Rnf and µ ∈ R are the Lagrange multipliers
of the inequality and equality constraints in (6.7), respectively. To have an even
more compact representation, we use a C-function Ψ (cf. Definition 2.23) for
the complementarity conditions and rewrite the KKT conditions of the LP (6.7)
as the nonsmooth equation:

G(x, θ, λ, µ) :=

g(x)− λ− µe
1− e⊤θ
Ψ(θ, λ)

 = 0. (6.9)

150 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

It provides 2nf + 1 conditions for the 2nf + 1 algebraic variables θ, λ and µ.
The DCS reads in compact form as a nonsmooth differential algebraic equation:

ẋ = F (x, u)θ, (6.10a)

0 = G(x, θ, λ, µ). (6.10b)

Example 6.2. We illustrate this formulation on the simple example of ẋ ∈
2 − sign(x). This ODE is characterized by the regions R1 = {x ∈ R | x < 0}
and R2 = {x ∈ R | x > 0}, with f1(x) = 3, f2(x) = 1 and F (x) = [3 1]. It
can be verified that with the functions g1(x) = x and g2(x) = −x, we have a
representation of the regions as in (6.4). Moreover, we have the multipliers
θ, λ ∈ R2 and µ ∈ R. Thus, the corresponding DCS reads as:

ẋ =
[
3 1

]
(θ1, θ2), (6.11a)

0 = x− λ1 − µ, (6.11b)

0 = −x− λ2 − µ, (6.11c)

0 = θ ⊥ λ ≥ 0, (6.11d)

1 = θ1 + θ2. (6.11e)

6.2.1 How to obtain Stewart’s indicator functions?

Definition (6.4) might not be the most intuitive way to represent the sets Ri.
In many practical examples some smooth scalar functions ψi(·), i = 1, . . . , nψ
called switching functions, are given. We use them to define the following basis
regions.

Definition 6.3 (Basis regions). Given nψ scalar switching functions ψi(x), i ∈
C := {1, . . . , nψ}, we define the 2nψ basis regions:

R′
1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . , ψnψ−1(x) > 0, ψnψ (x) > 0},

R′
2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . , ψnψ−1(x) > 0, ψnψ (x) < 0},

...

R′
nf

= {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . , ψnψ−1(x) < 0, ψnψ (x) < 0},

STEWART’S REFORMULATION 151

such that Rnx = ∪nfi=1R̃i. These definitions are compactly expressed via a dense
sign matrix S ∈ R2nψ×nψ :

S =

1 1 . . . 1 1
1 1 . . . 1 −1
...

... · · ·
...

...
−1 −1 . . . −1 −1

 . (6.12)

The matrix S has no repeating rows and no zero entries. The sets R̃i are defined
using the rows of the matrix S:

R′
i = {x ∈ Rnx | Si,jψj(x) > 0, j ∈ C}, i = 1, . . . , 2nψ . (6.13)

Note that the boundaries of the regions ∂R′
i are subsets of the zero-level sets of

appropriate functions ψj(x).

The next proposition provides a constructive way to find the functions g(·) from
the more intuitive representation of the regions via ψ(·).

Proposition 6.4. Let the function g : Rnx → Rnf be defined as

g(x) = −Sψ(x), (6.14)

then for all x ∈ R′
i the following statements are true:

(i) gi(x) < gj(x), for i ̸= j,

(ii) the definitions (6.4) and (6.13) define the same set, i.e., Ri = R′
i.

Proof. For (i), note that for x ∈ R′
i all terms in the sum gi(x) = −Si,•ψ(x) =

−
∑
k Si,kψk(x) are strictly positive. On the other hand, for any gj(x) =

−Sj,•ψ(x) = −
∑
k Sj,kψk(x), j ̸= i and x ∈ R′

i, due to (6.13), all terms in the
sum where Sj,k ̸= Si,k are strictly negative. Therefore Si,•ψ(x) > Sj,•ψ(x),
thus (i) holds.

For (ii), first regard the rows Sj,• that differ from Si,• only in the k-th column.
Then gi(x)− gj(x) = −(Si,k − Sj,k)ψk(x) < 0. If Si,k = 1, then gi(x)− gj(x) =
−2ψk(x) < 0. Likewise, for Si,k = −1, then gi(x) − gj(x) = 2ψk(x) < 0.
Therefore, from (6.4), we recover the definition of (6.13) by looking at the rows
where Si,k and Sj,k differ by one element. For all rows j that differ from Si,•
by more than one column, by similar reasoning, we obtain inequalities that do
not tighten (6.13), since gi(x)− gj(x) consists of a sum of the terms from the
inequalities where only one component of ψ(x) is left. Therefore, statement (ii)
holds, and this completes the proof.

152 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

R2 x(t)

R1

R3 R4

x(t1)
x(ts,1)

x(ts,2)

x(ts,3)

Figure 6.1: Illustration of active sets at different points. It can be seen that
I(x(t1)) = I0 = {1}. At x(ts,1) the trajectory crosses the surface of discontinuity
between R1 and R2, hence I(x(ts,1)) = I0

1 = {1, 2} and later I1 = {2}. The
segment between x(ts,2) and x(ts,3) is a sliding mode and we have I0

2 = {2, 3}
and I2 = {2, 3}. Finally we have at x(ts,3) that I0

3 = {1, 2, 3, 4}.

Example 6.5. For our tutorial example ẋ ∈ 2− sign(x) and the corresponding
DCS (6.11) we have ψ(x) = x, S =

[
−1 1

]⊤ and we obtain g(x) = −Sψ(x) =
(x,−x) as used in Example 6.2.

6.2.2 Fixed active set

For a given solution x(·) let us denote all switching points by 0 = ts,0 <
ts,1 < · · · < ts,Nsw = T . The fixed active set between two switches is denoted
by In := I(x(t)), t ∈ (ts,n, ts,n+1) =: Tn and at a switching point ts,n by
I0
n := I(x(ts,n)). Note that I0

n = In ∪ In−1. These definitions are illustrated in
Figure 6.1.

In this subsection, we regard the DCS (6.8) for a single fixed In. To simplify
our notation we denote this active set by I and the according time interval
T = (0, T) in the reminder of this subsection. Depending on the active set, the
DCS (6.8) reduces either to an ODE or to a DAE.

In the DAE case, x(t) is on the boundary of one or more regions Ri, and we
speak of sliding modes. In this case, |I| > 1, and typically we obtain an index 2
differential algebraic equation. Consequently, two or more equal entries of g(x)
are the smallest components of this vector, and the solution θ of the LP(x) is
not unique and lies on a facet of the unit simplex. To compute the values of
θ, we must treat the DCS as a DAE. We define FI(x, u) := F (x, u)P⊤

I , which
selects the appropriate columns of F (x, u). For t ∈ T , we have θi = 0, i /∈ I

STEWART’S REFORMULATION 153

and λi = 0, i ∈ I, thus the DCS (6.8) reduces to the DAE
ẋ = FI(x, u)θI , (6.15a)

0 = gI(x)− µe, (6.15b)

1 = e⊤θI . (6.15c)
There are |I|+ 1 nontrivial algebraic equations and |I|+ 1 unknown algebraic
variables, namely µ and θi for i ∈ I, since we regard θi(t) = 0, i /∈ I as fixed.

In the ODE case, x(t) is in the interior of some region Ri we have |I| = 1. The
algebraic variables µ and θi can be computed explicitly from (6.15) and we have
θi = 1 and µ = gi(x). Thus, the DCS reduces to the ODE ẋ = fi(x).

Next, we provide sufficient conditions for the uniqueness of the solution of the
DAE (6.15) for a given |I| ≥ 1. We define the matrix

MI(x) = ∇gI(x)⊤FI(x, u) ∈ R|I|×|I|. (6.16)
Note that entries of this matrix arise by taking the total time derivative of
(6.15b).
Assumption 6.6. Given a fixed active set I(x(t)) = I for t ∈ T , it holds that
the matrix MI(x(t)) is invertible and e⊤MI(x(t))−1e ̸= 0 for all t ∈ T .
Proposition 6.7. Suppose that Assumption 6.6 holds. Given the initial value
x(0), then the DAE (6.15) has a unique solution for all t ∈ T .

Proof. For a given x(·) we can differentiate equation (6.15b) w.r.t. t and obtain
the following index 1 DAE

ẋ = FI(x, u)θI , (6.17a)

µ̇ = −v, (6.17b)[
MI(x) e
e⊤ 0

] [
θI
v

]
=
[
0
1

]
. (6.17c)

with the algebraic variables θI and v ∈ R. For a given initial condition x(0),
µ(0) can be directly computed from any component of (6.15b). Using the Schur
complement and Assumption 6.6, we conclude that we can find unique θI and v
by solving the linear system (6.17c). Therefore, the DAE (6.15) can be reduced
to an ODE. Since the functions fi(·) are assumed to be Lipschitz the resulting
ODE has a unique solution x(t), t ∈ T .

Note that even though the DAE has a unique solution for a given active set I,
there might be multiple I that give a well-defined ODE, as we discuss in the
subsequent sections.

154 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

6.2.3 Active-set changes and continuity of λ and µ

Every active-set change in (6.8d) corresponds to crossing a discontinuity, entering
or leaving a sliding mode, or a spontaneous leaving of a surface of discontinuity.
These events in time are called switches.

There are four qualitatively different switching cases possible. We illustrate
them with a few simple examples. Other more complex behavior emerges from
the combination of these simple cases.

Example 6.8. There are four possible switching cases which we illustrate with
the following examples:

(a) crossing a surface of discontinuity, ẋ(t) ∈ 2− sign(x(t)),

(b) sliding mode, ẋ(t) ∈ −sign(x(t)) + 0.2 sin(5t),

(c) leaving sliding mode ẋ(t) ∈ −sign(x(t)) + t.

(d) spontaneous switch, ẋ(t) ∈ sign(x(t)),

In case (a), for x(0) < 0 the trajectory reaches x = 0 and crosses it. In example
(b), for any finite x(0), the trajectory reaches x = 0 and stays there. On the
other hand, in example (c), the DI has a unique solution, and for x(0) = 0 the
trajectory leaves x = 0 at t = 1. In the last example, for x(0) = 0 the DI has
infinitely many solutions, and x(t) can spontaneously leave x = 0 at any t ≥ 0.
The trajectories are illustrated in Figure 6.2.

The example in (d) is the only of the four that does not satisfy the one-sided
Lipschitz condition in Assumption 4.9 and has a nonunique solution. Note that
there is a qualitative difference between a spontaneous switch (d) and leaving a
sliding mode (c). The spontaneous switch happens only when the solutions are
nonunique. Leaving a sliding mode happens for systems with a unique solution.
Notably, the corresponding θi is a locally continuous function of time in this
case.

It is useful to take a closer look at how are the active sets In, I0
n+1 and In+1

related to different kinds of switches. For the readers’ convince we write these
sets explicitly for our example:

a) I0 = {1}, I0
1 = {1, 2} and I1 = {2},

b) I0 = {1}, I0
1 = {1, 2} and I1 = {1, 2},

c) I0 = {1, 2}, I0
1 = {1, 2} and I1 = {2},

STEWART’S REFORMULATION 155

0 1 2
-2

-1

0

1

2

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

1

2

3

4

0 1 2

-1

-0.8

-0.6

-0.4

-0.2

0

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

1.5

2

0 1 2

0

0.2

0.4

0.6

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

1.5

2

2.5

Figure 6.2: Illustration of example solution trajectories for different switching
cases. The rows from top to bottom show x(t), θ(t) and λ(t) for the cases
(a)-(d) in Example 6.8, respectively.

d) I0 = {1, 2}, I0
1 = {1, 2} and I1 = {2}.

The relations are for the general case summarized in Table 6.2. Recall that in
all cases In ∪ In+1 = I0

n+1.

We can see in Figure the functions θ(t) are discontinuous, except in the case of

156 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

Switch type In vs. I0
n+1 I0

n+1 vs. In+1
crossing a surface of discontinuity In ⊂ I0

n+1 I0
n+1 ⊃ In+1

entering a sliding mode In ⊂ I0
n+1 I0

n+1 = In+1
leaving sliding mode In = I0

n+1 I0
n+1 ⊃ In+1

spontaneous switch In = I0
n+1 I0

n+1 ⊃ In+1

Table 6.2: Relationship between In, I0
n+1 and In+1 for different switching cases.

continuously leaving a sliding mode in case (c). On the other hand, the functions
λ(t) are continuous in all cases. Let us formalize this observation. From (6.3),
Eq. (6.8b) and the complementarity conditions (6.8d) for i ∈ I(x) it follows
that θi ≥ 0 and λi = 0. Likewise, for i /∈ I(x) it follows that θi = 0 and λi ≥ 0.
Hence, for i ∈ I(x) from (6.8b) and (6.5) we conclude that µ = minj∈J gj(x).

Lemma 6.9. The functions λ(t) and µ(t) in (6.8) are continuous in time.

Proof : The function µ(t) is a minimum of continuous functions and is thus
continuous. Therefore, continuity of λ(t) = g(x(t)) − µ(t)e follows from the
continuity of x(t) and g(x) and Equation (6.8b).

Remark 6.10. Continuity of λ(t) implies that at an active-set change of a
component i at ts,n+1 some λi(ts,n+1) must be zero. Moreover, for some i /∈ In,
in the case of crossing a discontinuity or entering a sliding mode with i ∈ In+1,
it holds that λ̇i(t−s,n+1) < 0. Likewise, in the case of leaving a sliding mode or
a spontaneous switch, with i ∈ In and i /∈ In+1, it follows that λ̇(t+s,n+1) > 0.
If some of the first-order one-sided derivatives of λ(·) are zero at a switching
point ts,n+1, then one must look at higher-order derivatives to determine if it
stays active or not. See the right column of plots in Figure 6.2 for the claims in
this remark.

We exploit the continuity of λ(·) and µ(·) later in the derivation of the FESD
method in the next chapter.

6.2.4 Predicting the new active set

In this subsection, we restate a more technical result from [250], which is later
needed in the convergence proof of the FESD method. The reader not interested
in the proofs may skip this part.

As already noted in Remark 6.10, switches are characterized by the time
derivative of λ(·). Using the analytic expression for the right time derivative

STEWART’S REFORMULATION 157

of λ(·) one can construct a Linear Complementarity Problem (LCP) with the
data at x(ts,n) and predict In.

We define the vector wI(t) := d
dtλI(t) = MI(x(t))θI(t) − µ̇(t)e. Now for the

active set I0
n at a switching point ts,n, one can construct the following mixed

LCP between λ̇I0
n

and θI0
n
:

wI0
n

= MI0
n
(x)θI0

n
− µ̇e, (6.18a)

1 = e⊤θI0
n
, (6.18b)

0 ≤ wI0
n
⊥ θI0

n
≥ 0. (6.18c)

Does this mixed LCP has a solution at all, or is the solution unique depends
on the properties of the matrix MI0

n
(x). Fortunately, the problem can be

formulated into an equivalent one that is simpler to analyze. First, the problem
matrix MI0

n
(x) is altered. For a sufficiently large α > 0 all entries of the matrix

MI,α(x) = MI(x) + αee⊤ are strictly positive. This means the matrix MI,α(x)
is strictly copositive, i.e., for any a ≥ 0, a ̸= 0 it holds that a⊤MI,α(x)a > 0
[89]. Moreover, one can derive an LCP equivalent to (6.18) [250, Lemma 3.3]:

0 ≤ w̃I0
n

= MI0
n,α

(x)θ̃I0
n
− e ⊥ θ̃I0

n
≥ 0. (6.19)

The motivation for rewriting (6.18) as (6.19) is twofold. It is both easier to
prove solution existence and to compute a solution for an LCP with a strictly
copositive matrix than for the initial mixed LCP [250]. The solution of the
initial LCP (wI0

n
, θI0

n
) can be reconstructed via

θI0
n

=
θ̃I0
n

e⊤θ̃I0
n

, wI0
n

=
w̃I0

n

e⊤θ̃I0
n

.

For further details, cf. [250, Lemma 3.3]. Now, there is a one-to-one
correspondence between the active set in a neighborhood of a switching point ts,n
and the solutions of the LCP (6.19). This is summarized in the next theorem.

Theorem 6.11 (Theorem 3.2 [250]). Let x(t) be a solution in the sense of
Definition 6.1 for t ∈ [ta, tb], with I0 = I(x(ta)) and I = I(x(t)) for all
t ∈ (ta, tb). Suppose Assumption 6.6 holds for all t ∈ (ta, tb). Then for each
t ∈ (ta, tb) there is a solution of the LCP (6.19) such that

{i | θ̃i > 0} ⊆ I ⊆ {i | w̃i = 0}.

Conversely, let x0 ∈ Rnx and ta be given with I0 = I(x0). Then if (w̃I0 , θ̃I0) is
a solution of the LCP (6.19) such that

{i | θ̃i > 0} = I = {i | w̃i = 0}

158 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

and the conditions of Assumptions 6.6 are satisfied for ∇gi(x) and fi(x, u),
i ∈ I, then there is a tb > ta and a solution x(·) in the sense of Definition 6.1
on [ta, tb] such that x(ta) = x0 and I(x(t)) = I for all t ∈ (ta, tb).

Regard an LCP

0 ≤Mθ + q ⊥ θ ≥ 0, (6.20)

with M ∈ Rl×l and q ∈ Rl. The given LCP (6.20) is compactly denoted by
LCP(M, q) and its set of solutions is denoted by SOL(M, q) ⊆ Rl. If a solution
satisfies (Mθ + q) + θ > 0, we say that strict complementarity holds.

In the convergence analysis of the FESD method introduced in the next chapter,
we rely on the regularity properties of the LCP (6.19). In particular, to prove
convergence we require the solutions of the LCP to be strongly stable [89, 250].
A solution (w∗, θ∗) ∈ SOL(M, q) of a given LCP(M, q) is said to be strongly
stable if there is a neighborhood U of θ∗ and a neighborhood V of the problem
data M ∈ Rl×l and q ∈ Rl, such that the intersection of U with the solution set
of an LCP constructed from the data from one point in V is a singleton [69].
We state a regularity assumption about the LCP (6.19).

Assumption 6.12. Consider a solution x(t) in the sense of Definition 6.1
for t ∈ [0, T], and let S = {ts,0, . . . , ts,Nsw} be the set of switching points. The
solutions of the LCP (6.19) are strongly stable and satisfy strict complementarity
for all t ∈ [ts − ϵ, ts + ϵ] ∩ [0, T], ts ∈ S, for a sufficiently large ϵ > 0.

The strict complementarity assumption is needed to obtain a tight prediction
of the next active set I, cf. first part of Theorem 6.11. From the proof of [250,
Theorem 3.2] it follows that the strict complementarity condition implies that
the one-sided time derivatives of λi(t), i /∈ I(x(t)) are nonzero, see also Remark
6.10. Without this assumption, one can obtain only an over-approximation of I.
However, it can be relaxed at the cost of looking at higher-order time derivatives
of λi(ts,n), i ∈ I0

n and constructing an appropriate LCP for determining the
active sets past some switching point, cf. [251, Section 4.2] for derivations.
This happens for instance in Example 6.8 (d), where both θ1(t+1) = 0 and
λ̇1(t+1) = 0 at the switching point t1 = 1. Clearly, λ̈1(t+1) > 0 and we can
deduce that I1 = {1}. Strong stability is assumed in order to apply some results
on parametric LCPs. In our case, we will use it to draw the same conclusions
from an LCPs constructed at t and t′, where t and t′ are sufficiently close.

Example 6.13. We illustrate Theorem 6.11 on the example ẋ = 2− sign(x)
with x(0) = −1, cf. first row in Figure 6.2. It is easy to see that ts,1 = − 1

3 and
that the relevant active sets are I0 = {1}, I1 = {2} and I0

1 (ts,1) = {1, 2}. The

STEWART’S REFORMULATION 159

LCP (6.19) for our example at ts,1 reads as

0 ≤ w̃I0
1

=
[

3 + α 1 + α
−3 + α −1 + α

]
θ̃I0

1
− e ⊥ θ̃I0

1
≥ 0.

With α = 5 this LCP has the unique solution θ̃I0
1

= (0, 1
4) and w̃I0

1
= (1

2 , 0) and
according to the last theorem it correctly predicts I1 = {2}.

Some lemmata about parametric LCPs

In this section, we restate three lemmas about LCPs from [250]. They will
be useful in the theoretical analysis of the FESD method. Again, readers not
interested in the convergence theory can skip this section.

The first lemma is about the strong stability of perturbed LCP.

Lemma 6.14 ([250][Lemma A.1]). Suppose that all entries of M are positive in
(6.20) and all solutions of LCP(M, q) are strongly stable. Then any LCP with
the data M̂ and q̂, such that ∥M − M̂∥ and ∥q − q̂∥ are sufficiently small, has
the same number of solutions as LCP(M, q). Moreover, the number of solutions
is finite.

The second lemma is about the active sets of perturbed LCP, where strict
complementarity holds at a solution.

Lemma 6.15 ([250][Lemma A.2]). Suppose that all entries of M are positive
in (6.20) and all solutions of LCP(M, q) are strongly stable. If M̂n → M ,
q̂n → q, then SOL(M̂n, q̂n)→ SOL(M, q), as n→∞, in the Hausdorff metric.
Moreover, if (w, θ) ∈ SOL(M, q), such that w+θ > 0, then there is a (ŵn, θ̂n) ∈
SOL(M̂n, q̂n) for sufficiently large n such that {i | θ̂n,i > 0} = {i | θi > 0}.

The third lemma is about a parametric LCP and its number of solutions.

Lemma 6.16 ([250][Lemma A.3]). Let M(t) and q(t) be continuous functions
where all entries of M(t) are positive and all solutions of LCP(M(t), q(t)) are
strongly stable for all t ∈ [t′, t′′]. Then |SOL(M(t), q(t))| is constant. Moreover,
if LCP(M(t), q(t)) has a unique solution denoted by (w∗(t), θ∗(t)) such that
w∗(t) + θ∗(t) > 0 for all t ∈ [t′, t′′], then I(t) = {i | θ∗

i (t) > 0} is a constant set.

6.2.5 Sum of Filippov systems

The reformulation from the last subsection given by the DCS (6.8) fails on
some simple examples such as: ẋ1 ∈ −sign(x1), ẋ2 ∈ −sign(x2), x ∈ R2. This

160 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

example satisfies the one-sided Lipschitz condition and has a unique Filippov
solution, cf. Theorem 4.10. However, as shown in [252] at (0, 0), the DAE arising
from (6.8) fails to have a unique solution. One can see that ẋ1 ∈ −sign(x1) and
ẋ2 ∈ −sign(x2) are completely independent, and thus they should be treated in
such a way.

Stewart introduced a generalization of his reformulation for such cases in [252].
One should identify the nsys independent subsystems with index k = 1, . . . , nsys,
where each subsystem has nkf modes. We equip all variables related to the k−th
subsystem with the superscript k. Instead of (6.3) one can write

ẋ ∈
{ nsys∑
k=1

nkf∑
i=1

θki f
k
i (x, u) |

nkf∑
i=1

θki = 1, θk ≥ 0, k = 1, . . . , nsys

}
. (6.21)

Finding the functions gk(·) ∈ Rn
k
f from ck(·) ∈ Rn

k
f for every subsystem works

the same way as in Section 6.2.1. Thereby, the regions of every subsystem
are defined via the matrix Sk and the switching functions ck(x) ∈ Rnkc . Every
mode’s convex combination is encoded by its own parametric linear program
(6.7), constructed with the k-th modes’ switching functions gk(x) ∈ Rn

k
f . Thus,

we can derive the DCS

ẋ =
nsys∑
k=1

F k(x, u)θk, (6.22a)

0 = gk(x)− λk − µke, for all k ∈ {1, . . . nsys}, (6.22b)

1 = e⊤θk, for all k ∈ {1, . . . nsys}, (6.22c)

0 ≤ θk ⊥ λk ≥ 0, for all k ∈ {1, . . . nsys}, (6.22d)

where F k(x, u) = [fk1 (x, u), . . . , fk
nk
f

(x, u)] ∈ Rnx×nkf and gk(x) ∈ Rn
k
f , θk ∈ Rn

k
f ,

λk ∈ Rn
k
f and µk ∈ R, for all k ∈ {1, . . . , nsys}. For ease of notation, in the

remainder of the thesis, we treat the case with nsys = 1, as all extensions are
straightforward.

To the best of the author’s knowledge, there are no general conditions known
which identify when the r.h.s. of (4.20) is partially separable as in (6.21) and
there might even be multiple ways to write a system in this form. In practice,
it is usually easy to identify the structure of (6.21) by inspection. For example,
this occurs if we have multiple surfaces with friction, or multiple objects touching
the same frictional surface [252].

STEWART’S REFORMULATION 161

6.2.6 Sensitivities with respect to parameters and initial values

Correct calculation of derivatives of solutions w.r.t. parameters (e.g., discretized
control functions) and initial values is crucial for efficient numerical optimal
control algorithms and verifying the optimality of a solution. For smooth ODEs,
this is discussed in Section 3.2.2. However, this is not straightforward for
ODE with a discontinuous r.h.s., as the sensitivity usually exhibits jumps when
switches happen, cf. Sections 4.2.6 and 5.2. As any constant parameter p̂ can
be modeled via adding the state ṗ = 0 and p(0) = p̂, we restrict our attention
to sensitivities w.r.t. initial values.

Regard the DCS given by Eq. (6.8) on a time interval [0, T] with the initial
condition x(0) = x0. Assume that the surface ∂Rj is reached at ts(x0) ∈ (0, T)
and that x0 ∈ Ri. We regard the case where the solution crosses a co-dimension
one surface of discontinuity ∂Rj . Other cases are when the trajectory: (a)
slides on the surface of discontinuity after reaching it, (b) starts on a surface
of discontinuity and stays on it or leaves it, or (c) goes from one surface to
another. They can be analyzed with the same arguments as below, but we omit
these cases here for brevity, cf. [94, Section 2.11].

In the case of crossing, we have for t ∈ [0, ts) that I(x(t)) = {i} and from (6.8)
it follows that ẋ = fi(x). After crossing ∂Rj at ts we have I(x(t)) = {j} for
t ∈ (ts, T] and ẋ = fj(x). At ts it holds that

ψi,j(x(t)) := gi(x(t))− gj(x(t)) = 0. (6.23)

Thus, the system can be compactly represented by

ẋ(t) =
{
fi(x(t)), ψi,j(x(t)) < 0,
fj(x(t)), ψi,j(x(t)) ≥ 0.

(6.24)

We are interested in the exact sensitivity matrix Sx(t, 0;x0) of a solution x(t;x0)
of the system (6.24), i.e.,

Sx(t, 0;x0) = ∂x(t;x0)
∂x0

∈ Rnx×nx

The function Sx(t, 0;x0) obeys smooth linear variational differential equations,
as in (3.14), on both sides of ts, but exhibits a jump at ts [94]. This is
summarized in the following proposition. The proof is standard and can be
found, for example, in [259].

Proposition 6.17. Regard the system (6.24) with x(0) = x0 ∈ Ri on an interval
[0, T] with a switch at ts ∈ (0, T). Assume that the functions fi(x), fj(x), ψi,j(x)
are continuously differentiable along x(t), t ∈ [0, T]. Assume the solution x(t)

162 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

reaches the surface of discontinuity transversally, i.e., ∇ψi,j(x(ts))⊤fi(x(ts)) >
0. Then the sensitivity Sx(T, 0;x0) of a solution x(t;x0) of the system described
by the ODE (6.24) is given by

Sx(T, 0;x0) = Sx(T, t+s ;x(ts))J(x(ts;x0))Sx(t−s , 0;x0) with

J(x(ts;x0)) := I + (fj(x(ts;x0))− fi(x(ts;x0)))∇ψi,j(x(ts;x0))⊤

∇ψi,j(x(ts;x0))⊤fi(x(ts;x0)) .
(6.25)

Proof. For t < ts, the solution x(t;x0) satisfies the ODE ẋ = fi(x(t;x0)) and
the sensitivity matrix Sx(t, 0;x0) = ∂x(t;x0)

∂x0
obeys (cf. Eq. (3.14))

Ṡx(t) = ∂f(x)
∂x

Sx(t), Sx(0) = I.

At t = ts the solution reaches the surface of discontinuity:

ψi,j(x(ts(x0;x0))) = 0. (6.26)

For t > ts, one has y(t) = f∗(y(t; y0)) which is related to the solution via

y(t; y0) = x(t+ ts(x0);x0), y0(x0) = x(ts(x0);x0). (6.27)

Note that y(t− ts(x0);x0) = x(t;x0). Therefore, the sensitivity, for t > ts can
be computed via

Sx(t, 0;x0) = ∂x(t, x0)
∂x0

= ∂y(t− ts(x0)); y0(x0)
∂x0

= ∂y(t− ts
∂t

∂ts(x0)
∂x0

⊤
+ Sy(t− ts; y0)∂y0(x0)

∂x0
,

= −f∗(x(t))∂ts(x0)
∂x0

⊤
+ Sy(t− ts; y0)∂y0(x0)

∂x0
,

(6.28)

We can compute ∂y0(x0)
∂x0

at t = t−s using (6.27)

∂y0(x0)
∂x0

= ∂x(ts(x0);x0)
∂x0

= fi(x)∂ts(x0)
∂x0

⊤
+ Sx(t−s , 0;x0). (6.29)

Using the implicit function theorem (cf. [85, Theorem 1B.1]) for (6.26), again
at t = t−s we obtain

∂ts(x0)
∂x0

⊤
= −∇ψi,j(x(ts(x0;x0)))⊤Sx(t−s , 0;x0)

∇ψi,j(x(ts(x0;x0)))⊤fi(x) . (6.30)

HEAVISIDE STEP REFORMULATION 163

Let t→ t+s in (6.28), then Sy(t− ts; y0)→ I. Plugging (6.29) and (6.30) into
(6.28) for the remaining unknown terms we obtain

Sx(t+s , 0;x0) = f∗(x(t))∇ψi,j(x(ts(x0;x0)))⊤Sx(t−s , 0;x0)
∇ψi,j(x(ts(x0;x0)))⊤fi(x)

− fi(x)∇ψi,j(x(ts(x0;x0)))⊤Sx(t−s , 0;x0)
∇ψi,j(x(ts(x0;x0)))⊤fi(x) Sx(t−s , 0;x0) + Sx(t−s , 0;x0)

(6.31)

Finally, from the chain rule we have Sx(T, 0, x0) = Sx(T, t+s , x0)Sx(t+s , 0, x0)
and (6.31) we obtain (6.25).

This proposition can also be adapted to the case of sliding modes. We obtain
similar expressions for the sensitivity jump formula as in (6.25). The only
change needed to be made is to replace fj(x) with f∗(x), where f∗(x) defines
the sliding vector field [93].

We have seen in Section 5.2 that numerical sensitivities obtained via standard
methods fail to converge to their correct values (6.25). This may impair the
progress of the optimizer. Hence, special care is needed when discretizing
Filippov systems to solve optimal control problems.

6.3 Heaviside step reformulation

In this section, we present an alternative to Stewart’s approach to passing from
the Filippov DI (6.3) to a dynamic complementarity system. At the core of
the transformation is a linear program whose solution map corresponds to the
set-valued Heaviside step function, which we for brevity, often call step function.
It is no surprise that also this DCS has similar properties to the one derived in
the previous section. However, depending on the shape and description of the
regions Ri, one formulation might be advantageous over the other.

Smoothed single-valued versions of the step function are commonly used in the
numerical treatment of piecewise smooth systems [34, 119, 190]. Here, the key
idea is to use the nonsmooth set-valued step function to determine in which
region or on what boundaries the trajectory is. The arguments of the step
functions are the usual switching functions ψ(x) and the Filippov multipliers θ
are obtained as products of all relevant step functions and their complements.
Moreover, the set-valued step functions allow us to formulate even more general
DIs than Filippov DIs, e.g., Aizerman–Pyatnitskii systems [Chapter 2][94]. They
arise from the modeling of logical conjunctions within a dynamical system, where
the Boolean variables are replaced by step functions or a smooth approximation
of it. A popular example of the use of step functions in PSS is gene-regulatory

164 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

networks [6, 190]. Another common use of step functions is to express Filippov
sets in sliding modes of co-dimension higher than one [73, 74]. In this case,
the step function reformulation acts as a nonlinear change of coordinates and
one obtains a system that is often easier to study than the initial Filippov DI.
For example, this approach yields provably unique sliding vector fields in many
cases for sliding modes of co-dimension 2 [73, 74]. For higher co-dimensions, at
least the existence of the sliding modes can be guaranteed [74].

6.3.1 Set-valued Heaviside step functions

The set-valued version of the Heaviside step function, denoted as γ : R→ P(R),
is defined as follows:

γ(y) =

{1}, y > 0,
[0, 1], y = 0,
{0}, y < 0.

(6.32)

Here P(R) represents the power set of R. The set-valued Heaviside step
function, often referred to simply as the step function, provides an intuitive way
to model Boolean relationships within a dynamical system. In the modeling
process, switching functions ψi : Rnx → R, for i = 1, . . . , nψ, are commonly
used as arguments of the step functions. We denote the concatenation of all
scalar Heaviside step functions as Γ(ψ(x)) := (γ(ψ1(x)), . . . , γ(ψnψ (x))), where
ψ(x) = (ψ1(x), . . . , ψnψ (x)). Let us denote by α ∈ Rnc a selection α ∈ Γ(y).

Let ψ(x) be a continuous function of x, where x(t) is some continuous function
of time. A well-known way to express the function Γ(ψ(x)) [6, 28] is the use of
the solution map of the parametric linear program:

Γ(ψ(x)) = arg min
α∈Rnψ

− ψ(x)⊤α (6.33a)

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nψ. (6.33b)

Note that all components of α are decoupled in this LP, i.e., every αi can be
obtained by solving a one-dimensional LP with the objective −ψi(x)αi and the
feasible set 0 ≤ αi ≤ 1. Let λn, λp ∈ Rnψ be the Lagrange multipliers for the
lower and upper bound on α in (6.33b), respectively. The KKT conditions of
(6.33) read as

ψ(x) = λp − λn, (6.34a)

0 ≤ λn ⊥ α ≥ 0, (6.34b)

HEAVISIDE STEP REFORMULATION 165

0 ≤ λp ⊥ e− α ≥ 0, (6.34c)

Let us look at a single component αj and the associated functions ψj(x). From
the LP (6.33) and its KKT conditions, one can see that for ψj(x) > 0, we have
αj = 1. Since the upper bound is active, we have that λn

j = 0 and from (6.34a)
that λp,j = ψj(x) > 0. Likewise, for ψj(x) < 0, we obtain αj = 0, λp

j = 0 and
λn
j = −ψj(x) > 0. On the other hand, ψj(x) = 0 implies that αj ∈ [0, 1] and
λp
j = λn

j = 0. From this discussion, it can be seen that ψ(x), λn and λp are
related by the following expressions:

λp = max(ψ(x), 0), λn = −min(ψ(x), 0). (6.35)

That is, λp collects the positive parts of ψ(x) and λn the absolute value of the
negative parts of ψ(x). From this relation, we can immediately conclude the
following:

Lemma 6.18. Let ψ(x(t)) be a continuous function of time, then the functions
λp(t) and λn(t) are continuous in time.

6.3.2 Aizerman–Pyatnitskii differential inclusions

So far we have introduced dynamic complementarity and Filippov systems. Now
we introduce another special case of the discontinuous ODE (4.14) and relate it
to the others later with the help of Heaviside step functions. Regard and ODE
with DRHS of the form of:

ẋ = f(x, u, v(x)), (6.36)

where f : Rnx × Rnu ∈ Rnv is continuous in all arguments, but v(x) is
discontinuous, e.g. it could be the usual single-valued Heaviside step function.
Such systems appear commonly in sliding mode control or the modeling of
gene-regulatory networks [6]. It is assumed that at each point of discontinuity,
for the components vi(x) a closed convex set Vi(x) is given, out of which the
corresponding arguments of (6.36) take their values. Hence, one can define the
following differential inclusion:

ẋ ∈ FAP(x, u) :=
{
f(x, u, v) | vi ∈ Vi(x), i = 1, . . . , nv

}
. (6.37)

The set FAP(x, u) is in general nonconvex, except in some special cases. For
example, FAP(x, u) is convex if v(x) enters the r.h.s. of (6.36) linearly and V (x)
is closed convex. The DI (6.37) does not have as rich a theory as Filippov DIs,
and there are fewer results available on the existence of solutions and convergence
of numerical methods [6]. These systems are called Aizerman–Pyatnitskii DIs,

166 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

cf. [6] and [94, page 55, Definition c]. Time-stepping methods for such systems
were developed in [6].

In this thesis, we focus on the case where the functions Vi(x) are given by
set-valued Heaviside step functions. In particular, we regard the DI where
V (x) = Γ(ψ(x)), which can be written as:

ẋ ∈ F(x, u,Γ(ψ(x))). (6.38)

6.3.3 Filippov set expressed via Heaviside step functions

Next, we derive the expression for the Filippov set via set-valued step functions
and the associated DCS. For the readers’ convince we restate the Filippov DI
(6.3) for the PSS (6.1):

ẋ ∈ FF(x, u) =
{∑
i∈J

fi(x, u) θi |
∑
i∈J

θi = 1, θi ≥ 0, θi = 0 if x /∈ Ri,∀i ∈ J
}
.

(6.39)

The next question we address is: How can we find an (implicit) function of x
for computing the Filippov multipliers θ in (6.39)? To derive such functions, we
will make use of the set-valued step functions and the definition of the regions
Ri, which are expressed via the switching functions ψj(x) as in Definition 6.3.
We assume that the regions of the PSS are equal to the basis regions R′

i defined
in Definition 6.3, i.e., Ri = R′

i for i = 1, . . . , 2nψ . Moreover, we assume the
functions ψj(·) to be Lipschitz continuous, sufficiently differentiable and that
∇ψ(x) = ∂ψ(x)

∂x

⊤
∈ Rnx×nψ has rank nψ.

For the sake of clarity, we start by illustrating what we want to achieve on a
simple example and give in the sequel the general expression.

Example 6.19 (Step representation). We regard a PSS with four regions
defined via two scalar switching functions ψ1(x) and ψ2(x). The regions are
equal to the base sets from Definition 6.3 and read as R1 = {x ∈ Rnx | ψ1(x) >
0, ψ2(x) > 0}, R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) < 0}, R3 = {x ∈ Rnx |
ψ1(x) < 0, ψ2(x) > 0} and R4 = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0}. The
corresponding sing matrix S ∈ R4×2 read as

S =

1 1
1 −1
−1 1
−1 −1

 .

HEAVISIDE STEP REFORMULATION 167

The corresponding Filippov system (defined by (6.3) reads as:

ẋ ∈ {
4∑
i=1

θifi(x) | θ ≥ 0,
4∑
i=1

θi = 1, θi = 0, if x /∈ Ri}. (6.40)

Let x ∈ R1, then α1 ∈ γ(ψ1(x)) = {1} and α2 ∈ γ(ψ2(x)) = {1}, thus
θ1 = α1α2 = 1. On the other hand, by direct evaluation of the step functions,
one can see that θ1 = α1α2 = 0 if x /∈ R1, since at least one of the selections α1
or α2 is zero. Similarly, for x ∈ R2, we observe that α1 ∈ γ(ψ1(x)) = {1} and
α2 ∈ γ(ψ2(x)) = {0} and we can set θ2 = α1(1− α2) = 1. By direct evaluation
of we can see that θ2 > 0 if x ∈ R2 and θ2 = 0, otherwise. Following the same
pattern, we conclude that θ3 = (1− α1)α2 and θ4 = (1− α1)(1− α2). Thus, we
can define the system

ẋ ∈
{
α1α2f1(x) + α1(1− α2)f2(x) + (1− α1)α2f3(x) + (1− α1)(1− α2)f4(x)

| α1 ∈ γ(ψ1(x)), α2 ∈ γ(ψ2(x))
}
.

(6.41)

Since α1, α2 ∈ [0, 1] it is clear that θi ∈ [0, 1], i ∈ {1, . . . , 4}. Moreover, direct
calculation shows that

∑4
i=1 θi = 1. Therefore, we conclude that the sets in the

r.h.s. of (6.40) and (6.41) are the same sets, i.e., we can express the Filippov
set via set-valued Heaviside step functions.

Furthermore, we can observe how the sign pattern in S determines how αj
enters the expression for θi. For Si,j = 1 we have αj, for Si,j = −1 we have
(1 − αj). In summary, the definition of θi consists of products of of αj and
(1− αk), i.e., it is multi-affine in the selections αj, j = 1, . . . , nψ.

We generalize the patterns observed in the previous example and define the set

FH(x, u) :=
{ nf∑
i=1

nψ∏
j=1

(1− Si,j
2 + Si,jαi

)
fi(x, u) | α ∈ Γ(ψ(x))

}
. (6.42)

Note that we have

1− Si,j
2 + Si,jαi =

{
αi, if Si,j = 1,
1− αi, if Si,j = −1.

Similar definitions of FH(x, u) as in (6.42) can be found in [74, Section 4.2]
and [119, Section 2.1]. Observe that this set has the same form as the r.h.s.
FAP(x, u) in (6.37). Next, we show that FH(x, u) is indeed the same set as
FF(x, u), i.e., the set in the r.h.s. of (6.3).

168 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

Lemma 6.20 (Lemma 1.5 in [74]). Let a1, a2, . . . , am ∈ R. Consider the 2m
non-repeated products of the form pi = (1 ± a1)(1 ± a2) · · · (1 ± am), then it
holds that

∑2m
i=1 pi = 2m.

Proposition 6.21. Let

θi =
nψ∏
j=1

(1− Si,j
2 + Si,jαj

)
, for all i ∈ J = {1, . . . , nf}, (6.43)

then it holds that FF(x, u) = FH(x, u).

Proof. We only need to show that θi ≥ 0 for all i ∈ J and
∑
i∈J θi = 1. It

is easy to see that θi ∈ [0, 1] since it consists of a product of terms that takes
value in [0, 1].

Without loss of generality, regard θ1 and suppose that x /∈ R1. This means that
x ∈ Ri, i ≠ 1 and that at least one ψj(x) < 0, j ∈ C, which implies that αj = 0.
From (6.43) it follows that θ1 = 0 if x /∈ R1. By similar arguments it follows
that θi = 0 if x /∈ Ri for i = 1, . . . , nf .

Next we show that
∑
i∈J θi = 1. We introduce the change of variables:

1 + bj
2 = αj ,

1− bj
2 = 1− αj .

Then all θi are of the form

θi = 2−nψ
nψ∏
j=1

(1± bj).

By applying Lemma 6.20, we conclude that
∑
i∈J θi = 1 and the proof is

complete.

To pass from the definition in Eq. (6.42) to a dynamic complementarity system,
we state the KKT conditions of (6.33) to obtain an algebraic expression for
Γ(ψ(x)). Combining this with the definition of the Filippov set in (6.42) and
the expression for θi in (6.43), we obtain the following DCS:

ẋ = F (x, u) θ, (6.44a)

0 = θi −
nψ∏
j=1

(1− Si,j
2 + Si,jαj

)
, for all i ∈ J , (6.44b)

0 = ψ(x)− λp + λn, (6.44c)

HEAVISIDE STEP REFORMULATION 169

0 ≤ λn ⊥ α ≥ 0, (6.44d)

0 ≤ λp ⊥ e− α ≥ 0, (6.44e)

where F (x, u) = [f1(x, u), . . . , fnf (x, u)] ∈ Rnx×nf , θ = (θ1, . . . , θnf) ∈ Rnf and
λp, λn, α ∈ Rnψ . We group all algebraic equations into a single function and
use a C-function Ψ(·, ·) for the complementarity condition to obtain a more
compact expression:

G(x, θ, α, λp, λn) :=

θ1 −
∏nψ
j=1

(
1−S1,j

2 + S1,jαj

)
...

θnf −
∏nψ
j=1

(1−Snf ,j
2 + Snf ,jαj

)
ψ(x)− λp + λn

Ψ(λn, α)
Ψ(λp, e− α)

. (6.45)

Finally, we obtain a compact representation of (6.44) in the form of a nonsmooth
DAE:

ẋ = F (x, u)θ, (6.46a)

0 = G(x, θ, α, λp, λn). (6.46b)

6.3.4 Active-set changes and continuity of λp and λn

Active-set changes are paired with discontinuities in some of the algebraic
variables. We have already seen in Section 6.2.3 that θ(t) is usually a
discontinuous function of time. The LP Lagrange multipliers λ and µ in
Stewart’s reformulation are continuous functions of time. We have seen above
that the same holds for λp and λn. We can exploit this property for the
development of numerical simulation methods in the next chapter.

At an active-set change, we at least one of the switching functions ψj(x)
either becomes zero, or if it was zero it becomes nonzero. It follows from
ψj(x(t)) = λp

j (t)−λn
j (t) (in (6.35)), that also both λp

j (t) and λn
j (t) must be zero

at an active-set change. Thus, they have qualitatively the same properties as λ
in Stewart’s formulation, cf. Section 6.2.3. We illustrate the different switching
cases from Example 6.8 now with the DCS formulation via step functions in
Figure 6.3. Whenever x(t) has a kink, which corresponds to a switch and
discontinuity in the dynamics, both the Lagrange multipliers λp(t) and λn(t)
are zero at that time.

170 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

0 1 2
-2

-1

0

1

2

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

1.5

2

0 1 2
-1

-0.8

-0.6

-0.4

-0.2

0

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

0 1 2
0

0.2

0.4

0.6

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2
-0.2

0

0.2

0.4

0.6

0 1 2
0

0.5

1

1.5

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.5

1

Figure 6.3: Illustration of example solution trajectories for different switching
cases. The rows from top to bottom show x(t), α(t), λp(t) and λn(t) for the
cases (a)-(d) in Example 6.8, respectively.

6.3.5 Fixed active set in the Heaviside step formulation

We study the properties of the DCS (6.44) for a fixed active set I(x(t)). Without
loss of generality, the corresponding time interval is T = (0, T). For a fixed
active set, the DCS (6.44) reduces either to an ODE or to a Differential Algebraic

HEAVISIDE STEP REFORMULATION 171

Equation (DAE).

We start with the simpler ODE case. Let ψj(x) ̸= 0 for all j ∈ C := {1, . . . , nψ},
then x(t) is in the interior of some region Ri. It can be seen from the LP (6.33)
that αj ∈ {0, 1} for all j ∈ C. This implies that θi = 1 and θk = 0, k ̸= i.
Therefore, I(x(t)) = {i} and the Filippov DI reduces to ẋ ∈ FF(x) = {fi(x)},
i.e., we have locally an ODE.

Next, we regard the case when I(x(t)) is not a singleton, i.e., the trajectory
evolves at the boundary of two or more regions. Consequently, we have at least
one ψj(x) = 0. Let us associate with I(x(t)) the index set K(x(t)) = {j ∈ C |
ψj(x) = 0}, i.e., the set of indices of all switching functions that are zero for a
given active set I(x(t)).

In the sequel, we make use of the following notation. For a given vector a ∈ Rn
and set I ⊆ {1, . . . , n}, we define the projection matrix PI ∈ R|I|×n, which has
zeros or ones as entries. It selects all component ai, i ∈ I from the vector a, i.e.,
aI = PIa ∈ R|I| and aI = [ai | i ∈ I].

Following the discussion from the previous section, for all nonzero ψj(x), i.e.,
j ∈ C \ K, we can compute αj ∈ {0, 1} via the LP (6.33) and λp,j , λn,j via
(6.35). Next, we have that λp,j = λn,j = 0 for all j ∈ K. It is left to determine
αj for all j ∈ K and thus implicitly all θi, for all i ∈ I. Recall that θi = 0 for
all i /∈ I. By fixing the already known variables in (6.44) we obtain the DAE:

ẋ = FI(x, u) θI , (6.47a)

θi −
nψ∏
j=1

(1− Si,j
2 + Si,jαj

)
= 0, i ∈ I, (6.47b)

ψj(x) = 0, j ∈ K, (6.47c)

where we define FI(x, u) := F (x, u)P⊤
I ∈ Rnx×|I| , i.e., we select only the

columns of F (x, u) with the index i ∈ I. Note that αj for all j ∈ C \ K are
known and thus no degrees of freedom. We keep them for ease of notation.
Thus we have a DAE with |I|+ |K| unknowns, namely θI ∈ R|I| and αK ∈ R|K|,
and |I|+ |K| algebraic equations in (6.47b) and (6.47c).

Next, we investigate conditions under which the DAE (6.47) is well-posed. For
this purpose, we define the matrix

WK,I(x, u) = ∇ψK(x)⊤FI(x, u) ∈ R|K|×|I|,

where ∇ψK(x) =
[
∇ψj(x) | j ∈ K

]
∈ Rnx×|K| is a matrix, whose columns are

the gradients of the switching functions that are zero for the given active set

172 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

I. Moreover, we define a compact notation for the partial Jacobian BK,I(α) ∈
R|I|×|K| of (6.47b) w.r.t. to αK, with the elements:

Bi,j(α) := ∂

∂αj

∏
l∈C

1− Si,l
2 + Si,lαl, i ∈ I, j ∈ K.

Assumption 6.22. Given a fixed active set I(x(t)) = I for t ∈ T , it holds
that the matrix functions WK,I(x, u) and BK,I(α) are Lipschitz continuous, and
that WK,I(x, u)BK,I(α) has rank |K|, i.e. it is full rank, for all t ∈ T .

Proposition 6.23. Suppose that Assumption6.22 holds. Given an initial value
x(0), the DAE (6.47) has a unique solution for all t ∈ T .

Proof. First, we differentiate (6.47c) with respect to t, such that algebraic
variables appear explicitly in the algebraic equations (this correspond to so-
called index reduction in the theory of DAEs, cf. [126]):

ẋ = FI(x, u) θI , (6.48a)

θi −
∏
j∈C

1− Si,j
2 + Si,jαj = 0, i ∈ I, (6.48b)

WK,I(x, u)θI = 0. (6.48c)

Next, we prove that the partial Jacobian of (6.48b)-(6.48c) w.r.t. to the algebraic
variables (θI , αK) has rank |I|+ |K|, i.e., it is an invertible matrix. We omit
the dependencies on α and x for brevity. The Jacobian of (6.48b)-(6.48c) w.r.t.
to (θI , αK) has the form

A =
[
I|I| −BK,I
WK,I 0

]
.

To prove that this matrix has full rank, we show that the only solution (v, w) ∈
R|I| × R|K|, to the following linear system is the zero vector:[

I|I| −BI,K
WK,I 0

] [
v
w

]
= 0. (6.49)

From the first line we have v = BI,Kw and substituting this into the second line
we have WI,KBI,Kw = 0. Since the matrix WI,KBI,K ∈ R|K|×|K| has rank |K|,
the only solution to (6.49) is w = 0, and v = Bw = 0. Hence, A has full rank.

Now we can apply the implicit function theorem [85, Theorem 1B.1] to (6.48b)-
(6.48c), which guarantees the existence of continuously differentiable functions

HEAVISIDE STEP REFORMULATION 173

θI(x) and αK(x). Since the function θI(x) is continuously differentiable, it is
also Lipschitz continuous for a fixed I(x(t)) on t ∈ T . By substituting θI(x) into
(6.48a), we have a product of two Lipschitz continuous functions (all columns
of FI(x, u), are Lipschitz by assumption), and the DAE (6.48) reduces to an
ODE with a Lipschitz continuous r.h.s. This enables us to apply Theorem 3.3
to obtain the assertion of the proposition.

We make a few comments on Assumption 6.22. The rank condition can be
checked explicitly, since one can simply compute the matrix WK,I(x, u)BK,I(α).
We have already assumed Lipschitz continuity of all columns of fi(x, u) and of
the gradients ∇ψj(x). Here we additionally assume it for the matrix WK,I(x, u),
whose entries are computed as inner products on these vectors. The entries of
the matrix BK,I(α) are multi-affine terms, which are also Lipschitz, at least on
the bounded domains we consider here. In Stewart’s reformulation, we consider
a square matrix with entries ∇gi(x)⊤fj(x, u) (which is structurally similar to
WK,I(x, u)). For well-posedness with a fixed active set, the invertibility of this
matrix is assumed [213, ?].

In [74], the authors make some assumptions on the signs of the entries of WK,I(x)
and prove the existence, but not uniqueness, of solutions with a fixed-point
argument. For the case of |K| ≤ 2, i.e., sliding modes with co-dimension one
or two, and with additional assumptions on the signs of the entries of WK,I(x)
they even prove the uniqueness of solutions.

Observe that for a given x(t), there might be several I(x(t)) that yield
meaningful DAEs of the form of Eq. (6.47). This may happen when the
Filippov DI does not have unique solutions, such as in Example 6.8 case (d).

The trajectory may stay in sliding mode or leave it any point of time. The
trajectory pieces in either scenario are well-posed, even thought the overall
trajectory is not unique.

6.3.6 Predicting a new active set

Recall that in Stewart’s reformulation, we have I(x) = {i ∈ J | gi(x) =
minj∈J gj(x)}. The definition of I(x) via the switching functions cj(x) is
slightly more involved. This can be seen from the definition:

I(x) = {i ∈ J | θi > 0}, (6.50)

174 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

and the fact that θi is related to the functions cj(x) in a more complicated way.
Using Eq. (6.43) and (6.50) we obtain:

I(x) =
{
i ∈ J |

nψ∏
j=1

(1 + (2αj − 1)Si,j
2

)
γ(ψj(x)) > 0

}
.

The LCP in Theorem 6.11 is constructed from the total time derivative of λ.
Here, we would need to use the total time derivatives of λp and λn. It is clear
from Eq. (6.44) we cannot easily obtain an LCP which relates λ̇p, λ̇n and θ.
Therefore, we omit to derive such an auxiliary problem for predicting the next
active set at a switching point. The price we pay is that we need slightly more
restrictive assumptions to prove the convergence of the FESD scheme for the
step reformulation (6.44). However, omitting this step has no consequences for
the derivation of the FESD method (6.44) nor is it used in the computations.

6.3.7 Efficient modeling with Heaviside step functions

In this section, we show how to efficiently represent common geometries of the
PSS regions with the use of step functions. This is useful for reducing the
complexity of the modeling process. Moreover, we introduce a lifting algorithm,
which makes the multi-affine terms for the Filippov multipliers with the help of
auxiliary variables less nonlinear.

Overview of expressions for θ via step functions

Table 6.3 provides an overview of how are the elementary algebraic expressions
for the multipliers θi are related to the geometric definition of a region Ri. For
this purpose, we regard the following two sets: A = {x | ψA(x) > 0}, B =
{x | ψB(x) > 0}, and let αA ∈ γ(ψA(x)) and αB ∈ γ(ψB(x)). All other more
complicated expressions can be obtained by using the one listed in Table 6.3.

Remark 6.24 (Sum of Filippov systems). In practice, one often encounters DIs
that arise from the sum of several Filippov systems. This occurs, for example,
if we have multiple surfaces with friction, or multiple objects touching the same
frictional surface [252]. All developments from this section can be extended to
this case and are implemented in nosnoc. For the sake of brevity, we omit the
corresponding equations as they follow similar lines as those derived in Section
6.2.5.

HEAVISIDE STEP REFORMULATION 175

Definition of Ri Expression for
θi

Sketch

Ri = A θi = αA

Ri = A ∪B θi = αA + αB

Ri = A ∩B θi = αAαB

Ri = int(Rnx \ A) = {x |
ψA(x) < 0}

θi = 1− αA

Ri = A \B θi = αA − αB

Table 6.3: Expressions of θi for different definitions of Ri.

6.3.8 A lifting algorithm for the multi-affine terms

Depending on the size of the matrix Si,• has, the expression for θi in Eq. (6.43)
might be very nonlinear since it is a product of nψ affine terms. To reduce the
nonlinearity, we introduce auxiliary lifting variables as in the lifted Newton’s
method [8], which iterates on a larger but less nonlinear problem. We apply
this approach to the expressions in Eq. (6.43) involving multi-affine terms with
αj . Whenever we have more than two terms in the multi-affine expression for
θi, we introduce lifting variables βk to end up with an equivalent formulation,
which has only bilinear terms. We exploit the structure of the matrix S and
derive an easy-to-implement algorithm that automates the lifting procedure.
To give an idea of the final results we aim to obtain, we illustrate the lifting
procedure with a simple example.

Example 6.25. Regard a PSS with nψ = 3 switching functions and nf = 8
modes, i.e., the PSS regions match the basis sets, Ri = R̃i, i = {1, . . . , 8}. The

176 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

matrix S ∈ R8×3, and the expression for the multipliers θ ∈ R8 read as

S =

1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1

, GF(θ, α) =

θ1 − α1α2α3
θ2 − α1α2(1− α3)
θ3 − α1(1− α2)α3

θ4 − α1(1− α2)(1− α3)
θ5 − (1− α1)α2α3

θ6 − (1− α1)α2(1− α3)
θ7 − (1− α1)(1− α2)α3

θ8 − (1− α1)(1− α2)(1− α3)

= 0

We can introduce the lifting variable β ∈ R4 and obtain

Gβ(α, β) =

β1 − α1α2

β2 − α1(1− α2)
β3 − (1− α1)α2

β4 − (1− α1)(1− α2)

 = 0, Gθ(θ, α, β) =

θ1 − β1α3
θ2 − β1(1− α3)
θ3 − β2α3

θ4 − β2(1− α3)
θ5 − β3α3

θ6 − β3(1− α3)
θ7 − β4α3

θ8 − β4(1− α3)

= 0

The equation Gβ(α, β) = 0 relates the lifting variables βi with the αj, whereas
Gθ(θ, α, β) provides new expressions for θi via βi and the remaining αj. By
replacing GF(θ, α) = 0 with Glift(θ, α, β) := (Gβ(α, β), Gθ(θ, α, β)) = 0, we
obtain an equivalent system of equations that only consists of bilinear terms.

We proceed by outlining a general lifting algorithm. The expressions for θi
consist of the product of nψ affine terms. Our goal is to have at most nd terms
in the multi-affine expression for θi. For example, if we pick nd = 2, we have
only bilinear expressions in the equations defining θ and β. Thus, the parameter
nψ ≥ nd ≥ 2, controls the number of terms in the multi-affine expressions and
implicitly the number of new lifting variables β ∈ Rnβ . Given the matrix S, our
goal is to automatically obtain the constraint Glift(θ, α, β) = 0.

The algorithm outlined above can be implemented using a symbolic framework
such as CasADi [9]. We provide the pseudo code in Algorithm 1, which introduces
the lifting algebraic variables β and new lifted expressions for θi, namely
Glift(θ, α, β). Note that we make use of three helper variables, the matrix S̃
and the vectors θ̃ and Ñ . The matrix S̃ is a submatrix of S, where we have
removed the rows with index i, for which we already have a (lifted) expression
for θi. The vector Ñ , defined in line 4, collects the number of nonzero entries
of every row S̃. In other words, it keeps track of how many terms are in the
initial expressions for θi, that are not yet lifted.

HEAVISIDE STEP REFORMULATION 177

Algorithm 1 Lifting algorithm for the step DCS (6.44)
1: Input: S, nd
2: Initialize: S̃ ← S, k ← 0; θ̃ ← e ∈ Rnf , Gθ(θ, α, β)← [], Gβ(α, β)← [].
3: for j = 1 : nψ do
4: Ñ ←

∑nψ
j=1 |S̃•,j |

5: Ij ← {i | Ñi = j}
6: θ̃ ← θ̃ ·

(
e−S̃•,j

2 + Stemp
•,j · αj

)
7: if Ij ̸= ∅ then
8: Gθ(θ, α, β)← (Gθ(θ, α, β), θk+Ij − θ̃Ij)
9: Remove entries of θ̃ with index in Ij

10: Remove rows of S̃ with index in Ij
11: k ← k + max(Ij)
12: end if
13: if j ∈ {nd, . . . , nψ − 1} then
14: {Ired, Ifull} = unique(S̃•,{1,...,j}),
15: β ← (β, βj) where βj ∈ R|Ired|

16: Gβ(α, β)← (Gβ(α, β)βj − θ̃Ired)
17: θ̃ ← βjIfull
18: end if
19: end for
20: GLift(θ, α, β) := (Gθ(θ, α, β), Gβ(α, β))
21: Output: GLift(θ, α, β) , β

The main loop iterates from j = 1 to nψ and provides in every iteration the
expressions for all θi that have exactly j terms in their multi-affine expression.
The index set Ij = {i | Ñi = j}, defined in line 5, contains the indices of θ, that
have exactly j entries in their corresponding multi-affine expression. In line 6,
we define the auxiliary variable θ̃, which stores the intermediate expressions for
θ with up to j terms in the product. The index k stores the index of the last
θk for which a lifted expression was derived. For j ≤ nd the expressions for θi
are unaltered. This is treated in lines 7-11.

As soon as j > nd, the algorithm introduces new lifting variables βj (line 15)
and changes the expression for θ̃ accordingly. This is done in lines 13-17. A key
tool is the function unique in line 14. It is available in MATLAB and in the numpy
package in python. It works as follows, given a matrix A ∈ Rm×n it returns
the matrix Ã ∈ Rp×n, with p ≤ m. This is the matrix constructed from A by
removing its repeating rows. More importantly for our needs, it returns the
index sets Ired and Ifull, with |Ired| = p and |Ifull| = m. The index sets have
the properties A =

[
Ãi,• | i ∈ Ifull

]
∈ Rm×n and Ã =

[
Ai,• | i ∈ Ired ∈ Rp×n].

178 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

Method nf nβ nalg ncomp neq
Stewart 2nψ 0 2 · 2nψ+1 2nψ 2nψ+1

Heaviside [2, 2nψ]
{

2nψ−2nd , nd≤nψ
0, nd > nψ

nf+3nψ+nβ 2nψ nψ+nβ+nf

Table 6.4: Comparisons of the problem sizes in Stewart’s and the step
reformulation for a fixed nψ.

This enables the use of the same βj for several θi if they share the same terms
in the corresponding multi-affine expressions, cf. lines 15-17. After the loop
is finished, the algorithm outputs GLift(θ, α, β) and β. One can verify that
Algorithm 1 produces the same output as Example 6.25. It can be shown, that
for a given nd < nψ, the total number of new lifting variables is nβ = 2nψ − 2nd .

6.3.9 Comparisons of Stewart’s and the Heaviside step
reformulation

We compare Stewart’s reformulation (6.8) and the Heaviside step reformulation
(6.44) based on their total number of algebraic variables, complementarity
constraints, and equality constraints for a given number of switching functions
nψ. The total number of regions (and multipliers θi) in Stewart’s reformulation
is always nf = 2nψ . In this reformulation, in order to reduce the number of
multipliers θi, we cannot exploit the setting if regions Ri are defined as unions
of basis sets R̃j , cf. Section 6.2. On the other hand, in the step reformulation,
depending on the geometry of the regions Ri, nf is an integer in [2, 2nψ]. In
the step reformulation, we may introduce nβ lifting variables to reduce the
nonlinearity. If nd > nψ, this leads to nβ = 2nψ−2nd additional lifting variables
and equations.

Regarding the number of algebraic variables, in Stewart’s reformulation, we have
λ ∈ R2nψ and µ ∈ R. In the step reformulation, we have α, λp, λn ∈ Rnψ . Thus,
the total number of algebraic variables in the former case is nalg = 2 · 2nψ + 1,
and in the later case nalg = nf + 3nψ + nβ . The number of complementarity
constraints ncomp in Stewart’s case is ncomp = 2nψ , and in the step case
ncomp = 2nψ, i.e., we have exponential versus linear complexity. Finally, in
Stewart’s reformulation, we have in total neq = 2nψ + 1 equality constraints
(gi(x) = λi − µ and e⊤θ = 1). In the step case, we have neq = nf + nβ + nψ
constraints, for the definitions of θi, βi and the constraints ψi(x) = λp

i − λn
i ,

respectively. The numbers of variables and constraints are summarized in
Table 6.3.9.

HEAVISIDE STEP REFORMULATION 179

0 5 10

nA

100

102

n
f

Stewart
Heaviside - worst
Heaviside - best

0 5 10

nA

102

n
al

g

Stewart
Heaviside - worst
Heaviside - best

0 5 10

nA

100

102

n
co

m
p

Stewart

Heaviside

0 5 10

nA

100

102

104

n
eq

Stewart
Heaviside - worst
Heaviside - best

Figure 6.4: Comparisons of the complexities of Stewart’s and the Heaviside step
reformulation.

Figure 6.4 illustrates the different quantities for several nψ. We plot for the
step reformulation two extreme scenarios:

1. Worst complexity case - every basis set defines a PSS region, nf = 2nψ ,
we lift to have only bilinear terms, i.e., nd = 2 (maximizes the number of
lifting variables).

2. Best complexity case - o no lifting and only two regions (nf = 2) for all
nψ.

Note that in both cases the step reformulation has the same number of
complementarity constraints. For smaller values of nψ, both reformulations
have similar complexity. For a large number of switching functions, the step
reformulation has fewer variables. However, if there is no lifting, the problem
might become very nonlinear for large nψ.

180 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

6.4 Conclusions and summary

In this section we relate the various formalism discussed in this capter and
provide some concluding remarks.

6.4.1 Relations between different formalisms

The diagram in Figure 6.5 summarizes the relationships between the nonsmooth
systems studied in this chapter. The first column consists of the different ODEs
with DRHS that we have treated. After treating a generic ODE with DRHS
in (4.14), we specialize in two structured cases: PSS in (6.1) and ODEs (6.36),
where their dynamics contain some discontinuous expressions of x, e.g., as
Heaviside step functions.

These ODEs may not have a classical or Carathéodory solution, so we embed
them into differential inclusions and obtain more general notions, such as the
Filippov solution. These concepts are summarized in the second column. A
generic ODE with DRHS (4.14) is generalized to Filippov DIs (6.2). If the ODE
is more structured as a piecewise smooth system, then its Filippov extensions
become more explicit (6.3). In both cases, the r.h.s. is now a convex and
compact set. If the discontinuous function in the structured ODE (6.36) is
replaced by set-valued extensions, we obtain an Aizerman–Pyatnitskii DI (6.37).
The set on the r.h.s. may even be nonconvex. In Proposition 6.21 we show that
when we use PSS and Heaviside step functions, the Aizerman-Pyatnitskii DI
and the Filippov extension for PSS are equivalent.

The third column consists of dynamic complementarity systems obtained from
the DIs, which are useful representations for numerical computations. The
Stewart DCS (6.8) and the Heaviside step DCS (6.44) and are both instances
of a generic DCS (4.13). They are derived from the corresponding differential
inclusions using the KKT conditions of parametric LPs, as shown in Sections
6.2 and 6.3, respectively. We conclude this section by illustrating the different
formalisms with an example.

Example 6.26. Let us illustrate the different classes of nonsmooth systems on
the discontinuous ODE (which is in the form of (4.14)):

ẋ =
{

1, x > 0,
3, x < 0.

This is a PSS (as in (6.1)) with the switching function ψ(x) = x, with the
regions R1 = {x | x > 0} and R2 = {x | x < 0}. The Filippov extensions

CONCLUSIONS AND SUMMARY 181

ODE with DRHS (4.14) Filippov DI (6.2) DCS (4.13)

PSS (6.1) Filippov PSS (6.3) Heaviside DCS (6.44)

Structured ODE with DRHS (6.36) Aizerman–Pyatnitskii DI (6.37) Stewart DCS (6.8)

Figure 6.5: Summary of relations between nonsmooth systems treated in this
paper.

of this PSS (Eq. (6.3)) reads as: ẋ ∈ {θ1 + 3θ2 | θ ≥ 0, θ1 + θ2 = 1}, with
θ = (θ1, θ2). In the form of an Aizerman–Pyatnitskii DI (6.38), the system
reads as ẋ ∈ 3− 2γ(x). We can write also as a DCS of the form of (6.44):

ẋ =
[
3 1

]
θ,

θ1 = α, θ2 = 1− α, x = λp − λn,

0 ≤ λp ⊥ α ≥ 0, 0 ≤ λn ⊥ 1− α ≥ 0.

Similarly, by defining the indicator function g(x) = (−x, x), we can state Stewart
DCS (6.8):

ẋ =
[
3 1

]
θ,

− x = λ1 − µ, x = λ2 − µ, θ1 + θ2 = 1,

0 ≤ θ1 ⊥ λ1 ≥ 0, 0 ≤ λ2 ⊥ θ2 ≥ 0.

6.4.2 Summary

This chapter has focused on piecewise smooth systems and their Filippov
extensions, with a particular emphasis on the derivation of an equivalent
Dynamic Complementarity System (DCS) from a Filippov system. This is
motivated by the powerful computational methods and theoretical results for
complementarity problems. After an appropriate discretization of an optimal
control problem with such a DCS, we obtain a mathematical complementarity
problem, which usually can be efficiently solved with the methods described in
Section 2.4.

The guiding idea in transforming a Filippov system into a DCS is to express
the Filippov multipliers θ as the solution of a parametric linear program. The
KKT conditions of this problem enable us to transform a Filippov DI into

182 REFORMULATION OF FILIPPOV SYSTEMS INTO DYNAMIC COMPLEMENTARITY SYSTEMS

an equivalent DCS. Thereby, we followed two different approaches. The first
reformulation is introduced by Stewart [250], and the second one is based on
set-valued Heaviside step functions, which appeared in the literature in similar
forms at different locations [6, 74]. In the Heaviside step reformulation, we
directly work with the switching functions ψ(x) to derive the LP. Stewart’s
approach needs specific indicator functions g(x). In Section 6.2.1, we show that
they can always be derived from a more intuitive representation via switching
functions ψ(x). In both cases, we rely on representing the definition of the
regions Ri compactly via a sign matrix S.

We study in detail the properties of the DCS obtained by both approaches. In
particular, we study the well-possesses of the ODEs or DAEs obtained by fixing
the active set in the DCS. We show that the Lagrange multipliers of the LPs
are continuous functions of time, even across active-set changes. In the next
chapter, we leverage this property to develop highly accurate discretization
methods for Filippov systems.

A natural question to ask is: Why do we need different reformulations at all?
It is no surprise that both reformulations share similar theoretical properties.
Stewart’s reformulation is very efficient if all components of the switching
function ψ(x) are involved in the definitions of the regions Ri, which results in
a dense matrix S. These are the cases where it is advantageous to use it over
the Heaviside step reformulation. Moreover, Stewart’s reformulation is very
efficient if the regions Ri arise from a Voronoi partition as in Chapter 9.

However, as soon as some function ψj(x) is not involved in the definition of a
region Ri, there is some redundancy in Stewart’s definition of the regions Ri.
In this case, it is beneficial to use the step reformulations, as we need fewer
algebraic variables. Depending on number of switching functions defining a
region Ri, the expressions for the Filippov multipliers θi might be very nonlinear.
Motivated by the ideas of the lifted Newton’s method [8], in Section 6.3.8, we
introduce a lifting algorithm, which provides an equivalent formulation with
more variables that is only mildly nonlinear. Furthermore, the step reformulation
is also suitable to represent more general systems than Filippov systems, e.g.,
Aizerman–Pyatnitskii inclusions [6, 94].

The obvious question to be addressed in future work is: Are there other convex
problem formulations whose solutions can be related to θ? This would enable
us to derive further similar DCSs and to extend the ideas from the next chapter
also to these cases. The more practical questions are: What is the most compact
representation for a given problem? Can one guarantee that the specific LP
for a given problem results in a DCS with a minimal number of algebraic
variables? It was shown in [136] that every piecewise continuous affine function
can be represented as the solution to a parametric linear program. It would be

CONCLUSIONS AND SUMMARY 183

interesting to derive formulae in this manner also for the multiplier θ.

Chapter 7

Finite Elements with Switch
Detection

This chapter introduces the method of Finite Elements with Switch Detection
(FESD), a numerical discretization method for Filippov differential inclusions
arising from piecewise smooth systems. In the previous chapter, we derived
dynamic complementarity systems equivalent to such Filippov systems. Here
we develop a discretization method of higher-order accuracy for these systems.
We discretize optimal control problems with Filippov systems with the FESD
method and obtain mathematical programs with complementarity constraints
(MPCCs). With appropriate reformulations, MPCCs can be efficiency solved
with nonlinear programming methods, cf. Section 2.4. Thus, we obtain highly
accurate solutions to nonsmooth optimal control problems solely based on
continuous optimization techniques. Notably, we do not need to use integer
variables or nonsmooth optimization methods. We show that FESD enables us
to overcome the fundamental limitations of standard direct methods discussed
in Chapter 5.

Outline. In Section 7.1, we highlight the main ideas and mention some related
work that we build upon. In Section 7.2, we start from a standard RK
discretization and derive the FESD method step-by-step based on the algorithmic
ingredients mentioned above. Thereby, we focus on Stewart’s reformulation for
Filippov systems, cf. Section 6.2. Afterwards, in Section 7.3 several relevant
theoretical properties of the FESD method are studied. The theoretical findings
are illustrated on numerical simulation and optimal control examples. The
derivation of the FESD method for the step reformulation (cf. Section 6.3) relies

184

INTRODUCTION AND RELATED WORK 185

on the same algorithmic ideas as for Stewart’s reformulation. For completeness,
we provide in Section 7.4 the derivation of FESD for this case as well. We
avoid on purpose to state both DCS in a more abstract form and to do the
derivations only once, as this would hide some important details, which are
important for the implementation. Section 7.5 discusses how to use FESD in
numerical optimal control. Finally, Section 7.6 summarizes the chapter and
outlines future research. Sections 7.2, 7.3 and 7.5 are mainly based on the
article [213]. Section 7.4 is based on [207].

7.1 Introduction and related work

We build on the idea of varying the step size and allowing switches only to take
place at the boundaries of the finite elements introduced by Baumrucker and
Biegler [28]. On the one hand, these degrees of freedom introduce additional
nonlinearity and nonconvexitiy. On the other hand, they are needed to overcome
the fundamental limitations of low accuracy and wrong sensitivities of standard
fixed step size (time-stepping) methods. The method of [28] can deal only with
systems with one switching function (or sums of Filippov subsystems with a
single switching function, cf. Section 6.2.5). Furthermore, it regards only Radau
IIA implicit Runge-Kutta methods.

Biegler and coworkers [66, 65, 10] use also similar ideas to derive discrete-time
formulations of singular optimal control problems. The goal is to exactly detect
the location of control function’s breakpoints. These methods usually include a
mesh refinement stage to add more elements based on some error measurements.
They are used both in direct [66, 65], and indirect optimal control [10].

In this chapter, we introduce the method of Finite Elements with Switch
Detection (FESD), which is based on three key ingredients. We start with
a standard Runge-Kutta (RK) discretization for the DCS from the previous
chapter. First, inspired by [28], we let the integrator step sizes be degrees of
freedom to enable the detection of switches exactly in time. However, this
introduces more degrees of freedom than we have conditions in the RK-equations.
Thus, we need to introduce more conditions, which lead to the two remaining
ingredients. The second ingredient is additional complementarity conditions
that we call the cross complementarity conditions. They enable exact switch
detection, which enables us to recover the high-order accuracy that the RK
methods enjoy for smooth ODE, cf. Section 3.2. Furthermore, this also enables
the correct computation of numerical sensitivities. However, if no switches
occur, the cross complementarity conditions are trivially satisfied. Therefore,
we have an under-determined system of equations with spurious degrees of

186 FINITE ELEMENTS WITH SWITCH DETECTION

freedom. The third and last ingredient are conditions that allow the step size
to change only when switches occur and to overcome this issue. We call this
step equilibration.

We have seen in Sections 4.1.3 and 4.2.5, that if standard Runge-Kutta (RK)
methods are naively applied to a nonsmooth ODE, their accuracy is at best of
order one. Of course, the FESD method can also be used to simulate Filippov
systems (an example is given in Section 7.3.4). The FESD method falls into
the class of event-driven methods. However, in contrast to most such methods,
it does not need a separate root-finding procedure for switch detection. In
Section 5.2, we have studied the fact that the numerical sensitivities obtained
from a standard discretization are always wrong. This harms the progress of
most direct methods for optimal control problems with nonsmooth dynamical
systems, which are reviewed in Section 5.1.

The FESD method can efficiently deal with multiple and simultaneous switches,
including sliding modes on higher co-dimension surfaces, and thus is more
general than [28]. Moreover, in FESD one can use any Runge-Kutta method.
As a theoretical contribution, we provide convergence results for the FESD
method, show the local uniqueness of the solutions and prove the convergence
of numerical sensitivities to the correct values. Notably, in an optimal control
problem benchmark with FESD, we achieve up to five orders of magnitude more
accurate solutions than a standard approach for the same computational time.
Chapters 8 and 9 introduce exact reformulations of several classes of dynamical
systems with state jumps (NSD3) into Filippov systems (NSD2). Remarkably,
one can seamlessly apply the FESD method to these systems and thus obtain a
high-accuracy discretization of optimal control problems with NSD3 systems.
The FESD method, with its many variations, is implemented in the open-source
software package nosnoc [2, 206].

7.2 FESD for Stewart’s reformulation

This section is structured as follows. In Subsection 7.2.1, we first state the
standard RK equations for Stewart’s DCS from the previous chapter. Afterwards,
we extend these equations by the three ingredients needed for FESD. In
Subsection 7.2.2, we let the step sizes be degrees of freedom and discuss the
consequences. In Subsection 7.2.3, we introduce the cross complementarity
conditions. They ensure exact switch detection and that active-set changes can
happen only on finite element’s boundary. However, if no switches occur the
cross complementarity conditions are implied by the standard complementarity
conditions. In this case, the step sizes hn are still allowed to vary, and we

FESD FOR STEWART’S REFORMULATION 187

encounter spurious degrees of freedom. This would let the optimizer play with
the integrator’s accuracy in a possibly undesired way. To resolve this, we
introduce in Subsection 7.2.4 the step equilibration conditions. They provide
additional equations only if no switches occur and lead to a well-posed problem.
Finally, in Section 7.2.5, we summarize all conditions that extend the standard
RK equations and lead to the FESD discretization.

7.2.1 Standard Runge-Kutta discretization

In the exposition of the FESD method, we regard a single control interval [0, T]
with a constant externally chosen control input q ∈ Rnu , i.e., we set u(t) = q
for t ∈ [0, T]. Extensions with more complex smooth parametrizations of the
control function are straightforward.

As a starting point in our analysis, we regard a standard Runge-Kutta (RK)
discretization of the DCS (6.8), which we restate for the reader’s convenience:

ẋ = F (x, u)θ, (7.1a)

0 = g(x)− λ− µe, (7.1b)

1 = e⊤θ, (7.1c)

0 ≤ θ ⊥ λ ≥ 0, (7.1d)

For a more compact notation, we work with the nonsmooth DAE formulation
of the DCS (6.10), which we restate:

ẋ = F (x, u)θ, (7.2a)

0 = G(x, θ, λ, µ). (7.2b)

Suppose the initial value x(0) = s0 is given. We divide the control interval
[0, T] into NFE finite elements (i.e., integration intervals) [tn, tn+1] via the grid
points 0 = t0 < t1 < . . . < tNFE = T . On each of the finite elements we regard
an ns-stage Runge-Kutta method which is characterized by the Butcher tableau
entries ai,j , bi and ci with i, j ∈ {1, . . . , ns} [126], see also Section 3.2. The fixed
step-size reads as hn = tn+1 − tn, n = 0, . . . , NFE − 1. The approximation of
the differential state at the grid points tn is denoted by xn ≈ x(tn).

We regard a differential representation of the Runge-Kutta method, where the
derivatives of states at the stage points tn,i := tn + cihn, i = 1, . . . , ns, are
degrees of freedom, cf. Definition 3.8. For a single finite element, they are

188 FINITE ELEMENTS WITH SWITCH DETECTION

summarized in the vector Vn := (vn,1, . . . , vn,ns) ∈ Rnsnx . The stage values for
the algebraic variables are collected in the vectors: Θn := (θn,1, . . . , θn,ns) ∈
Rns·nf , Λn := (λn,1, . . . , λn,ns) ∈ Rns·nf and Mn := (µn,1, . . . , µn,ns) ∈ Rns .
We also define the vector Zn = (xn,Θn,Λn,Mn, Vn) which collects all internal
variables. With xnext

n we denote the value at tn+1, which is obtained after a
single integration step. Finally, the RK equations for a single finite element for
the DCS (7.2) are given by:

Grk(xnext
n , Zn, hn, q):=

vn,1−F (xn + hn
∑ns
j=1 a1,jvn,j , q)θn,1

...
vn,ns−F (xn + hn

∑ns
j=1 ans,jvn,j , q)θn,ns

G(xn + hn
∑ns
j=1 a1,jvn,j , θn,1, λn,1, µn,1)

...
G(xn + hn

∑ns
j=1 ans,jvn,j , θn,ns , λn,ns , µn,ns)

xnext
n − xn − hn

∑ns
i=1 bivn,i

= 0.

(7.3)

They are similar to the RK equations for semi-explicit index-1 DAE, cf. Section
3.2.1 and Eq. (3.12).

Next, we summarize the equations for all NFE finite elements over the whole
interval [0, T] in a discrete-time system manner. For this purpose, we introduce
some additional shorthands. All variables of all finite elements for a single
control interval are collected in the vectors x = (x0, . . . , xNFE) ∈ R(NFE+1)nx ,
V = (V0, . . . , VNFE−1) ∈ RNFEnsnx and h := (h0, . . . , hNFE−1) ∈ RNFE . Note
that the simple continuity condition xn+1 = xnext

n holds. We collect all stage
values of the Filippov multipliers in the vector Θ = (Θ0, . . . ,ΘNFE−1) ∈ Rnθ ,
where nθ = NFEnsnf . The vectors Λ ∈ Rnθ , M ∈ Rnµ for the stage values
of the Lagrange multipliers are defined accordingly, with nµ = NFEns. The
vector Z = (x,V,Θ,Λ,M) ∈ RnZ collects all internal variables and nZ =
(NFE + 1)nx +NFEnsnx + 2nθ + nµ.

All computations over a single control interval, which we call here the standard
discretization are summarized in the following equations, which resemble a
discrete-time system:

s1 =Fstd(Z), (7.4a)

0=Gstd(Z,h, s0, q), (7.4b)

where s1 ∈ Rnx is the approximation of x(T) and

Fstd(Z) = xNFE ,

FESD FOR STEWART’S REFORMULATION 189

Gstd(Z,h, s0, q) :=

x0 − s0

Grk(x1, Z0, h0, q)
...

Grk(xNFE , ZNFE−1, hNFE−1, q)

 .
Note that h are given parameters implicitly fixed by the chosen discretization
grid. In the nonsmooth ODE community, these methods are known as time-
stepping methods, cf. Section 4.1.3. In contrast to event-based methods,
they assume fixed step-sizes hn and do not try to detect the switches. The
theoretical properties of RK methods for DI and DCS have been studied by
many authors, e.g., [83, 161, 264, 258]. It is usually impossible to obtain
high-accuracy solutions with this method, as this can only happen if active-set
changes happen coincidentally at tn. Despite the high accuracy in this unlikely
case, the numerical sensitivities would still be wrong, cf. Section 5.2.

When active-set changes happen within a finite element, the smooth RK method
tries to approximate a nonsmooth trajectory. An example is illustrated in the
left plot in Figure 7.1. Thereby, we try to approximate a nonsmooth function
by a smooth polynomial, which results in a poor approximation. We proceed
now with extending the equations (7.4) by lettings h to be degrees of freedom
and defining the cross complementarity conditions.

7.2.2 The step-sizes as degrees of freedom

To obtain high-accuracy approximations of x(·), we allow the optimization
routine to vary the lengths hn of the finite elements such that all switching
points coincide with grid points tn. Additionally, the condition

∑NFE−1
n=0 hn = T

ensures that we regard a time interval of unaltered length. Consequently, we
must ensure that active-set changes do not happen in the interior of a finite
element. In this case, smooth functions are approximated by smooth polynomials
within a finite element, cf. the right plot in Figure 7.1. A key assumption in
any event-based method is that there are finitely many switches in finite time.
We also assume that there are enough finite elements to capture every switch
that occurs in the time interval [0, T].

Having the step sizes as degrees of freedom in (7.4) leaves us with an under-
determined system of equations with possibly infinitely many solutions. We
proceed with introducing additional conditions that lead to a well-defined system
of equations and ensure that hn takes correct values.

190 FINITE ELEMENTS WITH SWITCH DETECTION

t

x
(t

)

x(t) x∗(t)

t

Figure 7.1: Illustration of the analytic solution and a polynomial solution
approximation to a PSS via an IRK Radau IIA method of order 7. The left
plot shows an approximation with a fixed step size where an active-set change
happens on a stage point. The right plot shows an approximation obtained
with FESD (based on the same IRK method) where the switch happens on the
boundary. The circles represent the stage values, the vertical dotted lines the
finite elements boundaries, and the vertical dashed line the switching time ts.

7.2.3 Cross complementarity

So far, we have considered complementarity conditions only for every stage
point:

0 ≤ θn,m ⊥ λn,m ≥ 0, for all n ∈ {1, . . . , NFE},m ∈ {1, . . . , ns}. (7.5)

For brevity, we often use the equivalent formulation via C-functions
Φ(θn,m, λn,m) = 0. Next, we want to prohibit active-set changes on stage
points inside a finite element. To achieve this, we define additional conditions
on the variables θn,m and λn,m.

For ease of exposition, we assume that the underlying RK scheme satisfies
cns = 1 (e.g., Radau and Lobatto methods [126]). This means that the right
boundary point of a finite element is a stage point since tn+1 = tn + cnshn for
cns = 1. At the end of this section, we detail how to treat the case with cns ̸= 1
(e.g., Gauss-Legendre methods).

Continuity of λ and µ

The additional conditions we introduce are motivated by the continuity of λ
and µ, cf. Section 6.2.3. Thereby, the boundary values of an approximation of
λ(·) and µ(·) on an interval [tn, tn+1] play a crucial role in FESD. We denote
their values at tn and tn+1 by λn,0, µn,0 and λn,ns , µn,ns , respectively. We

FESD FOR STEWART’S REFORMULATION 191

impose continuity conditions for the discrete-time counterparts of λ and µ for
all n ∈ {0, . . . , NFE − 1}:

λn,ns = λn+1,0, µn,ns = µn+1,0. (7.6)

In the sequel, we use only the right boundary points λn,ns and µn,ns , which are
anyway degrees of freedom in the RK equations (7.4).

Remark 7.1. Note that λ0,0 and µ0,0 are not defined via Eq. (7.6), as we
do not have a preceding finite element in this case. However, they play an
important role in the developments below, especially if the boundary point is the
only stage point, as it is the case for the implicit Euler method. Fortunately, we
can pre-compute λ0,0 explicitly. Since x0 is known, we obtain µ0,0 = mini gi(x0)
and thus we have λ0,0 = g(x0)− µ0,0.

Moving the switching points to the boundary

The function λ(·) is a continuous function of time, and we consider an interval
(tn, tn+1) with a fixed active set In. In the interior of the this interval its
components are either zero or positive on the whole interval. The stage values
λn,i of the discrete-time counterpart should satisfy this property as well. This
is achieved by the cross complementarity conditions, which read for all n ∈
{0, . . . , NFE−1} as

0=diag(θn,m)λn,m′ , m ∈ {1, . . . , ns}, m′∈ {0, . . . , ns}, m ̸= m′. (7.7)

In contrast to Eq. (7.5) here we have conditions between all stage variables
within a finite element. We show below that the boundary point λn+1,0 = λn,0
of the previous finite element plays a key role in the switch detection.

Some of the appealing properties of the constraints (7.7) are given by the next
lemma. In our notation θn,m,i is the i-th component of the vector θn,m.

Lemma 7.2. Regard a fixed n ∈ {0, . . . , NFE−1} and a fixed i ∈ J . If any
θn,m,i with m ∈ {1, . . . , ns} is positive, then all λn,m′,i with m′ ∈ {0, . . . , ns}
must be zero. Conversely, if any λn,m′,i is positive, then all θn,m,i are zero.

Proof. Let θn,m,i be positive, and suppose λn,j,i = 0 and λn,k,i > 0 for some
k, j ∈ {0, . . . , ns}, k ̸= j, then θn,m,iλn,k,i > 0 which violates (7.7), thus all
λn,m′,i = 0, m′ ∈ {0, . . . , ns}. The converse is proven in a similar way.

The results of Lemma 7.2 are illustrated in Figure 7.2. Note that in contrast to
the left plot illustrating the standard complementary conditions, in the right
plot, all stage points inside a finite element have the same active set. Moreover,
on the finite element boundary, we have λn,ns,i = 0.

192 FINITE ELEMENTS WITH SWITCH DETECTION

λ
(t

)

λj(t)
λi(t)

t

θ
(t

)

θj(t)
θi(t)

λ
(t

)

t

θ
(t

)
Figure 7.2: An illustration of the standard complementarity conditions
Ψ(Θ,Λ) = 0 (left plot) and the standard complementarity conditions augmented
by 0 = Gcross(Θ,Λ) (right plot). The dots represent the stage values. The
vertical dotted line marks the finite element boundaries, and the vertical
dashed line marks the switching time ts. In the standard case (left plot),
an active-set change can happen at any complementarity pair. With the cross
complementarities (7.9) (right plot), an active-set change can only happen on
the boundaries of a finite element.

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 7.3: Illustration of several 2D projections of the feasible set for
(λn,m, θn,m, θn,m+1, λn,m+1) for the standard complementarity conditions in
(7.5) (top plot) and with adding the cross complementarities (7.9) (bottom
plot).

In Figure 7.3, we illustrate several 2D projections of the feasible set for Θ and
Λ with and without the cross complementarity conditions. The top figure shows
the feasible set for the standard complementarity conditions given in Eq. 7.5,

FESD FOR STEWART’S REFORMULATION 193

and the bottom shows the feasible set, which is tightened due to the cross
complementarities in Eq. 7.7. This provides a geometric illustration of why the
active set does not change within a finite element.

Implicit switch detection

It is left to explain how the switch detection for the solution approximation
works. This is later formalized in Section 7.3. Note that for xnext

n = xn+1 we
have from the KKT conditions of the LP(xn+1) (cf. Eq.(6.9)) that

µn,ns = min
j
gj(xn+1).

Moreover, if the active-set changes in the i-th component between the n-th
and n + 1-st finite element, then from Lemma 7.2 it follows that λn,ns,i = 0.
Therefore, we obtain from (7.3) implicitly the condition

gi(xn+1) = λn,ns,i − µn,ns ,

which is equal to

0 = gi(xn+1)− gj(xn+1) = ψi,j(xn+1), (7.8)

where ψi,j(xn+1) = 0 defines the switching surface between Ri and Rj . This
condition forces hn to adapt such that the switch is detected exactly. Note that
the condition (7.8) appears only if active-set changes happen. Therefore, switch
detection is entirely implicit.

Equivalent formulations

The conditions (7.7) are given in their sparsest form. Due to the non-negativity
of Λn and Θn, there are many equivalent formulations of this condition, e.g.,
all conditions above can be summed up for a single finite element or even for
all finite elements on the regarded control interval. Moreover, instead of the
component-wise products in θn,m and λn,m′ , we can use the inner products of
these vectors. Thus, we use a more compact form of (7.7), where we combine
the conditions for two neighboring finite elements. The motivation for this is
that we end up, together with

∑NFE
n=0 hn = T , with the same number of new

conditions as we have new degrees of freedom by varying hn. The conditions

194 FINITE ELEMENTS WITH SWITCH DETECTION

read as:

Gcross(Θ,Λ) :=
∑ns
m=1

∑ns
m′=0,
m′ ̸=m

θ⊤
0,mλ0,m′ +

∑ns
m=1

∑ns
m′=0,
m′ ̸=m

θ⊤
1,mλ1,m′

...∑ns
m=1

∑ns
m′=0,
m′ ̸=m

θ⊤
NFE−2,mλNFE−2,m′ +

∑ns
m=1

∑ns
m′=0,
m′ ̸=m

θ⊤
NFE−1,mλNFE−1,m′

 .
(7.9)

7.2.4 Step size equilibration

If no switches happen, i.e., the active sets In do not change between two
neighboring finite elements, then the cross complementarity conditions in (7.9)
are trivially satisfied. This yields spurious degrees of freedom in the step-sizes
hn, and the optimizer can adapt the grid in an undesirable way and harm the
discretization accuracy. Also, the path-constraint discretization can be exploited
unfavorably, just to decrease the objective value. To resolve this problem, we
introduce step equilibration conditions.

The step size should only change if a switch occurs and otherwise be constant.
Consequently, we obtain a piecewise uniform discretization grid for the
differential and algebraic states on the regarded control interval. This decouples
the integrator accuracy from the optimizer and results in piecewise equidistant
discretization grids between the switches. To accomplish this, we derive an
indicator function that is zero only if a switch occurs, otherwise, its value is
strictly positive.

If some λi(tn) is equal to zero and its left or right time derivative is nonzero, then
an active-set change has occurred. Instead of looking at the time derivatives, in
the discrete-time case, we exploit the non-negativity of λn,m and the fact that
the active set is fixed for the whole finite element (due to cross complementarity,
cf. Lemma 7.2). For n ∈ {1, . . . , NFE − 1}, we define the following backward
and forward sums of the stage values over the finite elements [tn−1, tn] and
[tn, tn+1]:

σλ,Bn =
ns∑
m=0

λn−1,m, σ
λ,F
n =

ns∑
m=0

λn,m.

They are zero when the left and right time derivatives are zero, respectively.
Likewise, they are positive when the left and right time derivatives are nonzero.

FESD FOR STEWART’S REFORMULATION 195

Analogously, the sums for θn,m are defined as:

σθ,Bn =
ns∑
m=1

θn−1,m, σ
θ,F
n =

ns∑
m=1

θn,m.

Additionally, we define the following vectors for all n ∈ {1, . . . , NFE − 1}:

πλn = diag(σλ,Bn)σλ,Fn , πθn = diag(σθ,Bn)σθ,Fn .

If there is an active-set change in the i-th complementarity pair, then at most
one of the i-th components of σλ,Bn and σλ,Fn is nonzero, hence their product,
i.e., the i-th component of πλn, is zero. Due to complementarity, the same holds
for πθn. For sliding modes the corresponding components of πλn are zero, and of
πθn, they are positive (due to complementarity). Thus, the i-th component of

υn = πλn + πθn,

is only zero if there is an active-set change in the i-th complementarity pair at
tn. A function that has the desired properties is defined as:

ηn(Θ,Λ) :=
nf∏
i=1

(υn)i.

This scalar function summarizes the effects of all components. It is zero only
if an active-set change happens at the boundary point tn and is otherwise
strictly positive. Finally, the constraints that remove possible spurious degrees
of freedom in hn read as:

0=Geq(h,Θ,Λ, T):=

 (h1 − h0)η1(Θ,Λ)
...

(hNFE−1 − hNFE−2)ηNFE−1(Θ,Λ)

. (7.10)

Since many products are involved in ηn(Θ,Λ), one can replace it by η̃n(Θ,Λ) :=
tanh(ηn(Θ,Λ)) to have a better scaling. A numerical example illustrating the
effect of the step equilibration is given in Subsection 7.5.2.

7.2.5 The FESD discretization

Now we have all ingredients to extend the standard RK discretization (7.4) to
the FESD discretization. We use a discrete-time representation:

s1 =Ffesd(Z), (7.11a)

196 FINITE ELEMENTS WITH SWITCH DETECTION

0=Gfesd(Z,h, s0, q, T), (7.11b)

where Ffesd(x)= xNFE is the state transition map and Gfesd(x,h,Z, q, T) collects
all other internal computations including all RK steps within the regarded
control interval:

Gfesd(Z,h, s0, q, T) :=

Gstd(Z,h, s0, q)
Gcross(Θ,Λ)
Geq(h,Θ,Λ)∑NFE−1
n=0 hn − T

 .
For a fixed control function q, horizon length T and initial value s0, the
formulation (7.11) can be used as an integrator with exact switch detection
for PSS (6.1). Since Filippov DIs do not always have unique solutions, one
cannot expect uniqueness of solutions for their discrete-time counterparts (7.11)
in all cases. In simulation methods, a common approach is to either pick one
local solution obtained by the solver for the nonlinear complementarity problem
(7.11) or to enumerate all possible solutions at an active-set change [6, 250]. In
this thesis, we regard only the first option.

Note that in sliding modes, we implicitly obtain differential algebraic equations
of index 2, cf. Section 6.2.2. To achieve good accuracy in practice, it is usually
required to use stiffly accurate methods, e.g., Radau IIA methods [126].

Remark on RK methods with cns ̸= 1

We outline how to extend the FESD method when an RK scheme with cns ̸=
1 is regarded. In contrast to the developments so far, with cns ̸= 1 the
variables λn,ns , µn,ns do not correspond the boundary values λ(tn+1) and
µ(tn+1) anymore, since tn + cnshn < tn+1. We denote the boundary points in
this case by λn,ns+1, µn,ns+1. They are computed from the KKT conditions of
LP(xn+1) for n = 0, . . . NFE − 2:g(xn+1)− λn,ns+1 − µn,ns+1e

1− e⊤θn,ns+1
Ψ(θn,ns+1, λn,ns+1)

 = 0. (7.12)

Next, we replace (7.6) by the following continuity conditions for the discrete-time
versions of λ and µ for n = 0, . . . , NFE − 1:

λn,ns+1 = λn+1,0, µn,ns+1 = µn+1,0. (7.13)

With slight abuse of notation, we add the new variables θn,ns+1, λn,ns+1 and
µn,ns+1 to the vectors Θ, Λ and M, respectively. The vector Z is redefined

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 197

accordingly. The cross complementarity conditions (7.9) are now modified such
that next to the stage points, we include the boundary points with the index
ns + 1:

Gcross(Θ,Λ) :=
∑ns
m=1

∑ns+1
m′=0,
m′ ̸=m

θ⊤
0,mλ0,m′ +

∑ns
m=1

∑ns+1
m′=0,
m′ ̸=m

θ⊤
1,mλ1,m′

...∑ns
m=1

∑ns+1
m′=0,
m′ ̸=m

θ⊤
NFE−2,mλNFE−2,m′ +

∑ns
m=1

∑ns
m′=0,
m′ ̸=m

θ⊤
NFE−1,mλNFE−1,m′

 .

For the whole control time, we have in total (NFE − 1)(2nf + 1) new variables.

7.3 Convergence theory of FESD for Stewart’s
reformulation

In this section, we present the main convergence result of the FESD
method. First, we prove that even though the FESD system (7.11) is always
overdetermined it still has a locally isolated solution. Second, we show that
the numerical solution approximation x̂h(·) generated by FESD converges to
a solution x(·) in the sense of Definition 6.1, with the same order that the
underlying RK method has for smooth ODEs. Additionally, we prove that the
numerical sensitivities converge to their correct values with high accuracy. The
theoretical results are illustrated with numerical examples.

7.3.1 Main assumptions

We start by introducing some notation and stating assumptions related to the
FESD formulation (7.11), which are useful for our theoretical study in this
section.

Assumption 7.3. (Runge-Kutta method) A Butcher tableau with the entries
ai,j , bi and ci, i, j ∈ {1, . . . , ns} related to an ns-stage Runge-Kutta (RK) method
is used in the FESD (7.11). Moreover, we assume that:

(a) If the same RK method is applied to the differential algebraic equation
(6.15) on an interval [ta, tb], it has a global accuracy of O(hp) for the
differential states.

198 FINITE ELEMENTS WITH SWITCH DETECTION

(b) The RK equations applied to (6.15) have a locally isolated solution for a
sufficiently small hn > 0.

This assumption aims to consider a broad class of RK methods, and both
assumptions are standard [126]. For an introduction to RK methods, cf. Section
3.2 and references therein.

Assumption 7.4. (Solution existence) For given parameters s0, q and T , there
exists a solution to the FESD problem (7.11), such that for all n ∈ {0, . . . , NFE−
1} it holds that hn ≥ 0.

This assumption means that there exists a meaningful solution and that we can
compute it. If the FESD method is used in direct optimal control, non-negativity
of the step sizes can easily be achieved by adding box constraints on hn. This is
the strongest assumption we make in our theoretical study. Ideally, one would
prove the existence of solutions. Since the system is over-determined this cannot
be done straightforwardly by applying standard existence results [89]. As we
will show below, in practice numerical solvers have no trouble computing such
solutions.

We state a technical assumption that ensures regularity of the FESD
problem (7.11).

Assumption 7.5. (Regularity) Given the complementarity pairs
Ψ(θn,m, λn,m) = 0, for all n ∈ {0, . . . NFE − 1} there exists an m ∈ {1, . . . , ns}
and i ∈ {1, . . . , nf}, such that the strict complementarity property holds, i.e.,
θn,m,i + λn,m,i > 0. Moreover, for the RK equations (7.3) it holds for all
n ∈ {0, . . . NFE−1}, that at least one entry of the vector ∇hnGrk(xn+1, Zn, hn, q)
is nonzero.

Once all stage values are computed by solving (7.11), we can use some
interpolation method to construct the solution approximation candidate in
continuous time, cf. Assumption 7.3. For example, if we use collocation-
based IRK methods continuous-time approximation x̂n(t;hn) on every finite
element is easily obtained via Lagrange polynomials [126, 38]. We append the
approximation for every finite element and write

x̂h(t) = x̂n(t;hn) if t ∈ [tn, tn+1], (7.14)

where h = maxn∈{0,...NFE−1} hn. Similarly, continuous-time representations can
be found for the algebraic variables, and we denote them compactly by λ̂h(t),
θ̂h(t) and µ̂h(t). Similar to the definitions in Section 6.2.3, the fixed active set
in this case is denoted by I(x̂h(t)) = În, t ∈ (t̂s,n, t̂s,n+1) and the active set at
switching point t̂s,n by I(x̂h(t̂s,n)) = Î0

n.

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 199

7.3.2 Solutions of the FESD problem are locally isolated

In this subsection, we analyze some properties of solutions of the FESD
problem (7.11). Again, for ease of exposition, we regard cns = 1 and give
the extensions later. For the reader’s convenience, we restate the problem but
discard the trivial state transition map s1 = Ffesd(Z) = xNFE :

Gfesd(Z,h, s0, q, T) =

Gstd(Z,h, s0, q, T)
Gcross(Θ,Λ)
Geq(h,Θ,Λ)∑NFE−1
n=0 hn − T

 = 0. (7.15)

For ease of reading, we summarize the definitions and dimensions of the most
relevant quantities:

• Degrees of freedom: Z = (x,V,Θ,Λ,M) ∈ RnZ , h ∈ RNFE .

• Number of degrees of freedom: nZ + NFE, with nZ = (NFE + 1)nx +
NFEnsnx + 2nθ + nµ.

• Dimension of Θ and Λ: nθ = NFEnsnf .

• Dimension of M: nµ = NFEns,

• Parameters: (s0, q, T) ∈ Rnx+nu+1,

• Standard RK equations: Gstd : RnZ × RNFE × Rnx × Rnu × R→ RnZ ,

• Cross complementarity: Gcross : Rnθ × Rnθ → RNFE−1,

• Step equilibration: Geq : RnNFE × Rnθ × Rnθ → RNFE−1 and

• FESD equations: Gfesd : RnZ × RNFE × Rnx × Rnu × R→ RnZ+2NFE−1.

The vectors s0 ∈ Rnx , q ∈ Rnu and T ∈ R are given parameters, hence
we have nZ + NFE unknowns and nZ + 2NFE − 1 equations. Consequently,
for NFE > 1, which we always assume in FESD, the system (7.15) is over-
determined. However, we show in the next theorem that for a given active
set NFE − 1 equations in (7.15) are implicitly satisfied, and we always end
up with a square system. As a consequence, Eq. (7.15) has under reasonable
assumptions locally unique solutions. Nevertheless, since we do not know the
active set a priori, we can also not know which equations are binding and which
are implicitly satisfied and thus must regard all equations in (7.15).

Lemma 7.6 (Corollary 6.1 in [192]). Let A1 ∈ Rk×m and A2 ∈ Rm×q, then

rank(A1) + rank(A2)−m ≤ rank(A1A2) ≤ min(rank(A1), rank(A2)).

200 FINITE ELEMENTS WITH SWITCH DETECTION

Theorem 7.7. Suppose that Assumptions 7.3, 7.4 and 7.5 hold. Let s0, q0
and T > 0 be some fixed parameters such that Gfesd(Z∗,h∗, s0, q, T) = 0. Let
P ∗ ⊆ Rnx × Rnu × R be the set of all parameters (ŝ0, q̂, T̂) such that Z ∈ RnZ ,
which is the solution of Gfesd(Z,h, ŝ0, q̂, T̂) = 0, has the same active set as
Z∗. Additionally, suppose that Gfesd(·) is continuously differentiable in s0, q
and T for all (s0, q, T) ∈ P ∗. Then there exists a neighborhood P ⊆ P ∗ of
(s0, q0, T) such that there exist continuously differentiable single valued functions
Z∗ : P → RnZ and h∗ : P → RNFE .

Proof. We regard the active sets for every finite element În for all n ∈
{0 . . . , NFE−1} that correspond to the solution (Z∗,h∗). First, we look closer at
the equations Gcross(Θ∗,Λ∗) = 0 and Geq(h∗,Θ∗,Λ∗) = 0. If two neighboring
finite elements have the same active set, i.e., În = În+1, then the (n+1)-th entry
of Gcross(Θ∗,Λ∗) is implicitly satisfied due to the point-wise complementarity
conditions Ψ(Θn,Λn) = 0 and Ψ(Θn+1,Λn+1) = 0. Moreover, by construction
we have ηn+1(Θ∗,Λ∗) > 0 and the (n+ 1)-th entry of Geq(h∗,Θ∗,Λ∗, T) = 0
is binding, i.e., it implies h∗

n+1 = h∗
n. On the other hand, if În ̸= În+1, we

have by construction that ηn+1(Θ∗,Λ∗) = 0 and then (n + 1)-th entry of
Geq(h∗,Θ∗,Λ∗, T) = 0 vanishes, i.e., is satisfied for any h∗

n and h∗
n+1. However,

the (n+ 1)-th entry of Gcross(Θ∗,Λ∗) = 0 is now binding, cf. Lemma 7.2.

We collect the binding n1 cross complementarity conditions, with 0 ≤ n1 ≤
NFE − 1, in the equation G∗

cross(Θ∗,Λ∗) = 0, and the NFE − 1− n1 implicitly
satisfied into Gres

cross(Θ∗,Λ∗) = 0. Likewise, we collect the binding n2 step
equilibration conditions, with 1 ≤ n2 ≤ NFE − 1, in G∗

eq(h∗,Θ∗,Λ∗) = 0. The
remaining NFE − 1 − n2 conditions are implicitly satisfied and are collected
in Gres

eq (h∗,Θ∗,Λ∗) = 0. Note that n1 + n2 = NFE − 1. We highlight that∑NFE−1
n=0 hn − T is always binding.

We can further simplify our system of equations by eliminating some degrees
of freedom using G∗

eq(h∗,Θ∗,Λ∗) = 0. All components of this vector are of
the form ηn(hn − hn+1) with ηn > 0. Therefore, we have n2 equations of the
form of hn = hn+1 and can remove n2 degrees of freedom. Furthermore, we can
express any hj = T −

∑NFE−1
i=0,i̸=j hn and remove another degree of freedom. In

total we removed n2 + 1 degrees of freedom and can regard a reduced number of
unknown step-sizes, which we denote by h̃∗ ∈ Rn1 , n1 = NFE − n2 − 1. With a
slight abuse of notation, we redefine the standard RK equations accordingly and
obtain Gstd(Z∗, h̃∗, s0, q, T) = 0 with Gstd : RnZ ×Rn1 ×Rnx ×Rnu ×R→ RnZ .

To summarize, for a fixed active set we can rewrite (7.15) in a reduced form as

G∗
fesd(Z∗, h̃∗, s0, q, T) :=

[
Gstd(Z∗, h̃∗, s0, q, T)
G∗

cross(Θ∗,Λ∗)

]
= 0, (7.16)

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 201

with G∗
fesd(Z∗,h∗, s0, q, T) ∈ RnZ+n1 . These conditions imply

Gres
fesd(h∗,Θ∗,Λ∗) :=

[
Gres

cross(Θ∗,Λ∗)
Gres

eq (h∗,Θ∗,Λ∗)

]
= 0, (7.17)

with Gres
fesd(h∗,Θ∗,Λ∗) ∈ RNFE−1. Thus, for a given active set we can discard

(7.17) and regard only the equivalent reduced problem (7.16), which is a square
system of equations.

Next, we show that the Jacobian matrix ∇(Z,h̃)G
∗
fesd(Z∗, h̃∗, s0, q, T)⊤ has full

rank. This enables us to apply the implicit function theorem (cf. [85, Theorem
1B.1]) and establish the result of this theorem. We take a closer look at the
matrix:

∇(Z,h̃)G
∗
fesd(Z∗, h̃∗, s0, q, T)⊤

=
[
∇ZGstd(Z∗, h̃∗, s0, q, T)⊤ ∇h̃Gstd(Z∗, h̃∗, s0, q, T)⊤

∇ZG
∗
cross(Z∗, h̃∗, s0, q, T)⊤ ∇h̃G

∗
cross(Z∗, h̃∗, s0, q, T)⊤

]
.

Under Assumption 7.4, for a fixed active set and a fixed h∗
n the

equation Gstd(Z∗, h̃∗, s0, q, T) = 0 boils down to the RK equations for
the differential algebraic equation (6.15). Due to Assumption 7.3 the
RK system Gstd(Z∗, h̃∗, s0, q, T) = 0 has a locally isolated solution. A
necessary and sufficient condition for this property is the invertibility of the
Jacobian ∇ZGstd(Z∗, h̃∗, s0, q, T)⊤ [85, Theorem 1B.8]. Thus, we have that
rank(∇ZG

∗
fesd(Z∗, h̃∗, s0, q, T)⊤) = nZ. Second, due to the block diagonal

structure of ∇h̃G
∗
std(Z∗, h̃∗, s0, q, T) and Assumption 7.5 we can deduce that

rank(∇h̃G
∗
fesd(Z∗, h̃∗, s0, q, T)⊤) = n1. Third, due to the nonegativity of

(Θ,Λ) and Assumption 7.5 by direct computation it can be verified that
rank(∇ZG

∗
cross(Θ,Λ)⊤) = n1 and ∇h̃G

∗
cross(Θ,Λ)⊤ = 0.

We introduce more compact notation and summarize the results so far with:

• M1 = ∇ZGstd(Z∗, h̃∗, s0, q, T)⊤ ∈ RnZ×nZ with rank(M1) = nZ

• M2 = ∇h̃Gstd(Z∗, h̃∗, s0, q, T)⊤ ∈ RnZ×n1 with rank(M2) = n1 and

• M3 = ∇ZGcross(Θ,Λ)⊤ ∈ Rn1×nZ with rank(M3) = n1.

To show that ∇(Z,h̃)G
∗
fesd(Z∗, h̃∗, s0, q, T)⊤ has a rank of nZ +n1, we show that

the linear system [
M1 M2
M3 0

] [
v
w

]
= 0,

202 FINITE ELEMENTS WITH SWITCH DETECTION

with v ∈ RnZ and w ∈ Rn1 has zero as the only solution.

From the first line in this linear system, we have that v = −M−1
1 M2w. Since

nZ > n1, from Lemma 7.6, we conclude that rank(M−1
1 M2) = n1. Next, from

the second part of our linear system, we have that −M3M
−1
1 M2w = 0. Again,

using Lemma 7.6, we conclude that rank(M3M
−1
1 M2) = n1. Hence, we have

w = 0 and v = 0 to be the only solution of the regarded linear system. This
completes the proof.

Remark 7.8. We note that one cannot apply more general forms of implicit
function theorems for generalized and nonsmooth equations [85]. They usually
require Lipschitz continuity of the solution map to reason about local uniqueness,
but the solution map for FESD is not continuous in general, but only piecewise
continuous.

Example 7.9. To illustrate the discontinuity of the solution map, we regard the
example of ẋ ∈ 2−sign(x)+x2, with NFE = 2, T = 0.2 and vary x0 ∈ [−0.7, 0.1].
A solution approximation is obtained via FESD based on the Radau IIA method
of order 3. Consider an initial value x0 such that no switch occurs and a
perturbed initial value x0 + ϵ where a single switch occurs on the time interval of
interest. Clearly, in the first case, we have an equidistant grid with h0 = h1 and
in the second case h0 jumps to t̂s,1. We conclude that h0(x0) is not a Lipschitz
function, see Figure 7.4 for an illustration.

Extension for the case of cns ̸= 1

In the case of cns ̸= 1, we need to solve the additional LP (7.12) to obtain
the boundary points. Note that if we have gi(xn+1) = minj∈J gj(xn+1) for
more than one i, the variables θn,ns+1 are not unique and the LP(xn+1) has
infinitely many solutions. However, these variables are neither used in the cross

−0.6 −0.4 −0.2 0
0

0.1

0.2

x0

h
0

−0.6 −0.4 −0.2 0
0

0.1

0.2

x0

h
1

Figure 7.4: Illustration of the discontinuity of the solution map of (7.15) for
the PSS ẋ ∈ 2− sign(x) + x2 for T = 0.2 and NFE = 2.

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 203

complementarities nor step equilibration. Therefore, we can discard θn,ns+1 and
simplify (7.12) to:

λn,ns+1 = g(xn+1)− µn,ns+1e,

λn,ns+1 ≥ 0,

which has nf + 1 unknowns and nf equalities and nf inequalities for a given
xn+1. Now suppose that the first m1 components of λn,ns+1 are zero (e.g.,
implied by cross complementarity) and the remaining m2 are strictly positive,
with m1 +m2 = nf . We have that

gi(xn+1) = µn,ns+1, i = 1, . . . ,m1, (7.18a)

λn,ns+1,i = 0, i = 1, . . . ,m1, (7.18b)

λn,ns+1,j = gj(xn+1)− µn,ns+1, j = nf −m2 + 1, . . . , nf . (7.18c)

As the first m1 relations all assign the same value to µn,ns+1, we can discard
m1 − 1 of them and thus we end up with a system of m1 + m2 + 1 = nf + 1
equations and nf + 1 unknowns. This system has still the important property
that µn,ns+1 = mini gi(xn+1). With this simplification for an RK method with
cns ̸= 1 we have nθ = NFEnsnf , nλ = nθ + (NFE− 1)nf . The new variables are
determined by the square linear system (7.18). Hence, it is straightforward to
extend Theorem 7.7 for the case of cns ̸= 1.

7.3.3 Convergence and order of FESD

In this subsection, we prove that under reasonable assumptions the sequence
of approximations x̂h(·) generated by the FESD method converges with high
order to a solution of (6.1) in the sense of Definition 6.1. Recall that h =
maxn∈{0,...NFE−1} hn. The proof is inspired by the proof of Theorem 4.3 in
[250]. We consider also ts,0 = 0 as a switching point since at this time point the
active set for the first interval (ts,0, ts,1) is determined.

Note that for generating solution approximations with FESD it is sufficient to
consider only two finite elements at a time, i.e., NFE = 2 in Eq. (7.15), and
then to append the solutions to construct x̂h(t), t ∈ [0, T] via Eq. (7.14). This
requires of course to have only one switch in the regarded time interval, which
can always be achieved with a sufficiently small h. We define the set of all
discretization grid points as G = {t0, t1, . . . , tNFE}.

Theorem 7.10. Let x(·) be a solution of (6.1) in the sense of Definition 6.1
for t ∈ [0, T] with x(0) = x0. Suppose the following is true:

204 FINITE ELEMENTS WITH SWITCH DETECTION

(a) The assumptions 6.6 and 6.12 are satisfied.

(b) The assumption 7.3, 7.4 and 7.5 hold for the FESD problem (7.11).

Then x(·) is a limit point of the sequence of approximations x̂h(·), defined in Eq.
(7.14) as h ↓ 0. Moreover, for sufficiently small h > 0, the solution of (7.11)
generates a solution approximation x̂h(t) on [0, T] such that:

|t̂s,n − ts,n| = O(hp) for every n ∈ {0, . . . , Nsw}, (7.19a)

∥x̂h(tn)− x(tn)∥ = O(hp), for all tn ∈ G. (7.19b)

Proof. The proof will be carried out by induction, where we regard the
switching events with index n ∈ {0, . . . , Nsw} and the corresponding time
intervals (ts,n, ts,n+1), with a slight abuse of notation where ts,Nsw+1 = T is not
necessarily a switching point.

Regard n = 0, where we have trivially that ts,0 = 0, thus

|t̂s,0 − ts,0| = 0 = O(hp), ∥x̂h(0)− x(0)∥ = 0 = O(hp).

Moreover, I(x0) = I(x̂h(0)) = I0
0 .

Now we suppose (7.19) is true for n, i.e., at t = ts,n. We show that the
same statements are true for n + 1. By the induction hypothesis and due to
continuity of gi(x), i ∈ J , we have that for sufficiently small h the equality
I(x̂(t̂s,n)) = I(x(ts,n)) = I0

n holds. Moreover, by Lipschitz continuity of fi(x)
and ∇gi(x), i ∈ J , it follows that (cf. Section 6.2.4)

MI0
n
(x̂h(t̂s,n))→MI0

n
(x(ts,n)) as h ↓ 0.

According to Theorem 6.11 the solution of the LCP (6.19) corresponding to
MI0

n
(x(ts,n)) determines the new index set In = {i ∈ I0

n | θ̃i > 0}. Moreover,
by Assumption 6.12 this LCP is strongly stable and due to Lemma 6.15, for
sufficiently small h > 0 the solution of the LCP corresponding MI0

n
(x̂h(t̂s,n))

has a solution such that În = {i ∈ I0
n | θ̃i > 0} = {i ∈ I0

n | θi > 0} = In. Thus,
we conclude that both the solution approximation and the solution predicted
the same active set In in a neighborhood of t̂s,n and ts,n, respectively.

It is left to verify that such an active set In predicted by the solution
approximation is indeed feasible for the FESD problem. Note that by the
induction hypothesis and the reasoning above the solution approximation and
x(·) have the same corresponding active set in a neighborhood of ts,n. For a
fixed active set, as a consequence of Proposition 6.7 the arising DAE (6.15)
has a unique solution. Finally, under this setting with the given active sets

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 205

in a neighborhood of ts,n, according to Theorem 7.7 there is a locally unique
solution to a FESD problem, thus we can construct an appropriate x̂h(·).

Note that one can make arbitrarily many integration steps with a fixed In
before the next switch in time is reached. Again, due to Theorem 7.7, the
corresponding FESD problem has a locally unique solution.

Now we provide an error estimate for the solution approximation until the
next switching point. First, we define x̃(t) to be the exact extended solution
of the DAE (6.15) with the fixed active set In on the interval t ∈ [ts,n, t̃], with
x̃(ts,n) = x(ts,n) and t̃ > ts,n+1. Obviously, it holds that x(t) = x̃(t) for all
t ∈ [ts,n, ts,n+1]. Second, from the discussions in Section 7.2.3 we know that
active-set changes can only happen at boundaries of the finite elements, thus it
holds that t̂s,n ∈ G for all n ∈ {0, . . . , N̂sw}. Third, by the induction hypothesis
we have ∥x̂h(t̂s,n)− x(t̂s,n)∥ = O(hp). As noted above, for a fixed active set In
and fixed hn the FESD equations boil down to standard RK equations applied
to (6.15). Thus, from Assumption 7.3 we have the estimate

∥x̂h(t̂s,n+1)− x̃(t̂s,n+1)∥ = O(hp). (7.20)

With the help of this estimate, in the next few steps we prove that |t̂s,n+1 −
ts,n+1| = O(hp). We distinguish two cases (see also Table 6.2):

I) crossing a discontinuity or entering a sliding mode, i.e., In ⊂ I(x(ts,n+1))
and In+1 ⊆ I(x(ts,n+1)).

II) a spontaneous switch or laving sliding mode, i.e., In = I(x(ts,n+1)) and
In+1 ⊂ I(x(ts,n+1))

Within Case I we need to distinguish the two scenarios: I.a. t̂s,n+1 > ts,n+1 and
I.b. t̂s,n+1 ≤ ts,n+1.
Case I.a. Regard the following indices j ∈ In and i ∈ I(x(ts,n+1)) \ In.
This means that mink gk(x((ts,n+1)) = gi(x(ts,n+1)) = gj(x(ts,n+1)) = µ(ts,n+1)
holds and one can locally regard the following switching function

ψi,j(x(t)) = gi(x(t))− gj(x(t)) = λi(t)− λj(t).

Note that this function is Lipschitz continuous. It must by definition become
zero when an active-set change happens.

Due to the strict complementarity assumed in Assumption 6.12 (see also part 9
of the proof of [250, Theorem 4.3], and the remarks after Assumption 6.12) we
have at t−s,n+1 that λ̇j(t−s,n+1) = 0 and λ̇i(t−s,n+1) < 0. Therefore, it holds that:

ψi,j(x(ts,n+1)) = 0, d
dtψi,j(x(t−s,n+1)) < 0. (7.21)

206 FINITE ELEMENTS WITH SWITCH DETECTION

Obviously, the same assertion holds for x̃(t). Moreover, due to the smoothness
of x̃(t), we have ψi,j(x̃(t)) < 0 for t ∈ (ts,n+1, ts,n+1 + ϵ) for some ϵ > 0.

Similarly, for the solution approximation we have ψi,j(x̂h(t)) = gi(x̂h(t)) −
gj(x̂h(t)). Since t̂s,n+1 > ts,n+1, due to continuity of ψi,j(·) and x̂h(·) it follows
that

ψi,j(x̂h(ts,n+1)) > 0 and d
dtψi,j(x̂h(ts,n+1)) < 0.

Now from Lipschitz continuity of ψi,j(·) and (7.20) we can establish that

|ψi,j(x̂h(t̂s,n+1))︸ ︷︷ ︸
=0

−ψi,j(x̃(t̂s,n+1))︸ ︷︷ ︸
<0

| ≤ Lψ∥x̂h(t̂s,n+1)− x̃(t̂s,n+1)∥,

|ψi,j(x̃(t̂s,n+1))| = O(hp).

(7.22)

Note that in contrast to ψi,j(x(t)), the function ψi,j(x̃(t)) is smooth in a
neighborhood of ts,n+1. Thus, we regard the first-order Taylor approximation
of ψi,j(·) at x̃(ts,n+1).

ψi,j(x̃(t)) = ψi,j(x̃(ts,n+1)) + d
dtψi,j(x̃(ts,n+1))(t− ts,n+1) + o(|t− ts,n+1|).

Since ψi,j(x̃(ts,n+1)) is decreasing, there exists some positive constant Ca with
Ca < | d

dtψi,j(x̃(ts,n+1)| such that for sufficiently small h and t ∈ [ts,n+1, t̂s,n+1]
it holds that

ψi,j(x̃(t)) ≤ ψi,j(x̃(ts,n+1))− Ca(t− ts,n+1).

The arguments above are illustrated in the left plot of Figure 7.5. From
the last inequality and (7.22) at t = t̂s,n+1 we have that ψi,j(x̃(t̂s,n+1)) < 0,
ψi,j(x̃(ts,n+1)) = 0 and conclude that

t̂s,n+1 − ts,n+1 ≤ O(hp). (7.23)

This completes the consideration of case I.a.

Case I.b. We apply similar arguments as in I.a. Under the assumption of
t̂s,n+1 < ts,n+1, following similar lines as in the proof of [250, Theorem 4.3], we
first prove t̂s,n+1 → ts,n+1 and establish subsequently the convergence rate.

Regard the set H = {h > 0 | t̂s,n+1 < ts,n+1}. By the assumption of case I.b
and the induction hypothesis, it holds that t̂s,n+1 ∈ [t̂s,n, ts,n+1]. Since this
is a bounded set, there must be a subsequence H ′ ⊆ H with h ↓ 0 such that

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 207

ts,n+1 t̂s,n+1

t

ψ
i
,j

(x
(t

))

ψi,j(x(t))
ψi,j(x̃(t))
ψi,j(x̂h(t))
ψi,j(x(ts,n+1))− Ca(t− ts,n+1)

t̂s,n+1 ts,n+1

t

ψi,j(x(t))
ψi,j(x̂h(t))
ψi,j(x(t̂s,n+1))− Cb(t− t̂s,n+1)

Figure 7.5: The left plot shows an illustration of the argument of Case I.a:
t̂s,n+1 > ts,n+1 and the right plot shows an illustration of the argument of Case
I.b: t̂s,n+1 ≤ tn+1, for establishing |t̂s,n+1 − ts,n+1| = O(hp).

t̂s,n+1 → t̄. We show now that t̄ = t̂s,n+1. We regard again the function ψi,j(·)
for some j ∈ In and i ∈ I(x(ts,n+1)) \ In

ψi,j(x(t)) = gi(x(t))− gj(x(t)),

which becomes zero at an active-set change and is positive otherwise.
Similarly, active-set changes for the solution approximation happen when
ψi,j(x̂h(t̂s,n+1)) = 0. We remind the reader that earlier it was shown that
În = In.

By taking h ↓ 0 and h ∈ H ′ from (7.20) it follows that ψi,j(x(t̄)) = 0. By
the definition of a switching point, there must be a i /∈ In, but i ∈ I(x(t̄)).
However, this contradicts the assumption that I(x(t)) = In for t ∈ (ts,n, ts,n+1)
and we conclude that t̄ /∈ (ts,n, ts,n+1).

On the other hand at ts,n, due to strict complementarity in the active-
set determining LCP (cf. Theorem6.11 and Assumption 6.12), if some
i ∈ I(x(ts,n)) \ In and j ∈ In, we know that

d
dtψi,j(x(t+s,n)) = gi(x(t+s,n))− gj(x(t+s,n)) > 0.

Due to continuity of the functions gi(·), i ∈ J , and the induction hypothesis,
there exists some ϵ > 0 such that

d
dt (gi(x̂h(t))− gj(x̂h(t)) > 0 for t ∈ [t̂s,n, t̂s,n + ϵ].

208 FINITE ELEMENTS WITH SWITCH DETECTION

However, when a switch happens the derivative in the last line must be negative
at t (cf. Remark 6.10), thus t̂s,n+1 > t̂s,n+ ϵ, i.e., with h ↓ 0, h ∈ H ′, t̄ > ts,n+ ϵ.
This means that t̄ ̸= ts,n and the only option that is left is t̂s,n+1 → t̄ = t̂s,n+1
as h ↓ 0, h ∈ H ′.

Now we continue with establishing the convergence rate for t̂s,n+1 → ts,n+1.
From t̂s,n+1 ≤ ts,n+1 we have from the definition of ψi,j(·) that ψi,j(x(t̂s,n+1)) >
0 and ψi,j(x̂h(t̂s,n+1)) = 0. Using the fact that x̃(t̂s,n+1) = x(t̂s,n+1) and (7.20)
we have

|ψi,j(x(t̂s,n+1))| = |ψi,j(x(t̂s,n+1))− ψi,j(x̂h(t̂s,n+1))|

≤ Lψ∥x̃(t̂s,n+1)− x̂h(t̂s,n+1)∥ = O(hp).

We again use a first-order expansion (an illustration of the argument is given in
the right plot of Figure 7.5):

ψi,j(x(t)) = ψi,j(x(t̂s,n+1)) + d
dtψi,j(x(t̂s,n+1))(t− t̂s,n+1) + o(|t− t̂s,n+1|).

Once again, due to assumption 6.12, we have that d
dtψi,j(x(ts,n+1)) < 0. Note

that d
dtψi,j(x(t−s,n+1)) < 0. From t̂s,n+1 → ts,n+1 and continuity of ψi,j(·) it

follows that for sufficiently small h > 0:

d
dtψi,j(x(t̂s,n+1)) < 0.

Using similar reasoning as in case I.a., there exists some Cb > 0 such that from
the last equation at t = ts,n+1 it follows 0 ≤ O(hp)− Cb(ts,n+1 − t̂s,n+1), i.e.,

ts,n+1 − t̂s,n+1 ≤ O(hp). (7.24)

Putting (7.23) and (7.24) together, we obtain the first part of the induction
statement, i.e.,

|ts,n+1 − t̂s,n+1| = O(hp). (7.25)

Case II.. Next, we consider the case of In = I0
n+1, which may happen under

the assumptions of this theorem when x(·) is not unique, as discussed below.
This part of the proof follows closely (with appropriate modifications) the lines
of part 8 of the proof of [250][Theorem 4.3].

By the induction hypothesis we have I0
n = Î0

n and it was shown above that
In = În. By Assumption 6.12 the LCP(MIn,α(x(ts,n)),−e) is strongly stable.
Let (w̃∗, θ̃∗) ∈ SOL(MIn,α(x(ts,n)),−e) and due to Assumption 6.12 it holds

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 209

that w̃∗ + θ̃∗ > 0. From Theorem 6.11 we have In = {i | θ̃∗
i > 0}. Due to the

induction hypothesis, Lipschitz continuity and (7.20) we have MIn,α(x̂h(t̂s,n))→
MIn,α(x(ts,n)) as h ↓ 0. All assumptions of Lemma 6.14 are satisfied and it
follows that the corresponding LCPs that predict the new active set (cf. Theorem
6.11) have the same number of solutions, i.e.,

|SOL(MIn,α(x(ts,n)),−e)| = |SOL(MIn,α(x̂h(t̂s,n)),−e)| = Nsol.

Since Assumption 6.12 holds, one can apply Lemma 6.16 to the
LCP(MIn,α(x(ts,n)),−e) and conclude that for all t ∈ [ts,n, ts,n+1] it holds
that

|SOL(MIn,α(x(t)),−e)| = Nsol.

Since In = I0
n+1 at t = ts,n+1 we have

|SOL(MI0
n+1,α

(x(ts,n+1)),−e)| = Nsol.

Recall that other possible switching cases where In ̸= I0
n+1 are covered in

Case I. We must now distinguish two cases: either SOL(MIn,α(x(ts,n)),−e) is
a singleton or not. It is certainly not an empty set as all entries of the matrix
MIn,α are positive for a sufficiency large α > 0 and thus this matrix is strictly
copositive. This is a sufficient condition for the set SOL(MIn,α(x(ts,n),−e)) to
be nonempty [250, Theorem 3.6].

In case LCP(MIn,α(x(ts,n)),−e) has a unique solution (w̃∗(ts,n), θ̃∗(ts,n)) with
In = {i | θ̃∗(ts,n) > 0}, it can be deduced from Lemma 6.16 that the LCP given
by LCP(MI0

n+1,α
(x(ts,n+1)),−e) has as well a unique solution with In+1 = {i |

θ̃∗(ts,n+1) > 0} = In. This contradicts the definition of a switching point, cf.
Definition 6.1. Hence, we conclude that |SOL(MI0

n+1,α
(x(t)),−e)| > 1 for all

t ∈ [ts,n, ts,n+1].

Note that, with a slight abuse from notation, it follows from the reasoning above
that any t∗ ∈ [ts,n, ts,n+1] can be a switching point. Therefore, whenever the
active-set change in the FESD problem occurs at t̂s,n+1, we can simply choose
t∗ = t̂s,n+1. Hence, we obtain |ts,n+1 − t̂s,n+1| = 0 = O(hp) and this completes
the considerations of Case II.

To complete the induction step it is left to prove that (7.19b) holds for t = t̂s,n+1.
For t̂s,n+1 ≤ ts,n+1 we have x̃(t̂s,n+1) = x(t̂s,n+1) and the assertion follows
directly from (7.20). Note that for any other tn ∈ G that is not a switching
point (7.19b) follows immediately from Assumption 7.3.

210 FINITE ELEMENTS WITH SWITCH DETECTION

It is left to investigate the case of t̂s,n+1 > ts,n+1. Using Lipschitz continuity of
x(·), x̃(·), the fact that x̃(ts,n+1) = x(ts,n+1) and (7.25) one obtains

∥x̂h(t̂s,n+1)− x(t̂s,n+1)∥ ≤ ∥x̂h(t̂s,n+1)− x̃(t̂s,n+1)∥+ ∥x(ts,n+1)− x(t̂s,n+1)∥

+ ∥x̃(t̂s,n+1)− x̃(ts,n+1)∥ ≤ O(hp) + (Lx + Lx̃)|ts,n+1 − t̂s,n+1| = O(hp).

Moreover, from Lipschitz continuity of gi(·), i ∈ J and the last inequality
for sufficiently small h > 0 we have that I(x(ts,n+1)) = I(x̂(t̂s,n+1)), which
completes the induction step for n+ 1. With the use of an interpolation scheme,
from (7.19) it follows that we can make a continuous-time approximation x̂h(t)
for t ∈ [0, T] with the accuracy O(hp̄), 1 ≤ p̄ ≤ p for t /∈ G. Therefore, it follows
that the sequence of approximations x̂h(t) generated by the FESD method
converges to a solution x(t) in the sense of Definition 6.1 for t ∈ [0, T]. The
proof is completed.

In the proof of Theorem 7.10, we establish that both the solution approximation
x̂h(t) and exact solution x(t) predict the same new active set at switching
points. Thereby, we make use of Theorem 6.11, which in turn is applicable if
Assumption 6.12 holds. As discussed in Section 6.2.3, this assumption does not
hold for the cases of a unique leaving of a sliding mode as in case (d) of Example
6.8. Consequently, we cannot apply Theorem 6.11 to predict In with the data
at ts,n. The solution is to construct an LCP based on higher order derivatives
of λ, which enables one to predict the new active set in case of leaving sliding
mode, cf. Remark 6.10. Such an extension is beyond the scope of this thesis,
but we refer the interested reader to [251, Section 4.2].

7.3.4 Illustrating the integration order

In section 4.2.5, we investigated the order of accuracy of standard integration
methods on the example in Eq. (4.4). Now we illustrate the results of Theorem
7.10 for several RK schemes on the same example, which we restate for the
reader’s convenience:

ẋ =
{
A1x, ∥x∥2

2 < 1,
A2x, ∥x∥2

2 > 1,
(7.26)

with

A1 =
[

1 2π
−2π 1

]
, A2 =

[
1 −2π

2π 1

]
,

and x(0) = (e−1, 0). Figure 4.8 illustrates the solution of this IVP. We compare

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 211

10−2 10−1
10−15

10−7

101

h

E
(T

)

Midpoint Rule 2
Gauss-Legendre 4
Gauss-Legendre 6
Gauss-Legendre 8

10−2 10−1
10−15

10−7

101

h

10−2 10−1
10−15

10−7

101

h

E
(T

)

Implicit Euler 1
Radau IIA 3
Radau IIA 5
Radau IIA 7

10−2 10−1
10−15

10−7

101

h

10−2 10−1
10−15

10−7

101

h

E
(T

)

Lobatto IIIA 2
Lobatto IIIA 4
Lobatto IIIA 6
Lobatto IIIA 8

10−2 10−1
10−15

10−7

101

h

10−2 10−1
10−15

10−7

101

h

E
(T

)

Explicit Euler 1
Heun 2
Heun 3
Runge-Kutta 4

10−2 10−1
10−15

10−7

101

h

Figure 7.6: Integration error E(T) = ∥x(T) − x̂h(T)∥ vs. the step-step size
h for different RK methods: standard (left plot) vs. FESD (right plot). The
legend provides the name of the used RK method and its order of the global
integration error.

the results obtained via FESD to the ones obtained with the standard RK
discretization from Section 7.2.1. More information on standard RK methods
for DAE can be found in Section 3.2.1. Following Section 6.2, we can write

212 FINITE ELEMENTS WITH SWITCH DETECTION

Method Global error estimate
Radau IIA h2ns−1

Gauss-Legendre h2ns

Lobatto IIIA h2ns−2

Explicit RK hns

Table 7.1: List of analyzed RK methods and their accuracy order for ODE [126].
Note that for Explicit-RK methods the assertion in the table is true for ns ≤ 4,
otherwise p < ns.

(7.26) in the form of the DCS (6.8), where:

F (x) =
[
A1x A2x

]
, g(x) = (c(x),−c(x),

where g(x) is obtained via Eq. (6.14). We compare the global integration
error E(T) = ∥x(T)− x̂h(T)∥ obtained with different methods. More precisely,
we regard solution approximations to this IVP obtained by standard explicit
and implicit RK methods (7.4) and FESD (7.11) with NFE = 2 and different
step-sizes. Both integration methods are implemented in nosnoc. Table 3.1
summarize the accuracy order for few commonly used RK methods. Here, we
list in Table 7.1 the RK methods considered in the numerical example, together
with their order. In the case of explicit methods, we consider the one with
ns ≤ 4.

Several other IRK methods are available in nosnoc, but we omit the full
comparison for brevity. The nominal step h size is obtained by dividing T
by the number of simulation steps Nsim. We take an irrational number for
T = π

2 so that ts = 1 never coincides with a finite element boundary. Therefore,
we avoid accidental switch detection via the discretization grid for standard
discretization.

The numerical error as a function of the step-sizes for the RK and FESD
methods from Table 7.1 are depicted in Figure 7.6. We can see that the
standard discretization achieves in all cases only first-order accuracy (left plots),
which is consistent with the experiments from Section 4.2.5. On the other
hand, the FESD method recovers always the high accuracy order that the
underlying RK method has for smooth ODE (right plots). This verifies the
result of Theorem 7.10 in practice and demonstrates how FESD can be used
as an event-based integrator without an external switch detection procedure.
The saturation in the right plots of some high-accuracy methods is due to the
round-off errors in floating point arithmetic which limit the possible accuracy
on a computer.

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 213

7.3.5 Convergence of discrete-time sensitivities

Numerical sensitivities are a crucial ingredient for computing stationary points
and verifying their optimality in direct optimal control. Here we denote them
by Ŝxh(t; 0, x0) or sometimes more compactly by Ŝxh(t, x0).

As extensively discussed in Section 5.2, a fundamental limitation of standard
discretization methods for nonsmooth systems is that Ŝxh(t, x0) ̸→ Sx(t, x0) as
h ↓ 0. In direct optimal control, this can cause convergence to artificial stationary
points arbitrarily close to the initialization point [203, 259]. Fortunately, the
sensitivities of solutions generated by the FESD method converge to correct
values (cf. Subsection 3.2.2). This is shown in the next theorem, but before we
state it, we make one more assumption on the time derivatives of the solution
approximation.

Assumption 7.11. (RK derivatives) Regard the RK methods from Assumption
7.3 applied to the differential algebraic equations (6.15). Suppose that the
derivatives of the numerical approximation for the same RK method converge
with order 1 ≤ q ≤ p, i.e., ∥ ˙̂xh(t)− ẋ(t)∥ = O(hq), t ∈ G.

The aim of the assumption about the convergence of the derivatives of the
numerical approximation is to cover a broad class of RK methods, and the
value of q depends on the specific choice of an RK method. For example,
for collocation-based implicit RK methods for ODE in general it holds that
q = p − 1 [124, Theorem 7.10]. More specifically, methods that contain the
boundary point of a finite element denoted by t̄, that is cns = 1 satisfy p = q.
This assertion follows directly from Lipschitz continuity and the fact that the
numerical approximations satisfy the ODE at every stage point:

∥ ˙̂xh(t̄)− ẋ(t̄)∥ = ∥fi(x̂h(t̄))− fi(x(t̄))∥ ≤ Lfi∥x̂h(t̄)− x(t̄)∥ = O(hp).

Theorem 7.12 (Convergence to exact sensitivities). Suppose the assumptions
of Theorem 7.10 and Assumption 7.11 hold. Assume that a single active-set
change happens at time ts,n, i.e., ||In| − |In+1|| ≤ 1, n ∈ {0, . . . Nsw}. Then for
h ↓ 0 it holds that Ŝxh(t, x0)→ Sx(t, x0) with the convergence rate

∥Ŝxh(t, x0)− Sx(t, x0)∥ = O(hq), for all t ∈ G. (7.27)

Proof. Regard partition of [0, T]: 0 < t̃1 < · · · < t̃k < · · · < t̃Nk < T such
that in the open interval between every two neighboring points there is a single
switching point with Nk > Nsw. Then by the chain rule, we have

Sx(T ; 0, x0) = Sx(T ; t̃Nk , x(t̃Nk)) · · ·Sx(t̃k+1; t̃k, x(t̃k)) · · ·Sx(t̃1; 0, x0).

214 FINITE ELEMENTS WITH SWITCH DETECTION

Without loss of generality we can assume that on [0, t̃1] a single switch occurs
at ts ∈ (0, t̃1). We show convergence of the sensitivities on this interval.
Convergence on [0, T] follows by inductively applying the same arguments on
every sub-interval [t̃k, t̃k+1].

Regard the two smooth pieces of the approximation x̂h(t): 1) x̂h,1(t, x0) for
t ≤ t̂s and, 2) x̂h,2(t, y0(x0)) where y0(x0) = x̂h,2(0, y0(x0)) = x̂h,1(t̂s, x0). With
this definition, we have for t ≥ t̂s

x̂h,2(t− t̂s, y0(x0)) = x̂h(t, x0). (7.28)

From Theorem 7.10 we know that |t̂s − ts| = O(hp). Obviously, the value of t̂s
depends on x0 and we know from Theorem 7.10 that we obtain implicitly at a
switching point the condition

ψi,j(x̂h,1(t̂s(x0), x0)) = gi(x̂h,1(t̂s(x0), x0))− gj(x̂h,1(t̂s(x0), x0)) = 0, (7.29)

where i /∈ I0, i ∈ I1 and j ∈ I0.

For computing Ŝxh(·) on [t̂s, t1] from Eq. (7.28) we have

∂x̂h(t, x0)
∂x0

= ∂x̂h,2(t− t̂s(x0), y0(x0))
∂x0

= − ˙̂xh,2(t− t̂s(x0), y0(x0))∇x0 t̂s(x0)⊤

+ ∂x̂h,2(t− t̂s(x0), y0(x0))
∂y0

∇x0y0(x0).

(7.30)

Next, we compute the expressions for the two unknowns ∇x0 t̂s(x0)⊤ and
∇x0y0(x0). Denote by Ŝxh,1(t; 0, x0) = ∂x̂h,1(t,x0)

∂x0
. Using the implicit function

theorem for (7.29), we can compute

∇x0 t̂s(x0)⊤ = −
∇ψi,j(x̂h,1(t̂s(x0), x0))⊤Ŝxh,1(t̂s, x0)
∇ψi,j(x̂h,1(t̂s(x0), x0))⊤ ˙̂xh,1(t̂s(x0), x0)

. (7.31)

At t = t̂s, we exploit the fact that x̂h,2(0, y0(x0)) = y0(x0) = x̂h,1(t̂s, x0), thus

∇x0y0(x0) = ∂x̂h,1(t̂s(x0), x0)
∂x0

= ˙̂xh,1(t̂s(x0), x0)∇x0 t̂s(x0)⊤ + Ŝxh,1(t̂s;x0).

Combing the last line with (7.31) we obtain

∇x0y0(x0) =
[
I −

˙̂xh,1(t̂s(x0), x0)∇ψi,j(x̂h,1(t̂s(x0), x0))⊤

∇ψi,j(x̂h,1(t̂s(x0), x0))⊤ ˙̂xh,1(t̂s(x0), x0)

]
Ŝxh,1(t̂s;x0).

(7.32)

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 215

We are interested in ∂xh(t;x0)
∂x0

when t ↓ t̂s. Note that ∂x̂h,2(t−t̂s(x0),y0(x0))
∂y0

→ I

as t ↓ t̂s. Thus from (7.30), (7.31) and (7.32) one obtains

∂xh(t̂+s ;x0)
∂x0

= Ĵh(x̂h(t̂s;x0))∂xh(t̂−s ;x0)
∂x0

, with

Ĵh(x̂h(t̂s;x0)) :=
[
I + (˙̂xh(t̂+s , x0)− ˙̂xh(t̂−s , x0))∇ψi,j(x̂h(t̂−s , x0))⊤

∇ψi,j(x̂h(t̂−s , x0))⊤ ˙̂xh(t̂−s , x0)

]
.

(7.33)

By the chain rule, we have that for t > t̂s

Ŝxh(t;x0) = Ŝxh,2(t; t̂+s , y0)Ĵh(x̂h(t̂s;x0))Ŝxh,1(t−s ; 0, x0). (7.34)

First, note that for a fixed active set, the FESD equations for x̂h,1(t, x0) and
x̂h,2(t, y0) boil down to RK equations for the DAE (6.15) with fixed step-size
hn, cf. Theorem 7.7. Differentiating the RK equations to obtain Ŝxh(·) results
in the same RK method applied to the variational differential equations of the
system at hand. Thus, the numerical sensitivities converge in this setting to the
continuous-time sensitivities with the same accuracy O(hp) as for the solution
of the system [7].

Second, as h ↓ 0, due to assumption of this theorem, in Ĵh(x̂h(t̂s;x0)) the
functions ẋh(t) converge to f(x(t)) with order q. Due to Theorem 7.10, all other
terms converge with order p. Thus, ∥Ĵh(x̂h(t̂s;x0))− J(x(ts;x0))∥ = O(hq).

Summarizing the last two arguments and applying them inductively for every
active-set change, we conclude that Ŝxh(t;x0) → Sx(t;x0) as h ↓ 0 with the
order q = min(p, q). This completes the proof.

The only restrictive assumption we make is that a single active-set change
happens at a time. For multiple simultaneous switches, the derivation becomes
quite involved even in continuous-time case [94]. Hence, we made this assumption
for simplicity. We proceed by illustrating the results Theorem 7.12 in a numerical
example.

7.3.6 Illustration of numerical sensitivity convergence

In Section 5.2, we showed that standard methods fail even on simple examples
due to the wrong numerical sensitivities. To demonstrate the improvements in
FESD compared to standard methods, we repeat the three experiments from
Section 5.2.5.

216 FINITE ELEMENTS WITH SWITCH DETECTION

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
1.5

1.6

1.7

1.8

1.9

2

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
1.4

1.5

1.6

1.7

1.8

Figure 7.7: Value of the objective functions Vs(x0) for the smoothed MPCC (left),
and Vr(x0) for the relaxed MPCC (right), for several values of the homotopy
parameter σ.

The goal was to numerically solve the OCP:

min
x0∈R,x(·)∈C0

∫ 2

0
x(t)2 dt+ (x(2)− 5/3)2 (7.35a)

s.t. x(0) = x0, (7.35b)

ẋ(t) ∈ 2− sign(x(t)), t ∈ [0, 2]. (7.35c)

Denote by V∗(x0) be the objective value for the unique feasible trajectory
starting at x(0) = x0.

In the first experiment, we evaluate V (x0) by simulating the trajectory of
(7.35c) for various x0 with FESD (7.11). Same as in Section 5.2.5, we pick the
Gauss-Legendre fourth-order with ns = 2 and NFE = 20. Figure 7.7 shows the
results for using a Scholtes relaxation and smoothing approach while solving
the FESD MPCC problem. In contrast to a standard approach (cf. Figure 5.3),
both the derivatives and function values converge to the exact value, and no
artificial local minima appear.

In the second experiment, we solve the OCP (7.35) for different initial guesses
x0 and different starting values of the relaxation parameter σ0. The MPCCs
are solved with a relaxation homotopy approach, where three different values of
the initial homotopy parameter σ0 of 1, 10−1, and 10−4. The initial guess for
the arising MPCC is obtained from a forward simulation of (7.35c) with the
same method and grid as in the discretized OCP. The final σ is always 10−8

and the homotopy parameter is updated via the rule: σn+1 = 0.1σn, and n is
the number of the problem in the sequence. Similar to Section 5.2.5, this is

CONVERGENCE THEORY OF FESD FOR STEWART’S REFORMULATION 217

-2 -1.5 -1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-2 -1.5 -1

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-2 -1.5 -1

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

Figure 7.8: Value of the optimal solution x∗
0 against different initial values x0

for which an initial feasible solution guess was computed. The MPCC is solved
by a relaxation method for different initial values of σ. The left plot is for
NFE = 20, the middle forNFE = 40 and the right plot for NFE = 100.

done for NFE = 20, NFE = 40 and NFE = 100. The results are depicted in
Figure 7.8. The few outliers correspond to problem instances where IPOPT did
not converge. Remarkably, the FESD solution matches the analytic solution
for all x0, regardless of the initial σ and initialization point. In contrast to the
standard approach (cf. Figure 5.4), FESD converges to the unique true solution
and does not get stuck at artificial local solutions. This highlights that the
numerical sensitivities converge to the true ones, as shown in Theorem 7.12.

In the last experiment, we solve a sequence of NLP in a homotopy procedure,
where σ is decreased via the rule σn+1 = 0.1σn and σ0 = 1. We also compute the
solution obtained by a single NLP solve with a fixed σn. Again, the experiment
is carried out for NFE = 20, NFE = 40, and NFE = 100. Figure 7.9 shows from
left to right the results for NFE = 20, NFE = 40 and NFE = 100, respectively.
Moreover, we plot the solutions obtained by the standard RK discretization. In
the standard case, the homotopy approach led to slightly better results but still
with large errors, cf. Figure 5.5. With FESD, both strategies converge to the
exact solution for all step sizes, because the derivatives are correct. Nevertheless,
in practice, the homotopy strategy yields faster and more reliable convergence
than a single NLP solve.

The experiments above demonstrate the superiority of FESD to standard
discretization even in a simple example. Remarkably, Figures 7.9 and 7.8
suggest that FESD seems to be well-behaved also on the intermediate relaxed
problems, in the sense that the accuracy is high, and the numerical sensitivities
are correct. This is not covered by our theoretical analysis but might be very
useful for real-time algorithms that solve the OCPs for larger final values of

218 FINITE ELEMENTS WITH SWITCH DETECTION

10-10 10-5 100

10-8

10-6

10-4

10-2

100

10-10 10-5 100

10-8

10-6

10-4

10-2

100

10-10 10-5 100

10-8

10-6

10-4

10-2

100

Figure 7.9: Distance of numerically computed optimal solution x∗
0, obtained

with FESD and the standard discretization, to the analytic solution x̄0, for
different σ. The left plot is for NFE = 20, the middle forNFE = 40 and the right
plot for NFE = 100.

the homotopy parameters. Moreover, the experiments show a less surprising
fact, i.e., that a homotopy with a larger initial σ0 usually converges more
reliably [159, 237].

7.4 FESD for the Heaviside step representation

We follow now similar lines as in Section 7.2 and start with the RK
discretization for the step reformulation DCS. We subsequently introduce
the cross complementarity and step equilibration conditions also for this
formulation. The section finishes with a summary of the FESD method for the
step reformulation.

7.4.1 Standard Runge-Kutta discretization

As a starting point in our analysis, we regard a standard RK discretization of
the DCS (6.44), which we restate for the readers’ convenience:

ẋ = F (x, u) θ, (7.36a)

θi =
nψ∏
j=1

(1 + Si,j(2αj − 1)
2

)
, for all i ∈ J , (7.36b)

FESD FOR THE HEAVISIDE STEP REPRESENTATION 219

ψ(x) = λp − λn, (7.36c)

0 ≤ λn ⊥ α ≥ 0, (7.36d)

0 ≤ λp ⊥ e− α ≥ 0. (7.36e)

For ease of notation, we work with the nonsmooth DAE formulation of the DCS
(6.46), which restate for convenience

ẋ = F (x, u)θ, (7.37a)

0 = G(x, θ, α, λp, λn) (7.37b)

In the sequel, one should keep in mind that (7.37b) collects all algebraic equations
including the complementarity conditions (6.44d)-(6.44e).

We regard a single control interval [0, T] with a constant externally chosen
control input q ∈ Rnu , i.e., we set u(t) = q for t ∈ [0, T]. In Section 7.5, we will
treat the discretization of OCPs with multiple control intervals. Let x(0) = s0
be the initial value. The control interval [0, T] is divided into NFE finite elements
[tn, tn+1] via the grid points 0 = t0 < t1 < . . . < tNFE = T . On each of the finite
elements we regard an ns-stage Runge-Kutta method which is characterized
by the Butcher tableau entries ai,j , bi and ci with i, j ∈ {1, . . . , ns} [126]. The
step-sizes read as hn = tn+1 − tn, n = 0, . . . , NFE − 1. The approximation of
the differential state at the grid points tn is denoted by xn ≈ x(tn).

We regard the differential representation of the Runge-Kutta method. Thus,
the derivatives of states at the stage points tn,i := tn + cihn, i = 1, . . . , ns,
are degrees of freedom. For a single finite element, we summarize them
in the vector Vn := (vn,1, . . . , vn,ns) ∈ Rnsnx . The stage values for the
algebraic variables are collected in the vectors: Θn := (θn,1, . . . , θn,ns) ∈ Rns·nf ,
An := (αn,1, . . . , αn,ns) ∈ Rns·nc , Λp

n := (λp
n,1, . . . , λ

p
n,ns

) ∈ Rns·nc and
Λn
n := (λn

n,1, . . . , λ
n
n,ns

) ∈ Rns·nc .

We collect all internal variables in the vector Zn = (xn,Θn, An,Λp
n,Λn

n, Vn).
The vector xnext

n denotes the state value at tn+1, which is obtained after a single
integration step. Now, we can state the RK equations for the DCS (7.37) for a
single finite element as

0 = Grk(xnext
n , Zn, hn, q) := (7.38)

220 FINITE ELEMENTS WITH SWITCH DETECTION

vn,1−F (xn + hn
∑ns
j=1 a1,jvn,j , q)θn,1

...
vn,ns−F (xn + hn

∑ns
j=1 ans,jvn,j , q)θn,ns

G(xn + hn
∑ns
j=1 a1,jvn,j , θn,1, αn,1, λ

p
n,1, λ

n
n,1)

...
G(xn+hn

∑ns
j=1ans,jvn,j , θn,ns , αn,ns , λ

p
n,ns

, λn
n,ns

)
xnext
n − xn − hn

∑ns
i=1 bivn,i

.

Next, we summarize the equations for all NFE finite elements over the
entire interval [0, T] in a discrete-time system format. To make it more
manageable, we use some additional shorthand notation and group all variables
of all finite elements for a single control interval into the following vectors:
x = (x0, . . . , xNFE) ∈ R(NFE+1)nx , V = (V0, . . . , VNFE−1) ∈ RNFEnsnx and
h := (h0, . . . , hNFE−1) ∈ RNFE . Recall that the simple continuity condition
xn+1 = xnext

n holds. We collect the stage values of the Filippov multipliers
in the vector Θ = (Θ0, . . . ,ΘNFE−1) ∈ Rnθ and nθ = NFEnsnf . Similarly,
we group the stage values of the algebraic variables specific to the step
representation in vectors A,Λp,Λn ∈ Rnα , where nα = NFEnsnc. Finally,
we collect all internal variables in the vector Z = (x,V,Θ,A,Λp,Λn) ∈ RnZ ,
where nZ = (NFE + 1)nx +NFEnsnx + nθ + 3nα.

All computations over a single control interval of the standard discretization
(denoted by the subscript std in the corresponding functions) are summarized
in the following equations:

s1 =Fstd(Z), (7.39a)

0=Gstd(Z,h, s0, q), (7.39b)

where s1 ∈ Rnx is the approximation of x(T) and

Fstd(Z) = xNFE ,

Gstd(Z,h, s0, q) :=

x0 − s0

Grk(x1, Z0, h0, q)
...

Grk(xNFE , ZNFE−1, hNFE−1, q)

 .
In (7.39), h is a given parameter and implicitly fixes the discretization grid. In
contrast to standard RK discretizations, we will now proceed by letting h be
degrees of freedom and introduce the cross-complementarity conditions for the
step reformulation.

FESD FOR THE HEAVISIDE STEP REPRESENTATION 221

7.4.2 Cross complementarity

For ease of exposition, suppose that the underlying RK scheme satisfies cns = 1,
e.g., this holds for Radau and Lobatto schemes [126]. This means that the right
boundary point of a finite element is a stage point, since tn+1 = tn + cnshn. We
provide extensions for cns ̸= 1, at the end of the section.

The goal is to derive additional constraints that will allow active-set changes
only at the boundary of a finite element. Moreover, in this case, the step-size hn
should adapt such that the switch is detected exactly. Recall that for the step
reformulation at every stage point we have the complementarity conditions:

0 ≤λn
n,m ⊥ αn,m ≥ 0, n = 1, . . . , NFE,m = 1, . . . , ns, (7.40a)

0 ≤λp
n,m ⊥ e− αn,m ≥ 0, n = 1, . . . , NFE,m = 1, . . . , ns. (7.40b)

As a first step, we exploit the continuity of the Lagrange multipliers λp and
λn, cf. Section 6.3.4. We regard the boundary values of the approximation of
λp and λn on an interval [tn, tn+1]. They are denoted by λp

n,0, λ
n
n,0 (which we

define blow) at tn and λp
n,ns

, λn
n,ns

at tn+1.

Next, we impose a continuity condition for the discrete-time versions of λp and
λn for all n ∈ {0, . . . , NFE − 1}:

λp
n+1,0 = λp

n,ns
, λn

n+1,0 = λn
n,ns

. (7.41)

Note that λp
0,0 and λn

0,0 are not defined via Eq. (7.41), as we do not have a
preceding finite element for n = 0. Nevertheless, they are crucial for determining
the active set in the first finite element. They are not degrees of freedom
but parameters determined by a given x0. Using equation (6.35) we obtain
λp

0,0 = max(ψ(x0), 0) and λn
0,0 = −min(ψ(x0), 0).

We have seen in Section 6.3.4 that, due to continuity, λp
i (t) and λn

i (t) must be
zero at an active set change. Moreover, on an interval t ∈ (tn, tn+1) with a fixed
active set, the components of these multipliers are either zero or positive on
the whole interval. The discrete-time counterparts, i.e., the stage values λp

n,m

and λn
n,m should satisfy these properties as well. We achieve these goals via the

cross complementarity conditions, which read for all n ∈ {0, . . . , NFE−1} as:

0 = diag(λn
n,m′)αn,m, m = 1, . . . , ns, m

′ = 0, . . . , ns, m ̸= m′, (7.42a)

0 = diag(λp
n,m′)(e− αn,m), m = 1, . . . , ns,m

′ = 0, . . . , ns, m ̸= m′. (7.42b)

In contrast to Eq. (7.41), here we have conditions relating variables
corresponding to different RK stages within a finite element. Eq. (7.42) extends

222 FINITE ELEMENTS WITH SWITCH DETECTION

the complementarity conditions for the same RK-stage, i.e., for m = m′, which
are part of the standard RK equations, cf. Eq. (7.40).

Some of the claims about the constraints (7.42) are formalized by the next
lemma. Recall that in our notation αn,m,j is the j-th component of the vector
αn,m.

Lemma 7.13. Regard a fixed n ∈ {0, . . . , NFE−1} and a fixed j ∈ C. If any
αn,m,j with m ∈ {1, . . . , ns} is positive, then all λn

n,m′,j with m′ ∈ {0, . . . , ns}
must be zero. Conversely, if any λn

n,m′,j is positive, then all αn,m,j are zero.

Proof. Follows from similar lines as the proof of Lemma 7.2.

An analogous statement holds for λp
n,m and (e− αn,m).

It is now left to discuss why the boundary points λp
n+1,0 = λp

n,0 and λn
n+1,0 = λn

n,0
of the previous finite element are included in the cross complementarity
conditions (7.42). It turns out, they are the key to switch detection. A
consequence of Lemma 7.13 is that, if the active set changes in the j-th
component between the n-th and (n+ 1)-st finite element, then it must hold
that λp

n,ns,j
= λp

n+1,0,j = 0 and λn
n,ns,j

= λn
n+1,0,j = 0. Since xnext

n = xn+1, we
have from (7.38) the condition

ψj(xn+1) = 0,

which defines the switching surface between two regions. Therefore, we have
implicitly a constraint that forces hn to adapt such that the switch is detected
exactly.

For clarity, the conditions (7.42) are given in their sparsest form. However,
the nonnegativity of αn,m, λp

n,m and λn
n,m allows many equivalent and more

compact forms. For instance, we can use inner products instead of component-
wise products or we can even summarize all constraints for a finite element, or
for all finite elements in a single equation. In the sequel, we use a formulation
where, together with the constraint

∑NFE−1
n=0 hn = T , we have the same number

of new equations as new degrees of freedom by varying hn. Thus, we combine
constraints of two neighboring finite elements and have the compact formulation

Gcross(A,Λp,Λn) = 0 (7.43)

whose entries are for all n ∈ {0, . . . , NFE − 2} given by

Gcross,n(A,Λp,Λn) =
n+1∑
k=n

(ns∑
m=1

ns∑
m′=0,
m′ ̸=m

α⊤
k,mλ

n
k,m′ + (e− αk,m)⊤λp

k,m′

)
.

FESD FOR THE HEAVISIDE STEP REPRESENTATION 223

We remind the reader that we use this seemingly complicated form only to obtain
a square system of equations. This simplifies the study of the well-posedness of
the FESD equations later. However, in an implementation one can use any of
the equivalent, more sparse, or dense formulations. Many possible variants are
implemented in NOSNOC [206], and the user can control the sparsity.

7.4.3 Step size equilibration

To complete the derivation of the FESD method for the step reformulation
(7.37), we need to derive the step equilibration conditions. Here, step is referred
to the integration step size and is not to be confused with the set-valued step
function.

If no active-set changes happen, the cross complementarity constraints (7.42)
are implied by the standard complementarity conditions (7.40). Therefore, we
end up with a system of equations with more degrees of freedom than conditions.
The step equilibration constraints aim to remove the degrees of freedom in
the appropriate hn if no switches happen. This results in a piecewise uniform
discretization grid for the differential and algebraic states on the considered
time interval.

We achieve the goals outlined above via the equation:

0 = Geq(h,A,Λp,Λn) :=

 (h1 − h0)η1(A,Λp,Λn)
...

(hNFE−1 − hNFE−2)ηNFE−1(A,Λp,Λn)

 , (7.44)

where ηn is an indicator function that is zero only if a switch occurs, otherwise
its value is strictly positive. This provides a condition that removes the spurious
degrees of freedom. In the remainder of this section, we derive a possible
expression for ηn.

The derivations below are motivated by the following facts. Let tn be a
switching point with ψj(x(tn)) = 0 for some j ∈ C. Consequently, it holds
that λp

j (tn) = λn
j (tn) = 0. If, for example, a switch occurs at ts,n such that

ψ(x(t−s,n)) < 0 and ψ(x(t+s,n)) > 0, we have that λ̇n
j(t−s,n) < 0, λ̇p

j(t−s,n) = 0 and
that λ̇n

j(t+s,n) = 0, λ̇n
j(t+s,n) > 0. The symmetric case is possible as well. The

absolute values of these directional derivatives help us to encode the switching
logic. This state of affairs can be seen in Figure 6.3.

Now, instead of looking at the time derivatives, in the discrete-time case, we
exploit the non-negativity of λp

n,m, λn
n,m, and the fact that the active set is

fixed for the whole finite element. For n ∈ {1, . . . , NFE − 1}, we define the

224 FINITE ELEMENTS WITH SWITCH DETECTION

Switching case σλ
n,B
n σλ

n,F
n σλ

p,B
n σλ

p,F
n πλ

n

n πλ
p

b υn
No switch 1 1 0 0 1 0 1
Crossing 1 0 0 1 0 0 0
Entering sliding mode 1 0 0 0 0 0 0
Leaving sliding mode 0 0 0 1 0 0 0
Spontaneous switch 0 0 0 1 0 0 0

Table 7.2: Overview of switching cases for the step size equilibration

following backward and forward sums of the stage values over the neighboring
finite elements [tn−1, tn] and [tn, tn+1]:

σλ
p,B
n =

ns∑
m=0

λp
n−1,m, σλ

p,F
n =

ns∑
m=0

λp
n,m,

σλ
n,B
n =

ns∑
m=0

λn
n−1,m, σλ

n,F
n =

ns∑
m=0

λn
n,m.

They are zero if the left and right time derivatives are zero, respectively. Likewise,
they are positive when the left and right time derivatives are nonzero.

Moreover, for all n ∈ {1, . . . , NFE − 1} we define the following variables to
summarize the logical dependencies:

πλ
n

n = diag(σλ
n,B
n)σλ

n,F
n ∈ Rnψ ,

πλ
p

n = diag(σλ
p,B
n)σλ

p,F
n ∈ Rnψ ,

and

υn = πλ
n

n + πλ
p

n ∈ Rnψ .

The switching cases and sign logic is summarized in Table 7.2. For readability,
we put in the table a one if a variable is positive and a zero if it is zero. Let
us discuss how the variables above encode the switching logic, and for this
purpose, we regard the j-th switching functions ψj(x). If no switch occurs,
and for example, we have that ψj(x(t)) < 0 during the regard time interval, it
follows that λn

j (t) > 0 and λp
j (t) = 0 during this time interval. In the discrete

time setting, we have σλ
n,B
n,j , σλ

n,F
n,j > 0 and σλ

p,B
n,j = σλ

p,F
n,j = 0. This means that

πλ
n

n,j > 0, πλn

n,j = 0 and υn,j > 0. It can be seen that the symmetric case with
ψj(x(t)) > 0 leads also to υn,j > 0, hence we do not enumerate all symmetric
cases in Table 7.2.

FESD FOR THE HEAVISIDE STEP REPRESENTATION 225

On the other hand, if we have a switch of the crossing type (cf. top plots in
Figure 6.3 with ψj(x(t)) < 0 for t < ts,n and ψj(x(t)) > 0 for t > ts,n, it follows
that λn

j (t) < 0, λp
j (t) = 0 for t < ts,n and λn

j (t) = 0, λp
j (t) > 0 for t > ts,n. In

the discrete-time setting we obtain the sign pattern as in the second row of
Table 7.2, with υn,j = 0.

In general, if there is an active-set change in the j-th complementarity pair,
then at most one of the j-th components of σλp,B

n and σλp,F
n , or σλn,B

n and σλn,F
n

is nonzero. In these cases, we obtain that υn,j = 0, and if now switch happens
we have that υn,j > 0.

In other words, υn,j is only zero if there is an active-set change in the j-th
complementarity pair at tn, otherwise, it is strictly positive. We summarize all
logical relations for all switching functions into a single scalar expression and
define

ηn(A,Λp,Λn) :=
nψ∏
i=1

(υn)i.

It is zero only if an active-set change happens at the boundary point tn, otherwise,
it is strictly positive.

7.4.4 The FESD discretization

We have now introduced all extensions needed to pass from a standard RK
discretization (7.39) to the FESD discretization for the step reformulation. With
a slight abuse of notation, we collect all equations in a discrete-time system
form:

s1 =Ffesd(Z), (7.45a)

0=Gfesd(Z,h, s0, q, T), (7.45b)

where Ffesd(x)= xNFE is the state transition map and Gfesd(x,h,Z, q, T) collects
all other internal computations including all RK steps within the regarded time
interval:

Gfesd(Z,h, s0, q, T) :=

Gstd(Z,h, s0, q, T)
Gcross(A,Λp,Λn)
Geq(h,A,Λp,Λn)∑NFE−1

n=0 hn − T

 . (7.46)

Here, control variable q, horizon length T , and initial value s0 are given
parameters.

226 FINITE ELEMENTS WITH SWITCH DETECTION

Remark on RK methods with cns ̸= 1. The extension for the case of an RK
method with cns ̸= 1 follows similar lines as in Stewart’s formulation [213].
We have that tn + cnshn < tn+1. Hence, the variables λp

n,ns
and λn

n,ns
do not

correspond to the boundary values λn(tn+1) and λp(tn+1) anymore. We denote
the true boundary points by λp

n,ns+1 and λn
n,ns+1. They can be computed

from the KKT conditions of the step reformulation LP (6.33). For all n ∈
{1, . . . , NFE − 2} we haveψ(xn+1)− λp

n,ns+1 + λn
n,ns+1

Ψ(λn
n,ns+1, αn,ns+1)

Ψ(λp
n,ns+1, e− αn,ns+1)

 = 0. (7.47)

These equations are appended to the FESD equation in (7.46).

However, to make the switch detection work, we must update the continuity
conditions for the discrete-time versions of the Lagrange multipliers and adapt
the cross-complementarity conditions accordingly. For all n = {0, . . . , NFE − 1},
Eq (7.41) is replaced by:

λp
n,ns+1 = λp

n+1,0, λ
n
n,ns+1 = λn

n+1,0. (7.48)

We append to the vectors A,Λp and Λn the new variables αn,ns+1, λ
p
n,ns+1 and

λn
n,ns+1 accordingly. For the whole control interval, we have in total 3(NFE−1)nc

new variables. It is only left to state the modified cross complementarity
conditions, including the expressions’ ns + 1-st points. More explicitly, the n-th
component of (7.43) reads now for all n ∈ {0, . . . , NFE − 2} as

Gcross,n(A,Λp,Λn) =
n+1∑
k=n

ns∑
m=1

ns+1∑
m′=0,
m′ ̸=m

α⊤
k,mλ

n
k,m′ + (e− αk,m)⊤λp

k,m′ .

The theoretical analysis of the FESD method for the Heaviside step reformulation
follows similar lines as the developments in Section 7.3. For brevity, we omit
restating all assumptions and theorems explicitly and refer the interested reader
to [207].

7.5 FESD in direct optimal control

In Sections 7.2 and 7.4, we have developed the FESD method for Stewart’s and
the step reformulation, respectively. Thereby, all developments focus on a single
control interval with a given control input. We show how to use the FESD

FESD IN DIRECT OPTIMAL CONTROL 227

method in direct optimal control, i.e., in a first-discretize-then-optimize approach.
For the sake of simplicity, our discussion is based on Stewart’s reformulation.
However, it is easy to extend the method to the step reformulation. We
consider the following continuous-time optimal control problem on a control
horizon [0, Tctrl]:

min
x(·),u(·),z(·)

∫ Tctrl

0
Lstg(x(t), u(t))dt+ Lend(x(Tctrl)) (7.49a)

s.t. x(0) = x0, (7.49b)

ẋ(t) = F (x(t), u(t))θ(t), t ∈ [0, Tctrl], (7.49c)

0 = g(x(t))− λ(t)− µ(t)e, t ∈ [0, Tctrl], (7.49d)

1 = e⊤θ(t), t ∈ [0, Tctrl], (7.49e)

0 ≤ θ(t) ⊥ λ(t) ≥ 0, t ∈ [0, Tctrl], (7.49f)

0 ≤ Gineq(x(t), u(t)), t ∈ [0, Tctrl], (7.49g)

0 ≤ Gend(x(Tctrl)), (7.49h)

where x0 is a given initial value, u(t) ∈ Rnu is the control function, z(t) =
(λ(t), θ(t), µ(t)) ∈ R2nf+1 collects the algebraic variables. The function Lstg :
Rnx × Rnu → R defines the stage cost (the Lagrange objective term), and
Lend : Rnx → R is the terminal cost (the Mayer term). The path and terminal
constraints are collected in the functions Gineq : Rnx × Rnu → Rng1 and
Gend : Rnx → Rng2 , respectively.

7.5.1 A multiple shooting-type discretization

We discretize the OCP (7.49) with N ≥ 1 control intervals indexed by k.
The control function approximation is taken to be piecewise constant on an
equidistant grid. This is the usual choice in direct multiple shooting [44] and
is required by many practical applications of feedback control but could be
easily generalized to any other local control parameterization. The constant
controls are collected in q = (q0, . . . , qN−1) ∈ RNnu . All internal variables of
every control interval are additionally equipped with an index k. On every
control interval k with a fixed duration of T = Tctrl

N , we apply the discretization
outlined in equation (7.11) with NFE internal finite elements. The state values
at the control interval boundaries are collected in the vector s = (s0, . . . , sN) ∈
R(N+1)nx . Additionally, the following vectors collect all internal variables of

228 FINITE ELEMENTS WITH SWITCH DETECTION

every discretization step: H = (h0, . . . ,hN−1) and Z = (Z0, . . . ,ZN−1). The
FESD discretization of the OCP (7.49) together with the aforementioned control
discretization reads as:

min
s,q,H,Z

N−1∑
k=1

L̂stg(sk,xk, qk) + L̂end(sN) (7.50a)

s.t. s0 = x̄0, (7.50b)

sk+1 = Ffesd(Zk), k = 0, . . . , N − 1, (7.50c)

0 = Gfesd(Zk,hk, sk, qk, Tk), k = 0, . . . , N − 1, (7.50d)

0 ≤ Gineq(xk, qk), k = 0, . . . , N − 1, (7.50e)

hmine ≤ hk ≤ hmaxe, k = 0, . . . , N − 1, (7.50f)

0 ≤ Gend(sN). (7.50g)

where L̂stg : Rnx × R(NFE+1)nsnx × Rnu → R and L̂end : Rnx → R are the
discretized stage and terminal costs, respectively. The scalars hmin and hmax
are the lower and upper bounds for the step sizes. The box constraint (7.50f)
prohibits negative step sizes and bounds the variability of the step size. Note that
within this formulation, at every control interval the constraint

∑NFE
n=1 hn,k = T

is imposed as part of (7.50d), cf. Eq (7.10). It is easy to see that with the step
representation we obtain an NLP very similar (7.50) after discretization.

Recall that Eq. (7.50d) contains complementarity constraints. Therefore, the
NLP (7.50) is a Mathematical Program with Complementarity Constraints
(MPCC). As discussed in Section 2.4, MPCC can often be solved efficiently via
reformulations and homotopy approaches. Several relaxation, smoothing, and
penalty homotopy approaches are implemented nosnoc [206].

7.5.2 A numerical optimal control example

In this section, we illustrate in an optimal control problem several features
developed in this chapter: FESD for Cartesian Products of Filippov systems
(Section 6.2.5), handling multiple sliding modes, step equilibration (Sec. 7.2.4
and 7.4.3), and equidistant control discretization grids (Section 7.5.1). We also
include a benchmark where we compare the accuracy and computational time
of the standard and the FESD method.

FESD IN DIRECT OPTIMAL CONTROL 229

We regard the following optimal control problem:

min
x(·),u(·)

∫ 4

0
u(t)⊤u(t) + v(t)⊤v(t) dt+; (7.51a)

s.t. x(0) = (2π
3 ,

π

3 , 0, 0), (7.51b)

ẋ(t) =
[
−sign(c(x(t))) + v(t)

u(t)

]
, t ∈ [0, 4], (7.51c)

− 2e ≤ v(t) ≤ 2e, t ∈ [0, 4], (7.51d)

− 10e ≤ u(t) ≤ 10e, t ∈ [0, 4], (7.51e)

q(4) = qfinal, (7.51f)
with q ∈ R2, v ∈ R2, u ∈ R2 and x = (q, v). The switching functions are defined
as c1

1(x) = q1+0.15q2
2 , c2

1(x) = −0.05q3
1+q2 and the function c(x) = (c2

1(x), c2
1(x))

defines the region boundaries. Note that we have two subsystems, cf. Section
6.2.5. It can be seen that for v(t) = 0 the vector fields of q point in all regions
towards the origin in the (q1, q2) plane. Setting the control functions to zero,
results in trajectories going to the origin with sliding modes on the surfaces of
discontinuity defined by c(x) = 0. On the other hand, by increasing the value of
v(t) via the control functions u(t), the vector fields can change their direction,
and sliding modes can be left or not achieved at all.

The goal in the OCP is to reach qfinal = (−π6 ,−
π
4) with a minimum control

effort. The trajectory has to: (1) first reach φ1(x) = 0; (2) slide towards
M = {q ∈ R2 | c(x) = 0}; (3) stay there for some time; (4) exit M and slide
on φ2(x) = 0; (5) and then leave the sliding mode as late as possible to reach
qfinal. The seemingly simple example comprises several difficult switching cases
in its solution. The described solution is illustrated in Figure 7.10, and the
optimal controls u(t) and state v(t) are depicted in Figure 7.11. The OCP is
discretized with the FESD Radau IIA method of order 3 (i.e., ns = 2), N = 6
control intervals and with NFE = 6 finite elements on every control interval.

This solution comprises four switches and different sliding modes on nonlinear
manifolds, including twice sliding on co-dimension one manifolds and once on the
co-dimension two manifold M, and additionally leaving the sliding mode twice.
One can see in Figure 7.11 that the control is discretized on an equidistant grid
despite the variable length of the finite elements. This illustrates the multiple
shooting-type discretizations described in the previous section.

In the first experiment, we demonstrate the effects of step equilibration for a
solution of the OCP (7.51). The left plot in Figure 7.12 depicts the indicator

230 FINITE ELEMENTS WITH SWITCH DETECTION

−2 −1 0 1 2

−1

0

1

x1

x
2

x(t)
φ1(x) = 0
φ2(x) = 0

0 1 2 3 4
−1

0

1

2

t

x
(t

)

x1(t)
x2(t)

Figure 7.10: A solution x(t) to the OCP (7.51).

0 1 2 3 4

−2

0

t

v
(t

)

v1(t)
v2(t)

0 1 2 3 4

−2

−1

0

1

t

u
(t

)

u1(t)
u2(t)

Figure 7.11: The left plot shows the solution trajectories for v(t). The right
plot shows optimal controls obtained via the FESD discretization of the OCP
(7.51). The vertical dashed lines highlight the control discretization grid.

function η. The function is only zero if a switch occurs, cf. the right plot of
Figure 7.10. The resulting step sizes hk,n with and without step equilibration
are depicted in the middle and right plots, respectively. For the right plot we
discard the step equilibration conditions Geq(h,Θ,Λ) = 0. Obviously, without
them, the optimizer varies the step size in a somewhat random way. On the
other hand, with step equilibration, we obtain a piecewise equidistant grid,
where the step-size changes only when a switch happens.

In the second experiment, we compare the accuracy of an OCP solution obtained
with the standard and FESD method as a function of the CPU time. We take
the optimal controls and perform a high-accuracy simulation of the system
dynamics in (7.51), which we denote by xint(t). As a metric, we take the
terminal constraint satisfaction of the high accuracy solution, i.e., E(T) =
∥xint(T) − xfinal∥. We set N = 6, and vary the number of finite elements
per stage NFE from 1 to 7, and the number of stage points ns from 1 to
4. The experiment is performed for the following RK methods: Radau IIA,
Gauss-Legendre, Lobatto IIIC, and Explicit-RK.

For Radau IIA-FESD and Lobatto IIIC-FESD we solved the arising MPCC

FESD IN DIRECT OPTIMAL CONTROL 231

10 20 30
10−15

10−5

105

Grid point

η
k
,n

10 20 30
0

0.1

0.2

Finite element

h
k
,n

10 20 30
0

0.1

0.2

Finite element

Figure 7.12: The left plot depicts the switching indicator function η(·) at the
solution of the OCP (7.51). The middle plot shows the step size hn,k with step
equilibration. The right plot shows the step sizes without step equilibration.
The horizontal dashed lines correspond to the minimum, maximum, and nominal
step size. The vertical dotted lines correspond to control interval boundaries.

with an elastic mode homotopy approach [16], cf. Section 2.4.3. In the other
scenarios, we were not able to solve all problems to convergence with the elastic
mode approach. Therefore, the MPCC was solved with a Scholtes relaxation
homotopy approach, cf. Section 2.4.2. The second approach is slightly slower
than elastic mode but more robust, and all problems were solved successfully.
The terminal error as a function of the total CPU time is given in Figure 7.13.
The source code of all examples is available in the repository of the open source
tool nosnoc [2].

We can draw several conclusions from the experiments. The FESD method
outperforms the standard approach in all experiments. For example, for a
CPU time of ≈ 1 second with FESD, we achieve five orders of magnitude more
accurate solutions than with the standard approach. A better solution than
the most accurate one of the standard approaches can be achieved with FESD
by an order of magnitude faster CPU time. The Radau IIA and Lobatto IIIC
are the most efficient methods in this benchmark, whereas the Gauss-Legendre
and Explicit-RK methods perform poorly. This is no surprise since the solution
trajectories contain sliding mode arcs which require solving nonlinear DAE
of index 2. Radau IIA and Lobatto IIIC usually perform well and have good
theoretical properties for higher index DAE, whereas Gauss-Legendre and
Explicit RK even loose the high accuracy orders that they have for ODE, cf.
Section 3.2.

232 FINITE ELEMENTS WITH SWITCH DETECTION

100 101 102

10−11

10−9

10−7

10−5

10−3

10−1

101

CPU time [s]

T
er

m
in

al
co

ns
tr

ai
nt

sa
ti

sf
ac

ti
on

Radau IIA-FESD
Radau IIA-Std
Lobatto IIIC-FESD
Lobatto IIIC-Std
Gauss-Legendre-FESD
Gauss-Legendre-Std
Explicit-RK-FESD
Explicit-RK-Std

Figure 7.13: Terminal constraint satisfaction vs. CPU time for the Standard
and FESD method. The size of the marker indicates the number of stage points,
the smallest corresponds to ns = 1 and the largest to ns = 4.

7.6 Conclusions and summary

This chapter presents the Finite Elements with Switch Detection (FESD)
method, which enables direct optimal control of a broad class of nonsmooth
dynamical systems with high simulation accuracy. The method is developed for
both Stewart’s and the Heaviside step reformulation of Filippov systems into
dynamic complementarity systems, which were discussed in Chapter 6.

With FESD, we can:

1) precisely determine the time of reaching or leaving the region boundaries,
which is crucial for the high accuracy of integration methods,

2) exactly compute the sensitivities across regions to correctly address the
nonsmoothness,

CONCLUSIONS AND SUMMARY 233

3) and appropriately handle the possible evolution on region boundaries that
occurs in sliding modes.

It is important to note that it is not known beforehand whether an ODE or
a DAE needs to be treated on a specific time interval with a fixed active set.
Both cases are handled using Runge-Kutta methods within FESD to provide
high-accuracy solutions. A key component of FESD is the automatic detection
of the active set and switching time, which allows for the unified treatment of
sliding modes and crossings of region boundaries.

We have established a solid theoretical foundation for FESD and have proven that
it has the same accuracy as the underlying RK method for smooth differential
equations. Additionally, we demonstrate that FESD delivers correct numerical
sensitivities, which overcomes the fundamental limitations of time-stepping-
based direct methods discussed in Chapter 5. An implementation of the
FESD method described here is available in the open-source package nosnoc.
Compared to standard discretization methods, FESD typically yields solutions
that are several orders of magnitude more accurate for a similar amount of CPU
time.

Another significant advantage of the new approach for direct optimal control
is that guessing of the number or order of switches is not required. FESD can
handle multiple or simultaneous switches and sliding modes. With time-freezing
that we introduce in the two subsequent chapters, several classes of nonsmooth
dynamical systems with state jumps can be recast into a piecewise smooth
system, allowing for a unified treatment of various classes of nonsmooth systems
in direct optimal control.

Future work includes relaxing some of the possibly restrictive assumptions in the
theoretical analysis, and exploring open questions such as the following: Are all
limit points of the solution approximations indeed solutions to the Filippov DI?
What are the conditions under which the FESD problem has a nonempty and
possibly compact solution set, and if unique Filippov solutions imply a unique
solution to the corresponding discrete-time FESD problem? It has been shown
in [137] that discrete-time optimal control problems with linear complementarity
systems (which are MPCCs) are quite regular (i.e., all stationary points are
strongly stationary points, cf. Definition 2.29). A natural question is if MPCCs
obtained via the FESD discretization have any special properties and are they
more regular than generic MPCCs?

Chapter 8

The Time-Freezing
Reformulation for Nonsmooth
Mechanical Systems

In this chapter, we regard rigid bodies subject to unilateral constraints and
friction. They are one of the largest and most studied class of problems with
state jumps, whit many practical applications in robotics. When two bodies
collides, due to the rigidity assumption, the velocities must jump to avoid
interpenetration and deformation. This greatly complicates formulating and
solving optimal control problems with such systems.

These difficulties motivate the development of the time-freezing reformulation
in this chapter. With time-freezing, we reformulate nonsmooth rigid body
models into equivalent ODEs with a discontinuous right-hand, whose solutions
do not have state jumps anymore. The main idea is to introduce an auxiliary
differential equation to mimic the state jump map in the part of the state space
that is infeasible for the original system. Additionally, we introduce a clock state,
which does not evolve during the runtime of the auxiliary system. The pieces of
the trajectory where the clock state evolves recover the solution of the original
system with jumps. The resulting time-freezing system is a nonsmooth ODE
with a discontinuity in the first time derivative of the trajectory, rather than in
the trajectory itself. This enables us to seamlessly apply the FESD method from
Chapter 7. Furthermore, this helps to overcome the fundamental computational
limitations of time-stepping-based direct methods. In summary, it allows for a
unified algorithmic treatment of several different classes of nonsmooth dynamical

235

236 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

systems in direct optimal control.

Outline. The chapter is structured as follows. Section 8.1 defines
Complementarity Lagrangian Systems (CLS) and discusses related work. Section
8.4.1 illustrates the main ideas of time-freezing on a guiding example. In Section
8.3, we develop the time-freezing reformulation for elastic impacts, and in
Section 8.4 for inelastic impacts with friction. Next, in Section 8.5, we formulate
an Optimal Control Problem (OCP) subject to time-freezing systems, and relate
it to the OCP subject to the initial CLS. Section 8.6 provides several numerical
optimal control problems with time-freezing and FESD. This chapter is mainly
based on the articles [202] and [212].

8.1 Introduction

The moment of contact between two bodies happens at such a short time
scale that the modeling of all physical circumstances that lead to these fast
dynamics is difficult. An accurate model of elastic body deformation requires
partial differential equations. However, estimating all relevant parameters can
be difficult in practice. The short time scale involved in impact events leads to
very stiff systems, which makes their numerical treatment just as challenging as
using a nonsmooth model. Moreover, compared to other motions, the duration
of an impact is often beyond the resolution of practical sensors [49, 129].

A practical and successful approach is to assume rigidity, meaning that the
bodies cannot change their shape. Consequently, when a rigid body collides
with another body or an obstacle, the normal contact velocity must change
instantaneously to maintain geometric feasibility. This is often a good modeling
approximation that fits the needs of most applications such as robotic locomotion
and manipulation, the study of human and animal gait, and granular matter [49,
255].

Remarkably, the macroscopic event of an impact is fully described by only two
parameters: the coefficients of restitution and friction. The value of the post-
impact velocity is determined by restitution laws, i.e., algebraic point-wise state
jump laws. We distinguish between elastic impacts, i.e., the normal velocity
after impact is positive, and inelastic impacts where the post-impact normal
velocity is zero. Another crucial aspect of nonsmooth mechanics models is dry
friction. The most widely used is Coulomb’s friction model [49, 198, 255], which
introduces another discontinuity. In a simple planar case, the friction force is
always directed opposite to the tangential velocity. When the body is at rest,
there is a set of possible forces.

INTRODUCTION 237

Complementarity conditions offer an effective way of expressing all described
nonsmooth effects. When combined with the equations of motion for an
unconstrained rigid body, they give rise to a specific type of dynamic
complementarity system known as a Complementary Lagrangian System (CLS).
Since the velocity of a body changes due to the action of forces, an instantaneous
change in velocity is a consequence of an impulsive force. This complicates the
mathematical study of nonsmooth mechanical systems as the forces become
distributions or measures [49, 198, 255]. Accordingly, the equations of motion
are no longer ODEs but measure differential inclusions, which are discussed in
Section 4.3.2.

It is generally unknown when and how often state jumps will occur, making the
simulation or incorporation of these models into optimal control challenging.
Section 5.3 has already revealed that standard time-stepping methods for
these systems have fundamental limitations. The previous chapter introduced
numerical methods for efficiently handling ODEs with a discontinuous right-
hand side but these methods cannot be applied to systems with discontinuous
solution trajectories. In this chapter, we introduce an exact reformulation of
CLS into piecewise smooth systems, such that we can apply FESD.

Notation summary

We recall some of the most important notation conventions used in this chapter
for the reader’s convenience. Key symbols and definitions used in this chapter
are summarized in Table 8.1. Time derivatives of a function x(t) w.r.t. to the
physical time t are compactly denoted by ẋ(t) := dx(t)

dt , and of a function y(τ)
w.r.t. to the numerical time τ by y′(τ) := dy(τ)

dτ . For the left and the right
limits, we use the notation x(t+s) = lim

t→ts, t>ts
x(t) and x(t−s) = lim

t→ts, t<ts
x(t),

respectively.

Table 8.1: Key symbols used throughout this chapter.

Symbol Description First appearance
nx dimension of the differential state x Sec. 8.1.1
nq dimension of the states q and v Sec. 8.1.1
nu dimension of the controls Sec. 8.1.1
ny dimension of the time-freezing state Sec. 8.4.1
nt dimension of the tangent space Sec. 8.1.1
x differential state Sec. 8.1.1.
q position state Eq. (8.1)
v velocity state Eq. (8.1)

238 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

vt tangential velocity at contact points Sec. 8.4.3
u control function Eq. (8.1)
λn Lagrange multiplier, normal contact force Eq. (8.1)
λt Lagrange multiplier, friction force Eq. (8.1)
y extended state of time-freezing system Secs. 8.3.1, 8.4.1
t physical time Secs. 8.3.1, 8.4.1
τ numerical time Secs. 8.3.1, 8.4.1
an constant of the auxiliary dynamics Prop. 8.8
at constant of the auxiliary dynamics Eq. (8.43)
λn,λp dual variables in step reformulation Eq. (8.56)
α selection of set-valued step function Eq. (8.56)
µ coefficient of friction Eq. (8.1f)
ϵt relaxation parameter in friction model Eq. (8.52)
s speed of time control variable Eq. (8.58)
f̃v(q, v, u) all forces that act on the body Eq. (8.1)
fv(q, v, u) vector field of the velocity state Eq. (8.1)
n(q) normal to the CLS constraint surface Eq. (8.1)
M(q) inertia matrix Eq. (8.1)
fc(q) constraint function in the CLS Eq. (8.1)
B(q) matrix whose column span the tangent

space at contact points
Eq. (8.1)

bj(q) j-th column of B Eq. (8.1)
fODE(x, u) unconstrained dynamics when fc(q)>0 Sec. 8.3.1,

Eq. (8.18)
D(q) Delassus’ matrix/scalar Eq. (8.25a)
φ(x, u) determines if contact persists Eq. (8.25b)
fDAE(x, u) dynamics equivalent to the DAE (8.20)

(constrained dynamics when fc(q) = 0)
Eq. (8.27)

ci(y) time-freezing PSS switching functions Sec. 8.3.1,
Eq. (8.28) and Sec.
8.4.3, Eq. (8.44)

faux,n(y) auxiliary dynamics Defs. 8.2 and 8.6
γ(x, u) time-rescaling factor of the time-freezing

sliding mode
Eq. (8.32)

f−
aux,t(y) auxiliary dynamics for tan. directions Eq. (8.43)
fSlip(x, u) dynamics for slipping motion in contact

phases
Eq. (8.40)

fStick(x, u) dynamics for sticking motion in contact
phases

Eq. (8.42)

D̃(q) generalization of D(q) Eq. (8.41)
φ̃(x, u) generalization of φ(x, u) Eq. (8.41)
gF(θ, α) expression for relating θ and α Eq. (8.57)

INTRODUCTION 239

Ψ(x(T)) terminal cost Eq. (8.53)
g(x, u) path and terminal constraints Eq. (8.53)
r(x) terminal constraints Eq. (8.53)
Σ switching surface Sec. 8.4.1
FTF(y, u) Filippov set for the time-freezing system Def. 8.3, 8.7 and

8.13
Q region where all auxiliary dynamics are

defined
Eq. (8.44)

8.1.1 Complementarity Lagrangian systems

There are various ways to represent nonsmooth Lagrangian systems, e.g., as
second-order sweeping process [49, 198, 199], measure differential inclusion [49,
255, 258], hybrid system [156, 186], differential variational inequality [255, 258]
or dynamic complementarity system [4, 49, 258]. The cited literature provides
comprehensive theoretical and computational results for these systems. Here
the focus is on the DCS formulation of nonsmooth mechanical systems, which
is more specifically called a Complementarity Lagrangian System (CLS). The
nonsmoothness in CLS is explicitly available through the complementarity
constraints, and not hidden in more abstract set-valued mappings. This
facilitates the development of the time-freezing reformulation and numerical
methods.

The complementarity Lagrangian System equations with friction read as:

q̇ = v, (8.1a)

M(q)v̇ = f̃v(q, v, u) +
nc∑
i=1

(ni(q)λn,i +Bi(q)λt,i), (8.1b)

0 ≤ λn ⊥ fc(q) ≥ 0, (8.1c)

if fc,i(q(ts)) = 0 and ni(q(ts))⊤v(t−s) < 0 then

0 = ni(q(ts))⊤(v(t+s)− ϵrv(t−s)), i = 1, . . . , nc

(8.1d)

λt,i ∈ arg min
λ̃t,i∈Rnt

−v⊤Biλ̃t,i (8.1e)

s.t. ∥λ̃t,i∥2 ≤ µλn,i, i = 1, . . . , nc. (8.1f)

We express the state of the rigid body through generalized coordinates q(t) ∈ Rnq
and generalized velocities v ∈ Rnq . The matrix M(q) is the inertia matrix and

240 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

is assumed to be symmetric positive definite. The function f̃v : Rnq × Rnq ×
Rnu → Rnq collects all generalized forces that act on the body. For ease of
notation, in the development of the time-freezing reformulation, we multiply
the velocity dynamics by M(q)−1 and introduce the shorthand fv(q, v, u) :=
M(q)−1f̃v(q, v, u).

Equation (8.1c) is the Signorini contact condition. We denote by ni(q) =
∇qfc,i(q) the contact normal of the i-th contact and collect all contact normal
in the matrix N(q) =

[
n1(q), . . . , nnc(q)

]
∈ Rnq×nc . If the i-th constraint is

active, meaning fc,i(q) = 0, a Lagrange multiplier λn,i is introduced to ensure the
constraint remains feasible. The multiplier λn,i represents a generalized normal
contact force that acts in the direction of the contact normal ni(q) and maintains
fc,i(q) ≥ 0. We assume that the contacts do not involve adhesion, i.e., there is
no gluing between bodies. If fc,i(q) > 0, there is no contact force and λn,i = 0.
The contact forces are grouped in the vector λn = (λn,1, . . . , λn,nc) ∈ Rnc .

Furthermore, when a constraint becomes active, due to the rigidity hypothesis,
the negative normal velocity ni(q)⊤v must become instantaneously nonnegative.
At this point, there are infinitely many choices for the post-impact velocity. This
ambiguity is resolved with a restitution law, which computes the post-impact
velocity as a function of the pre-impact velocity. Here Newton’s impact law is
used, which is given in Eq. (8.1d), where ts is the time of impact and ϵr ∈ [0, 1]
is the coefficient of restitution. If ϵr ∈ (0, 1], we have (partially) elastic impacts
and the constraint becomes inactive after the impact, i.e., fc,i(q(t)) > 0 for
t > ts. On the other hand, for ϵr = 0 we obtain fc,i(q(t)) = 0 for t > ts and
the dynamics are subject to fc,i(q) = 0 and thus we obtain locally a DAE.
These two cases lead to qualitatively different behavior and the corresponding
time-freezing reformulations are somewhat different.

The last ingredient in the CLS model is the nonsmooth Coulomb friction model,
which is given in (8.1e)-(8.1f). Before we explain the model, we define the
functions used in it. In the three-dimensional case, the tangent space at the
i-th contact point {q ∈ Rnq | fci(q) = 0} is spanned by the columns of the
matrix Bi(q) =

[
bi,1(q) bi,2(q)

]
∈ Rnq×nt , with nt = 2. In two dimensions, it

is spanned by a single vector, which we also denote by Bi(q) ∈ Rnq×nt , with
nt = 1. We denote the tangential velocity at the i-th contact by vt,i = Bi(q)⊤v.
The scalar µi > 0 is the coefficient of friction for the i-th contact.

The optimization problem (8.1e)-(8.1f) expresses that the dissipation of the
kinetic energy between two objects in contact is maximized. Consequently, the
friction law has the following features:

• the friction force has the opposite direction to the tangential slip direction
vt,i and

INTRODUCTION 241

Figure 8.1: Illustration of the three-dimensional friction cone FCi(q) for slip
motions (left figure) and stick motions (right plot).

• the maximal magnitude of the friction force λt,i is µi (the coefficient of
friction) times the normal contact force λn,i.

The set of all possible contact forces at the i-th contact is called the friction
cone and is defined as

FCi(q) = {ni(q)λn,i +Bi(q)λt,i | λt,i ≥ 0, ∥λt,i∥2 ≤ µλn,i}.

The total friction cone is the sum of all friction cones generated by each contact:

FC(q) =
∑

i∈{i|fc,i(q)=0}

FCi(q).

In the presence of friction, a rigid body can be either in slip or stick mode.
During slip mode, the friction force takes its maximal magnitude but is still
less than (or equal to) the magnitude of the sum of all other forces acting in
the same plane. In stick mode, the friction force is greater or equal to the sum
of the other forces acting in the same plane, and the body has a zero tangential
velocity w.r.t. the regarded contact. Figure 8.1 illustrates friction cones for
both the case of slip and stick motions.

242 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

8.1.2 Related work

To address the challenges posed by state jumps, various transformations have
been proposed in the literature to achieve the same outcome as time-freezing.
Two widely used methods are: (a) Coordinate transformations (as in [164, 294]),
and (b) Smoothing/penalization (as in [263]) or compliant impact models [49].

Coordinate transformations can be effective for specific situations. For example,
the Zhuravlev-Ivanov transformations [49, Sec. 1.4.3] are limited to mechanical
systems with a single unilateral constraint. A more comprehensive approach
involves using ”gluing functions” within the hybrid systems framework [164],
but this method only applies to systems with a single constraint and no generic
method for finding the required gluing function exists.

Smoothing or penalization can lead to realistic approximations, but simulating
the resulting stiff differential equations can be difficult. Compliant models
may result in unrealistic effects or underestimated velocities [49, Sec. 2.2].
Smoothing leads to very stiff ODEs and standard numerical methods can
perform similarly as if they were directly applied to the original nonsmooth
system, cf. Section 4.2. To obtain more accurate solutions and maintain stability
in numerical integration for smooth ODEs, prohibitively small step sizes are
necessary. Sometimes artificial damping and changes in the inertia matrix are
introduced to keep the integrator stable. However, all these model changes
introduce additional errors, which might not be easy to quantify [199].

The time-freezing reformulation was initially introduced in [212] for rigid
bodies with partially elastic impacts, and it was subsequently extended to
the inelastic case in [202]. Remarkably, this very same idea was independently
introduced later by Halm and Posa in [129]. In their research, the time-freezing
reformulation is used to obtain a differential inclusion with a bounded right-
hand side. This enabled the application of standard solution existence results
for differential inclusions, cf. Section 4.3.2. They address the nonuniqueness
in simulating rigid body models with multiple frictional impacts through a
stochastic approach by randomly varying auxiliary dynamics parameters and
considering multiple possible outcomes. However, [129] was not focused on
developing numerical methods for the whole time-freezing systems, which is a
nontrivial task. They simulate the auxiliary dynamics to compute the different
outcomes that may happen during simultaneous impacts. In contrast to their
work, the focus in this thesis is on developing high-accuracy numerical simulation
and direct optimal control methods for time-freezing systems that are equivalent
to CLS.

Due to the nonsmoothness and presence of inequality constraints standard
numerical methods for smooth ODEs and DAEs cannot be applied directly

THE TIME-FREEZING REFORMULATION 243

to a CLS. Instead, tailored time-stepping methods for are necessary. Most
time-stepping methods for CLS are based on the (semi-)implicit Euler method
and require solving a Linear Complementarity Problem (LCP) at each time step.
These methods are known for their stability, ease of use, and ability to handle
a large number of contacts [4, 154, 153, 198, 199, 15, 255]. However, they are
limited to first-order accuracy, even in the absence of contacts. One of the first
nonsmooth numerical methods in this class is the Jean-Moreau time-stepping
scheme [154, 153, 198, 199]. It treats the unilateral constraints on velocity level
and uses Newton’s impact law. The Schatzman–Paoli [221, 222] scheme deals
directly with the inequality constraints at the position level. Similar widely
used methods are the Anitescu-Potra method (at velocity level) [15] and the
Stewart-Trinkle method (at position level) [260]. A general convergence result of
time-stepping methods was provided by Stewart in [254]. Several modifications
have been made to these methods, such as those to handle stiff systems [14]
or to improve computational efficiency by solving convex quadratic programs
instead of LCPs [13]. A comprehensive review of time-stepping methods for
CLS can be found in [261]. Event-driven methods, which are less commonly
used in the simulation of rigid bodies, are surveyed in [4]. However, they are
not practical for direct optimal control problems due to their external switch-
detection procedure. For an overview of direct methods for optimal control
problems subject to CLS, cf. Section 5.1.

8.2 The time-freezing reformulation

In this section, we introduce a guiding example on which we illustrate the main
ideas in the time-freezing reformulation.

8.2.1 A guiding example

Example 8.1 (Guiding example). Consider a frictionless point mass in two
dimensions above a horizontal table. The mass is m = 1 kg and g = 9.81 m/s2

is the gravitational acceleration. Denote by q(t) := (q1(t), q2(t)) and v(t) :=
(v1(t), v2(t)) its position and velocity, respectively, and let λn(t) be the normal
contact force. The dynamics are given by the CLS:

q̇(t) = v(t), (8.2a)

mv̇(t) =
[

0
−mg

]
+
[
0
1

]
λn(t) +

[
u1(t)
u2(t)

]
, (8.2b)

244 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

0 ≤ λn(t) ⊥ q2(t) ≥ 0, (8.2c)

v2(t+s) = −ϵrv2(t−s), if q2(ts) = 0 and v2(t−s) < 0. (8.2d)

where u = (u1, u2) ∈ R2 is an externally chosen thrust force, which shall
be found, e.g., by solving an optimal control problem. The complementarity
condition (8.2c) states: the point-mass is either not in contact (q2 > 0) and
there is no reaction force (λn = 0), or there is contact (q2 = 0) and a normal
reaction force (λn ≥ 0). If the particle hits the table (q2(ts) = 0) with a negative
normal velocity (v2(t−s) < 0), then the normal velocity must jump to a positive
value (elastic impact, with ϵr > 0) or become zero (inelastic impact, with ϵr = 0)
to not violate the constraint q2 ≥ 0. The point-wise state jump law (8.2d)
determines the velocity after an impact, with ϵr ∈ [0, 1] being the coefficient of
restitution.

It is important to note that the jump discontinuities are state-dependent, i.e.,
they occur at time points that are not known a priori. In the sequel, we take a
closer look at the qualitative difference between elastic and inelastic impacts.

Elastic impacts

For partially elastic impacts, we have ϵr ∈ (0, 1], which means that the
post-impact velocity is strictly positive if the pre-impact velocity is nonzero.
Consequently, the particle does not stay on the table but bounces back. For
fc(q) := q2 > 0, we have no contact force, and the particles’ time evolution is
described by the ODE:

q̇(t) = v(t),

mv̇(t) =
[

0
−mg

]
,

which we compactly denote by ẋ = fODE(x) (free flight). If fc(q) = 0, then λn
is a Dirac impulse that ensures v2(t+s) = −ϵrv2(t−s). We can summarize the
dynamics of the particle in the case of elastic impacts as:

ẋ(t) = fODE(x(t)), if fc(q(t)) > 0,

v2(t+s) = −ϵrv2(t−s), if fc(q(ts)) = 0, ∇fc(q(ts))v(t−s) < 0.

The plots in the left column of Figure 8.2 show an example geometric trajectory,
velocities, and a phase plot for the elastic impact case.

THE TIME-FREEZING REFORMULATION 245

Figure 8.2: The left plots are for the elastic impact case and the right plots
are for the inelastic case. The first row shows the geometric trajectories of the
particle in the (q1, q2) plane. The second row shows the velocities as a function
of time. The last row illustrates the phase plots in the (q2, v2) plane. The red
shaded area corresponds to the infeasible region for the particle (q2 < 0).

Inelastic impacts

With ϵr = 0, we speak of inelastic impacts and obtain qualitatively different
trajectories. In this case, after the particle hits the table, it stays on it, and
the time evolution continues in the horizontal direction, i.e., the particle slides

246 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

on the table. The particles’ post-impact motion is described by the DAE of
index 3:

q̇(t) = v(t),

mv̇(t) =
[

0
−mg

]
+
[
0
1

]
λn(t),

0 = q2(t).
By taking two times the total derivative of the constraint q2(t) = 0, one can
explicitly compute the normal contact force and obtain λn = mg. Using this,
instead of a DAE, we can regard an equivalent ODE, which we denote by
ẋ = fDAE(x). The dynamics of this system can be summarized as follows:

ẋ(t) = fODE(x(t)), if fc(q(t)) > 0,

v2(t+s) = 0, if fc(q) = 0, ∇qfc(q)v < 0,

ẋ(t) = fDAE(x(t)), if fc(q(t)) = 0.
Compared to the elastic impacts, here we have a more complicated switching
behavior. Moreover, in the presence of external forces or more complicated gap
functions fc(q), switches from the DAE (constrained mode) to the unconstrained
ODE mode are also possible, cf. Section 8.4. The plots in the right column of
Figure 8.2 show an example trajectory for the inelastic impact case.

8.2.2 Main ideas behind time-freezing

The time-freezing reformulation transforms dynamic systems with state jumps
(NSD3) into piecewise smooth systems (NSD2), where no state jumps are present.
It builds upon two main ideas:

1. The state jumps are mimicked by an auxiliary dynamical system
ẋ = faux(x) in the infeasible region, i.e., fc(q) < 0. The trajectory
endpoints of the auxiliary ODE satisfy the state jump law on some
finite time interval.

2. We introduce a clock state t(τ) that stops counting whenever the auxiliary
dynamical system is active, i.e., t′(τ) = 0 for fc(q) < 0, and t′(τ) = 1 for
fc(q) > 0.

Consequently, by taking the pieces of the trajectory when the clock state was
active, we can recover the solution of the original system with discontinuous
trajectories.

THE TIME-FREEZING REFORMULATION 247

Figure 8.3: The phase plot of the time-freezing systems (8.3) in the (q2, v2)
plane.

We illustrate this idea on the guiding example for the case of elastic impacts.
Inelastic impacts are slightly more complicated, and we treat them in detail
in Section 8.4. The auxiliary dynamics in the example are defined in qy < 0.
We extend the state space by the clock state t, which results in the differential
state vector y = (x, t) ∈ Rnx+1. The unconstrained dynamics are augmented
by the clock state and read as:

d
dτ y(τ) = f1(y) :=

[
fODE(x(τ))

1

]
.

An auxiliary ODE for the example system is given by:

d
dτ y(τ) = f2(y(τ)) =

0

vy(τ)
0

−kqy(τ)− cvy(τ)
0

 ,
where k, c > 0 are appropriately chosen constant, such that the endpoints of its
trajectory between two switches on the interval [τs, τr] satisfy the state jump
law: v2(τr) = −ϵrv2(τs). In Section 8.3, we will provide constructive ways to
select auxiliary dynamics. Therefore, the overall time-freezing system reads as:

d
dτ y(τ) =

{
f1(y(τ)), if fc(q(τ)) > 0,
f2(y(τ)), if fc(q(τ)) < 0.

(8.3)

248 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

Figure 8.4: The top plot shows the evolution of the clock state t(τ) and the
red-shaded area indicates time intervals when the time is frozen. The middle
plot show the states q2(·) and v2(·) as a function of the numerical time τ and
the bottom plot as a function of the physical time t.

The time of the time-freezing system τ is called numerical time. Figure 8.3
illustrates the phase plot of the time-freezing system. Note that in contrast
to the bottom left plot in Figure 8.2, the trajectory evolves also in the red
prohibited region. The top plot in Figure 8.4 show the evolution of the clock
state t(τ). The intervals with t′(τ) = 1 are referred to as physical time and those
with t′(τ) = 0 as virtual time. The red shaded area indicates the intervals when
the time is frozen. In the middle plot, the trajectory of the time-freezing system
in numerical time τ . Note that the trajectory is now a continuous function of
numerical time τ . The bottom plot shows not the trajectory of the time-freezing
system but is plotted over physical time t(τ). With this simple transformation,
we recover the discontinuous trajectory of the original system with state jumps.

TIME-FREEZING FOR ELASTIC IMPACTS 249

8.3 Time-freezing for elastic impacts

In this section, we present the time-freezing reformulation for elastic impacts
for one impact at a time and without friction. The main ideas were already
introduced in Section 8.2.2. Here we provide constructive ways to select auxiliary
dynamics for a given coefficient of restitution ϵr ∈ (0, 1]. Moreover, we show the
equivalence of solutions between the CLS and the time-freezing system.

8.3.1 The time-freezing system

We regard a CLS without friction, with a single unilateral constraint, i.e., nc = 1,
and drop the subscript i for notational convenience. In this case, from (8.1) we
obtain the CLS:

q̇(t) = v(t), (8.4)

v̇(t) = fv(q(t), v(t), u(t)) +M(q(t))−1n(q(t))λn(t), (8.5)

0 ≤ λn(t) ⊥ fc(q) ≥ 0, (8.6)

0 = n(q(ts))⊤(v(t+s) + ϵrv(t−s)),

if fc(q(ts)) = 0 and n(q(ts))⊤v(t−s) < 0.
(8.7)

Such systems are sometimes called vibro-impact systems [49]. It can be seen
that if fc(q) > 0, then the dynamics reduce to the ODE:

q̇(t) = v(t),

v̇(t) = fv(q(t), v(t), u(t)),

which we compactly denoted by ẋ(t) = fODE(x(t), u(t)). When the
constraint fc(q) ≥ 0 becomes active, and the normal velocity is negative,
i.e., n(q(ts))⊤v(t−s) < 0, the velocity is reinitialized according to the state jump
law

0 = n(q(ts))⊤(v(t+s) + ϵrv(t−s)) (8.8)

If initialized with a nonzero normal velocity, the system is mostly in the ODE
mode, and the velocity is reinitialized whenever contact takes place. There are
two cases in which the regarded CLS can have an active constraint. Either it
is initialized with fc(q(0)) = 0 and n(q(0))⊤v(0) = 0, or when after infinitely
many jumps, with ϵr ∈ (0, 1), the normal velocity shrinks to zero, cf. Section

250 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

4.2.1. Here we focus on the interchange between the free flight phase modeled
by ẋ(t) = fODE(x(t), u(t)) and the state jumps.

In the general case, the time of impact ts is not known a priori. Simulating and
incorporating such models with additional algebraic conditions into optimal
control problems is difficult. To alleviate all these difficulties, we propose the
following approach. First, we relax the constraint fc(q) ≥ 0 and define an
auxiliary dynamical system on fc(q) < 0 to mimic the restitution law (8.8);
Second, we introduce a clock state t(τ) that evolves according to t′(τ) = 1. The
time τ denoted as numerical time is now the time of the differential equation.
Third, we ”freeze” the time whenever x(τ) is the infeasible region, i.e., t′(τ) = 0.

The state space is augmented with the clock state

y(τ) =

q(τ)
v(τ)
t(τ)

 ∈ Rny ,

with ny = nx + 1 and we regard all functions now over the numerical time τ .
We define c(y) = fc(q) as the switching function of the PSS we wish to obtain.
This splits the state space into the following two parts:

RODE = {y ∈ Rny | fc(q) > 0}, (8.9)

Raux = {y ∈ Rny | fc(q) < 0}, (8.10)

where RODE is the feasible region and Raux is the prohibited region. To mimic
the restitution law, we define the auxiliary ODE, whose endpoints satisfy the
restitution law on a finite time interval.

Definition 8.2 (Auxiliary ODE for elastic impacts). An auxiliary dynamical,
for elastic normal velocity jumps, y′(τ) = faux,n(y(τ)) satisfies for every initial
value y(τs) = (qs, vs, ts), with fc(qs) = 0 and n(qs)⊤vs < 0, a well-defined
and finite time interval [τs, τr], with the length τjump = τr − τs, the following
properties:

(i) fc(q(τ)) ≤ 0 and t′(τ) = 0 for all τ ∈ [τs, τr],

(ii) n(q(τr))⊤v(τr) = −ϵrn(q(τs))⊤v(τs), and

(iii) fc(q(τr)) = 0.

The introduced ideas are collected in the definition of a time-freezing system
for elastic impacts.

TIME-FREEZING FOR ELASTIC IMPACTS 251

Definition 8.3 (Time-freezing system for elastic impacts). Let τ ∈ R be
the numerical time and y(τ) := (x(τ), t(τ)) ∈ Rny the differential states and
u(τ) ∈ Rnu a given control function. The time-freezing PSS for a given is
faux,n(y) is a PSS defined over the regions RODE and Raux in (8.9) and:

y′ =

[
fODE(x, u)

1

]
, if y ∈ RODE,

faux,n(y), if y ∈ Raux.

The corresponding Filippov system, which we call the time-freezing system, is
defined as

y′∈FTF(y, u) :=
{
θ1(fODE(x, u), 1) + θ2faux,n(y) | e⊤θ=1, θ≥0

}
, (8.11)

with θ = (θ1, θ2).

Observe that we got rid of the conditional algebraic restitution law (8.8). The
resulting time-freezing system is a nonsmooth ordinary differential equation
where the discontinuity is in the first-time derivative of the trajectory rather
than in the trajectory itself.

8.3.2 Auxiliary dynamics for elastic impacts

To make further use of Definition 8.3, we must specify how to construct an
appropriate auxiliary ODE. We start with the simpler case of a linear constraint
of the form of fc(q) = n⊤q and a constant inertia matrix M(q). Afterwards, we
extend this formulation to general nonlinear constraints and inertia matrices
that are not necessarily constant.

The next proposition provides a constructive way of selecting the auxiliary ODE
from Definition 8.2 for linear scalar constraints.
Proposition 8.4 (Auxiliary dynamics). Suppose that fc(q) = n⊤q, where n
is the constraint normal and the inertia matrix M(q) is constant. Regard an
initial value y(τs) = (qs, vs, ts) such that fc(qs) = 0 and n⊤vs ≤ 0 holds. The
ODE is given by

y′ = faux,n(y) :=

 nn⊤q
M(q)−1n(−kn⊤q − cn⊤q)

0

 (8.12)

with k > 0 and

c = 2| ln(ϵr)|

√
k

(ln(ϵr)2 + π2) , (8.13)

252 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

is an auxiliary dynamical system from Definition 8.2 with

τjump =
√

(π2 + ln(ϵr)2)
k

. (8.14)

Proof. Without loss of generality, we assume that τs = 0. In the linear case,
the contact normal n is constant for all q. As the velocity jumps happen along
the constraint normal n, the main idea is to project the position and velocity
onto the normal (corresponds to the multiplication by n⊤ in (8.12)), use a two-
dimensional linear spring-damper model and embed the result back (correspond
to the multiplication by n and M(q)−1n in (8.12))). Let us introduce the change
of variables q̃ = n⊤q, ṽ = n⊤v and regard the two-dimensional ODE:

q̃′ = ṽ,

ṽ′ = −kq̃ − cṽ,

with the initial conditions q̃(0) = n⊤q(0) = fc(0) = 0 and ṽ(0) = n⊤v(0) ≤ 0.
The analytic solution of this ODE is given by

q̃(τ) = ṽ(0)
ω

e
−cτ

2 sin(ωτ),

ṽ(τ) = ṽ(0)e
−cτ

2

(
− c

2ω sin(ωτ) + cos(ωτ)
)
,

with ω =
√

4k−c2

2 . Using this analytic expression, one can compute, that for a
given k > 0 and c > 0 computed via (8.13), we have that

ṽ(τr) = −ϵrṽ(0),

i.e., the state jump law is satisfied. Using the analytic solution, we can compute
that τr− τs = τjump is given by (8.14). Moreover, it can be seen that fc(q(τ)) =
q̃(τ) ≤ 0 for all τ ∈ [τs, τr]. All conditions of Definition 8.2 are satisfied, and
the proof is complete.

The use of spring-damper systems to model mechanical impact is an old idea,
which is discussed in Chapter 2 of [49]. However, to accurately represent rigid
body impact dynamics, the system must become infinitely stiff, making it
impractical for numerical computations. Additionally, spring-damper models
may produce negative contact forces, as noted in Remark 2.3 of [49].

Here these difficulties are circumvented by introducing a clock state and freezing
it. This allows us to use even relatively small values for the spring constant,
represented by k, while still recovering the exact impact law in (8.8). We only

TIME-FREEZING FOR ELASTIC IMPACTS 253

use the endpoints of the trajectory produced by (8.12) and discard all other
pieces of the trajectory, thus avoiding the problems associated with standard
compliant models. In the case of activation of multiple perfect frictionless
constraints, the negative reaction force is in the normal cone to the feasible set
at this point [4], and hence the auxiliary dynamic has to evolve in this part
of the state space. In case the constraints are orthogonal, the desired vector
field is simply the sum of the neighboring fields, otherwise, the analysis is more
involved.

An example of a time-freezing system from Definition 8.3 with an auxiliary ODE
from the last proposition was already derived in Subsection 8.2.2. The blue
line in Figure 8.3 shows parts of the trajectory corresponding to y′ = faux,n(y)
and the green line corresponding to y′ = (fODE(x, u), 1). The trajectories as
functions of time are given in Figure 8.4.

8.3.3 Auxiliary dynamics for nonlinear constraints

We can extend the auxiliary ODE from Proposition 8.4 to handle general
nonlinear constraints. However, in this case, the constraint normal, represented
by n(q) = ∇qfc(q), and the inertia matrix represented by M(q), are no longer
constant, since q(τ) ̸= qs holds for τ ∈ (τs, τr). Moreover, if the contact happens
close to the intersection point of surfaces defined by the zero level sets of
two or more constraints, q(τ) might dive into the wrong region and make the
reformulation invalid, cf. Figure 8.3.

As a result, we cannot use a two-dimensional spring-damper model and embed
it back into the full space. To overcome this difficulty, we propose introducing
an auxiliary one-dimensional state, denoted by p(τ), which takes on the role
of n(q)⊤q. Whenever y ∈ Raux, we freeze the evolution of q(τ). This freezing
ensures that n(q(τ)) and M(q(τ)) remain constant for τ ∈ [τs, τr]. As a result,
we can use a modified version of the auxiliary dynamics from Proposition 8.4.

The extended state space of the time-freezing system is now given by ŷ(τ) =
(y(τ), p(τ)) ∈ Rnx+2. Let x̂(τ) := (q(τ), v(τ), p(τ)). For y ∈ RODE we keep
y′(τ) = (fODE(x, u), 1) and set p′(τ) = 0 and p(0) = 0, since p(τ) is not needed
in this region. For y ∈ Raux the auxiliary dynamics mimic the state jump in
n(q)⊤v, but now in the space spanned by [∇p ∇(n⊤v)] ∈ Rnq×2 instead of
[∇fc(q)∇(n⊤v)] ∈ Rnq×2. The state jump is emulated in p ≤ 0 (and fc(q)) ≤ 0).
The evolution of q(τ) in this region is frozen, i.e., q′(τ) = 0. Next, in the space
spanned by [∇p ∇(n⊤v)], we use a 2D damped linear oscillator to mimic the
state jump. The result is then embedded back into Rnx+2. This behavior is

254 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

modeled by the following vector field

f−
aux,n(ŷ) =

0nq,1

M(q)−1n(−kp− cn(q)⊤v)
n(q)⊤v

0

 .
It is left to define a vector field in the region p > 0 and fc(q) < 0. The solution
does not enter this region, and the problem should not be initialized there.
However, we define a vector field that points outwards of it, in case the trajectory
enters this region due to numerical errors

f+
aux,n(y(τ)) =

n(q)a
n(q)a
a
0

 ,
where a is a positive constant. Bringing these two modes together we have the
piecewise smooth auxiliary ODE

ŷ′ = faux,n(ŷ) =
{
f+

aux,n(ŷ), if y ∈ Raux ∩ {ŷ ∈ Rnx+2 | p > 0},
f−

aux,n(ŷ), if y ∈ Raux ∩ {ŷ ∈ Rnx+2 | p < 0},
(8.15)

By extending the definition for the ODE in y ∈ RODE by ŷ′ = (fODE(x, u), 0, 1),
we can extend Definition 8.3 accordingly.

An illustration of a solution of the time-freezing system with the novel auxiliary
ODE for the example in Eq. (8.15) is depicted in Figure 8.5. The solution
trajectory of the old auxiliary ODE evolves in the q2 − v2 plane (blue (dashed)
curve) and q2 < 0, τ ∈ (τs, τr). In contrast to that, the solution trajectory of the
novel ODE evolves in the p− q2 plane (orange (dotted) curve), and it does not
enter q2 < 0. Therefore, it holds that q(τ) = qs for all τ ∈ [τs, τr] and thus the
constraint normal n(q) and inertia matrix M(q) stay constant during this time
interval. Consequently, nonlinear constraints fc(q) can be treated naturally
with the novel auxiliary ODE.

8.3.4 Solution relationship

In this section, we show how the solutions of the initial nonsmooth differential
equation with a state jump law (8.4) and the corresponding time-freezing system
(8.11) are related. Note that the function t(τ ;x0) is monotone by construction.

Theorem 8.5 (Solution relationship - elastic impacts). Regard the initial value
problems corresponding to:

TIME-FREEZING FOR ELASTIC IMPACTS 255

−0.5 0 0.5 1 −5

0

5−0.5

0

qy

vy

p

Figure 8.5: The green (solid) and orange (dotted) curve show a solution to the
time-freezing system corresponding to the illustrative example in Eq. (8.2) but
with the novel auxiliary ODE (8.15). The blue (dashed) and green (solid) curve
show a solution with the auxiliary ODE from Proposition 8.4.

(i) the time-freezing system in Eq. (8.11) with a given y(0) = (q0, v0, 0) ∈ Rny
and fc(q0) > 0 on a time interval [0, τf], and

(ii) the CLS from Eq. (8.4) with the initial value x(0) = (q0, v0) ∈ Rnx on the
time interval [0, tf] := [0, t(τf)], with fc(q(tf)) > 0.

Assume that an auxiliary dynamics faux,n(y) from Definition 8.2 exists and
that there is at most one time point ts = t(τs) where fc(q(ts)) = 0 and
n(q(ts))⊤v(t−s) < 0 on the time interval [0, tf], Then the solution of the two
IVPs: x(t;x0) and y(τ ; y0) fulfill at any t ̸= ts

x(t(τ)) = Ry(τ), with R =
[
Inx 0nx,1

]
, (8.16)

Proof.: Let y1(τ ; y0) denote the solution of the IVP given by (8.11) and y0 for
τ ∈ (0, τ̂). Similarly, let x1(t(τ);x0) denote the solution to (8.4) and x0 for
t(τ) ∈ (0, t(τ̂)). Note that if there is no ts ∈ (0, tf) such that fc(x(ts)) = 0
on this interval, then t(τ) =

∫ τ
0 dτ1 = τ . Then setting τ̂ = τf, it follows that

(8.16) holds, since we have that x1(t;x0) = x(t;x0) and y1(τ ;x0) = y(τ ; y0) and
y ∈ RODE.

If we have some ts ∈ (0, tf) so that fc(x(ts)) = 0, then from the first part of the
proof we have that (8.16) holds for all τ ∈ (0, τ−

s) and hence for all t(τ) ∈ (0, t−s),

256 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

with ts = τs. It is only left to prove that (8.16) holds for τ ∈ (τ+
s , τf) and

the respective t(τ). By definition the solution of an auxiliary ODE y′(τ) =
faux,n(y(τ)) satisfies the restitution law and we have that n(q(τs))⊤v(τr) =
−ϵrn(q(τs))⊤v(τs). We denote by ys = y(τr). Observe that t′(τ) = 0 for
τ ∈ (τs, τr), hence t(τr) = t(τs) = ts holds. Using this, we have that y1(τ −
τr, ys) = y(τ, y0) for τ ∈ (τr, τf) and with denoting xs = Rys, we see that
x1(t(τ) − ts;xs) = x(t(τ), x0) for t(τ) ∈ (t+s , tf). Since the intervals (ts, tf)
and (τr, τf) have the same length and xs = Rys, from the definitions of the
corresponding IVPs, we conclude that relation (8.16) holds. This completes the
proof.

The assumptions that we have at most one state jump on the time interval
(0, tf) can always be satisfied by shortening the regarded time interval and can
be generalized inductively. Furthermore, we avoid the analysis of the case with
infinite switches in finite time (Zeno behavior). For a desired physical simulation
tf we always have to take a longer pseudo simulation time τf = tf + NJτjump,
where NJ is the number of state jumps on (0, tf) for the original system. We do
not know a priori the number NJ. Note that τjump has the same value for all
state jumps.

8.4 Time-freezing for inelastic impacts

In this section, we extend the time-freezing reformulation to the case of inelastic
impacts, i.e., the coefficient of restitution ϵr is zero. Rigid body models with
friction and inelastic impacts are indispensable in modern robotic control
applications, as any complex task requires exploiting contacts and friction [49,
129, 142, 225, 263, 255]. We regard again a single unilateral constraint, but
now with friction. Moreover, we outline some ideas on how to extend the
developments here to the case of multiple and simultaneous impacts. We discuss
how to construct auxiliary dynamics and formalize the relationship between the
time-freezing system and CLS. For simplicity and ease of exposition, we first
focus on the case without friction. Extensions with frictional impacts are given
in Section 8.4.3.

8.4.1 The time-freezing reformulation

From Eq. (8.1), we have that a CLS without friction and inelastic impacts
reduces to

q̇ = v, (8.17a)

TIME-FREEZING FOR INELASTIC IMPACTS 257

v̇ = fv(q, v, u) +M(q)−1n(q)λn, (8.17b)

0 ≤ λn ⊥ fc(q) ≥ 0, (8.17c)

0 = n(q(ts))⊤v(t+s),

if fc(q(ts)) = 0 and n(q(ts))⊤v(t−s) < 0,
(8.17d)

Different modes of the CLS

We start by investigating different possible modes of the CLS (8.17). Afterwards,
the time-freezing reformulation with its needed ingredients is introduced. For
the CLS (8.17) we can distinguish two modes of operation:

(i) the system is not in contact (unconstrained case, free flight), i.e., fc(q) > 0,
which implies λn = 0,

(ii) the system is in contact, i.e., fc(q) = 0 and λn ≥ 0.

In the first case, the system evolves according to the ODE:

q̇ = v, (8.18)

v̇ = fv(q, v, u). (8.19)

We write this ODE compactly as ẋ = fODE(x, u) := (v, fv(q, v, u)). We call an
active-set change from λn(t−s) = 0, fc(q(t−s)) ≥ 0 to λn(t+s) ≥ 0, fc(q(t+s)) = 0,
which triggers a state jump, an impact.

After an impact, it holds that 0 = n(q(ts))⊤v(t+s). Subsequently, the system
evolves according to a DAE of index 3:

q̇ = v, (8.20a)

v̇ = fv(q, v, u) +M(q)−1n(q)λn, (8.20b)

0 = fc(q). (8.20c)

Note that fc(q(t)) needs to be differentiated twice w.r.t. to time until λn(t)
appears explicitly. The next question to be answered is: Will the system stay
in contact (dynamics defined by (8.20) with fc(q) = 0) or will the contact break
(dynamics defined by (8.18) with fc(q) > 0)? The answer can be found by
looking at the contact Linear Complementarity Problem (LCP) [49, Section

258 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

5.1.2]. Under the standing assumptions, during contact on some time interval
[t1, t2] the consistent initialization conditions hold

0 = fc(q(t)), (8.21)

0 = d
dtfc(q(t)) = ∇qfc(q(t))⊤v(t). (8.22)

Consequently, λn(t) ≥ 0, t ∈ [t1, t2]. Due to the continuity of q(t), fc(q(t))
and d

dtfc(q(t)), for contact breaking (i.e., fc(q) becomes strictly positive) it is
required that d2

dt2 fc(q(t)) ≥ 0 for t ∈ [t2, t2 + ϵ̂), for some ϵ̂ > 0. Therefore, from
(8.17c) we deduce that

0 ≤ d2

dt2 fc(q(t)) ⊥ λn(t) ≥ 0, t ∈ [t1, t2]. (8.23)

Then, by computing d2

dt2 fc(q(t)) and using the r.h.s. of (8.20b), we obtain the
contact LCP in λn(t):

0 ≤ D(q)λn + φ(x, u) ⊥ λn ≥ 0, (8.24)

with

D(q) = ∇qfc(q)⊤M(q)−1∇qfc(q), (8.25a)

φ(x, u) = ∇qfc(q)⊤fv(q, v, u) +∇q(∇qfc(q)⊤v)⊤v, (8.25b)

where D(q) > 0. The solution map of the LCP (8.24) is given by

λn = max(0,−D(q)−1φ(x, u)). (8.26)

From the last equation, we deduce that contact breaking or sticking depends
on the sign of the function φ(x, u).

In the case of φ(x, u) ≤ 0, from Eq. (8.24) and (8.26) it follows that λn(t) ≥ 0
and d2

dt2 fc(q(t)) = 0. Therefore, we have a persistent contact, and the system
evolves according to the DAE (8.20). Using index reduction and the solution
map (8.26), we can derive an ODE that is equivalent to the DAE (8.20):

q̇ = v, (8.27a)

v̇ = fv(q, v, u)− M(q)−1n(q)D(q)−1φ(x, u). (8.27b)

We compactly denote this ODE by ẋ = fDAE(x, u).

In the second case, φ(x, u) > 0 implies λn(t) = 0 and d2

dt2 fc(q(t)) > 0. Therefore,
the contact breaks, and the system evolves according to the ODE (8.18).

TIME-FREEZING FOR INELASTIC IMPACTS 259

To summarize, if the system switches from the ODE mode in (8.18) to the
DAE mode in (8.27), a state jump must occur, except if the active-set changes
happen with n(q(t−s)⊤v(t−s) = 0. Now the system evolves on the boundary of
the feasible set with fc(q) = 0 according to the DAE (8.20), or equivalently
according to the ODE defined by (8.27). On the other hand, if we switch from
DAE to ODE mode, we have a continuous transition without state jumps, i.e.,
contact breaking occurs.

Main ideas and auxiliary dynamics

The arguments above reveal that the CLS (8.17) switches between an ODE and
a DAE of index 3. This already bears similarity to a piecewise smooth system,
but the main obstacle to completing this transition is the state jumps. Note
that large parts of the state space, namely fc(q) < 0, are prohibited for the
solution trajectories of the CLS.

As in the previous sections, we first relax the constraint and allow fc(q) < 0. We
define an auxiliary dynamical system in this infeasible region whose trajectory
endpoints satisfy the state jump law (8.17d) on some finite time interval. Second,
we introduce a clock state t(τ) that stops counting (i.e., t′(τ) = 0), when the
auxiliary ODE is active (for fc(q) < 0). By taking the pieces of the trajectory
when the clock state was active, one can recover the solution of the original
system with discontinuous trajectories. The extended state of the time-freezing
system reads as y := (x, t) ∈ Rny , ny = nx + 1. The properties of the auxiliary
dynamics are summarized in the following definition.

Definition 8.6 (Auxiliary dynamics). An auxiliary dynamical system, for
the normal velocity state jumps, y′(τ) = faux,n(y(τ)) satisfies for every initial
value y(τs) = (qs, vs, ts), with fc(qs) = 0 and n(qs)⊤vs < 0, for a well-defined
and finite time interval (τs, τr), with the length τjump = τr − τs, the following
properties:

(i) fc(q(τ)) ≤ 0, t′(τ) = 0 for all τ ∈ (τs, τr),

(ii) n(q(τr))⊤v(τr) = 0, and

(iii) fc(q(τr)) = 0.

To construct the time-freezing system, we take several steps. First, observe
that the post-impact velocity (8.17d) is equal to the total time derivative of
the constraint fc(q) = 0, i.e., d

dtfc(q) = n(q)⊤v = 0. We choose these functions
as switching functions, i.e., c1(y) = fc(q) and c2(y) = n(q)⊤v, and define the

260 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

following regions:

RODE ={y∈Rny |c1(y)>0}∪{y∈Rny |c1(y)<0, c2(y)>0},

Raux ={y ∈ Rny | c1(y) < 0, c2(y) < 0}.
(8.28)

Second, we associate with the region RODE the unconstrained dynamics y′ =
(fODE(x, u), 1) and with Raux the auxiliary dynamics from Definition 8.6. We
formally define the time-freezing system and its Filippov extension in the next
definition.

Definition 8.7 (Time-freezing system - the inelastic case). Let τ ∈ R be
the numerical time and y(τ) := (x(τ), t(τ)) ∈ Rny the differential states and
u(τ) ∈ Rnu a given control function. The time-freezing PSS for a given faux,n(y)
is the PSS:

y′ =
{
f1(y), if y ∈ RODE,

f2(y), if y ∈ Raux,
(8.29)

where f1(y, u) = (fODE(x, u), 1) and f2(y) = faux,n(y). The corresponding
Filippov system, which we call the time-freezing system, is defined as

y′∈FTF(y, u) :=
{
θ1f1(y) + θ2f2(y) | e⊤θ=1, θ≥0

}
, (8.30)

with θ = (θ1, θ2).

Figure 8.6 shows the phase plot of the time-freezing system. Note that the
region Raux consists of the set {y ∈ Rny | fc(q) > 0} (green area), that
corresponds to the feasible set of the unconstrained dynamics (8.18) and the set
{y ∈ Rny | c1(y) < 0, c2(y) > 0} (yellow area). The solution trajectories never
flow in the latter set and the system should not be initialized there. However,
as we show later, it is crucial for sliding modes and contact breaking. Region
Raux (red shaded area) contains the auxiliary dynamics that mimic the state
jump.

To make further use of Definition 8.7, let us specify how to construct an
appropriate auxiliary ODE. The next proposition provides a constructive way of
selecting the auxiliary ODE from Definition 8.6 for any smooth scalar constraint
fc(q) = 0.

Proposition 8.8 (Auxiliary dynamics). Suppose that y(τs) = (qs, vs, ts) is given
such that fc(qs) = 0 and n(qs)⊤vs ≤ 0 holds. Then the ODE given by

y′ = faux,n(y) :=

 0nq,1
M(q)−1n(q)an

0

 (8.31)

TIME-FREEZING FOR INELASTIC IMPACTS 261

Figure 8.6: Illustration of a phase plot of the time-freezing system from Definition
8.7. The red and yellow shaded areas are infeasible for the CLS (8.17). The
trajectories of the auxiliary dynamics (the blue dashed line) flow in the red-
shaded area.

with an > 0 is an auxiliary dynamical system from Definition 8.6 with τjump =
−n(qs)⊤vs
D(qs)an

Proof. According to (8.31) we have q′(τ) = 0nq,1, ∀τ ≥ τs, which implies q(τ) =
qs and fc(q(τ)) = 0, ∀τ ≥ τs. This means also that M(q(τ)) = M(qs), ∀τ ≥ τs.
Second, regard the dynamics of v′ = M(q)−1n(q)an = M(qs)−1n(qs)an and
rewrite this equation in integral form. By multiplying it from the left by n(qs)⊤

we obtain:

n(qs)⊤v(τ) = n(qs)⊤vs+n(qs)⊤M(qs)−1n(qs)an(τ − τs).

Since the first term on the r.h.s. is negative and the second strictly positive,
we deduce that n(q(τr))⊤v(τr) = 0 and fc(q(τr)) = 0 with τjump = τr − τs =
−n(qs)⊤vs
D(qs)an

. Hence, all conditions from Definition 8.6 are satisfied and the proof
is complete.

Next, we discuss which mode of the time-freezing system matches the persistent
contact dynamics of the CLS (8.17). We observe that the set Σ := {y | c1(y) =
fc(q) = 0, c2(y) = n⊤v = 0} is defined by the same equations as the consistent
initialization conditions (8.21) (but now in Rny instead of Rnx due to the clock
state). A sliding mode of the time-freezing PSS evolves on Σ just as the solution
of the persistent contact DAE (8.20). Therefore, its dynamics should match the

262 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

dynamics of the DAE (8.20). We detail In the next two subsections that this is
indeed the case.

To summarize, for fc(q) > 0 (which is a subset of RODE) the time-freezing
system and CLS have the same dynamics. In Raux the auxiliary dynamics
mimic the state jump and the sliding mode y ∈ Σ should match the dynamics
of the CLS in contact mode. To illustrate the developments so far, we derive a
time-freezing PSS for the guiding example.

Example 8.9. (Guiding example as time-freezing PSS) The state space is
y = (q, v, t) ∈ R5 and the switching functions read as c1(y) = y2 and c2(y) = v2.
The two PSS regions are RODE = {y ∈ R5 | q2 > 0} ∪ {y ∈ R5 | q2 < 0, v2 > 0}
and Raux = {y ∈ R5 | q2 < 0, v2 < 0}, cf. Fig. 8.6. The dynamics in RODE are
given by f1 = (v1, v2, u1,−g + u2, 1). The constraint normal is n = (0, 1) and
by applying Eq. (8.31) we find that f2 = (0, 0, 0, an, 0). Therefore we have the
PSS:

y′ =
{

(v1, v2, u1,−g + u2, 1), if y ∈ RODE,

(0, 0, 0, an, 0), if y ∈ Raux.

Persistent contact and sliding mode

Depending on the sign of the function φ(x, u), a solution y initialized at Σ should
either stay at Σ (sliding mode, persistent contact) or leave it (contact breaking).
In this subsection, we study the case when a solution of the time-freezing system
satisfies the conditions y(τ) ∈ Σ and φ(x(τ), u(τ)) ≤ 0 for some τ ∈ [τ1, τ2]
(persistent contact). During contact, the CLS system satisfies the consistent
initialization (8.21) which corresponds to Σ without the clock state. It is
desired that under these conditions y(τ) stays on Σ and that the corresponding
sliding mode dynamics match the DAE dynamics (8.27). For a solution to
stay in the sliding mode, the surface Σ must be stable, i.e., all neighboring
vector fields point toward Σ. Since ∇c1(y)⊤f1(y, u) = 0, ∇c1(y)⊤f2(y) = 0 and
∇c2(y)⊤f1(y, u) = φ(x, u) ≤ 0, ∇c2(y)⊤f2(y) = D(q)an > 0, we see that this
is indeed the case, cf. Figure 8.6. We show next that the sliding mode of the
time-freezing system is unique and that it matches the dynamics of the DAE of
index 3 after the state jump, as required.

Theorem 8.10 (Unique sliding mode). Regard the time-freezing system from
Definition 8.7 with the auxiliary dynamics from Proposition 8.8. Let y(τ)
be a solution of this system with y(0) ∈ Σ and τ ∈ [0, τf]. Suppose that
φ(x(τ), u(τ)) ≤ 0 for all τ ∈ [0, τf] (persistent contact), then the following
statements are true:

(i) the Filippov multipliers θ1, θ2 ≥ 0 in Eq. (8.30) are unique,

TIME-FREEZING FOR INELASTIC IMPACTS 263

(ii) the dynamics of the sliding mode are given by y′ = γ(x, u)(fDAE(x, u), 1),
where γ(x, u) ∈ (0, 1] is a time-rescaling factor given by

γ(x, u) := D(q)an

D(q)an − φ(x, u) . (8.32)

Proof. To compute the multipliers θ1 and θ2 we use Definition 8.7 and the fact
that y ∈ Σ. This results in the conditions:

c1(y) = 0, c2(y) = 0, θ1 + θ2 = 1.

Since θ does not explicitly appear in the first two conditions, we differentiate
them w.r.t. to τ and use Eq. (8.30). We have two unknowns and three conditions,
hence the system is over-determined. However, we have by assumption that
c2(y) = ∇qc1(y)⊤v = 0 and by direct evaluation, we conclude that dc1(y)

dτ = 0 is
satisfied for every θ1 and θ2. The conditions that are left are dc2(y)

dτ = 0 and
θ1 + θ2 = 1. Since ∇vc2(y) = ∇v(∇qc1(y)⊤v) = ∇qc1(y) and ∂c2(y)

∂t = 0 we
obtain from dc2(y)

dτ = 0 the following equations

0 = dc2(y)
dτ = θ1

[
∇qc2(y)⊤∇vc2(y)⊤] [v

fv(q, v, u)

]

+ θ2
[
∇qc2(y)⊤∇vc2(y)⊤] [0

M(q)−1∇qc1(y)an

]
,

0 = θ1∇q(∇qfc(q)v)⊤v +∇qfc(q)⊤fv(q, v, u)︸ ︷︷ ︸
=φ(x,u)<0

+ θ2∇qfc(q)⊤M(q)−1∇qfc(q)︸ ︷︷ ︸
=D(q)>0

an.

Thus we obtain a system linear in θ[
φ(x, u) D(q)an

1 1

] [
θ1
θ2

]
=
[
0
1

]
,

and by solving it we have that θ1 = D(q)an
D(q)an−φ(x,u) = γ(x, u) and θ2 =

−φ(x,u)
D(q)an−φ(x,u) . Since D(q)an − φ(x, u) > 0 and φ(x, u) ≤ 0, we have always
unique θ1, θ2 ≥ 0. This completes the first part of the proof.

For the second part, we evaluate

y′ = θ1f1(y, u) + θ2f2(y) = γ(x, u)

 v
fv(q, v, u)

1

264 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

+ −φ(x, u)
D(q)an − φ(x, u)

 0nq,1
M(q)−1∇fc(q)an

0

·D(q)−1D(q).

In the second term we use that λn = −D(q)φ(x, u) (cf. Eq. (8.26)) and the
expression for γ(x, u) in Eq. (8.32). By comparing the last expression to Eq.
(8.27) we obtain y′ = γ(x, u)(fDAE(x, u), 1).

This theorem shows that the sliding mode of the time-freezing system on Σ is
unique and equal to the dynamics of the CLS in the persistent contact mode
given by Eq. (8.27) but slowed down by the factor γ(x, u). Note that for larger
values of an the factor γ(x, u) comes closer to one, which reduces the slow-down,
cf. Example 8.11.

However, by plotting x(·) over t(τ) the solution with a speed of time of one is
recovered. We briefly discuss the intuition behind the time slow down by γ(x, u).
To achieve the sliding mode on Σ, the vector fields from Raux and RODE (the
yellow part in Fig. 8.6) must push toward Σ. The resulting dynamics is a convex
combination of the two vector fields, and since the speed of time in RODE is
one and in Raux zero we obtain a slow down equal to θ1 = γ(x, u). Moreover,
the vector field fODE(·) in the yellow area “stops“ the trajectory coming from
Raux and thus enables the sliding mode. This shows the significance of having
the vector field (fODE(·), 1) in the yellow area {y | c1(y) < 0, c2(y) > 0}, even
though by construction the solution never flows there.

Contact breaking

It is left to study the case when y(τ1) ∈ Σ but φ(x(τ), u(τ)) > 0 for τ ∈
[τ1, τ2]. In the CLS for φ(x, u) > 0 the contact breaks. In the time-freezing
system, we expect the trajectory to leave the sliding mode from Σ. Since
∇c1(y)⊤f1(y, u) = 0, ∇c1(y)⊤f2(y) = 0 and ∇c2(y)⊤f1(y, u) = φ(x, u) > 0,
∇c2(y)⊤f2(y) = D(q)an > 0, the surface Σ is not stable anymore. This scenario
is illustrated in Fig. 8.7. We conclude that under these conditions y leaves Σ
and enters RODE (into the green region with fc(q) > 0). In this case θ = (1, 0),
hence y′ = f1(y, u) = (fODE(x, u), 1), which matches the unconstrained CLS
dynamics (8.18) augmented by the clock state.

Effectively, the time-freezing system switches between the DAE and ODE modes,
just as the CLS and the state jump is performed by the auxiliary dynamics
while the time is frozen. For φ(x, u) ≤ 0 (persistent contact) the solution of the
time-freezing system stays on Σ, just as the solution of the CLS. It leaves the

TIME-FREEZING FOR INELASTIC IMPACTS 265

Figure 8.7: Illustration of a phase plot of the time-freezing system from Definition
8.7 with φ(x, u) > 0. Compared to Figure 8.6, the vector field in RODE is
changed and Σ is not stable anymore, thus leaving Σ into Raux is possible.

sliding mode when φ(x, u) > 0, which corresponds to contact breaking in the
CLS. This relationship is formalized in the next subsection. To illustrate the
developments of the last two subsections, we revisit the guiding example and
provide a simulation that encompasses all effects discussed so far.

Example 8.11. (Speed of time and sliding modes) Let us consider the time-
freezing PSS from Example 8.9. We choose an = g. It follows that D(q) = 1
and φ(x, u) = −g + u2. We choose a control function

u(t) =
{

(7, 0), t < 1,
(7, 2g(t(τ)− 1)), t ≥ 1.

Let us make a simulation of the time-freezing system with y(0) = (0, 1, 0, 0, 0)
for τ ∈ [0, 3.5]. The result is depicted in Fig. 8.8. The particle hits the ground,
slides horizontally on it, and lifts off when the control force u2(t) is stronger
than gravity, cf. the top plot. We see that when the particle hits the ground,
the time is frozen and the auxiliary ODE is active (red strips). The vertical
velocity v2 becomes zero with the rate an. The system is then a sliding mode with
a time slow down factor of γ(x, u) = an

an−(−g+u2) = g
g−(−g+0) = 0.5 for t < 1

(τ < 2), cf. bottom left plot. At t = 1, which corresponds to τ = 2 the vertical
control force becomes nonzero and γ(x, u) = g

2g+u2
grows. For τ > 2.8 we have

φ(x(τ), u(τ)) = −g + u2 > 0 and Σ is not stable anymore. The particle lifts off
and the contact breaks. Note that the solution of the time-freezing system y(·) is

266 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

0 2 4 6 8 10 12 14 16

0

1

2

0 1 2 3

-5
0
5

10
15

0 0.5 1 1.5 2

-5
0
5

10
15

0 1 2 3
0

0.5

1

1.5

0 0.5 1 1.5 2
0

10

20

Figure 8.8: Trajectories of the time-freezing system corresponding to the example
CLS. The top plot shows the position of the particle. The middle left plot
shows the continuous velocities v1 and v2 in numerical time τ and the middle
right plot shows the discontinuous velocities v1 and v2 in physical time t. The
bottom left plot shows the speed of time dt

dτ and the bottom right plot the
control function u(t).

continuous in numerical time τ (middle left plot) and discontinuous in physical
time t (middle right plot).

8.4.2 Solution relationship

We formalize now how to recover the solution of the initial value problem
corresponding to the CLS (8.17) from the solution of the time-freezing system
from Definition 8.7.

Theorem 8.12 (Solution relationship). Regard the initial value problems
corresponding to:

(i) the time-freezing system in Eq. (8.30) with a given y(0) = (q0, v0, 0) ∈ Rny
and fc(q0) ≥ 0 on a time interval [0, τf], and

(i) the CLS from Eq. (8.17) with the initial value x(0) = (q0, v0) ∈ Rnx on a
time interval [0, tf] := [0, t(τf)], with fc(q(tf)) ≥ 0 and n(q(tf))⊤v(tf) ≥ 0.

Suppose the following assumptions hold:

TIME-FREEZING FOR INELASTIC IMPACTS 267

(a) the auxiliary dynamics faux,n(y) from Proposition 8.8 is used in the time-
freezing system in Definition 8.7,

(b) there is at most one time point ts = t(τs) where fc(q(ts)) = 0 and
n(q(ts))⊤v(t−s) < 0 on the time interval [0, tf],

Then, the solutions to the two problems are related as follows:

1. for t ̸= ts:

x(t(τ)) = Ry(τ), with R =
[
Inx 0nx,1

]
, (8.33a)

λn(t(τ)) =
{
−D(q(t(τ)))φ(x(t(τ))), if y(τ) ∈ Σ,
0, otherwise.

(8.33b)

2. for t = ts:

lim
ϵ→0
ϵ>0

∫ ts+ϵ

ts−ϵ
λn(t)dt =

∫ τr

τs

andτ. (8.34)

Proof. The idea of the proof is to consider the different modes, in which the CLS
and the time-freezing system can be and to compare the solutions to establish
the result of the theorem. A solution of the initial value problem given by the
time-freezing system in Eq. (8.30) with y(0) = y0 is denoted by ysol(τ ; y0) for
τ ∈ [0, τ̂]. Similarly, for the CLS in Eq. (8.17) and x(0) = x0 for t(τ) ∈ [0, t(τ̂)]
we use xsol(t(τ);x0). We must distinguish all possible cases, hence we split the
proof into several parts.
Part I (Unconstrained case). Regard the case fc(q(τ)) > 0, τ ∈ [0, τ̂]. This
means that y ∈ R1, y′ = f1(y, u) = (fODE(x, u), 1), τ ∈ [0, τ̂]. It holds that
t(τ) =

∫ τ
0 ds = τ and by setting τ̂ = τf we have t(τf) = tf . Note that

Ry′ = Rf1(y, u), is equivalent to x′ = fODE(x, u). Since [0, τf] = [0, tf], this
ODE has the same solution as ẋ = fODE(x, u), therefore relation (8.33a) holds
for t ∈ [0, tf]. This means that fc(q(t)) > 0 and λn(t) = 0 for t ∈ [0, tf]. For the
time-freezing system this means that y(τ) /∈ Σ for τ ∈ [0, τf], hence equation
(8.33b) is also satisfied.

Part II (Sliding mode/persistent contact). Regard the case fc(q(0)) = 0 and
n(q(0))⊤v(0) = 0, i.e., y(0) ∈ Σ. Assume that φ(x(τ), u(τ)) < 0, τ ∈ [0, τf].
This means that y(τ) ∈ Σ, τ ∈ [0, τf], cf. Section 8.4.1. From Theorem 8.10
we have that y′ = γ(x, u)(fDAE(x, u), 1) for τ ∈ [0, τf] and t′(τ) = γ(x, u) >
0, τ ∈ [0, τf], thus t(τf) = tf > 0. On one hand, from dy(t(τ))

dτ = dy
dt

dt
dτ we have

that Rdy
dt = R 1

γ(x,u)γ(x, u)(fDAE(x, u), 1) = fDAE(x, u). On the other hand,

268 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

for the CLS we have for fc(q(0)) = 0, n(q(0))⊤v(0) = 0, z(t) ≥ 0, t ∈ [0, tf].
Consequently, the CLS reduces to the ODE ẋ = fDAE(x, u). Similar to the part I,
we conclude that (8.33a) holds. Since fc(q(t(τ))) = 0 and n(q((τ)))⊤v((τ)) = 0
for τ ∈ [0, τf], the relation for λn(t(τ)) in Eq. (8.33b) follows from Eq. (8.26)
and (8.27).

Part III (Leaving sliding mode). Now we consider a similar scenario as in part
II, with y0 ∈ Σ, φ(x(τ), u(τ)) ≤ 0 with τ ∈ [0, τe) , τe < τf (sliding mode) and
φ(x(τ), u(τ)) > 0 for τ ∈ [τe, τf] (leaving sliding mode). Relations (8.33a) and
(8.33b) hold for τ ∈ [0, τe) by the same arguments as in part II. For τ ≥ τe,
following the arguments in Section 8.4.1, y(τ) leaves Σ and y(τ) ∈ R1 for
τ ∈ [0, τe). We can apply the arguments of part I and establish the result of
the theorem.

Part IV (State jump). This part regards the case of τs ∈ [0, τf], i.e., ts ∈ [0, tf].
For τ ∈ [0, τs) and t ∈ [0, t(τs

−)) we can apply Part I of the proof by simply
setting τ̂ = τs and deduce that (8.33a) and (8.33b) hold. For τ = τs we have
fc(q(τs)) = 0 and n(q(τs))⊤v(τs) < 0. Consequently, y ∈ R2 amd y′ = faux,n(y).
The assumption fc(q(τf)) ≥ 0 and n(q(tf))⊤v(tf) ≥ 0 ensures that the time
evolution of y′(τ) = faux,n(y(τ)) is finished in [τs, τf], i.e., τr ≤ τf . From the proof
of Proposition 8.8 we know that by construction q(τ) = q(τs) =: qs, τ ∈ [τs, τr].
Consequently, fc(q(τ)) = 0, τ ∈ [τs, τr]. For v(τ), from (8.31) we obtain that:

v(τr) = v(τs) +
∫ τr

τs

M(q(τ))−1n(q(τ))andτ. (8.35)

Multiplying both sides with n(qs)⊤ from the left and noting that
M−1(q(τ))n(q(τ)) is constant since q(τ) = qs, τ ∈ [τs, τr], we have

n(qs)⊤v(τr)︸ ︷︷ ︸
=0

−n(qs)⊤v(τs)=n(qs)⊤M(qs)−1n(qs)︸ ︷︷ ︸
=D(qs)

∫ τr

τs

andτ︸ ︷︷ ︸
=:Λ1

,

Λ1 = −n(qs)⊤v(τs)
D(qs)

> 0.

Next, we look at the post-impact states of the CLS and compare it to the
solution of the time-freezing system. Since in CLS, v(t) is a function of
bounded variation [49], we have that q(t) is a continuous function. Thus,
q(t+s) = q(t−s) = q(ts). Furthermore, notice that q(ts) = qs which implies

TIME-FREEZING FOR INELASTIC IMPACTS 269

n(q(ts))⊤M−1(q(ts))n(q(ts)) = D(qs). Examining,

v(t+s) = v(t−s) + lim
ϵ→0
ϵ>0

∫ ts+ϵ

ts−ϵ
fv(q(t), v(t))dt︸ ︷︷ ︸

=0

+ lim
ϵ→0
ϵ>0

∫ ts+ϵ

ts−ϵ
M(q(t))−1n(q(t))λn(t)dt,

(8.36)

and multiplying both sides with n(qs)⊤ from the left, introducing Λ2 :=
limϵ→0

ϵ>0

∫ ts+ϵ
ts−ϵ λn(t)dt, we conclude that

Λ2 = −n(q(ts))⊤v(t−s)
D(qs)

= Λ1. (8.37)

By comparing (8.35) and (8.36), due to the last relation we conclude that
v(τr) = v(t+s) =: vs. Furthermore, by Proposition 8.8 we have fc(q(τr)) = 0
and n(q(τr))⊤v(τr) = 0. Since t′(τ) = 0 with τ ∈ [τs, τr], it follows that
t(τr) = t(τs) = ts. Consequently,

fc(q(ts)) = fc(q(τr)) = 0, (8.38a)

n(q(ts))⊤v(t+s) = n(q(τr))⊤v(τr) = 0. (8.38b)

Let ys := (qs, vs, ts). Note that ysol(τ−τr, ys) = y(τ, y0) for τ ∈ [τr, τf]. Likewise,
xsol(t − ts, xs) = x(t, x0) for t ∈ (ts, tf], with xs = Rys. The two initial value
problems are initialized with the same initial condition. Since (8.38) holds we
can apply Theorem 8.10 for y ∈ Σ. Therefore, by using the arguments of parts
II or III (depending on φ(x(τ), u(τ))), we deduce that (8.33a) and (8.33b) hold
on [τr, τf]. Additionally, for τ ∈ (τs, τr) we have t = ts and Eq. (8.34) follows
directly from (8.37).

Part V (Summary). Parts I-IV cover all possible modes of the CLS and the
time-freezing system: evolution according to fODE (Part I), evolution on Σ
according to fDAE without leaving it (Part II), leaving Σ and continuing to
evolve according to fODE (Part III), and the state jump (Part IV). To regard any
other possible sequence of mode on [0, τf], the time interval is simply split into
sub-intervals with the different mode, and we apply subsequently the arguments
from Parts I-IV to verify that (8.33a) and (8.33b) hold for t ̸= ts and (8.34) for
t = ts. This completes the proof.

Equivalence for several subsequent impacts is trivially obtained by sequentially
applying the argument of the last theorem. Time-freezing enables one to make

270 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

the state jump in ”slow motion”. By plotting the state as a function of physical
time we make the ”slow” transition ”infinitely fast” and recover the discontinuity
in time. More formally, this is encapsulated in (8.34), which shows that the
integral of a Dirac impulse λn(t) is the same as the integral of the v-state of the
auxiliary ODE over a finite time interval [τs, τr] of nonzero length. To simulate
a time-freezing system with Zeno’s effect, the numerical time horizon would
have to be infinitely long, as every state jump requires τjump > 0. In this thesis,
we assume to have a finite number of impacts. In practical robotics applications,
one is usually interested in solutions with a finite number of impacts.

Possible extensions

In this thesis, we consider a single unilateral constraint. To extend the same
ideas for multiple and/or simultaneous impacts one must take care of the
chosen impact model [49]. The extension can be made in several ways, e.g.,
time continues to flow when the first normal velocity component reaches zero
or when all of them reach zero. Some multiple impact models suffer from
nonuniqueness of solutions [49, 255] and how to proceed is a modeling decision.
In the special case when the constraints, e.g., fc,i(q) and fc,j(q) are orthogonal
in the kinetic metric, i.e., fc,i(q)⊤M(q)−1fc,j(q) = 0, the impacts can be treated
independently [49]. In this case, one would take for every constraint the auxiliary
dynamics from Prop. 8.8 and the time would continue to flow when all normal
velocity components reach zero. Stochastic approaches with multiple outcomes
are also possible, e.g., within the binary collision law as shown in [200] or within
a stochastic version of Routh’s impact model [129].

8.4.3 Frictional impact

If friction is present at the contact point, frictional impulses cause state jumps in
the tangential directions. This section extends the time-freezing reformulation
for CLS with frictional impacts. Appropriate auxiliary dynamics for the state
jumps in the tangential directions are introduced. The time-freezing system
covers both stick and slip motions. We regard the CLS with friction from (8.1),
but with a single unilateral constraint.

TIME-FREEZING FOR INELASTIC IMPACTS 271

Stick and slip dynamics of the CLS

For a given λn the solution map of the convex optimization problem (8.1e)-(8.1f)
is given by [198]:

λt ∈

{
{−µλn

vt
∥vt∥2

}, if ∥vt∥2 > 0,
{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 = 0.

(8.39)

In the 2D case, this solution map simplifies to λt ∈ −µλnsign(vt). When the
system is in contact, it can be in slipping motion, i.e., it has nonzero tangential
velocity vt ̸= 0, or in sticking motion with vt = 0. Similar to the frictionless
case, we derive equivalent ODEs which model the stick and slip dynamics during
contact phases. If the system is in slip motion and λn > 0, it follows from (8.39)
that λt = −µλn

vt
∥vt∥2

and we have the DAE of index 3

q̇ = v,

v̇ = fv(q, v, u) +M(q)−1
(
n(q)−B(q)µ vt

∥vt∥2

)
λn,

0 = fc(q),

Similar to Eq. (8.27), we perform index reduction to obtain an equivalent ODE:

q̇ = v, (8.40a)

v̇ = fv(q, v, u)−M(q)−1 φ(x, u)
n(q)⊤M(q)−1(n(q)− µB(q) vt

∥vt∥2
)

(
n(q)−Bµ vt

∥vt∥2

)
.

(8.40b)

The r.h.s. of this ODE is compactly denoted by fSlip(x, u).

If the system is in sticking motion we have vt = B⊤v = 0 and n⊤v = 0.
By differentiating these equations w.r.t. time we can explicitly compute the
multipliers λ := (λn, λt) by

λ = −D̃(q)−1φ̃(x, u), (8.41a)

D̃(q)=
[
Dn,n(q) Dn,B(q)
DB,n(q) DB,B(q)

]
=
[
n(q)⊤M(q)−1n(q) n(q)⊤M(q)−1B(q)
B(q)⊤M(q)−1n(q) B(q)⊤M(q)−1B(q)

]
(8.41b)

φ̃(x, u) =
[
n(q) B(q)

]⊤
fv(q, v, u)+∇q(

[
n(q) B(q)

]⊤
v)⊤v. (8.41c)

272 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

The ODE describing the sticking motion reads as

q̇ = v, (8.42a)

v̇ = fv(q, v, u)−M(q)−1 [n(q) B(q)
]
D̃(q)−1φ̃(x, u). (8.42b)

Its r.h.s. is compactly denoted by fStick(x, u). The transition from the stick
to the slip mode occurs when the other tangential forces are greater than the
maximal friction force λt, cf. [49, Chapter 5].

Time-freezing for frictional impacts in the 2D case

Denote the single column of B(q) by b(q). Depending on the sign of vt, we
define an auxiliary dynamical system to mimic the state jump in the tangential
direction b(q). For the n(q)-direction we use the dynamics from Proposition 8.8.
For the tangential direction and b(q)⊤v < 0 we define the tangential auxiliary
dynamics analogously:

y′ = f−
aux,t(y) :=

 0nq,1
M(q)−1b(q)at

0

 . (8.43)

To account for the sign of the tangential velocity, for b(q)⊤v > 0 we use
y′ = f+

aux,t(y) := −f−
aux,t(y). Depending on the sign of vt, one of these ODE

is active for the same numerical time interval of the length τjump as y′ =
faux,n(y). Furthermore, we know from Eq. (8.34) in Theorem 8.12 that the
impulse bringing the normal velocity n(q)⊤v < 0 to zero after an impact is
proportional to anτjump. Thus, by settings at = µan, we conclude that the
integrals of the auxiliary dynamics satisfy the maximum dissipation principle,
i.e., atτjump = −µanτjumpsign(b(q)⊤v).

State jumps in both the normal and tangential directions are treated
simultaneously with different auxiliary dynamics. They should be active
whenever y ∈ Q := {y ∈ Rny | c1(y) < 0, c2(y) < 0}, cf. Fig. 8.6. To
treat different signs of the tangential velocity we introduce the switching
function c3(y) = b(q)⊤v. Hence, we have in total nf = 3 regions, one for
the unconstrained dynamics and two to mimic the state jumps. We extend the
definition of the regions in Eq. (8.28) as follows:

RODE = {y ∈ Rny | c1(y) > 0} ∪ {y ∈ Rny | c1(y) < 0, c2(y) > 0}, (8.44a)

R+
aux = Q ∩ {y ∈ Rny | c3(y) > 0}, (8.44b)

R−
aux = Q ∩ {y ∈ Rny | c3(y) < 0}. (8.44c)

TIME-FREEZING FOR INELASTIC IMPACTS 273

Figure 8.9: Two projections of a phase plot of the time-freezing system from
Definition 8.13. The red shaded areas are infeasible for the CLS (8.1) and show
the vector fields of the combined auxiliary dynamics. The trajectories of the
auxiliary dynamics (red lines) flow in the red-shaded area.

The sum of the corresponding auxiliary dynamics accounts for the simultaneous
state jumps, i.e., f2(y) =faux,n(y)+f+

aux,t(y), f3(y) =faux,n(y)+f−
aux,t(y). The

time-freezing system for the CLS (8.1) is given in the next definition.

Definition 8.13 (Time-freezing system with friction). Let τ ∈ R be the
numerical time, y(τ) := (x(τ), t(τ)) ∈ Rny the differential states and u(τ) ∈ Rnu
a given control function. The time-freezing PSS is defined by the regions in Eq.
(8.44) with

f1(y, u) = (fODE(x, u), 1), for y ∈ RODE

f2(y) = faux,n(y) + f+
aux,t(y), for y ∈ R+

aux,

f3(y) = faux,n(y) + f−
aux,t(y), for y ∈ R−

aux.

The corresponding Filippov system, which we call the time-freezing system, is
denoted by

y′ ∈ FTF(y, u) = {θ1f1(y, u) + θ2f2(y) + θ3f3(y) | θ ≥ 0, e⊤θ = 1}. (8.45)

It is assumed that appropriate dynamics faux,n(y), f+
aux,t(y) and f−

aux,t(y) exist.

Figure 8.9 shows two projections of the state space of the extended time-freezing
system. Note that sliding modes can happen on vt = 0, which corresponds to
the stick mode. As in the frictionless case, we are interested in the relation of the
CLS in contact mode and the corresponding sliding mode of the time-freezing
system on Σ.

274 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

Theorem 8.14 (Slip-stick sliding mode). Suppose that the auxiliary dynamics
from Proposition 8.8 and Eq. (8.43) are used in the time-freezing system from
Definition 8.13. Let y(τ) be a solution of this system with y(0) ∈ Σ and
τ ∈ [0, τf]. Suppose that φ(x(τ), u(τ)) ≤ 0 for all τ ∈ [0, τf] (persistent contact),
then the following statements are true:

(i) If vt ≠ 0 (slip motion), then the sliding mode dynamics are given by
y′ = γSlip(x, u)(fSlip(x, u), 1), where

γSlip(x, u) = (Dn,n(q)− sign(vt)µDn,B(q))an

(Dn,n(q)− sign(vt)µDn,B(q))an − φ(x, u) . (8.46)

(ii) If vt = 0 (stick motion), then the sliding mode dynamics are given by
y′ = γSlip(x, u)(fStick(x, u), 1), where

γStick(x, u) = − (DB,BDn,n −DB,nDn,B)an

DB,Bφ̂1 −Dn,Bφ̂2 −DB,BDn,nan +DB,nDn,Ban
.

(8.47)

The functions γSlip(x, u), γStick(x, u) ∈ (0, 1] are time-rescaling factors.

Proof. In the slip mode in the 2D case, we have that vt is either strictly positive
or negative. We start with the case of vt = b(q)⊤v > 0. This means that
y /∈ R−

aux and it follows that θ3 = 0. We follow similar lines as in the proof of
Theorem 8.10. From the conditions c2(y) = n(q)⊤v = 0 and θ1 + θ2 = 1 we can
compute θ1 and θ2. By using d

dτ c2(y) = 0 and Definition 8.13 we compute that

0 =
[
∇q(n(q)⊤v)⊤n(q)⊤] (θ1

[
v

fv(q, v, u)

]
+ θ2

[
0

M(q)−1(n(q)− µb(q))an

])
,

0 = θ1∇q(n(q)⊤v)⊤v + n(q)⊤fv(q, v, u)︸ ︷︷ ︸
=φ(x,u)<0

+θ2n(q)⊤M(q)−1(n(q)− µb(q))an.

Using the notation from (8.41b) we can write a linear system in θ[
φ(x, u) (Dn,n(q)− µDn,B(q))an

1 1

] [
θ1
θ2

]
=
[
0
1

]
,

and by solving it we have that

θ1 = (Dn,n(q)− µDn,B(q))an

ψ+(x, u) , θ2 = − φ(x, u)
ψ+(x, u) , θ3 = 0. (8.48)

TIME-FREEZING FOR INELASTIC IMPACTS 275

where ψ+(x, u) = (Dn,n(q) − µDn,B(q))an − φ(x, u) is an auxiliary function
introduced for rotational compactness. Next, we plug in these expression into
(8.45), compare to (8.40) (for vt > 0) and obtain

y′ = (Dn,n(q)− µDn,B(q))an

ψ+(x, u)

 v
fv(q, v, u)

1

+

−φ(x, u)
ψ+(x, u)

 0nq,1
M(q)−1(n(q)− µb(q))an

0

Dn,n(q)− µDn,B(q)
Dn,n(q)− µDn,B(q)

,

y′ = θ1(fSlip(x, u), 1).

By following the same steps for b(q)⊤v < 0 we have that

θ1 = (Dn,n(q) + µDn,B(q))an

ψ−(x, u) , θ2 = 0, θ3 = − φ(x, u)
ψ−(x, u) , (8.49)

where ψ−(x, u) = (Dn,n(q) + µDn,B(q))an − φ(x, u). Following the same steps
we conclude that and y′ = θ1(fSlip(x, u), 1). By combining these two cases and
the expressions for θ1 in (8.48) and (8.49) we obtain the formula for γSlip(x, u)
in Eq. (8.46). This completes the first part of the proof.

In the second part, we have vt = b(q)⊤v = 0. Together with the assumption
that y ∈ Σ it follows no θi can be set to be zero a priori. As in the previous
cases, we compute the analytic expressions for the convex multipliers θ. First,
we introduce the change of variables β1 = θ2 + θ3 and β2 = −θ2 + θ3. This
allows us to rewrite (8.45) in the following compact form:

y′ = θ1

 v
fv(q, v, u)

1

+

0nq,1

M(q)−1 [n(q) b(q)
]
A

[
β1
β2

]
0

 , (8.50)

where A =
[
an 0
0 µan

]
. Using this equation and d

dτ
[
n(q)⊤ b(q)⊤] v = 0 one

obtains:

0 =
[
∇q(

[
n(q)⊤ b(q)⊤] v)⊤ [

n(q) b(q)
]⊤] · (

 v
fv(q, v, u)

1

+

0nq,1

M(q)−1 [n(q) b(q)
]
A

[
anβ1
µanβ2

]
0

),
(8.51a)

276 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

0 = φ̂(x, u)θ1 + D̂(q)A
[
β1
β2,

]
(8.51b)

In summary, we obtain the linear system: 1 1 0
φ̂1(x, u) anDn,n(q) µanDn,B(q)
φ̂2(x, u) anDb,n(q) µanDB,B(q)

θ1
β1
β2

 =

1
0
0

 .
The solution of this linear system reads as:

θ1 = −an(DB,B(q)Dn,n(q)−DB,n(q)Dn,B(q))
ψ0(x, u) = γStick(x, u),

β1 = DB,B(q)φ̂1(x, u)−Dn,B(q)φ̂2(x, u)
ψ0(x, u) ,

β2 = −DB,n(q)φ̂1(x, u)−Dn,n(q)φ̂2(x, u)
ψ0(x, u) .

where ψ0(x, u) = DB,B(q)φ̂1(x, u) − Dn,B(q)φ̂2(x, u) − DB,B(q)Dn,n(q)an +
DB,n(q)Dn,B(q)an. Next, we compute the sliding mode vector field of the
time-freezing system y′ =

∑3
i=1 θifi. Using the last line in (8.51) we have that[

β1
β2

]
= −A−1D̂(q)−1φ̂(x, u).

By plugging this into (8.50) we obtain that y′ = γStick(x, u)(fStick(x, u), 1). Since
γSlip(x, u) and γStick(x, u) correspond to the multiplier θ1 in sliding modes, it
follows that they take values in (0, 1]. This completes the proof.

The time-rescaling factors γStick(x, u) and γSlip(x, u) have more complicated
algebraic expressions than γ(x, u) in (8.32). However, under a simplifying
assumption, they have all the same expressions, e.g., when the inertia matrix is
diagonal. This assumption holds in the guiding example. We state an immediate
consequence of the previous theorem.
Corollary 8.15 (Simplifed time rescaling factors). Suppose that the assumptions
of Theorem 8.14 are satisfied. Furthermore, assume that the unit normal
n(q) and tangential vector b(q) are orthogonal in the kinetic metric, i.e.,
n(q)M(q)−1b(q) = 0, then the conclusions of Theorem 8.14 hold with
γSlip(x, u) = γStick(x, u) = γ(x, u).

These results generalize Theorem 8.10, and one can see that the sliding mode
dynamics match the slip or stick dynamics of the CLS. Finally, we show that
CLS with planar contacts, friction, and impacts are equivalent to Filippov
systems.

TIME-FREEZING FOR INELASTIC IMPACTS 277

Theorem 8.16 (Solution relationship). Regard the initial value problems
corresponding to: i) the time-freezing system in Definition 8.13 with a given
y(0) = (q0, v0, 0) ∈ Rny and fc(q0) ≥ 0 on a time interval [0, τf], ii) the CLS
from Eq. (8.1) with the initial value x(0) = (q0, v0) ∈ Rnx on a time interval
[0, tf] := [0, t(τf)], with fc(q(tf)) ≥ 0 and n(q(tf))⊤v(tf) ≥ 0. Suppose the
following assumptions hold:

(a) the auxiliary dynamics faux,n(y) from Proposition 8.8 and f−
aux,t(y),

f+
aux,t(y) from Eq. (8.43) are used in the time-freezing system in

Definition 8.13,

(b) there is at most one time point ts = t(τs) where fc(q(ts)) = 0 and
n(q(ts))⊤v(t−s) < 0 on the time interval [0, tf],

Then, the solutions to the two problems are related as follows:

1. For t ̸= ts:

x(t(τ)) = Ry(τ), with R =
[
Inx 0nx,1

]
,

λ(t(τ)) =

λSlip(t(τ)), if y ∈ Σ, vt ̸= 0,
λStick(t(τ)), if y ∈ Σ, vt = 0,
0, otherwise.

with
λSlip = − φ(x, u)

n(q)⊤M(q)−1(n(q)− µb(q)sign(vt))

[
1

−µsign(vt)

]
λStick = −D̃(q)−1φ̃(x, u).

2. For t = ts:

lim
ϵ→0
ϵ>0

∫ ts+ϵ

ts−ϵ
λn(t)dt =

∫ τr

τs

andτ,

lim
ϵ→0
ϵ>0

∫ ts+ϵ

ts−ϵ
|λt(t)|dt =

∫ τr

τs

µandτ,

Proof. Theorem 8.14 is applied for y ∈ Σ. Otherwise, the proof follows similar
lines as the proof of Theorem 8.12. The absolute value in the last equation
accounts for the sign of vt.

278 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

Time-freezing for frictional impacts in the 3D case

This case is more difficult since we cannot treat different directions of vt with
different auxiliary dynamics as in the planar case. The solution map of (8.39)
depends discontinuously on ∥vt∥2. Hence, we must take it as a switching
function. Because the set ∥vt∥2 = 0 has no interior, we cannot use the Filippov
extension from Eq. (6.3), which assumes regions Ri with nonempty interior.
More general definitions without multipliers θ as in Eq. (6.2) can treat this case,
but they are not computationally useful for in this case, as we see in the next
section. To alleviate this difficulty, we propose an approximation for (8.39):

λt =
{
−µλn

vt
∥vt∥2

, if ∥vt∥2 > ϵt,

vt, if ∥vt∥2 < ϵt,
(8.52)

with a small parameter ϵt > 0. This expression is exact for ∥vt∥2 > ϵt,
thus we can make it arbitrarily accurate. For ∥vt∥2 < ϵt, the vector field
drives the tangential velocity towards ∥vt∥2 = ϵt, see Fig. 8.10. In a Filippov
setting, a convex combination of the two cases in (8.52) keeps the velocity at
∥vt∥2 = ϵt. Hence, in the sticking mode, we have a velocity drift of ϵt. By
taking c3(y) = ∥vt∥2 − ϵt as a switching function, we can define regions with
nonempty interiors and the corresponding auxiliary dynamics. The auxiliary
dynamics mimicking the behavior of (8.52) read as:

f+
aux,t(y)=

 0nq,1
−M(q)−1B(q)at

vt
∥vt∥

0

 , f−
aux,t(y)=

 0nq,1
M(q)−1B(q)vt

0

 .
The regions for the time-freezing system are defined as in (8.44) and the matching
time-freezing system is defined analogously to Definition 8.13. Furthermore,
one could derive stick-slip dynamics corresponding to the solution map

Figure 8.10: The exact friction force Eq. (8.39) (left) and its approximation in
Eq. (8.52) (right).

TIME-FREEZING FOR INELASTIC IMPACTS 279

0 1 2 3 4 5 6 7 8

0

1

2

0 1 2 3

-5

0

5

10

0 0.5 1 1.5 2

-5

0

5

10

0 1 2 3
0

0.5

1

1.5

0 0.5 1 1.5 2
0

10

20

Figure 8.11: Trajectories of the time-freezing system from Example 8.17.

approximation (8.52) and relate it to the time-freezing system by following
similar lines as in Theorems 8.14 and 8.16, but we omit the details here. We
conclude this section by revisiting Example 8.11, but now with adding friction.

Example 8.17. (Frictional impact) The time-freezing system model from
Example 8.9 is extended by adding friction with a coefficient µ = 0.6. In
the planar case, we have nt = 1, and the tangent at the contact point is
b(q) = [1, 0]. We have the switching functions c1(y) = q2, c2(y) = v2 and
c3(y) = b(q)⊤v = v1. Following Eq. (8.44), the regions of the time-freezing
system are R1 = {y | q2 > 0} ∪ {y | q2 < 0, v2 > 0}, R2 = {y | q2 < 0, v2 <
0, v1 > 0} and R3 = {y | q2 < 0, v2 < 0, v1 < 0}. The dynamics of the PSS are
f1 = (v1, v2, u1,−g + u2, 1), f2 = (0, 0,−µan, an, 0) and f3 = (0, 0, µan, an, 0).
The results of the simulation are depicted in Figure 8.11. Note that due to
friction there is now also a state jump in the tangential velocity v1, cf. middle
plots. Afterwards, the acceleration of v1 is during contact phases smaller due
to the friction force. However, the tangential acceleration is increasing over
time as the normal contact force becomes weaker because of u2. At τ = 2.8, the
particle lifts off as in the previous example.

280 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

8.5 Numerical optimal control of time-freezing
systems

In this section, we demonstrate how to use time-freezing systems in optimal
control and show that its solutions are also optimal for the initial OCP with a
CLS. Furthermore, we introduce time transformations and constraints to achieve
the desired control grid discretization and final time despite the nonsmooth clock
state. All methods and examples from this paper, including a fully-automated
reformulation of the CLS into a PSS, are implemented in the open-source tool
nosnoc [2, 206]. We start by stating the continuous-time optimal control
problem (OCP) we wish to solve. Afterwards, we derive an equivalent OCP,
now subject to the time-freezing system.

8.5.1 Continuous-time OCP with a CLS

We regard the following continuous-time optimal control problem subject to
CLS:

min
x(·),λ(·),u(·),

Ψ(x(T)) (8.53a)

s.t. x(0) = x̄0, (8.53b)

Eq.(8.1), for a.a. t ∈ [0, T] (8.53c)

0 ≤ g(x(t), u(t)), t ∈ [0, T], (8.53d)

0 ≤ r(x(T)), (8.53e)

where Ψ : Rnx → R is the terminal cost of the OCP, x̄0 is a given initial value.
The functions g : Rnx × Rnu → Rng and r : Rnx → Rnr are the path and
terminal constraints, respectively. The CLS dynamics in Eq. (8.53c) (resp. Eq.
(8.1)) make this OCP nonsmooth and nonconvex. Without loss of generality, we
only consider a terminal cost term here and remind the reader that the integral
of a running cost L : Rnx × Rnu → R over [0, T] can be treated via a terminal
cost term by introducing a quadrature state ℓ(t)

d
dt ℓ(t) = L(x(t), u(t)), t ∈ [0, T], ℓ(0) = 0, (8.54)

and adding ℓ(T) to the objective.

NUMERICAL OPTIMAL CONTROL OF TIME-FREEZING SYSTEMS 281

8.5.2 Continuous-time OCP with a time-freezing system

Using the results from the previous sections, we derive now an OCP subject to
a time-freezing system. The new OCP is regarded in numerical time τ ∈ [0, T̃].
We take four steps in this transformation:

(1) we modify the quadrature state in Eq. (8.54) so that the cost integrated
over both numerical and physical time remains unchanged;

(2) we reformulate the time-freezing system into an equivalent dynamic
complementarity system to make it possible to apply FESD;

(3) we introduce a time-transformation to ensure that the terminal physical
time t(T̃) matches the true control horizon of Eq.(8.53), i.e., t(T̃) = T ;

(4) we express the remaining constraints in terms of numerical time.

We start with adapting the objective. This is achieved by replacing the
quadrature state (8.54) by:

d
dτ ℓ(τ) =

{
L(x(τ), u(τ)), if y ∈ RODE,

0, otherwise.
(8.55)

When the time is frozen the cost integral is zero and there are no contributions
to the overall objective, i.e., the cost is unchanged when the time is frozen.

Our goal is to apply the FESD method from Chapter 7 to the time-freezing
systems. To do so we follow the approach of Chapter 6 and rewrite the
time-freezing Filippov systems from Definitions 8.3, 8.7 or 8.7 as dynamic
complementarity system. For sake of illustration, we perform this for the time-
freezing system from Definition 8.13 and use the step reformulation from Section
6.3. We define c(y) := (c1(y), c2(y), c3(y)). Following the steps from section 6.3
we can derive from y′ ∈ FTF(y, u) in Definition 8.13 the equivalent dynamic
complementarity system:

y′ = F (y, u) θ, (8.56a)

0 = gF(θ, α), (8.56b)

0 = c(y)− λp + λn, (8.56c)

0 ≤ α ⊥ λn ≥ 0, (8.56d)

0 ≤ e− α ⊥ λp ≥ 0. (8.56e)

282 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

The matrix F (y, u) = [f1(y, u), . . . fnf (y)] ∈ Rny×nf collects the modes of the
PSS and θ = (θ1, . . . , θnf). The last three lines are the KKT conditions of
(6.33), where λn, λp ∈ R3 are the Lagrange multipliers for the lower and upper
bounds in (6.33), respectively. We group all algebraic variables of the DCS in
the vector z = (θ, α, λp, λn). The function gF relates the Filippov multipliers θ
with the evaluations of the step functions α:

gF(θ, α) :=

 θ1 − α1 + (1− α1)α2,
θ2 − (1− α1)(1− α2)(1− α3)
θ3 − (1− α1)(1− α2)(α3)

 . (8.57)

These expressions correspond to the signs of cj(y) in the definitions of the
regions RODE, R

+
aux, R

−
aux, cf. Section 6.3.

The time-freezing system evolves over τ ∈ [0, T̃]. During state jumps the
physical time evolution is stopped. As a consequence, we have that t(T̃) < T ,
i.e., the terminal physical time in the time-freezing problem does not match the
desired time T . To resolve this, we introduce a time-transformation variable
s(τ) ∈ R and impose the terminal constraint on the clock state t(T̃) = T .
Consequently, we obtain t′ = s and s > 1 speeds up the physical time and
allows us to catch up and reach the desired time T , cf. Example 8.19. Such
time transformations are very common in optimal control when one wants to
optimize over the terminal time, cf. Section 3.3.

It is left to impose the path (8.53d) and terminal constraints (8.53e) in numerical
time for x(τ) and u(τ). Finally, the OCP subject to the time-freezing system
reads as:

min
y(·),z(·),
u(·),s(·)

Ψ(x(T̃)) (8.58a)

s.t. x(0) = x̄0, t(0) = 0, (8.58b)

y′(τ)=s(τ)F (y(τ), u(τ))θ(τ), τ ∈ [0,T̃], (8.58c)

0 = gF(θ(τ), α(τ)), τ ∈ [0, T̃], (8.58d)

0=c(y(τ))− λp(τ) + λn(τ), τ ∈ [0, T̃], (8.58e)

0 ≤ α(τ) ⊥ λn(τ) ≥ 0, τ ∈ [0, T̃], (8.58f)

0≤e−α(τ)⊥λp(τ)≥0, τ ∈ [0, T̃], (8.58g)

0 ≤ g(x(τ), u(τ)), t ∈ [0, T], (8.58h)

NUMERICAL OPTIMAL CONTROL OF TIME-FREEZING SYSTEMS 283

0 ≤ r(x(T̃)), (8.58i)

t(T̃) = T. (8.58j)

It is important to note, that when the time is frozen (t′ = 0) the control u(τ)
does not influence x(τ), since the auxiliary dynamics do not depend on the
control, cf. Eq (8.31). Therefore, we could even omit the path constraints
whenever t′ = 0, but we keep it for notational simplicity. Additionally, the
integral of the stage cost remains unchanged, since d

dτ ℓ(τ) = 0 in this case,
cf. (8.55).

Next, we show that the optimal controls obtained by solving the initial OCP
(8.53), with appropriate modifications, are also optimal for (8.58). Let u∗(t), t ∈
[0, T] be an optimal control of (8.53). We construct an ũ∗(τ), t ∈ [0, T̃] as
follows. It can be seen that, when the physical time is evolving (t′ > 0), we can
find the inverse function τ−1(t) to find the corresponding numerical time τ . We
construct a control function for the time-freezing system:

ũ∗(τ) =
{
u(τ−1(t)), for t(τ)′ > 0
û(τ), for t(τ)′ = 0,

(8.59)

where û(τ) is any function such that g(x(τ), û(τ)) ≥ 0 holds, whenever t′(τ) = 0.
Recall that û(τ) does not change the objective nor it changes x(τ), its only
purpose is to extend u(t) to intervals when the time is frozen. For example, we
can choose a constant value that does not violate the path constraints. With
(8.59) we can extend u∗(t) for the time interval where the physical time is
frozen. Conversely, given an optimal control ũ∗(τ) of Eq. (8.58), then we expect
u∗(t(τ)) to be optimal for (8.53).
Proposition 8.18. Let ũ∗(τ), τ ∈ [0, T̃] be an optimal control obtained by
solving the OCP (8.58). Then u∗(t) = ũ∗(t(τ)), t ∈ [0, T] is an optimal control
of the OCP (8.53). Conversely, let u∗(t), t ∈ [0, T] be an optimal control of the
OCP (8.53), then the control function ũ∗(τ), τ ∈ [0, T̃] obtained via Eq. (8.59)
is optimal for (8.58).

Proof. For a fixed control function u(τ) and s(τ) such that t(T̃) = T , the time-
freezing system (8.58c)- (8.58g) and the CLS (8.1) with u(t(τ)) are equivalent
in the sense of Theorem 8.16. Thus, a feasible y(τ) in (8.58) results in a feasible
x(t) in (8.53). Due to equation (8.55), both OCPs have the same objective
value. Consequently, given a ũ(τ) = ũ∗(τ) + δũ(τ) that improves the objective
(8.58a), the corresponding ũ(t(τ)) would also improve (8.53a). Conversely, for
every modified u(t(τ)) = u∗(t(τ))+δu(t(τ)) that improves the objective (8.53a),
we can construct an appropriate control function u(τ) via (8.59) that improves
(8.58a). Thus, u∗(t) = ũ∗(t(τ)) is optimal for (8.53). The converse is proved by
similar arguments.

284 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

8.5.3 Discrete-time OCP with the time-freezing system

In principle, one can discretize the OCP (8.53) by using any time-stepping
integration method for CLS [4, 49, 255] e.g., the Stewart-Trinkle method [252].
Such an approach for direct optimal control was used in [225]. As discussed in
Chapter 4, standard time-stepping methods for CLS with friction (8.1) have at
best first-order accuracy [4, 255]. Moreover, the numerical sensitivities obtained
from such a discretization are always wrong and the NLP solvers converge
to spurious solutions, cf. Chapter 5. Therefore, for a moderately accurate
solution usually, a large computational effort is needed. However, FESD for
Filippov systems does not suffer from these limitations. In conclusion, the
fundamental limitations of standard direct optimal control methods are resolved
by combining time-freezing and FESD. This enables one to find a more accurate
solution approximation for the continuous-time OCP (8.53) by solving (8.58).

We proceed by introducing the discrete-time version of the OCP (8.58) with
a multiple shooting-type discretization [44]. The numerical time horizon
[0, T̃] is split into N control intervals [τk, τk+1] of equal length [213]. The
controls are assumed to be constant over every interval, i.e., u(τ) = uk, τ ∈
[τk, τk+1], k = 0, . . . , N − 1, and yk = (xk, tk) ∈ Rny is the discrete-time
approximation of the time-freezing state, i.e., xk ≈ x(τk) tk ≈ t(τk). The
vectors zk collect all algebraic and internal integration variables for the k−th
control interval. The vector w := (y0, z0, u0, s0, . . . , yN−1, zN−1, uN−1, sN−1, yN)
groups all optimization variables.

Our goal is to have an equidistant control grid, as this is typically required in
feedback control applications. It is important to note that, due to intervals with
frozen physical time evolution (t′ = 0), an equidistant grid in numerical time
{τ0, . . . , τN} does not imply an equidistant grid in physical time {t0, . . . , tN}.
To address this issue, we propose to use a piecewise constant discretization of
the time-transformation variable s(τ), i.e., we have sk ∈ R, k = 0, . . . , N − 1.
Additionally, we introduce the constraints tk = k TN , k = 0, . . . , N , cf. Eq.
(8.60f) below. It is worth noting that for k = N , we have the discrete-time
versions of the terminal clock constraint (8.58j). The steps above result in
an equidistant control discretization grid in physical time, i.e., u(t) = uk for
t ∈ [tk, tk+1] with t0 = 0 and tk = tk−1 + T/N . This is further illustrated in
Example 8.19.

The discretization of (8.58) reads as:

min
w

Ψ(xN) (8.60a)

s.t. x0 = x̄0, (8.60b)

NUMERICAL OPTIMAL CONTROL OF TIME-FREEZING SYSTEMS 285

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

0 0.5 1 1.5 2

-5

0

5

0 0.5 1 1.5 2
-5

0

5

0 0.5 1 1.5 2
0

5

10

0 0.5 1 1.5 2
0

2

4

6

Figure 8.12: Solution to the guiding optimal control example.

yk+1 = Φf (yk, zk, uk, sk), k = 0,. . . ,N−1, (8.60c)

0=Φint(yk, zk, uk), k = 0,. . . ,N−1, (8.60d)

0≤Φc,1(zk)⊥Φc,2(zk)≥0, k = 0,. . . ,N−1, (8.60e)

tk = k
T

N
, k = 0, . . . , N, (8.60f)

1 ≤ sk ≤ s̄, k = 0, . . . , N − 1, (8.60g)

0 ≤ g(xk, uk), k = 0, . . . , N−1, (8.60h)

0 ≤ r(xN). (8.60i)

It is common in direct optimal control to write discretization method equations
in a compact discrete-time system manner, e.g., as done in Chapters 3 and 7).
We do here in Eq. (8.60c)-(8.60e). The function Φf : Rny×Rnz×Rnu×R→ Rnx
is the discrete-time state transition map which approximates y(τ). The function
Φint : Rny×Rnz×Rnu → RnΦ collects all internal computations of the underlying
integration scheme. The constraints (8.60e) arise from the discretization of
the complementarity conditions (8.58f)-(8.58g). These functions are obtained
via the FESD discretization, cf. Chapter 7. The constraint (8.60g) bounds sk,
where s̄ is its maximal value that has to be sufficiently large to ensure feasibility
of (8.60f). We finish this section with a simple OCP derived from the guiding
example.

286 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

Example 8.19. (OCP Example) We solve an OCP of the form of (8.53) with
the guiding example. The initial value is unchanged, i.e., y0 = (0, 1, 0, 0, 0).
The particle should reach at t(T̃) = 2, with T̃ = 2, the position q(T) = (3, 0)
with zero terminal velocity v(T) = (0, 0). We bound the horizontal thrust force
|u1| ≤ 10 and set for simplicity u2 = 0. The ball should reach the goal with
minimum control effort, which is modeled with the stage cost L(x, u) = u2

1. We
take N = 20 control intervals and discretize the OCP equivalent time-freezing
OCP with a third-order FESD-Radau IIA scheme with three integration steps
on every control interval, cf. Chapter 7. The solution is depicted in Fig. 8.12.
We can see that maximum force is applied before the impact since there is still
no friction and the motion is cheaper. After the impact, a smaller control force
is applied just to reach the target. Note that the sk (yellow line in the bottom
right plot) is higher during the control interval when the state jumps happens
(to catch up the frozen time) and sk = 2 during contact to compensate for the
slow down due to γ(x, u). The resulting speed of time is always one (bottom
left plot), except when the state jump happens where a speed-up is needed to
compensate for the frozen time. This ensures an equidistant control grid (as
intended with the constraint (8.60f)) and t(T̃) = 2 as desired.

8.6 Numerical examples with time-freezing

In nosnoc’s repository [2, 206], there are several simulation and optimal
control examples with time-freezing. For brevity, we have selected three
numerical optimal control examples to illustrate the theoretical and algorithmic
developments presented in this chapter. In all examples, we initialize the controls
with zero, and for the states, we take the provided initial value for all discrete
time points. Despite non-instructive starting points, the optimizer finds creative
solutions after solving only a few NLPs in the homotopy loop.

8.6.1 Ball inside a box - elastic impacts

In this example, we regard a two-dimensional ball inside a box without gravity.
The model equations are given in Example (8.1), and the impacts are fully elastic,
i.e., ϵr = 1. The goal is to track a reference, which moves on a circle centered
at the origin with a radius R = 1, with the angular velocity ω, and initial
angle α0 = π

4 . The box is not concentric with the circle and is defined by four
gap functions, which model the bottom, right, top, and left side, respectively:
fc(q) = (q2 − 1.05R,−q1 + 1.1R,−q2 + 1.1R, q1 + 1.15R). For every constraint,

NUMERICAL EXAMPLES WITH TIME-FREEZING 287

Row of S Description Dynamics
1 unconstrained dynamics (v1, v2, u1, u2, 0)
2 impact with the bottom wall fbottom(y)
3 impact at the bottom right corner fbottom(y) + fright(y)
4 impact with the right wall fright(y)
5 impact with the top right corner fright(y) + ftop(y)
6 impact with top wall ftop(y)
7 impact with top left corner ftop(y) + fleft(y)
8 impact with left wall with fleft(y)
9 impact with the bottom left corner fleft(y) + fbottom(y)

Table 8.2: Summary of the time-freezing system for the ball in a box problem.

we can find the auxiliary dynamics via Proposition 8.4 and obtain:

fbottom(y) = (0, v2, 0,−k(q2 + 1.05R), 0),

ftop(y) = (0, v2, 0,−k(q2 − 1.15R), 0),

fleft(y) = (v1, 0,−k(q1 + 1.15R), 0, 1),

fright(y) = (v1, 0,−k(q1 − 1.1R), 0, 0).

We set k = 100, and for fully elastic impacts we have c = 0. Moreover, we need
the auxiliary dynamics for the impacts at the four corners. Since the constraint
defining the corners are orthogonal, the corresponding auxiliary dynamics are
simply the sum of the two neighboring ones. In total, we have nine regions:
one for the unconstrained dynamics and eight for the auxiliary dynamics. The
regions can be encoded via the sign matrix S ∈ R9×4 (cf. Section 6.2):

S =

1 1 1 1
−1 1 1 1
−1 −1 1 1
1 −1 1 1
1 −1 −1 1
1 1 −1 1
1 1 −1 −1
1 1 1 −1
−1 1 1 −1

,

The dynamics are summarized in Table 8.2. We collect all modes in the matrix
F (y, u) ∈ R5×9 and use Stewart’s reformulation (cf. Section 6.2.1) to obtain a
DCS. The initial value is:

y(0) = (R sin(α0), R cos(α0), Rω cos(α0),−Rω sin(α0), 0).

288 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

We introduce a least square objective with the running cost:

L(y(τ), u(τ)) = (q1 −R sin(ωt(τ) + α0))2 + (q2 −R cos(ωt(τ) + α0))2.

The norm of the thrust force is bounded via the inequality constraint

u⊤u ≤ R2
u,

with Ru = 50. The control horizon is taken to be two periods, i.e., T = 2 2π
|ω| .

We use N = 40 equidistant control intervals and use a FESD Radau IIA method
of order 3 with NFE = 4 on every control interval. Therefore, we have all
ingredients formulate an optimal control problem of the form (8.60).

The optimal control problem is solved for ω = −2π and ω = −3π. The final
results are depicted and compared in Figure 8.13. In the first case, the reference
is slow enough, and the thrust force is sufficient for perfect tracking. In the
second case, the reference is too fast, and the optimizer discovers that making
impacts with the walls can help to reduce the tracking error.

Next, we compare the clock states and speed of time variables s(τ) for the two
cases. This is depicted in Figure 8.14. The vertical dashed lines in the left plots
show the boundaries of the control intervals. We can see that an equidistant
control grid is obtained, as discussed in Section 8.5. In the slower reference
case (top plot), the auxiliary dynamics do not become active, and the physical
time is equal to the numerical time. The speed of time variable s(τ) is constant
and equal to one, as no frozen time needs to be compensated. In the faster
reference case, we have in total eight impacts. The speed of time takes a larger
value during all intervals with impacts to catch up for the frozen time intervals.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 8.13: Illustration of the solution trajectories for the ball in box optimal
control problem. The left plot is for ω = −2π, and the right is for ω = −3π.

NUMERICAL EXAMPLES WITH TIME-FREEZING 289

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

Figure 8.14: The left plots show the clock state as a function of the numerical
time t(τ). The right plots the speed of time variables s(τ). The top plots are
for ω = −2π and the bottom for ω = −3π.

Figure 8.15 shows the state and optimal controls for this case. We can see that
the velocity state is continuous in numerical time and discontinuous in physical
time. Note that the reference stops during time-frozen periods since it is a
function of t(τ).

8.6.2 A hopping robot - inelastic impact with friction

We consider a hopping robot that must jump over three holes to reach a desired
target. We derive an OCP formulation for synthesizing dynamic motions of the
single-legged 2D robot Capler [63]. The robot is described by four degrees of
freedom q = (qx, qz, ϕknee, ϕhip). Here, (qx, qz) are the coordinates of the robot’s
base at the hip, and ϕknee, ϕhip are the angles of the hip and knee, respectively,
cf. left plot in Fig. 8.16. It is actuated by two direct-drive motors at the hip
and knee joints. The robot’s dynamics are compactly described by the CLS
in the form of (8.1). The torques of the two motors u(t) = (uknee(t), uhip(t))
are the control variables. A detailed derivation of the model equations and all
parameters for the robot can be found in [109, Appendix A].

Denote by pfoot(q) = (pfoot,x(q), pfoot,z(q)) and pknee(q) = (pknee,x(q), pknee,z(q))
the kinematic position of the robot’s foot and knee, respectively. For the

290 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

0 0.5 1
-2

-1

0

1

2

3

0 0.5 1

-10

-5

0

5

10

0 0.5 1

-40

-20

0

20

40

60

0 0.5 1
-2

-1

0

1

2

3

0 0.5 1

-10

-5

0

5

10

0 0.5 1

-40

-20

0

20

40

60

Figure 8.15: A solution to the ball in a box optimal control problem for ω = 2π.
The left plots are in numerical time τ right in physical time t. The first row
shows the positions q, the second the velocities v, and the third the optimal
controls u.

unilateral constraint function we take fc(q) = pfoot,z(q). For a planar robot,
we need just one tangent, i.e., b(q) = ∇qpfoot,x(q) and the friction model is
exact. The coefficient of friction is µ = 0.8 and the auxiliary ODE constant is
an = 200.

The objective of the OCP is to minimize the integral of the squared control
torques, i.e., we have the running cost L(x, u) = u(τ)⊤u(τ). The robots should

NUMERICAL EXAMPLES WITH TIME-FREEZING 291

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0 0.1 0.2

Figure 8.16: Illustration of the robot kinematics (left), several frames of the
solution of the discretized OCP (right).

reach a given target position qtarget = (3, 0.4, 0, 0) starting from the initial
position q0 = (0, 0.4, 0, 0) with zero velocity v0 = 04,1. The initial value is
y0 = (q0, v0, 0) and the prediction horizon is Tctrl = 2.5 s. We add the following
constraints on the states and kinematic positions:

−0.05e ≤ (qx(t), pfoot,x(q(t)), pknee,x(q(t))),

0.2 ≤ qz(t) ≤ 0.55,

−3π
8 ≤ ϕhip(t) ≤ 3π

8 ,

−π2 ≤ ϕknee(t) ≤ π

2 ,

0.05 ≤ pknee,z(q(t)),

−0.005 ≤ pfoot,z(q(t)) ≤ 0.2, t ∈ [0, T].

Their goal is twofold. On the one hand, they should avoid unnatural and
too extensive bending of the joints. On the other hand, they serve as guiding
constraints during the early phases of the homotopy procedure. In the early
iterations, the physics are relaxed, and we want to prohibit the optimizer to go
to undesired regions. The control bounds read as

−60e ≤ u(t) ≤ 60e, t ∈ [0, T].

On the way to the target, the robot must overcome three holes in the ground.
Instead of using very complicated expressions for fc(q), we model the holes as
regions that the robot should not enter. This is achieved by constraints inside
the OCP requiring that pfoot is outside ne = 3 ellipsoids:(pfoot,x − xc,k

ak

)2
+
(pfoot,z − zc,k

bk

)2
≥ 1, k = 1, . . . , ne.

292 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

0 0.5 1 1.5 2 2.5
-10

0

10

20

Figure 8.17: The optimal control input u(t) in physical time t obtained by
solving the discretization of the optimal control problem.

By appropriately picking ak, bk, xc,k and zc,k the desired shapes are trivially
selected. In this example, we pick zc,k = 0, ak = 0.5 (width of the hole), bk = 0.1
(kept low, should not enforce unnecessarily high jumps). For the centers of the
holes, we pick xc,1 = 0.5, xc,2 = 1.5, xc,3 = 2.5. We collect all path constraints
(for the holes, on the kinematics, control, and state bounds) into the function
g(x, u) ≥ 0.

Remark 8.20. Note that the constraints g(x, u) ≥ 0 cannot become active if the
corresponding normal velocity is nonzero, as opposed to activating a constraint
fc(q) ≥ 0, since no state jump law is associated with path constraints in an
OCP. This is one of the main differences between constraints that are part of
the dynamics (equipped with a state jump law) and path constraints in the OCP.

We have now all ingredients to formulate an OCP in the form of Eq. (8.53).
nosnoc automatically reformulates the CLS into a time-freezing system and
discretizes the OCP, such that we obtain a discrete-time problem in the form of
(8.58). The resulting mathematical program with complementarity constraints
is solved in a homotopy procedure with IPOPT [281] equipped with the MA57
linear solver [143]. The source code for this example is available in nosnoc’s
repository [2]. The OCP is discretized with a FESD Radau IIA scheme of
order 5 [213]. We consider N = 20 control intervals with NFE = 3 intermediate
integration steps on every interval.

For the initialization of the differential states, we take y0 at every discretization
node. All discrete-time control variables are initialized with zero. Hence, no
information about the order, number, or timing of the nonsmooth transitions
and jumps is provided. The results of the optimization are shown in the right
plot of Fig. 8.16. The approach finds an intuitive dynamic movement by solving
only smooth NLP, without providing any hints about the order and number of
nonsmooth transitions. The optimal torques are depicted in Fig. 8.17.

NUMERICAL EXAMPLES WITH TIME-FREEZING 293

8.6.3 Manipulation task - inelastic impacts

In the last example of this section, we regard a manipulation task. We regard
two balls that lie in a two-dimensional plane. Only one ball can be controlled by
a thrust force, whereas the second can only be moved by making inelastic contact
with the first one. The goal is that the balls swap their position with minimal
control effort. We model this with the following optimal control problem:

min
x(·),λn(·),u(·),

∫ T

0
∥x(t)− xr∥2

Q + ∥u(t)∥2
R dt+ ∥x(T)− xr∥2

QT

s.t. x(0) = x̄0,

q̇(t) = v(t), t ∈ [0, T],

Mv̇(t) =
[
u(t)− cf

v1
∥v1+ϵf∥

02,1 − cf
v2

∥v2+ϵf∥

]
+ n(q(t))λn(t), t ∈ [0, T],

0 ≤ λn(t) ⊥ fc(q) ≥ 0, t ∈ [0, T],

t0 = n(q(t))⊤v(t+s) fc(q(ts) = 0 and n(q(t))⊤v(t−s) < 0,

− 10e ≤ q(t) ≥ 10e, t ∈ [0, T],

− 5e ≤ v(t) ≥ 5e, t ∈ [0, T],

− 30e ≤ u(t) ≥ 30e, t ∈ [0, T],

0 ≤ ∥q1(t)∥2 − (rob + r1)2, t ∈ [0, T],

0 ≤ ∥q2(t)∥2 − (rob + r2)2, t ∈ [0, T],

The states are the positions q1 = (q1,1, q1,2), q2 = (q2,1, q2,2) and velocities
v1 = (v1,1, v1,2), v2 = (v2,1, v2,2), respectively. The initial positions are q1(0) =
(−2, 0) and q2(0) = (2, 0), and the initial velocities are zeros v1(0) = v2(0) =
02,1. The reference is xr = (q2(0), q1(0), v1(0), v2(0), i.e., the balls should
swap their positions and be at rest, and the control effort should be minimal.
This is modeled with least squares running and terminal objective terms with
the weighting matrices: Q = diag(10, 10, 10, 10, 0.01, 0.01, 0.01, 0.01)), R =
diag(0.1, 0.1) and QT = 100Q. The control forces u = (u1,2, u2,1) acts only on
the first ball. Moreover, we model constant friction force in the plane with cf = 2
and ϵf = 0.1 to regularize the norm at zero and the contact between the balls
is frictionless. The constant inertia matrix is M = diag(m1,m1,m2,m2) with
m1 = 2 and m1. The gap function reads as fc(q) = ∥q1(t)− q2(t)∥2− (r1 + r2)2,

294 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

where the radii of the balls are r1 = 0.3 and r2 = 0.2. We introduce guiding
box constraints on the position and velocity and bound the control in every
direction. The last two constraints model the obstacle which is a ball with a
radius of rob = 1 and located at the origin.

We transform this OCP into a discrete-time time-freezing OCP as described in
Section 8.5. The control horizon is T = 5 we take N = 25 control intervals and
use a FESD implicit Euler method with NFE = 3. The problem is reformulated,
discretized, and solved with nosnoc. Figure 8.18 shows ten frames of the
optimal solution. The optimizer finds a creative solution without any hints
or sophisticated initial guesses. The first ball goes to the second ball, makes
contact with it, pushes it around the obstacle, and brings it to its final position.
It breaks the contact and returns to the final position. Figure 8.19 shows the
states and optimal controls as a function of physical time. One can see that
the second ball is at rest until the first ball touches it and creates a velocity
jump. At t = 4, the contact breaks, and the first ball slides slowly toward the
goal position.

8.7 Conclusions and outlook

This chapter introduced the time-freezing reformulation for transforming
complementarity Lagrangian systems (CLS) with state jumps into piecewise
smooth systems. The main idea is to define an auxiliary dynamical system
in the region that is infeasible for the original system and a clock state. The

Figure 8.18: Several frames of the optimal solution. The first ball is marked
with blue, the second with red, and the obstacle with black.

CONCLUSIONS AND OUTLOOK 295

Figure 8.19: The trajectories and optimal controls of the manipulation problem.

endpoints of the trajectory of the auxiliary ODE satisfy the state jump laws,
while the evolution of the clock state is frozen during its runtime. By taking only
the pieces of the trajectory when time is flowing, we can recover the solution
of the original system. To the best of the author’s knowledge, this is the first
reformulation technique that establishes a strong link between a wide range of
practical nonsmooth mechanics problems and Filippov systems, enabling the use
of the rich theoretical and computational tools developed for Filippov systems.
For example, this enables the seamless application of the FESD method from
Chapter 7.

We provide constructive ways for selecting auxiliary ODEs and prove the
equivalence of solutions between the original and time-freezing systems.
Furthermore, we demonstrate that solving the OCP with time-freezing systems
can provide a solution to an OCP with a CLS. We illustrate the practicality

296 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH MECHANICAL SYSTEMS

Figure 8.20: Several frames of time-freezing system simulation where a pile of
19 stacked balls is hit by another ball. The tower slowly collapses, and many
intermediate contacts take place.

of the discussed methods with several OCP examples. All of the methods
described here are implemented in the open-source package nosnoc [206].

Several questions need to be addressed in future work. First, a natural and
necessary extension is to consider cases with multiple and simultaneous impacts,
i.e., models with vector-valued gap functions. In such cases, one also needs to
decide which impact model to use. Furthermore, we want to avoid defining
separate auxiliary dynamics for every combination of simultaneous or single
impacts, as this would result in exponential complexity. A possible solution
is to exploit the additive nature of the CLS, where the total contact force is
the sum of all contact forces at every contact. This can also be applied to
the time-freezing system, for example, by using the sum of Filippov systems
concept discussed in Section 6.2.5. The first implementation of this approach is
already available in nosnoc. However, deriving all the details and developing
the equivalence theory is beyond the scope of this thesis. Nevertheless, the first
numerical experiments appear to be very promising. Figure 8.20 shows several
frames where a pile of 19 balls is hit by another ball. This example has in total
210 gap functions, and the simulation result appears to be physically reasonable.
The second question to be addressed is whether there exists a unified time-
freezing reformulation for both elastic and inelastic impacts. Currently the two
models are somewhat different as they do not use the same number of switching
functions. It would be desirable to have a single formulation that depends
only on the coefficient of restitution ϵr. On the one hand, if one tries to create
an inelastic impact model from the elastic time-freezing system, the auxiliary
dynamical system must become infinitely stiff. Additionally, incorporating

CONCLUSIONS AND OUTLOOK 297

friction in the current elastic case seems to be more difficult. It is not obvious
how to define tangential auxiliary dynamics that are compliant with the normal
auxiliary dynamics and that enable both stick and slip modes. On the other
hand, the inelastic approach was easier to extend to frictional and multiple
impacts. However, it is not clear how to treat elastic impacts with the ideas
developed for the inelastic case.

Furthermore, to make this approach even more practical, good initialization
heuristics and more sophisticated homotopy procedures for the MPCCs would
be useful. Exploiting some knowledge and structure in the system might be
beneficial. For example, when the system enters Raux, by construction it will
leave it or end on its boundary after τjump. Hence, the second switch may
be encoded explicitly and not discovered implicitly via the complementarity
conditions.

Chapter 9

The Time-Freezing
Reformulation for Nonsmooth
Systems with Hysteresis

In this chapter, we extend the time-freezing reformulation to a class of hybrid
systems with a hysteresis. Hysteresis is a rate-independent memory effect that
results in severe nonsmoothness in the dynamics. These systems are not simply
piecewise smooth systems but a more complicated form of hybrid systems. This
class is not closely related to complementarity Lagrangian systems. However,
we build upon the same core ideas: introducing auxiliary dynamics in infeasible
regions to mimic state jumps and freezing the time during their evolution. After
the time-freezing reformulation, we end up again with a Filiipov system. From
a theoretical standpoint, this reformulation paves the way for studying systems
with hysteresis using the sophisticated tools developed for Filippov systems.
From a practical perspective, it allows for the use of FESD, which facilitates
highly accurate numerical optimal control of hybrid systems with he a hysteresis.
To illustrate this, we provide an example of a time-optimal control problem
and compare our approach to mixed-integer formulations found in the existing
literature. Here a single hysteresis characteristic is considered. An extension to
a cascade of such systems was developed in [274].

Outline. Section 9.1 gives some basic definitions of the hybrid systems with
a hysteresis. In Section 9.2, we develop the time-freezing reformulation for a
class of hybrid systems with hysteresis and provide a simple tutorial example.

299

300 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

Section 9.3 formalizes the relation between time-freezing PSS and hysteresis
systems. Finally, Section 9.4 contains a numerical example, and Section 9.5
concludes the chapter. This chapter is mainly based on the article [205].

9.1 Hybrid systems with hysteresis

9.1.1 Introduction

Hysteresis occurs in many physical systems, e.g., ferromagnetism, plasticity,
superconductivity, and phase transitions, but also in feedback control, e.g.,
thermostats [186]. Hysteresis effects in dynamic systems are modeled with
nonsmooth differential equations. Here we focus on transforming some classes of
systems with hysteresis into the piecewise smooth system (PSS) and numerically
solving OCPs subject to such systems. A hybrid system with hysteresis can
be represented as a finite automaton [186], which has two modes of operation
described by fA(x) and fB(x), cf. Figure 9.1 (left). If the system operates in
mode A with ẋ = fA(x) and if ψ(x) ≥ 1, it switches to mode B with ẋ = fB(x).
On the other hand, if it operates in mode B and if ψ(x) ≤ 0, it switches to mode
A. This is a typical hysteresis behavior given by the characteristic in the right
plot of Figure 9.1, which is often called the delayed relay operator [51]. The
dynamics of the system depend on the value of w(t) and the scalar switching
function ψ(x). Notably, for ψ(x) ∈ [0, 1] the function w(t) can be 0 or 1.

There are several other related characteristics, e.g., the dashed lines in Figure 9.1
could be solid, or the resulting polygon in the middle of the plot might be tilted.
In all these cases, the characteristic can be readily represented via a linear
complementarity problem [275] and the nonsmooth dynamic system recast into
a Dynamic Complementarity System (DCS). However, it is an open question if
such DCS is a PSS. Another widely used model is the Duhem hysteresis [280].
It can be straightforwardly transformed into a PSS [51, Section 2.6.3] and
numerically treated with FESD. In control theory, systems with hysteresis
are often studied via the hybrid systems framework, which uses integer state
and control variables [186, 31, 20]. Hence, in an optimal control context, this
requires solving Mixed-Integer Optimization Problems (MIOP). They can be
solved efficiently in the case of discrete-time linear hybrid systems [31]. However,
as soon as the junction times need to be determined precisely or nonlinearity
is present, e.g., in time optimal control problems, solving MIOP can become
arbitrarily difficult. On the other hand, the nonsmoothness can be modeled
with complementarity constraints [203], and one must solve only nonsmooth
NLPs.

HYBRID SYSTEMS WITH HYSTERESIS 301

Figure 9.1: Hybrid system with hysteresis.

The time-freezing reformulation transforms systems with state jumps into PSS
and was first introduced in [212]. This chapter introduces a time-freezing
reformulation to transform systems represented with the finite automaton in
Figure 9.1 (left) into PSS. Here, the main idea is to regard w(t) as a continuous
differential state. However, w(t) exhibits jump discontinuities in time at (0, 1)
and (1, 0), which can be interpreted as a state jump law. Similar to the approach
of the previous chapter, we introduce auxiliary dynamical systems and a clock
state. The auxiliary ODE evolves in regions, which are prohibited for the initial
system, and their trajectory endpoints satisfy the state jump law. Additionally,
the evolution of the clock state is frozen during the time evolution of the
auxiliary systems. By regarding only the parts of w(·) when the clock state
was evolving, we recover the original discontinuous solution. Note that the
resulting time-freezing system is now a PSS, since the only remaining jump
discontinuities are in the system’s dynamics but not in the state anymore. For
high-accuracy numerical optimal control of PSS, we use the FESD method from
Chapter 7.

The contributions of this chapter are as follows. We present a time-freezing
reformulation for a class of hybrid systems with hysteresis, which transforms
them into PSS. Constructive ways for finding the auxiliary dynamics needed in
time-freezing are provided. Solution equivalence between the initial hybrid and
time-freezing PSS is proven. From the theoretical side, this contribution enables
one to treat hybrid systems with hysteresis with the tools for PSS and Filippov
systems [94]. From the practical side, the highlight of this chapter is that we
can solve OCP with systems with hysteresis with high accuracy and without
the use of any integer variables. A time optimal control problem of a hybrid
system with hysteresis and illustrates theoretical and algorithmic developments.
We compare the continuous optimization-based FESD method to mixed-integer
solution strategies.

302 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

9.1.2 Model equations

We consider dynamic systems represented with the finite automaton the left
plot of Figure 9.1:

ẋ = f(x,w) =(1− w)fA(x) + wfB(x), (9.1)

where the (w,ψ(x)) characteristic is illustrated in the right plot in Figure 9.1.
For a uniformly continuous function x(t) on t ∈ [0, T] and a smooth ψ(·), there
can be only finitely many oscillations between 0 and 1. Consequently, the
function w(t) is piecewise constant and has only finitely many jumps between 0
and 1 [280].

The system in (9.1) has two modes of operation denoted by A and B. In order
to be able to simulate (9.1) for t ∈ [0, T] with a given x(0) = x0, we must know
w(0) as well. This property is typical for systems with a hysteresis. Furthermore,
w(·) jumps between 0 and 1, hence we can describe it by an ODE with the state
vector z := (x,w) ∈ Rnx+1, which is associated with a state jump law.

ż = (f(x,w), 0), (9.2)

accompanied by a state-jump law for w(·) at time-point ts, which covers two
scenarios:

1. if w(t−s) = 0 and ψ(x(t−s)) = 1, then x(t+s) = x(t−s) and w(t+s) = 1,

2. if w(t−s) = 1 and ψ(x(t−s)) = 0, then x(t+s) = x(t−s) and w(t+s) = 0.

Clearly, due to the state jump law, the ODE (9.2) is not simply a PSS.
Throughout this chapter we assume, given x(0) and w(0) that there exists
a solution to the Initial Value Problem (IVP) associated with (9.2). A way to
define a meaningful notion of solution for a hybrid system as (9.2) is given in
e.g., [186, Section 5.4] and sufficient conditions for well-posedness are provided
[186, Theorem 5.4].

9.2 The time-freezing reformulation for hybrid
systems with hysteresis

This section introduces the time-freezing reformulation for the system (9.2). We
define step-by-step the corresponding regions Ri of the time-freezing PSS and
give constructive ways to find vector fields associated with them. The section
finishes with a tutorial example.

THE TIME-FREEZING REFORMULATION FOR HYBRID SYSTEMS WITH HYSTERESIS 303

9.2.1 The time-freezing system

The main idea is to transform the state w(t) which is a piecewise constant
function of time into a continuous differential state on a different time domain.
We call this new time domain the numerical time and denote it by τ . Instead
of t, τ will now be the time of the time-freezing PSS. Moreover, we introduce
a clock state t(τ) in the time-freezing PSS which we call physical time. It
grows whenever the systems evolves according to fA(x) or fB(x), i.e., we have
in these cases dt

dτ (τ) = 1. Otherwise, the physical time is frozen, i.e., we
have that dt

dτ (τ) = 0. In other words, the time is frozen whenever w /∈ {0, 1}.
Consequently, the w(·) takes only discrete values in physical time, i.e., when
t(τ) is evolving.

The time-freezing PSS has the following state vector y := (x,w, t) ∈ Rny , ny =
nx + 2. In the sequel, we define its regions Ri ⊂ Rny and the associated
vector fields fi(y). Some key observations can be made from Figure 9.1. First,
everything except the solid curve is prohibited for the system (9.2) in the
(ψ,w)− plane. We use this prohibited part of the state space to define auxiliary
dynamics. Second, the evolution happens in a lower-dimensional subspace since
ẇ = 0. This corresponds in Filippov’s setting to sliding modes, cf. Chapter 6.
Hence, we define the regions such that the evolution of the initial system (9.2)
corresponds to sliding modes of the time-freezing PSS, i.e., it happens on region
boundaries ∂Ri.

A suitable partition of the (ψ,w)− plane can be achieved with Voronoi regions.
The regions are defined as

Ri = {z | ∥z − zi∥2 < ∥z − zj∥2, j = 1, . . . , 4, j ̸= i},

where z = (ψ(x), w). We select the points: z1 = (1
4 ,−

1
4), z2 = (1

4 ,
1
4), z3 = (3

4 ,
3
4)

and z4 = (3
4 ,

5
4). An illustration of the regions is given in Figure 9.2, where

the black solid lines denote the region boundaries. This choice of zi defines
regions such that their boundaries correspond to the feasible set of the original
system (9.2). Moreover, the space is split by the diagonal line between R2 and
R3 such that we can define different auxiliary dynamics for the state jumps in
both directions. One can make other choices for the points zi with the same
properties. The proposed choice partitions the space symmetrically, cf. Figure
9.2. The figure illustrates also the vector fields in the regions Ri whose meaning
is detailed below. It is important to note that the original system can only
evolve at region boundaries:

RA := {y ∈ Rny | w = 0, ψ(x) ≤ 1} = ∂R1 ∩ ∂R2,

RB := {y ∈ Rny | w = 1, ψ(x) ≥ 0} = ∂R3 ∩ ∂R4.

304 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Figure 9.2: Illustration of the partitioning of the state space in (ψ(x), w)-plane
for the time-freezing PSS via Voronoi regions with the corresponding auxiliary
and DAE-forming dynamic’s vector fields. The Voronoi points zi, i = 1, . . . , 4,
are marked by the crosses.
We exploit the interior of the regions Ri, i = 1, . . . , 4 to define the needed
auxiliary ODEs. In what follows, in the regions R2 and R3 we define auxiliary
dynamic systems whose trajectory endpoints satisfy the state jump law of (9.2).
In the regions R1 and R4 we will define so-called DAE-forming ODE, which
makes sure that we obtain appropriate sliding modes on RA and RB, which are
described by index 2 DAE [94] and which match the dynamics of the original
system. The next definition formalizes the desired proprieties of an auxiliary
ODE.

Definition 9.1 (Auxiliary ODE for hysteresis systems). The auxiliary ODE in
regions R2 and R3 are denoted by y′ = faux,A(y) and y′ = faux,B(y), respectively.
For every initial value y(τs) = ys such that (w(τs), ψ(x(τs)) = (1, 0), for ys ∈ RB,
(and (w(τs), ψ(x(τs)) = (0, 1) for ys ∈ RA, respectively) and for a well-defined
and finite time interval Tjump := (τs, τr) with the length τjump := τr − τs, the
auxiliary ODE satisfy the following properties:

(i) w(τ) ∈ (0, 1), for all τ ∈ Tjump,

(ii) x(τs) = x(τr) and

(iii) w(τr) = 0 (or w(τr) = 1).

In other words, we define an ODE whose trajectory endpoints on T jump satisfy
the state jump law associated with Eq. (9.2), cf. Figure 9.2. The next
proposition provides a constructive way to find an ODE with the above-described
properties.

THE TIME-FREEZING REFORMULATION FOR HYBRID SYSTEMS WITH HYSTERESIS 305

Proposition 9.2 (Auxiliary ODE for hysteresis system). Given an initial value
y(τs) = ys such that w(τs) = 1 and ψ(x(τs)) = 0, the ODE given by

y′(τ) = faux,A(y) := (0nx,1,−γ(ψ(x)− 1), 0), (9.3)

where γ : R→ R and γ(x) = ax2

1+x2 with a > 0, is an auxiliary ODE defined in
R2. Similarly, for y(τs) = ys with w(τs) = 0 and ψ(x(τs)) = 1, the ODE

y′(τ) = faux,B(y) := (0nx,1, γ(ψ(x)), 0). (9.4)

is an auxiliary ODE in R3. In both cases τjump = 1
γ(−1) .

Proof. We prove the assertion for (9.3), since the second part follows similar
lines. Since x′(τ) = 0nx,1 and t′(τ) = 0 these two variables do not change their
value, thus ψ(x(τ)) = ψ(x(τs)) = 0 and t(τ) = t(τs) for τ ≥ τs. Hence, we
have w′(τ) = −γ(−1) < 0. By explicitly solving the ODE we obtain w(τr) = 0
for τr = τs + τjump, where τjump = 1

γ(−1) . All conditions of Definition 9.1 are
satisfied thus the proof is complete.

We briefly discuss some of the proprieties of such an auxiliary ODE, since there
are several ways to construct a similar ODE. Loosely speaking, in Figure 9.2
in R2 the vector field should point in the negative w-detection and in R3 in
the positive w-direction, and be zero in all other directions. Note that for
ψ(x) ∈ (0, 1) the vector fields of the auxiliary ODE in both cases point away
from the manifold definedM = {y ∈ Rny | w+ψ(x)−1 = 0}. In such scenarios,
there is usually locally no unique solution to the associated Filippov DI, as
the trajectory can leave M at any point in time [94]. However, the system
should never be initialized in this region, since this state is infeasible for the
original system. We show later that it can never reach this undesired state if
initialized appropriately. Furthermore, the auxiliary ODE from Proposition 9.2
have by construction the favorable property that they do not point away in
both directions fromM at the junction points (0, 1) and (1, 0). This is why the
function γ(·) was introduced in the auxiliary ODE. Another favorable property
is if the system is initialized with the wrong value for w(·) for ψ(x) /∈ (0, 1) the
auxiliary ODE will automatically reinitialize w(·) while the physical time is
frozen, cf. Fig 9.2.

We still need to define DAE-forming vector fields for the regions R1 and R4.
These vector fields should be such that, together with the auxiliary dynamics in
their respective regions, they result in sliding modes on RA and RB which match
the dynamics of the initial system (9.2). In a general PSS, the vector fields are
not defined on the region boundaries, thus we use Filippov’s convexification

306 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

[94] and denote the Filippov set associated to the time-freezing PSS by FTF(·).
The next proposition gives a constructive way to find the desired vector fields.

Proposition 9.3 (DAE-forming ODE). Suppose the regions R2 and R3 are
equipped with the vector fields faux,A(·) and faux,B(·) from Proposition 9.2,
respectively. Let the region R1 be equipped with the ODE

y′ = fDF,A(y) := 2(fA(x), 0, 1)− faux,A(y), (9.5)

then for y ∈ RA it holds that (fA(x), 0, 1) ∈ FTF(y) = conv{faux,A(y), fDF,A(y)}.
Similarly, let the region R4 be equipped with the following ODE

y′ = fDF,B(y) := 2(fB(x), 0, 1)− faux,B(y), (9.6)

then for y ∈ RB it holds that (fB(x), 0, 1) ∈ FTF(y) = conv{faux,B(y), fDF,B(y)}.

Proof. We prove the assertion for Eq. (9.5) and the second part follows similar
lines. Note that for y ∈ RA = {y | c(y) := w = 0, ψ(x) < 1} we have that
∇c(y)⊤faux,A(y) < 0 and ∇c(y)⊤fDF,A(y) > 0. Hence, we have a sliding mode
on w = 0 with dw

dτ = 0 [94]. From the definition of a Filippov set, we have that
FTF(y) = {θ1(2(fA(x), 0, 1)− faux,A(y)) + θ2faux,A(y) | θ1 + θ2 = 1, θ1, θ2 ≥ 0}.
From this relation and w′ = 0 we obtain that θ1− θ2 = 0. Thus we can solve for
θ1 and θ2, i.e., θ1 = θ2 = 1

2 , which yields (fA(x), 0, 1) ∈ FTF(y). This completes
the proof.

Note that by construction the two sliding modes on RA and RB agree with the
r.h.s. of Eq. (9.2), augmented by the dynamics of the clock state. Now we have
defined vector fields in all regions of the time-freezing PSS which corresponds
to the original system (9.2). Another favorable property of the chosen auxiliary
and DAE forming ODE is: since w′(τ) is bounded by a > 0 it cannot make the
sliding mode DAE arbitrarily stiff, especially if constraint drift happens.

9.2.2 A tutorial example

To illustrate the theoretical development we construct a time-freezing PSS
for a thermostat system with hysteresis. The source code of the example is
available in the repository of nosnoc [2]. The system has a single state x(·)
which models the temperature of a room that should stay inside the interval
x ∈ [18, 20]. As soon as the temperature drops below x = 18 the heater is
switched on and when the temperature grows above x = 20 it is switched off.
The two modes of operation are given by ẋ = fA(x) = −0.2x + 5, when the
heater is on and ẋ = fB(x) = −0.2x, when the heater is off. One can see that for
ψ(x) = 0.5(x− 18), we have a hybrid system that matches the finite automaton

THE TIME-FREEZING REFORMULATION FOR HYBRID SYSTEMS WITH HYSTERESIS 307

0 1 2 3 4
14
16
18
20

x
(τ

)

0 1 2 3 4
0

0.5

1

w
(τ

)

0 1 2 3 4
0

1

2

τ [numerical time]

t(
τ

)

0 1 2
14
16
18
20

x
(t

)

0 1 2
0

0.5

1

w
(t

)
0 1 2

0

1

2

t [phyisical time]
t(
τ

)

Figure 9.3: Trajectories of the time-freezing PSS for a thermostat example in
numerical time τ (left plot) and physical time t (right plot).

in Figure 9.1. For a time-freezing PSS, we define the regions Ri via the Voronoi
points as in the previous section. The auxiliary ODE’s r.h.s. according to
Proposition 9.2 read as faux,A(y) = (0,−γ(0.5(x− 18)− 1), 0) and faux,B(y) =
(0, γ(0.5(x−18), 0) with a = 1. Similarly, the DAE-forming ODE r.h.s. according
to Proposition 9.3 read as fDF,A(y) = (−0.4x+ 10, γ(0.5(x− 18)− 1), 2) and
faux,B(y) = (−0.4x,−γ(0.5(x− 18)), 2).

We simulate now the time-freezing PSS with a FESD Radau IIA integrator of
order 3 with x(0) = 15 and w(0) = 0. The left plot in Figure 9.3 illustrates the
evolution of the time-freezing PSS in numerical time. The red shaded areas
indicate the phases when the auxiliary ODE is active with w /∈ {0, 1} while the
time is frozen, cf. bottom left plot. In the middle left plot, we can see that w(τ)
is now a continuous function in numerical time. The right plot in Figure 9.3
shows the differential state in physical time t(τ). We can see in the middle right
plot that w(t(τ)) is now a discontinuous function, hence the state jumps are
successfully recovered in physical time.

308 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

9.3 Solution equivalence

From the developments in the last section, the solution equivalence is nearly
apparent. We formalize it in the next theorem.

Theorem 9.4. Regarding the IVP corresponding to:

(i) the Filippov DI of the time-freezing PSS equipped with the vector fields
from Proposition 9.2 and 9.3 with an initial value y(0) = (z0, 0) with
z0 = (x0, w0) and w0 ∈ {0, 1}, on a time interval [0, τf],

(ii) the ODE with state jumps from Eq. (9.2) with z(0) = z0 on a time interval
[0, tf] = [0, t(τf)]. Suppose solutions exist to both IVP.

Then the solutions of the two IVPs z(t; z0) and y(τ ; y0) fulfill at any dt

dτ
=

t′(τ) ̸= 0:

z(t(τ); z0) =My(t(τ); y0), with M =
[
Inx+1 0nx+1,1

]
. (9.7)

Proof. Denote the solution of IVP (i) by y1(τ ; y0) for τ ∈ (0, τ̂) and for (ii)
and t(τ) ∈ (0, t(τ̂)) by z1(t(τ); z0). For a given w(0) = 0 (or 1) we have
from Proposition 9.3 that y′ = (fA(x), 0, 1) (or y′ = (fB(x), 0, 1)). Note
that if there are no τs ∈ (0, τ̂) for the IVP (i) such that an auxiliary ODE
becomes active, then t(τ) =

∫ τ
0 dτ1 = τ . Since (fA(x), 0) = M(fA(x), 0, 1),

(fB(x), 0) = M(fB(x), 0, 1) and z0 = My0 by setting τ̂ = τf, it follows that (9.7)
holds.

Suppose now that we have a τs ∈ (0, τf) such that for w(τs) = 1 the auxiliary
ODE y′ = faux,A(y) becomes active (or similarly for w(τs) = 0, y′ = faux,B(y)
becomes active). From the first part of the proof we have that (9.7) holds for
τ ∈ (0, τs) and hence for all t(τ) ∈ (0, t−s), where t−s = t(τs). From Proposition
9.2 we have that the solution satisfies x(τs) = x(τr) and w(τr) = 0 (or w(τr) = 1)
with t′(τ) = 0 for τ ∈ [τs, τr]. Hence, we have also t(τr) = t+s = t(τs). Denote
by ys = (x(τr), w(τr), t(τr)). Using this we have y1(τ − τr, ys) = y(τ, y0) for
τ ∈ (τr, τ̃) and denoting zs = Mys we see that z1(t(τ) − ts; zs) = x(t(τ), z0)
for t(τ) ∈ (t+s , τ̃). Assume that a single activation of an auxiliary ODE takes
place and set τ̃ = τf . Since the intervals (ts, tf) and (τr, τf) have the same
length and zs = Mys from the definitions of the corresponding IVP, we conclude
that relation (9.7) holds. If the auxiliary ODE becomes active multiple times
we simply apply the same argument on the corresponding sub-intervals. This
completes the proof.

NUMERICAL EXAMPLE: TIME-OPTIMAL PROBLEM OF A CAR WITH TURBO CHARGER 309

The last theorem opens the door to study the regarded hybrid system with
hysteresis as a Filippov system and to apply their rich theory e.g., solution
existence results [94]. From the practical side, we can use numerical methods
for Filippov systems, which allows us to avoid using integer variables.

9.4 Numerical example: time-optimal problem of a
car with turbo charger

In this section, we apply the theoretical developments in a numerical example
of a time optimal control problem of a car with a turbo from [20]. We consider
a double-integrator car model equipped with a turbo accelerator that follows
a hysteresis characteristic as in Figure 9.1. This makes the seemingly simple
model severely nonlinear and nonsmooth. The source code of the OCP example
is available within nosnoc.

The car is described by its position q(t), velocity v(t), and turbo charger state
w(t) ∈ {0, 1}. The control variable is the car acceleration u(t). The turbo
accelerator is activated when the velocity exceeds v ≥ 15 and is deactivated
when it falls below v ≤ 10. If on, it makes the nominal acceleration u(t)
three times greater. One can see that ψ(x) = v−10

5 . In summary, the state
vector reads as z = (q, v, w) ∈ R3 with two modes of operation described by
fA(z, u) = (v, u, 0) and fB(z, u) = (v, 3u, 0). The acceleration is bounded by
|u| ≤ ū, ū = 5 and the velocity by |v| ≤ v̄, v̄ = 25.

In the OCP we consider the time-freezing PSS associated with the car model on
a numerical time interval τ ∈ [0, τf]. The car should reach the goal q(t(τf)) =
qf = 150 with v(t(τf)) = vf = 0, whereby z(0) = z0 = 03,1. The auxiliary and
DAE-forming dynamics are chosen according to Propositions 9.2 (with a = 1)
and 9.3, respectively. The OCP reads as:

min
y(·),u(·),s(·)

t(τf) (9.8a)

s.t. y(0) = (z0, 0), (9.8b)

y′(τ)∈s(τ)FTF(y(τ), u(τ)), τ ∈ [0, τf], (9.8c)

− ū ≤ u(τ) ≤ ū, τ ∈ [0, τf], (9.8d)

s̄−1 ≤ s(τ) ≤ s̄, τ ∈ [0, τf], (9.8e)

− v̄ ≤ v(τ) ≤ v̄, τ ∈ [0, τf], (9.8f)

310 THE TIME-FREEZING REFORMULATION FOR NONSMOOTH SYSTEMS WITH HYSTERESIS

(q(τf), v(τf)) = (qf , vf). (9.8g)

The objective consists of minimizing the final physical time. Since a time
optimal control problem is considered, we introduce the scalar speed-of-time
control variable s(·) which introduces a time-transformation and enables to
have a variable terminal physical time Tf = t(τf), cf. Section 8.5. It is bounded
by (9.8e) with s̄ = 10.

The OCP is discretized with a FESD Radau IIA scheme of order 3 with N = 10
control intervals and NFE = 3 additional integration steps on every control
interval, with τf = 5. The controls are taken to be piecewise constant over the
control intervals. The OCP discretization and MPCC homotopy is carried out
via nosnoc, which has IPOPT [281] and CasADi [9] as a back-end.

Additionally, we compare our approach to the mixed-integer formulation of [20].
We take the same control and state discretization as in nosnoc, which results
in 56 binary variables. Switches in the integer formulation are allowed only
at the control interval boundaries, as a switch detection formulation requires
significantly more integer variables and introduces more nonlinearity.

The problem is solved with the dedicated mixed-integer nonlinear programming
(MINLP) solver Bonmin [45]. Observe that the only nonlinearity in the MINLP
is due to the time transformation for the optimal time Tf . Therefore, in a second
experiment, we fix Tf and solve the resulting MILP with the commercial solver
Gurobi. We make a bisection-type search in Tf . The MILP with the smallest
Tf that is still feasible, delivers the optimal time Tf . In this experiment, 22
MILPs were solved for an accuracy of 10−6. To determine the solution quality,
we additionally perform a high-accuracy solution with the computed optimal
controls and obtain xsim(t). We compare the terminal constraint satisfactions:
E(Tf) = ∥xsim(Tf)− (qf , vf)∥2. The source code for the simulation and the two
MIOP approaches are provided in nosnoc’s repository [2].

The results are summarized in Table 9.1. All three approaches provide a similar
objective value. Gurobi is the fastest solver, nosnoc is only slightly slower
and Bonmin is significantly slower. The smallest terminal error is achieved
via nosnoc, which is due to the underlying FESD discretization. Gurobi and
Bonmin have the same discretization without switch detection and result in
the same terminal error. On the other hand, Gurobi provides the most robust
approach, as nosnoc(i.e., IPOPT as underlying NLP solver) fails to converge
in some variations of the discretization. The results computed by nosnoc is
depicted in Figure 9.4. One can see an intuitive behavior as the car uses the
turbo accelerator as much as possible to reach the goal time optimally, with
Tf = 10.26.

CONCLUSION 311

0 2 4 6 8 10
0

10

20

30

t

v
(t

)

0 2 4 6 8 10
−5

0

5

t

u
(t

)

0 2 4 6 8 10
0

0.5

1

t

w
(t

)

0 10 20
0

0.5

1

v

w
Figure 9.4: Solutions of the OCP (9.8) in physical time. The top left and right
plots show the velocity v(t) and optimal controls u(t), respectively. The bottom
left and right plots show the hysteresis state w(t) and the solution trajectory in
the (v, w)-plane, respectively.

Solver Tf CPU Time [s] E(Tf)
nosnoc 10.26 8.87 9.49e-02

Gurobi with bisection 11.21 5.31 7.88e+01
Bonmin 11.28 1481.58 7.88e+01

Table 9.1: Comparison of nosnoc to mixed-integer formulations.

9.5 Conclusion

In this chapter, we extend the time-freezing reformulation to a class of hybrid
systems with a hysteresis. It transforms the systems with state jumps into
PSS, for which we leverage the FESD method from Chapter 7. Thus, we can
avoid the use of computationally expensive mixed-integer strategies in numerical
optimal control and obtain quickly good and accurate nonsmooth solutions. In
the theoretical part, constructive ways to find auxiliary and DAE-forming ODE
are provided and solution equivalence is proven. In the future time-freezing
for other types of finite automata and hysteresis systems, as e.g., described in
the introduction should be investigated as well. A first step in this direction
was already taken in [274], where the ideas from this chapter are extended to a
cascade of hysteresis systems.

Chapter 10

The Advanced Step Real-Time
Iteration for Nonlinear Model
Predictive Control

This chapter is thematically isolated from most of the content of this thesis
since it regards optimal control problems subject to smooth dynamical systems.
The standard definitions, discretization methods, and solution strategies for this
class of problems are treated in Chapter 3. In this chapter, we develop fast and
accurate numerical methods for Nonlinear Model Predictive Control (NMPC).
NMPC is an advanced feedback control strategy that requires the repeated
solution of discrete-time parametric OCPs in real-time. At every sampling time,
the first control input is passed to the system and given the next state estimate,
then next OCP is solved.

In this chapter, we introduce an algorithm for the fast (approximate) solution
of such OCPs. We introduce the Advanced Step Real-Time Iteration (AS-RTI)
scheme, which is an extension to the well-known Real-Time Iteration (RTI)
scheme introduced by Diehl [75, 76]. We combine algorithmic ideas of the RTI,
Advanced Step Controller (ASC) [290] and Multi-Level Iterations (MLI) [42],
and obtain thereby a family of new algorithms. The AS-RTI allows one to trade
control performance for computational efficiency in a flexible way. The main
idea is to improve the linearization point for a new iteration by making cheap
iterations with a new initial parameter prediction.

313

314 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

Outline. In Section 10.1, we provide an introduction to the problem we wish
to solve. We review related work and present the algorithmic building blocks,
which are needed for the AS-RTI scheme. Section 10.3 presents the AS-RTI
method. Afterwards, we study the convergence properties and error bounds of
the proposed methods in Section 10.4. Section 10.5 shows a numerical example,
and Section 10.6 concludes this chapter. This chapter is based on [214, 215, 204].

10.1 Introduction to real-time NMPC

Nonlinear Model Predictive Control (NMPC) is increasingly becoming a
standard tool in academia and industry [229]. NMPC enables one to incorporate
nonlinear system dynamics and constraints directly into an Optimal Control
Problem (OCP). When using NMPC to control a system, one has to solve online
a sequence of parametric OCPs with different initial states. In each of these
OCPs, the latest information about the system state is incorporated.

Solving optimization problems online is generally a computationally intensive
task. However, in the last two decades, progress both in software [81, 82, 140,
278] and numerical algorithms [78, 170, 204, 226] made it possible to achieve
computation times in the range of milli- and micro-second time scales for various
kinds of applications.

In NMPC, at every sampling time, we have to solve the following OCP:

min
w

N−1∑
i=0

Li(si, ui) + LN (sN) (10.1a)

s.t. s0 − x = 0, (10.1b)

si+1 − ψ(si, ui) = 0, i = 0, . . . , N − 1, (10.1c)

gp(si, ui) ≤ 0, i = 0, . . . , N − 1, (10.1d)

gt(sN) ≤ 0, (10.1e)

where N is the horizon length, the vectors si ∈ Rns , and ui ∈ Rnu
are the predicted states and inputs of the controlled system. The vector
w := (w0, w1, . . . wN) with wi := (si, ui), i = 0, . . . , N − 1 and wN := sN ,
collects all optimization variables. The objective terms Li : Rns × Rnu → R
and LN : Rns → R are the running and terminal costs, respectively. The
function ψ : Rns × Rnu → Rns describes the discrete-time system dynamics,
cf. Section 3.1. The functions gp : Rns × Rnu → Rnp and gt : Rns → Rnt define

NMPC AND CONTINUATION METHODS 315

the direct-time path and terminal constraints, respectively. The parameter x
represents the initial state of the system. We assume that all functions are twice
continuously differentiable. We denote the optimal solution of the parametric
OCP as w̄(x), which can be interpreted as an implicit function of the parameter
x. In NMPC, at every sampling instant a new state estimate xk corresponding
to time tk is received. Then, after (approximately) solving the OCP, the first
control input ū0(xk) is passed to the system and held constant for a sampling
time Ts.

Since feedback delays can degrade control performance, in many online
algorithms, the computations are divided into an expensive and long preparation
phase, where calculations can be performed without the knowledge of the current
measurement, and a short feedback phase [78]. In the feedback phase, just a
few calculations are performed to take into account the new measurement, such
that the feedback delay can be reduced. Moreover, to reduce the computation
times, many NMPC algorithms seek approximate solutions. These algorithms
aim to closely track w̄(x) with a high sampling rate in real-time, cf. [78] for a
survey.

The key to the success of real-time NMPC algorithms is that the OCP does not
have to be solved to convergence but to keep the numerical error bounded over
time [287, 289]. Examples of real-time NMPC algorithms are the Advanced
Step Controller (ASC) [290] and the C/GMRES algorithm [216]. Among
others, Sequential Quadratic Programming (SQP) based algorithms are the
Real-Time Iteration (RTI) scheme [75], the Multi-Level Iteration (MLI) [42].
Many other variants of the RTI and MLI schemes can be found in the literature,
cf. [204, 286, 238]. An augmented Lagrangian tracking scheme is presented in
[289], and general predictor-corrector algorithms for sampled-data NMPC are
described in e.g., [17].

In this chapter, we present a new variant of the RTI, which we denote as the
AS-RTI. The main idea is to do inexact Newton steps, or only predictor steps
on an OCP with a predicted initial value to improve the linearization point for
the next RTI. We provide a convergence analysis and sufficient conditions for
the boundedness of the numerical error for the AS-RTI. The benefits of the new
methods are illustrated in a numerical example.

10.2 NMPC and continuation methods

The NLP (10.1) can be written in the following compact form:

min
w

ϕ(w) (10.2a)

316 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

s.t. b(w) + Λ̂x = 0, (10.2b)

c(w) ≥ 0, (10.2c)

where Λ̂ = [−I, 0, . . .]T is a suitable matrix that embeds the parameter x ∈ X
linearly and X is the set of all possible parameter values. The function b(·) and
c(·) collect the equality and inequality constraints in (10.1), respectively. The
function ϕ(w) collects the objective terms. The Lagrangian of the NLP (10.2)
reads as

L(w, λ, µ) = ϕ(w)− λ⊤b(w)− λ⊤Λ̂x− µ⊤c(w), (10.3)

where λ ∈ R(N+1)nx and µ ∈ RNnp+nt denote the vectors containing the
Lagrange multipliers.

The NLP (10.2) can be solved to local optimality with a standard NLP algorithm,
cf. Chapter 2. The AS-RTI is based on Sequential Quadratic Programming
(SQP), hence we recall some basic algorithmic ingredients. Assuming we start
with a primal-dual guess (w0, λ0, µ0) close enough to the solution, a full SQP
step is performed as

wk+1 = wk + ∆wk, λk+1 = λkQP, µ
k+1 = µkQP, (10.4)

where (∆wk, λkQP, µ
k
QP) corresponds to the primal-dual solution of the QP:

min
∆w

1
2∆w⊤Ak∆w + (ak)⊤∆w (10.5a)

s.t. Bk∆w + b(wk) + Λ̂x = 0, (10.5b)

Ck∆w + c(wk) ≥ 0, (10.5c)

where Ak ∈ Rnw×nw is a symmetric matrix representing the exact Hessian of the
Lagrangian (10.3) or an approximation of it at the current iterate (wk, λk, µk),
ak = ∇wϕ(wk) is the gradient of the cost function and Bk and Ck are the
Jacobians of the constraints b(·) and c(·) at the current iterate wk.

10.2.1 Predictor-corrector path-following methods

Let us take a closer look at the parametric NLP parametric (10.2). For ease
of exposition, we assume in this section to have only equality constraints.
Generalizations can be found in e.g., [85]. The KKT conditions (cf. Theorem

NMPC AND CONTINUATION METHODS 317

2.14) of this problem can be written in compact form as a parametric root-finding
problem:

F (z, x) = F̂ (z) + Λx = 0, with F̂ (z) =
[
∇wL(w, λ, µ)

b(w)

]
, Λ =

[
0nw,nx

Λ̂

]
,

(10.6)

and where z := (w, λ) ∈ Rnz collects the primal-dual variables. A solution for a
given parameter x will be denoted as z̄(x). A full exact Newton step for this
problem reads as:

zk+1 = zk −
[∂F
∂z

(zk, x)
]−1

(F̂ (zk) + Λx). (10.7)

Next, we regard the case where the parameter x changes with every iteration.
Following the presentation in [269], if the parameter x enters F linearly, which
can always be achieved via an intermediate variable [77], one step of the path-
following predictor-corrector method reads as

zk+1 =zk −
[∂F
∂z

(zk, xk)
]−1

(F̂ (zk) + Λxk) +
[∂F
∂z

(zk, xk)
]−1

Λ(xk+1 − xk)

=zk −
[∂F
∂z

(zk, xk)
]−1

(F̂ (zk) + Λxk+1),
(10.8)

where zk+1 ≈ z̄(xk+1) is now an approximate solution for the new parameter
value xk+1, given zk ≈ z̄(xk). This corresponds to a standard Newton step
with the new parameter xk+1. Note that if we keep the parameter fixed, i.e.,
xk+1 = xk, the last equation reduces to a standard full Newton step (10.7),
often referred to as corrector step, and if zk = z̄(xk) holds, then equation (10.8)
reduces to

zk+1 = zk −
[∂F
∂z

(zk, xk)
]−1

Λ(xk+1 − xk), (10.9)

which is denoted as a predictor step, i.e., a first-order approximation of z̄(xk+1),
where the sensitivities are in general obtained via the implicit function theorem.
Therefore, equation (10.8) has predictive and corrective capabilities. If we
consider the inequality constraints in (10.2), the map z̄(x) is nonsmooth but the
solution manifold has smooth parts where the active set does not change and
nondifferentiable points whenever the active set changes [118]. Furthermore, a
generalized tangential predictor can be obtained by solving the QP (10.5). Such
a predictor is piecewise linear, i.e., the QP can “jump“ over active set changes,
cf. [75, 269].

318 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

10.2.2 Algorithmic ingredients

In this section, we review the three algorithmic approaches that are the basis
for the new algorithm presented in this chapter.

Real-time iterations

A widely used algorithm based on the predictor-corrector method in the SQP
framework is the RTI scheme, first introduced by M. Diehl in [75]. The RTI
does not distinguish between OCPs with different parameters x and iterates
while the problem changes. Only one full SQP iteration is done per sampling
time so that the algorithm never iterates to convergence for a fixed value of x,
which ensures that it always works with the most recent state estimate and does
not lose time by working on outdated information. Stability and convergence
for a stable active set have been proven in [76, 79] and with active-set changes
in [181, 288].

In general, the value of the current state x will not be equal to the optimization
variable s0, but since (10.5b) is linear in s0, the constraint is satisfied after the
first full Newton step. The idea to linearly embed the initial value into the NLP
is known as initial Value embedding [75]. Moreover, in the RTI framework, each
SQP iteration is divided into a longer preparation phase and a shorter feedback
phase. This reordering of the computations does not create any additional
overhead per iteration. In those two phases, the following calculations are
performed:

• Preparation phase: Functions and derivatives are evaluated at the available
linearization point zk = (wk, λk, µk). Sometimes the linearization point for
a new iterate is adapted, e.g., with a shifting strategy [78]. Since the new
measurement x enters the OCP linearly, the Hessian of the Lagrangian Ak,
the gradient of the cost function ak, and the Jacobians of the constraints
Bk and Ck do not depend on x, hence they can be evaluated before a
new measurement is available.

• Feedback phase: When the current state of the system x is available,
the possibly condensed QP (10.5) is solved and the new control input
uk+1

0 = uk0 + ∆uk0 can be passed to the system. Thereby, the feedback
delay is reduced to solving a single QP.

NMPC AND CONTINUATION METHODS 319

Multi-level iterations

Diehl and coworkers introduced in [42] the MLI scheme, which is an extension of
the RTI. The main idea is to update the matrices and vectors of the QP (10.5)
at different time scales since different calculations have different computational
loads. The fixed reference values for the constraint vectors and Jacobians and
the objective terms at some level are provided by higher levels of the MLI. The
modes or levels of the MLI can be run in parallel, and the levels can exchange
information in various ways, cf. [286]. The feedback rate is determined by the
fastest level. We briefly explain the original version presented in [42], and its
extensions from [204].

Level A iterations. For the lowest level, denoted as level A, we assume that a
reference QP (10.5) with fixed Â, â, B̂, b̂, Ĉ and ĉ is given. At every iteration,
the following QP is solved:

min
∆w

1
2∆w⊤Â∆w + â⊤∆w (10.10a)

s.t. B̂k∆w + b̂+ Λx = 0, (10.10b)

Ĉk∆w + ĉ ≥ 0, (10.10c)

The iterations start from a reference solution (ŵ, λ̂, µ̂), where the reference QP
is provided by higher levels of the MLI. The goal of the lowest level of the MLI
is to provide feedback as fast as possible and to take at least the active set
changes into account. All matrices and vectors of the reference QP are held
unchanged, only a new initial value x is embedded, and the feedback û0 +∆uk0 is
sent to the system. In a predictor-corrector setting this level has just a predictor
part and is equivalent to linear Model Predictive Control (MPC) [75, 116]. In
combination with higher levels of the MLI scheme, the reference QP changes
and level A can be interpreted as an adaptive linear MPC [42].

Level B iterations. In this level, all constraint vectors in the QP (10.5) are
updated, namely b̂, ĉ. That is, new function evaluations are performed, and â
is possibly updated in an approximate fashion:

ak+1 = â+ Â(wk − ŵ). (10.11)

These iterations converge to a suboptimal, but feasible solution of the original
NLP (10.2).

320 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

Level Necessary evaluations Update formula for QP data
bk, ck ak Bk, Ck Ak b, c a B,C A

D2 ✓ ✓ ✓ ✓ bk, ck ak Bk, Ck Ak

D1 ✓ ✓ ✓ ✓ bk, ck ak Bk, Ck AkQN
D0 ✓ ✓ ✓ ✗ bk, ck ak Bk, Ck AkGN/Â
C ✓ ✓ ✓ ✗ bk, ck (10.12) B̂, Ĉ Â

B ✓ ✗ ✗ ✗ bk, ck (10.11) B̂, Ĉ Â

A ✗ ✗ ✗ ✗ b̂, ĉ â B̂, Ĉ Â

Table 10.1: Computations and update formulas for the QP data for the different
MLI levels.

Level C iterations. In addition to the level B computations, here, the objective
gradient ak is updated as well. Level C iterations are based on an adjoint SQP
algorithm [42] and ak is calculated via

ak = ∇wL(wk, λk, µk) + B̂⊤λk + Ĉ⊤µk. (10.12)

Here, the Jacobians of the constraints do not need to be evaluated,
∇wL(wk, λk, µk) can be computed efficiently with the reverse mode of automatic
differentiation with a cost approximately five times higher than for the evaluation
of (10.3) [115]. Level C iterations can be shown to converge to optimal
solutions [42].

Level D iterations. This level is essentially the RTI, where all QP data (except
possibly the Hessian) is updated. We distinguish between D0 iterations where
new constraints Jacobians (or their approximations) are computed, and the
Hessian is kept constant. For a quadratic cost function, which is usually the
case in tracking NMPC formulations, the Gauss-Newton approximations result
in a constant Hessian matrix, hence the GN-based RTI variant falls also in
this level. In D1, we update the Hessian matrix via a quasi-Newton update
formula, e.g., SR1 or BFGS [201]. In level D2, we compute the exact Hessian.
The different MLI levels are summarized in Table 10.1. This table is inspired
by [239]. Thereby, we use the compact notation bk = b(wk), c=c(wk), Bk =
∇b(wk)⊤, Ck = ∇c(wk)⊤,ak = ∇ϕ(wk) and Ak = ∇2

wwL(wk, λk, µk). The
matrix AkGN denotes a Gauss-Newton approximation of the Hessian (if possible)
and AkQN a quasi-Newton Hessian approximation.

THE ADVANCED STEP REAL-TIME ITERATION 321

The advanced step controller

To avoid the possible convergence issues of a predictor-corrector algorithm
performing just one iteration, in the Advanced Step Controller (ASC) by Zavala
and Biegler [290] the NLP (10.2) is solved to convergence with an interior-point
method. This is computationally more expensive but yields an accurate locally
optimal solution. To take the feedback delay into account, this online algorithm
solves an advanced problem in the preparation phase with a predicted state
x̃ as the initial value. Furthermore, the solution is not applied directly to
the system, but an additional linear system solution based on the last Newton
iteration’s matrix factorization is performed in the feedback phase. This provides
a tangential predictor to correct for the mismatch between the predicted x̃ and
actual measurement x. While such a tangential predictor can not “jump“ over
active set changes solving a linear system is often cheaper than solving a QP.
Jäschke et al. [152] introduce an extension for the ASC, to handle active-set
changes and nonunique Lagrange multipliers within a path-following algorithm.

10.3 The advanced step real-time iteration

The RTI and MLI schemes perform a single (inexact) SQP iteration per sampling
time, which might lead to convergence issues and larger numerical errors. The
ASC solves an OCP to local optimality, which might be computationally too
expensive for a given sampling rate. The MLI scheme contains all the ingredients
one needs to refine a solution while still keeping the computational burden low.
Instead of solving the advanced problem to convergence, we propose to use some
level of the MLI to iterate on this problem to obtain an improved guess z̃k+1.
We call this method the Advanced Step Real-Time Iteration (AS-RTI).

The AS-RTI enables one to trade off computational load for controller
performance in a flexible way. This approach is computationally more expensive
than the standard RTI but alleviates the possible convergence issues and
suboptimality of solutions and delivers a predictor that can “jump“ over active
set changes. The limiting cases would be: (a) doing just one level A iteration in
the preparation phase and (b) the full convergent SQP as explained above. In
between, there is a wide family of possible algorithms as we can now assemble
the preparation phase differently. We call the last QP to solve outer iteration
and the calculations in the preparation phase inner iterations. This approach is
summarized in Algorithm 2. It is reasonable to assume that, if x̃k+1 is close
to xk+1, we might have fewer active set changes between the corresponding
parametric NLPs. Hence, with AS-RTI we determine the active set of the
advanced problem, so QP solvers that can be warm-started as qpOASES [90] or

322 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

Algorithm 2 Single Advanced step real-time iteration
1: Input: zk, QP data at iteration k, state estimate xk+1 Output: zk+1

Preparation Phase:
2: Predict x̃k+1 with x̃k+1 = f(xk, uk0)
3: Predict optimal solution (approximation) z̃k+1 for x̃k+1 by iterating with

some mode of the MLI on (10.2) parameterized by x̃k+1

4: Evaluate all functions and derivatives at z̃k+1 needed for the QP (10.5)
5: Possibly condense the QP (10.5)

Feedback phase:
6: Embed current state estimate xk+1 into the QP (10.5)
7: Solve QP, compute next iterate zk+1 via (10.4) and send first control uk+1

0
to the system

first-order methods as OSQP [22] will have a better initial guess and the feedback
delay is reduced.

We proceed with analyzing the simplest case of Algorithm 2, namely performing
just another QP solve (level A iteration) with respect to the standard RTI.
Note that in this variant of the AS-RTI, two QPs are solved per sampling time.
The next proposition shows that in the simplest variant of the AS-RTI with
a perfect prediction of the parameter, the RTI and this AS-RTI variant have
the same linearization points. However, the AS-RTI achieves better tracking of
the solution manifold. Of course, a perfect prediction will never be available
in practice, but we want to show that the reordering of calculations brings us
closer to the solution manifold. To simplify the analysis, we assume a fixed
active set.

Proposition 10.1. Suppose a single level A iteration is carried out at line 3
of Algorithm 2 and a perfect prediction of the parameter x is available, then the
standard RTI and 2 have the same linearization points.

Proof. A perfect prediction means x̃k = xk, for all k ≥ 0. Let z̃k be the
linearization point at iteration k, then the output of the feedback phase of the
AS-RTI obtained via a predictor-corrector iteration (10.8) reads as

zk =z̃k −
[∂F
∂z

(z̃k, xk)
]−1

(F̂ (z̃k) + Λxk)−
[∂F
∂z

(z̃k, xk)
]−1

Λ(x̃k − xk)

=z̃k −
[∂F
∂z

(z̃k, xk)
]−1

(F̂ (z̃k) + Λxk),
(10.13)

i.e., we have just the corrector step since the prediction is perfect. At the
next iteration (k + 1), in the preparation phase of Algorithm 2 we have the

THE ADVANCED STEP REAL-TIME ITERATION 323

Output
Linearization point

Output
Linearization point
Further inner iterations

Figure 10.1: Tangential predictors and solution manifold tracking with the RTI
(left plot) and AS-RTI (right plot). The linearization point is due to the inner
iterations refined.

linearization point prediction (line 3) using (10.9)

z̃k+1 = zk −
[∂F
∂z

(z̃k, xk)
]−1

Λ(x̃k+1 − xk)

(10.13)= z̃k −
[∂F
∂z

(z̃k, xk)
]−1

(F̂ (z̃k) + Λ(xk + x̃k+1 − xk))

= z̃k −
[∂F
∂z

(z̃k, xk)
]−1

(F̂ (z̃k) + Λxk+1),

which is a standard RTI. Using induction, this holds for all k ≥ 0.

When we iterate on a problem with a fixed parameter xk we equip the variables
with a second index zkj , j ≥ 0, which counts the number of iterations for a
fixed xk. Figure 10.1 illustrates the linearization points, outputs, and tangential
predictors of the RTI (left plot) scheme and the AS-RTI (right plot) with an
extra QP solve in the preparation phase, respectively. In the AS-RTI case, we
use the tangential predictor from the previous iteration and compute z(x̃k+1)
as the new linearization point for the output iteration. Observe that z̃k0 is
on the same tangent as the previous output zk−1. When implementing this,
one has to take care not to add the same corrector twice. The QP solution
(∆wk, λkQP, µ

k
QP) has both predictor (moving along the tangent) and corrector

(getting closer to the manifold) properties. Now in the AS-RTI solving an
extra QP (10.5), with x̃k+1 one obtains (∆w̃k+1, λ̃k+1

QP , µ̃k+1
QP). This should be

added to (wk−1, λk−1, µk−1) and not to (wk, λk, µk), otherwise we add the same
corrector twice. Doing further iterations with optimality-improving levels of
the MLI will bring the solution approximation closer to z̄(xk+1).

324 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

10.4 Contraction theory for the AS-RTI

In this section, we study how the numerical errors evolve depending on how
many iterations are carried out. To make the analysis more general, we consider
now parametric NLPs with inequality constraints. To carry out the convergence
analysis we first introduce some tools using generalized equations. Afterwards,
the AS-RTI-specific results are presented.

10.4.1 Contraction estimate for abstract real-time algorithms

We rewrite the parametric NLP (10.2) in the following more abstract form

min
w

ψ(w) (10.14a)

s.t. b(w) + Λ̂x = 0, (10.14b)

w ∈ Ω, (10.14c)

with w ∈ Rn and where Ω = {w | c(w) ≥ 0} is a nonempty, closed and convex
set. Note that set Ω can always be made convex by introducing slack variables
and isolating the nonconvex parts into the equality constraints.

Following [269], the KKT conditions of the NLP (10.14) can be written as

∇ψ(w) +∇b(w)⊤λ+NΩ(w) ∋ 0, (10.15a)

b(w) + Λ̂x = 0. (10.15b)

The set-valued function NΩ(w) is the normal cone to Ω at w, cf. Definition 2.6.
Now, introducing z := (w, λ), K = Ω× Rng , we have that

F (z) :=
[
∇ψ(w) +∇b(w)⊤λ

b(w)

]
,

and equation (10.15) can be rewritten as a generalized equation

F (z) + Λx+NK(z) ∋ 0. (10.16)

We define its solution mapping as

Z̄(x) := {z |F (z) + Λx+NK(z) ∋ 0},

which is the set of KKT points of (10.14) for a given x. We define the following
concept, which somewhat generalizes the condition of invertibility of the Jacobian
of single to set-valued maps [85].

CONTRACTION THEORY FOR THE AS-RTI 325

Definition 10.2 (Strong Regularity [231]). Let z̄(x) ∈ Z̄(x) and let ∇F (z)⊤

be the Jacobian of F (z). We say that (10.16) is strongly regular at z̄(x), if there
exist neighborhoods B(0, r̄δ) and B(0, r̄z) such that the linearized generalized
equations

F (z̄(x)) +∇F (z̄(x))⊤∆z + Λx+NK(z̄(x) + ∆z) ∋ δ,

with unknown variable ∆z, has a unique solution in B(0, r̄z) and its solution is
Lipschitz continuous in B(0, r̄δ) with a Lipschitz constant σ:

∥∆z̄(δ′)−∆z̄(δ)∥ ≤ σ∥δ′ − δ∥, ∀δ′, δ ∈ B(0, r̄δ).

In the context of optimization, a point z̄(x) is strongly regular if it satisfies the
LICQ and the strong second-order sufficient condition, cf. [149, Proposition
1.28]. More details about this concept can be found in the seminal paper
of [231], and its application in real-time optimization can be found in e.g.
[17, 269, 287, 289]. We make the following regularity assumption.

Assumption 10.3. The set Z̄(x) is nonempty, and the corresponding
generalized equation (10.16) is strongly regular at z̄(x) for all x ∈ X.

The following lemma provides conditions under which the solution manifold
z̄(x) is Lipschitz continuous.

Lemma 10.4 (Lemma 3.3, [269]). Let Assumption 10.3 hold. Then, for any
x in X, there exist neighborhoods B(x, r̃x) of x and B(z̄(x), r̃z) of z̄(x), such
that the generalized equation (10.16) has a unique solution in B(z̄(x), r̃z) for
any x′ ∈ B(x, r̃x). Moreover, there exists a positive constant γ ≥ 0 such that
the following holds:

∥z̄(x′)− z̄(x)∥ ≤ γ∥x′ − x∥, ∀x′, x ∈ B(x, r̃x). (10.17)

Denote by z̄k := z̄(xk), and the associated error by ek := zk − z̄k. When we
solve repeatedly (10.16) for some fixed xk, we will equip the iterations with a
second index zkj , j ≥ 0, which counts the number of iterations for a fixed xk. In
AS-RTI scheme this corresponds to the inner iterations and the corresponding
error reads as ekj := zkj − z̄k. If we use a predicted parameter x̃k+1, we denote
the corresponding iterate as z̃k+1

j and the error as ẽk+1
j := z̃k+1

j − z̄(x̃k+1),
j ≥ 0.

We recall some results from [287], which we use to analyze the contraction
properties of the AS-RTI when using Q-linearly convergent algorithms. We can
analyze real-time methods for the parametric NLP (10.14) independently of
the concrete numerical scheme used to solve it. For this, we require the use of

326 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

algorithms that calculate an element of Z̄(x) for some x that have at least local
Q-linear convergence. The properties of a Q-linearly convergent algorithm are
summarized in the following assumption.

Assumption 10.5 (Q-linear Convergence). There exists a radius r̂z such that,
for any given z̄(xk) ∈ Z̄(xk), any xk ∈ X, and any zkj in B(z̄(xk), r̂z), the
algorithm used to solve (10.16) can produce zkj+1 such that

∥ekj+1∥ ≤
(
κ+ ω

2 ∥e
k
j ∥
)
∥ekj ∥, (10.18)

for some positive constants 0 ≤ κ < 1 and 0 ≤ ω <∞.

From now on, we denote αkj := (κ+ ω
2 ∥e

k
j ∥), and analogously for the predicted

parameter we adapt the notation α̃kj := (κ+ ω
2 ∥ẽ

k
j ∥). This assumption covers

many standard algorithms for solving the NLP (10.14).

The next lemma provides a bound on the numerical error due to performing a
single iteration of a Q-linearly convergent algorithm for solving (10.16) for each
new parameter xk.

Lemma 10.6 (Lemma 1, [287]). Suppose Assumptions 10.3 and 10.5 hold.
Then there exist some constants rz > 0 and rx > 0, such that, for any zk in
B(z̄k, rz), and any xk+1 in B(xk, rx), the following inequality holds

∥ek+1∥ ≤ κ∥ek∥ + c1∥ek∥∥xk+1 − xk∥ + c2∥ek∥2

+ c3∥xk+1−xk∥ + c4∥xk+1−xk∥2,
(10.19)

with c1 := ωγ, c2 := ω
2 , c3 := κγ, c4 := ωγ2

2 .

Now we have all the tools to state sufficient conditions for a bounded numerical
error for tracking the optimal solution manifold z̄(x).

Theorem 10.7 (Theorem 1, [287]). Suppose that Assumptions 10.3 and 10.5
hold. There exists a positive constant 0 < rsx < rx (same as in Lemma 10.6),
such that, if ∥xk+1 − xk∥ ≤ rsx for all k ≥ 0 and ∥e0∥ ≤ rz, then

∥ek+1∥ ≤ rz, ∀k ≥ 0, (10.20)

where

rx :=
{√

(c3+rzc1)2−4c4(κ−1−c2rz)rz−(c3+rzc1)
2c4

if c4 > 0,
(1−κ−c2rz)rz

c3+rzc1
if c4 = 0.

(10.21)

CONTRACTION THEORY FOR THE AS-RTI 327

10.4.2 Contraction properties of the AS-RTI scheme

We have now introduced all tools to present the main theoretical results of this
chapter. We derive sufficient conditions for the contraction of the iterates of the
AS-RTI scheme if the inner and outer iterations are carried out with Q-linearly
convergent algorithms. Furthermore, we provide sufficient conditions for the
boundedness of the numerical error.

First, we will assume the initialization of a Q-linearly convergent algorithm.
This will ensure that the numerical error ekj for a fixed xk gets smaller if we
perform further iterations of the algorithm. This is needed in the proof of the
next theorem.

Assumption 10.8. (Initialization) Suppose that the following condition holds
at an initial point z0 and a solution z̄0:

∥z0 − z̄0∥ ≤ r̂z < r̂sz := 2(1− κ)/ω. (10.22)

Furthermore, we assume to always have a reasonably good parameter prediction,
so that we can use the results of Theorem 10.7.

Assumption 10.9. (Predicted Parameter) In all iterations of Algorithm 2 the
parameter predictions x̃k+1 satisfy:

∥xk+1 − x̃k+1∥ ≤ rsx and ∥x̃k+1 − xk∥ ≤ rsx, ∀k ≥ 0, (10.23)

where the positive constant rsx is the same as in Theorem 10.7.

When we use different Q-linearly convergent algorithms for inner and outer
iterations, we equip the corresponding constants from Assumption 10.5 or
Lemma 10.6 with a superscript in and out, respectively. For example, in
Assumption 10.5 we distinguish between κin and κout for inner and outer
iterations, respectively. With the next theorem, we provide a general contraction
estimate for an iteration of the AS-RTI scheme.

Theorem 10.10. Suppose that Assumptions 10.3, 10.5, 10.8 and 10.9 hold.
Moreover, assume that we make j ≥ 0 inner iterations on the NLP (10.14)
parametrized by x̃k+1 in the preparation phase of AS-RTI and that rz =
min(rout

z , rin
z). Then, for the sequence of errors {ek}, the following inequality

holds:

∥ek+1∥ ≤ (α̃k+1
0)j

[
νk∥ek∥+ ζk∥x̃k+1 − xk∥

]
+ ηk∥xk+1 − x̃k+1∥, (10.24)

where we have defined the positive constants ν̂k, νk, ζk, ηk, respectively, as:

ν̂k := κout + cout
1 ∥xk+1 − x̃k+1∥+ cout

2 (α̃k+1
0)j∥ẽk+1

0 ∥, (10.25)

328 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

νk := ν̂k
(
κin + cin

1 ∥x̃k+1 − xk∥+ cin
2 ∥ek∥

)
, (10.26)

ζk := ν̂k
(
cin

3 + cin
4 ∥x̃k+1 − xk∥

)
, (10.27)

ηk := cout
3 + cout

4 ∥xk+1 − x̃k+1∥. (10.28)

Proof: To use the same rz for inner and outer iterations we set rz =
min{rout

z , rin
z }. For the first inner iteration, due to Assumptions 10.3 and

10.5 there exist some constants rz > 0 and rx > 0, such that, for any zk in
B(z̄k, rz). Moreover, due to Assumption 10.9, it holds that x̃k+1 in B(xk, rx).
Using Lemma 10.6, it holds that

∥ẽk+1
0 ∥ ≤

(
κin + cin

1 ∥x̃k+1 − xk∥+ cin
2 ∥ek∥

)
∥ek∥

+
(
cin

3 + cin
4 ∥x̃k+1 − xk∥

)
∥x̃k+1 − xk∥.

(10.29)

Due to Assumption 10.9 and Theorem 10.7, it holds that ∥ẽk+1
0 ∥ ≤ rz ≤ r̂z.

Assuming we made j ≥ 0 iterations, due to Assumptions 10.5 and 10.8 the
following holds

α̃k+1
1 = κin + cin

1 ∥ẽk+1
1 ∥

(10.18)
≤ κin + cin

1 α̃k+1
0︸︷︷︸
<1

∥ẽk+1
0 ∥ < κin + cin

1 ∥ẽk+1
0 ∥= α̃k+1

0 .

Moreover, applying this inductively, we have

∥ẽk+1
j ∥ ≤ (α̃k+1

0)j∥ẽk+1
0 ∥ < rz. (10.30)

Furthermore, due to the last inequality it holds that z̃k+1
j ∈ B(z̄(x̃k+1), rz) and

xk+1 in B(x̃k+1, rx) (holds due to Assumption 10.9). Therefore, we can use
Lemma 10.6 for the outer iteration which yields

∥ek+1∥ ≤
(
κout + cout

1 ∥xk+1 − x̃k+1∥+ cout
2 ∥ẽk+1

j ∥
)
∥ẽk+1
j ∥

+
(
cout

3 + cout
4 ∥xk+1 − x̃k+1∥

)︸ ︷︷ ︸
(10.28)

= ηk

∥xk+1 − x̃k+1∥.

Using the estimate for ∥ẽk+1
j ∥ from (10.30), from the last equation we get

∥ek+1∥ ≤
(
κout + cout

1 ∥xk+1 − x̃k+1∥+ cout
2 (α̃k+1

0)j∥ẽk+1
0 ∥

)︸ ︷︷ ︸
(10.25)

= ν̂k

· (α̃k+1
0)j∥ẽk+1

0 ∥+ ηk∥xk+1 − x̃k+1∥.

CONTRACTION THEORY FOR THE AS-RTI 329

Now, if we replace ∥ẽk+1
0 ∥ with its upper bound (10.29), we obtain

∥ek+1∥ ≤ (α̃k+1
0)j ν̂k

[(
κin + cin

1 ∥x̃k+1 − xk∥+ cin
2 ∥ek∥

)
∥ek∥

+
(
cin

3 + cin
4 ∥x̃k+1 − xk∥

)
∥x̃k+1 − xk∥

]
+ ηk∥xk+1 − x̃k+1∥.

Using the definitions of νk in (10.26) and ζk in (10.27), the inequality (10.24)
follows from the last inequality. This completes the proof.

Similar to Theorem 10.7, we give sufficient conditions for the boundedness of
the numerical error of the AS-RTI.

Proposition 10.11. Suppose that Assumptions 10.3, 10.5, 10.8 and 10.9
hold. Moreover, assume that we perform j ≥ 0 inner iterations on the NLP
(10.14) parametrized by x̃k+1 in the preparation phase of AS-RTI. Then there
exists a positive constant 0 < rsx < rx (same as in Theorem 10.7), such that, if
∥xk+1 − xk∥ ≤ rsx for all k ≥ 0 and ∥e0∥ ≤ rz, then

∥ek+1∥ ≤ rz, ∀k ≥ 0, (10.31)

where rsx is given by (10.21) and rz = min(rout
z , rin

z).

Proof: Taking rz = min(rout
z , rin

z) we can use the same rz for both inner and
outer iterations. Since the assumptions of Theorem 10.7 are satisfied, for the
first inner iteration corresponding to the NLPs (10.14) parametrized by x0 and
x̃1 we conclude that ∥ẽ1

0∥ ≤ rz ≤ r̂z. Using this inequality and Assumptions 10.5
and 10.8, we conclude that for a fixed parameter (further inner iterations) α̃1

j < 1
for all j ≥ 0 (the errors shrinks), i.e., it holds that ∥ẽ1

j∥ < rz, ∀j ≥ 0. For the
outer iteration corresponding to the NLPs (10.14) parametrized by x̃1 and x1,
since ∥ẽ1

j∥ < rz and ∥x1 − x̃1∥ ≤ rsx, by applying Theorem 10.7 we obtain that
∥e1∥ ≤ rz. Applying this argument inductively, we conclude that (10.31) holds
∀k ≥ 0.

From the results of Theorem 10.10 we can make several observations regarding
a new iterate zk+1:

1. having a better parameter guess, i.e., having smaller ∥xk+1 − x̃k+1∥,
decreases the distance to z̄k+1,

2. being closer to the solution in the previous iterate, i.e., smaller ∥ek∥, also
improves the solution,

3. increasing the number of inner iterations j further decreases the error
ek+1,

330 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

4. the distance between the two parameters also ∥xk+1 − xk∥ affects the
numerical error,

5. the value of the constant κin for the inner iterations affects the solution
since for smaller κin the term (α̃k+1

0)j shrinks faster.

Several inner iterations will make the first term on the r.h.s of (10.24) become
very small, which implies a smaller error. Furthermore, having j →∞ in the
limit and x̃k+1 = xk+1 we obtain ideal NMPC in the nominal case.

10.5 Numerical example

In this section, we investigate the performance of the AS-RTI method on a
numerical example. Further and more excessive numerical comparisons on
the example of electric microgrids and wind turbine control can be found
in [204, 210, 211].

Problem description

We consider a diesel generator (DG), which is connected with a power line to a
time-varying load. A similar example, with an additional photo-voltaic source,
was considered in [239]. A typical DG consists of a synchronous generator (SG)
with a governor (GOV) and an automatic voltage regulator (AVR), as depicted
in Figure 10.2. We consider an SG model with five differential and 11 algebraic
states [173]. The goal of the GOV is to control the power generation P1 of the
DG by controlling the diesel engine. The input of the GOV is the generator
frequency ω, as well as the reference power Pref . We use a standard IEEE
DEGOV1 model, which consists of 8 differential and 2 algebraic states. The
AVR controls the terminal voltage of the generator through the field winding
voltage Efd from the exciter. The inputs to the AVR are the reference voltage
Vref and the DG voltage V1. For the AVR, we use the standard IEEE AC5A
model, which consists of 5 differential and one algebraic state. For further
details on DG and general microgrid modeling, we refer to [211].

The DG has a nominal power of SN = 325 kVA and the control
variables are u(t) = (Pref(t), Vref(t)). The admittance of the power line is
Y12 = 137.93− 344.83i Ω−1, and it connects the DG at node 1 with the load at
node 2. The load is modeled as a time-varying parameter. The DG, the power
line, and load, where the connection is modeled via power-flow, cf. [173], result
in a Differential Algebraic Equation (DAE) of index-1 with 17 differential states

NUMERICAL EXAMPLE 331

Figure 10.2: Outline of a DG model. It consists of a synchronous generator
(SG), automatic voltage regulator and exciter (AVR), and a diesel engine (DE)
and governor model (GOV).

x(t) and 18 algebraic states z(t). Our goal is to regulate the voltage at the load
V2 and the electric frequency ω of the DG at 1 per unit (p.u.). We express this
with the objective

L(x(t), z(t), u(t)) = ∥ω(t)− 1∥2 + ∥V2(t)− 1∥2. (10.32)

Moreover, we require the voltages at the DG (V1) and load (V2), and the
frequency ω to be in specific ranges:

0.9 p.u. ≤ Vi ≤ 1.1 p.u., i = 1, 2, (10.33a)

0.95 p.u., ≤ ω ≤ 1.05 p.u.. (10.33b)

Additionally, the production of active and reactive power by the DGs is limited
by its nominal power

P 2
1 +Q2

1 ≤ S2
N . (10.34)

Together with the objective (10.32), the discretized DAE model of the DG,
and the constraints (10.33) and (10.34) evaluated at the discretization grid we
obtain an OCP of the form (10.1). To discretize the continuous time dynamics,
we use direct multiple shooting [44] with the Gauss-Legendre Implicit Runge-
Kutta scheme of order four with a fixed step-size h = T/N . For the NMPC
prediction horizon, we chose T = 10 s. We perform the numerical benchmark
with two different discretization grids, where the trajectories are discretized
using N = 50 and N = 40 multiple shooting nodes, which results in a sampling
time of Ts = 200 ms and Ts = 250 ms, respectively. We use a time-varying load
profile at node 2 with P2 = 300 kW and Q2 = 100, kVAr with a scheduled load
increase at t = 4 s to P2 = 305 kW and Q2 = 100 kVAr, which is also in the
NMPC prediction. At t = 1 s an unforeseen load drop to P2 = 30kW and
Q2 = 10 kVAr occurs until the scheduled load increases. After noticing the load
drop, the prediction is adapted to the new value after one sampling time.

332 THE ADVANCED STEP REAL-TIME ITERATION FOR NONLINEAR MODEL PREDICTIVE CONTROL

0 1 2 3 4 5 6 7
0.95

1

1.05

1.1
ω

[p
.u

.]
ω (AS-RTI-1)
ω (RTI)
bounds

0 1 2 3 4 5 6 7

1

1.1

1.2

time [s]

V
[p

.u
.]

V2 (AS-RTI-1)
V2 (RTI)

Figure 10.3: Frequency of the DG (top) and voltage at the load (bottom) for
two different schemes with Ts = 250 ms: 1) AS-RTI with one inner iteration
(blue), 2) RTI (red).

Simulation results

We implement the AS-RTI in acados through its MATLAB interface [278]. We
use HPIPM [105], an interior-point-based QP solver for the SQP subproblems. In
all experiments, we use a Gauss-Newton (GN) Hessian approximation. In the
simulation, we compare the following different schemes: 1) AS-RTI with k inner
GN-SQP iterations denoted as AS-RTI-k and, 2) the RTI. We observed that the
solution does not improve with further inner iterations, even when solving the
advanced problem to convergence. The simulation results for the two schemes
with Ts = 250 ms are depicted in Fig. 10.3. Both schemes can stabilize the
system and bring ω and V2 to 1. Observe that the overshoot at t = 1 s remains
the same for all schemes since the load drop is not predicted, and the NMPC
controller can react only after noticing it, i.e., after the time Ts has passed. The
load changes both unpredicted (t = 1s) and predicted (t = 4 s) for more than
90% compared to the initial load value. Compared to the AS-RTI, the voltage
oscillations with the RTI last long after the predicted load change. The CPU
times of all schemes in this experiment are provided in Table 10.2. We compare
the schemes by the resulting running cost, defined as

J(Tsim) :=
∫ Tsim

0
L(x(t), z(t), u∗

NMPC(t)) dt,

where u∗
NMPC(t) is the resulting NMPC closed-loop input fed back to the system

over the simulation time Tsim. All considered schemes are real-time feasible,

CONCLUSION 333

Algorithm N J
Preparation phase Feedback phase
max min mean max min mean

RTI 50 8.04 16.01 11.00 12.19 4.00 1.96 2.50
AS-RTI-1 50 7.69 40.97 24.03 26.85 4.00 1.97 2.53
AS-RTI-2 50 7.69 58.99 37.00 41.42 3.02 2.00 2.61
AS-RTI-3 50 7.69 67.03 50.98 55.18 4.00 1.97 2.55

RTI 40 12.28 12.03 8.03 9.94 2.96 0.99 1.76
AS-RTI-1 40 11.76 23.04 19.00 20.30 2.04 0.97 1.70
AS-RTI-2 40 11.77 41.01 29.99 32.44 3.23 0.98 1.85
AS-RTI-3 40 11.77 54.02 38.99 43.20 2.03 0.93 1.68

Table 10.2: CPU times of different NMPC schemes in milliseconds.

however, with the AS-RTI with few additional computations we improve the
running cost J(·) and the improvement is larger with a larger sampling time.
With more inner iterations, the computational load in the preparation phase is
increasing, however, in the feedback phase we still solve only a single QP and
thus the feedback delay stays small. All simulations are run on an HP Z-book
equipped with an Intel i7-6820HQ CPU with 2.70 GHz and 16 GB RAM under
Windows 10. The computation times for the two experiments are reported in
Table 10.2.

10.6 Conclusion

In this chapter, we have presented a new family of algorithms for real-time
Nonlinear Model Predictive Control(NMPC). Thereby, the algoritmic ideas
of the Real-Time Iteration [77], Multi-Level Iteration [42], and the Advanced
Step Controller [290] are combined. We prove in Theorem 10.10 contraction of
the new algorithms under standard assumptions. Our result holds for general
algorithms with at least Q-linear convergence, including the setting where
different algorithms for inner and outer iterations are used. Furthermore, we
provided sufficient conditions for the boundedness of the numerical error of the
AS-RTI. Numerical examples confirm our theoretical results, and it shows that
with few and cheap additional iterations, we get significantly closer to ideal
NMPC behavior.

In future work, it would be interesting to investigate theoretically and
numerically the influence of suboptimality iterations, such as level B, which
improve feasibility, but not optimality, on the overall performance of the AS-RTI
scheme. Moreover, it would be useful to have an efficient implementation of the
AS-RTI scheme within an open-source package such as acados [278].

Chapter 11

Conclusions and Future
Research

The last chapter of this thesis summarizes the results and proposes several
future research directions.

11.1 Summary and conclusions

This thesis has proposed several new algorithms and reformulations for
numerically solving optimal control problems subject to nonsmooth dynamical
systems. This resulted in a toolchain for solving several classes of nonsmooth
optimal control problems in a unified way. Furthermore, a detailed theoretical
analysis of the novel algorithms is provided. For a given accuracy, compared to
standard direct methods, smoothing approaches, and mixed-integer formulations,
we have achieved computational speed ups to several orders of magnitude. All
algorithms developed in thesis are implemented in the open-source software
package nosnoc. Moreover, this thesis introduced a family of new algorithms for
real-time and accurate nonlinear model predictive control for smooth dynamical
systems.

We summarize some of the main insights and new ideas introduced in this thesis.
A detailed overview of the specific contributions is given in Section 1.2.

First, in Chapter 5, we highlighted some fundamental limitations of standard
direct methods, including time-stepping discretizations, smoothing, mixed-

335

336 CONCLUSIONS AND FUTURE RESEARCH

integer reformulations, and mathematical programs with complementarity
constraints reformulation. All these approaches led to nonsmooth optimization
problems, where the nonsmoothness is possibly smoothed explicitly or implicitly,
before or after the time-discretization. If algorithms do not treat the
discontinuities explicitly by detecting switches, they will all suffer from the same
limitations, namely, they achieve only first-order accuracy and the discrete-time
numerical sensitivities do not converge to the correct values. Consequently, the
algorithms might converge to spurious solutions or make almost no progress
from a given initial guess. These insights are inspired by [259], where it
was shown that with a time-stepping discretization numerical sensitivities are
wrong, no matter how small the step size is, and that smoothing works only
if the step size is sufficiently smaller than the smoothing parameter. We have
shown that in a smoothing homotopy approach, the methods can still make
reasonable progress towards optimality, as the sensitivities are correct in the
early iterations. Moreover, these methods still converge to feasible (even though
not even locally optimal) solutions, which explains their occasional practical
success. Nevertheless, to obtain an accurate solution with a standard approach,
an enormous computational effort is needed. We concluded that it is necessary
to develop new tailored algorithms that treat nonsmoothness more explicitly.

Second, this thesis developed high-accuracy discretization methods for Piecewise
Smooth Systems (PSS). In Chapter 6, we investigated Stewart’s and the
Heaviside step reformulation to pass from a Filippov convexification of the
PSS to an equivalent Dynamic Complementarity System (DCS). It turns out
that these DCSs have favorable properties, e.g., the Lagrange multipliers in the
DCS are continuous functions of time even across active set changes. The ODEs
and DAEs obtained for a fixed active set have unique solutions under mild
conditions. We exploited the properties of the DCS, which enabled us to derive
the method of Finite Elements with Switch Detection (FESD) in Chapter 7.
The FESD method is based on three main ideas. Starting with a standard
Runge-Kutta (RK) discretization for the DCS, inspired by [28], one first lets
the integration step sizes be degrees of freedom. Exploiting the continuity of
the Lagrange multipliers, we introduced the cross complementarity conditions,
which enabled implicit and exact switch detection. Finally, to remove spurious
degrees of freedom when no switches occur, we introduced the step equilibration
conditions. We have provided a detailed theoretical analysis of the FESD
method and have shown that it is superior to time-stepping methods in terms of
computation times and accuracy. FESD enabled us to generalize time-stepping
methods and to overcome fundamental limitations of first-order accuracy and
wrong numerical sensitivities.

Third, we introduced the time-freezing reformulation in Chapters 8 and 9. It
enabled us to transform systems with state jumps into PSS. In particular,

SUMMARY AND CONCLUSIONS 337

we regarded complementarity Lagrangian systems with frictional impacts and
hybrid automata with hysteresis. The main ideas of time-freezing are to define
an auxiliary ODE in the prohibited regions of the state space of the initial
system and a nonsmooth clock state. The trajectory endpoints of the auxiliary
ODE satisfy the point-wise state jump law of the initial system. Moreover, the
clock state’s evolution is frozen during the runtime of the auxiliary ODE. By
taking only the piece of the trajectory when the time was evolving, one can
recover the solution of the original system with state jumps. We studied the
theoretical properties of time-freezing systems and provided constructive ways
to build auxiliary dynamics. Interestingly, it turned out that the dynamics
of the initial system after a state jump often correspond to a sliding mode
of the Filippov embedding of the time-freezing system. Time-freezing opened
the possibility to apply the rich theoretical tools and numerical methods for
Filippov systems to systems with state jumps.

Fourth, the reformulation of piecewise smooth systems into dynamic
complementarity systems via Stewart’s or the Heaviside step approach, the FESD
method (and all its variations), fully automated time-freezing reformulations
of systems with state jumps, and homotopy methods for solving MPCCs are
all implemented in the open-source software package nosnoc. This makes the
results of this thesis reproducible and accessible to other researchers.

Finally, in Chapter 10, we introduced several new real-time algorithms for
nonlinear MPC. We extended the well-known Real-Time Iteration (RTI) [75],
which computes only one Sequential Quadratic Programming (SQP) step per
sampling time. Moreover, we added new variants (called levels) to the Multi-
Level Iterations (MLI) [42], which essentially consist of different inexact SQP
variations of the RTI. To improve the current linearization point in an RTI
setting, we proposed using an MLI variant to iterate on an advanced problem with
a predicted state while waiting for the next state estimate. This idea of solving
an advanced problem is an essential ingredient of the Advanced Step Controller
(ASC) [290]. When the new state estimate becomes available, we performed
the final SQP step to generate a new control input. This algorithm is called
the Advanced Step Real-Time Iteration (AS-RTI). The AS-RTI bridges the gap
between two well-established algorithmic paradigms: the ASC that solves the
OCP to convergence at every sampling time, and the RTI that performs only
one Newton-type iteration. We studied the convergence properties and error
bounds of the proposed methods.

In summary, this thesis highlighted some fundamental limitations of the standard
methods, proposed new methods with a sound theory that overcomes these
limitations, making it possible to treat several classes of nonsmooth optimal
control problems in a unified way.

338 CONCLUSIONS AND FUTURE RESEARCH

11.2 Future research directions

Next, we comment on some limitations of our toolchain’s key parts and discuss
future research directions.

Mathematical Programs with Complementarity Constraints (MPCCs). The
main computational burden in solving a nonsmooth optimal control problem
is solving the MPCCs. Currently, we solve a sequence of Nonlinear Programs
(NLPs), parameterized by a homotopy parameter σ and obtained from relaxation,
smoothing, elastic mode or ℓ1 penalty reformulation of the initial NLP, cf.
Section 2.4. We solve the NLPs for a fixed σ to convergence with IPOPT [281].
However, to solve the overall MPCC, it may not be needed to solve the NLPs
in the early phases of the homotopy loop always to convergence. A reasonable
approach is to update the barrier parameter τ in the interior-point method
and σ simultaneously, as done in [227]. A similar approach was taken in the
non-interior point method by Lin and Othsuka [183]. Moreover, we do not
exploit the specific block diagonal sparsity structure in the discretized OCP.
Using a tailored Riccati recursion [183] instead of an off-the-shelf linear solver as
in IPOPT would likely speed up the computations. Next, a solver further tailored
to MPCCs, with a specialized globalization strategy is also an interesting future
research direction [180]. It would be also interesting to consider combinatorial
MPCC methods that identify the active set of the complementarity conditions
at every step [70, 71, 169, 180]. Note that due to the cross complementarity
conditions, the active sets are the same over the whole finite element, which
reduces the combinatorial complexity. Furthermore, one should exploit problem
structure in an active set strategy. For example, the trajectory can only enter
into neighboring regions, which already limits the possible number of active set
changes. Similarly, in time-freezing systems, it is clear that once the system
enters the auxiliary ODE mode, it must leave this region by construction.

Furthermore, we do not provide any specific initial guess. The homotopy starts
with a rather large σ, and one could make computationally cheap simulations
of systems smoothed with the same σ to get at least a dynamically feasible
initial guess. We observed often in practice that even in very early phases of the
homotopy the solver seems to find solutions with the correct switching sequence.
It would be interesting to find a projection method to extract the active set
of the complementarity conditions from these approximate solutions. Such
an approach was studied [247]. After fixing the active set, the FESD MPCC
reduces to a smooth discrete-time multi-stage OCP with variable stage lengths.
Thus, after only a single further NLP one would obtain a very accurate solution.

We observed in practice that the homotopy loop usually converges to S-stationary

FUTURE RESEARCH DIRECTIONS 339

points of the MPCC, cf. Definition 2.29. From a theoretical point of view,
it would be interesting to rigorously establish conditions on the discrete-time
OCP that lead to convergence to S-stationary points. A starting point could be
the analysis in [137], where it was proven that all stationary points of MPCCs
originating from discrete-time OCPs with linear complementarity systems are
S-stationary points.

Finite Elements with Switch Detection. The FESD method has superior
theoretical properties over standard time-steeping problems. However, having
the step size as degrees of freedom introduces another nonlinearity and
nonconvexity to the problem. We observed in numerical experiments that
the time-stepping discretization with a fixed h usually converges faster (however
to spurious solutions and only with low accuracy). In the early phases of the
homotopy when h≪ σ, time-stepping methods still have correct sensitivities.
We could solve the time-stepping problems in the early homotopy iterations
to generate a good initial guess and switch to the FESD problems in later
iterations.

In this thesis, we have developed FESD for two different types of DCS
reformulations. One of the crucial steps was to exploit the continuity of the
Lagrange multipliers in the complementarity conditions and to formulate the
cross complementarity conditions to make the switch detection possible. A
natural question is: can FESD be extended to DCS formulations of projected
dynamical systems and first-order sweeping processes if the variables entering
the complementarity conditions have similar properties?

In complementarity Lagrangian systems, studied in Chapter 8, one has
complementarity conditions between gap functions and normal contact forces,
i.e., 0 ≤ fc(q) ⊥ λn ≥ 0. The gap functions fc(q) are continuous function of
time, which resembles the structure and continuity properties of the multipliers
in the DCS obtained with Stewart’s or the Heaviside step reformulation. Using
similar ideas as in Chapter 7, we developed in [209] a FESD method for
complementarity Lagrangian systems, which is called FESD-J. It would be
interesting to extensively compare FESD-J to FESD applied to time-freezing
systems.

Currently, we use either Stewart’s or the Heaviside step reformulation for a given
PSS. It would be interesting to explore alternative convex or linear programming
formulations for computing θ, which may be even more efficient.

Another useful development would be a FESD tailored to smooth approximations
of nonsmooth systems, which does not suffer from the usual fundamental
limitations in terms of accuracy and convergence of sensitivities. We have

340 CONCLUSIONS AND FUTURE RESEARCH

observed in Section 7.3.6, that with FESD the sensitivity converges to the
correct value even if h ≫ σ, but depending on the relaxation and smoothing
strategy, the solution of the smoothed subproblems may not always be unique.
Such a method would be useful for algorithms using smooth approximation of
nonsmooth systems or in the context of stochastic optimal control, as discussed
below.

Time-freezing. Time-freezing enables an exact reformulation of systems with
state jumps into Filippov systems. This enabled us to treat this class of systems
directly with FESD. Several questions should be addressed in the future. First,
it would be interesting to derive a time-freezing reformulation that treats both
elastic and inelastic impacts with friction in a unified way. Second, a natural
extension to be considered are systems with multiple and simultaneous impacts,
i.e., models with vector-valued gap functions. This is partially done, and the
working version with promising results is implemented in nosnoc. We described
some details in Section 8.7. It is left to perform a detailed theoretical analysis of
the proposed approach. Third, it would be interesting to extend time-freezing
to more general hybrid automata than the one from Chapter 9. The first step
would be identifying usual guard functions, state jump laws, and infeasible
regions in the state space for general hybrid automata [188, 245]. Ideally, one
would end up with a set of rules that enable an automatic reformulation for
every well-posed hybrid automata.

Stochastic nonsmooth optimal control. In control applications, the model
parameters and initial states are never known exactly. To account for these
uncertainties, in practice, robust and stochastic optimal control problem
formulations are used. It would be interesting to derive robust and stochastic
optimal control problem formulations for nonsmooth dynamical systems, and to
develop tailored numerical methods for these problems, possibly by relying on
some of the ideas used in this thesis. In a recent study by Messerer et al. [194],
it was shown that the mean dynamics of a bimodal PSS resembles the smoothed
dynamics of such a system. It would be interesting to extend this to general
PSS and time-freezing systems. An interesting question is: how to interpret in a
stochastic time-freezing system the scenario when, at a given point in numerical
time, some trajectories are in the auxiliary dynamics mode and others are in
the nominal mode? What can we conclude about the initial system?

Real-time NMPC. Real-time NMPC for smooth systems is already a very
mature field. One drawback of the AS-RTI with full Newton steps is that if the
inner iterations use an MLI level with a smaller contraction radius than the MLI

FUTURE RESEARCH DIRECTIONS 341

level in the outer iterations, then the inner iterations might diverge and increase
the error. This can be overcome by using globalization strategies [163]. It would
be interesting to investigate further algorithmic variations of the AS-RTI, e.g.,
where the focus is on having at least feasible outer iterations. From a practical
point of view, it would be nice to have a proper open-source implementation of
the AS-RTI, e.g., in acados [278].

Bibliography

[1] Society for industrial and applied mathematics style
manual. https://www.siam.org/Portals/0/Books%20-
For%20Authors/SIAM%20Style%20Manual.pdf?ver=2017-11-21-
112335-700, 2017.

[2] NOSNOC. https://github.com/nurkanovic/nosnoc, 2022.

[3] Acary, V., Bonnefon, O., and Brogliato, B. Nonsmooth modeling
and simulation for switched circuits, vol. 69. Springer Science & Business
Media, 2010.

[4] Acary, V., and Brogliato, B. Numerical methods for nonsmooth
dynamical systems: applications in mechanics and electronics. Springer
Science & Business Media, 2008.

[5] Acary, V., and Brogliato, B. Implicit euler numerical scheme
and chattering-free implementation of sliding mode systems. Systems &
Control Letters 59, 5 (2010), 284–293.

[6] Acary, V., De Jong, H., and Brogliato, B. Numerical simulation of
piecewise-linear models of gene regulatory networks using complementarity
systems. Physica D: Nonlinear Phenomena 269 (2014), 103–119.

[7] Albersmeyer, J. Adjoint-based algorithms and numerical methods for
sensitivity generation and optimization of large scale dynamic systems.
PhD thesis, University of Heidelberg, 2010.

[8] Albersmeyer, J., and Diehl, M. The lifted Newton method and its
application in optimization. SIAM Journal on Optimization 20, 3 (2010),
1655–1684.

[9] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and
Diehl, M. CasADi – a software framework for nonlinear optimization and

343

344 BIBLIOGRAPHY

optimal control. Mathematical Programming Computation 11, 1 (2019),
1–36.

[10] Andrés-Martínez, O., Biegler, L. T., and Flores-Tlacuahuac,
A. An indirect approach for singular optimal control problems. Computers
& Chemical Engineering 139 (2020), 106923.

[11] Anitescu, M. On solving mathematical programs with complementarity
constraints as nonlinear programs. Preprint ANL/MCS-P864-1200,
Argonne National Laboratory, Argonne, IL 3 (2000).

[12] Anitescu, M. On using the elastic mode in nonlinear programming
approaches to mathematical programs with complementarity constraints.
SIAM Journal on Optimization 15, 4 (2005), 1203–1236.

[13] Anitescu, M. Optimization-based simulation of nonsmooth rigid
multibody dynamics. Mathematical Programming 105 (2006), 113–143.

[14] Anitescu, M., and Hart, G. D. A constraint-stabilized time-stepping
approach for rigid multibody dynamics with joints, contact and friction.
International Journal for Numerical Methods in Engineering 60, 14 (2004),
2335–2371.

[15] Anitescu, M., and Potra, F. A. Formulating dynamic multi-rigid-
body contact problems with friction as solvable linear complementarity
problems. Nonlinear Dynamics 14 (1997), 231–247.

[16] Anitescu, M., Tseng, P., and Wright, S. J. Elastic-mode
algorithms for mathematical programs with equilibrium constraints: global
convergence and stationarity properties. Mathematical programming 110,
2 (2007), 337–371.

[17] Anitescu, M., and Zavala, V. M. Mpc as a dvi: Implications on
sampling rates and accuracy. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC) (2017), IEEE, pp. 1933–1938.

[18] Ascher, U., and Petzold, L. Computer Methods for Ordinary
Differential Equations and Differential–Algebraic Equations. SIAM,
Philadelphia, 1998.

[19] Aubin, J. P., and Cellina, A. Differential Inclusions: Set-Valued
Maps and Viability Theory. Springer-Verlag, 1984.

[20] Avraam, M. Modelling and optimisation of hybrid dynamic processes.
PhD thesis, Imperial College London (University of London), 2000.

BIBLIOGRAPHY 345

[21] Ban, X. J., Pang, J.-S., Liu, H. X., and Ma, R. Continuous-time
point-queue models in dynamic network loading. Transportation Research
Part B: Methodological 46, 3 (2012), 360–380.

[22] Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad,
A., and Boyd, S. Embedded code generation using the OSQP solver.
In Proceedings of the IEEE Conference on Decision and Control (CDC)
(2017).

[23] Bard, J. F., and Moore, J. T. A branch and bound algorithm for the
bilevel programming problem. SIAM Journal on Scientific and Statistical
Computing 11, 2 (1990), 281–292.

[24] Barton, P. The modelling and simulation of combined discrete/continu-
ous processes. PhD thesis, Department of Chemical Engineering, Imperial
College of Science, Technology and Medicine, London, 1992.

[25] Barton, P., and Lee, C. Modeling, Simulation, Sensitivity Analysis
and Optimization of Hybrid Systems. ACM Transactions on Modeling
and Computer Simulation 12, 4 (2002), 256–289.

[26] Barton, P., and Pantelides, C. Modelling of Combined
Discrete/Continuous Processes. AIChE Journal 40 (1994), 966–979.

[27] Bastien, J., and Schatzman, M. Numerical precision for differential
inclusions with uniqueness. ESAIM: Mathematical Modelling and
Numerical Analysis 36, 3 (2002), 427–460.

[28] Baumrucker, B. T., and Biegler, L. T. Mpec strategies for
optimization of a class of hybrid dynamic systems. Journal of Process
Control 19, 8 (2009), 1248–1256.

[29] Bellman, R. Dynamic programming. Princeton University Press, 1957.

[30] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J.,
and Mahajan, A. Mixed-integer nonlinear optimization. Acta Numerica
22 (2013), 1–131.

[31] Bemporad, A., and Morari, M. Control of systems integrating logic,
dynamics, and constraints. Automatica 35, 3 (1999), 407–427.

[32] Bemporad, A., and Morari, M. Predictive Control of Constrained
Hybrid Systems. In Nonlinear Predictive Control (Basel Boston Berlin,
2000), F. Allgöwer and A. Zheng, Eds., vol. 26 of Progress in Systems
Theory, Birkhäuser, pp. 71–98.

346 BIBLIOGRAPHY

[33] Benson, H., Sen, A., Shanno, D., and Vanderbei, R. Interior-Point
Algorithms, Penalty Methods and Equilibrium Problems. Computational
Optimization and Applications 34 (2006), 155–182.

[34] Bernardo, M., Budd, C., Champneys, A. R., and Kowalczyk, P.
Piecewise-smooth dynamical systems: theory and applications, vol. 163.
Springer Science & Business Media, 2008.

[35] Bertsekas, D. Dynamic Programming and Optimal Control, 3rd ed.,
vol. 2. Athena Scientific, 2007.

[36] Betts, J. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. SIAM, 2010.

[37] Biegler, L. T. Solution of dynamic optimization problems by successive
quadratic programming and orthogonal collocation. Computers and
Chemical Engineering 8, 3–4 (1984), 243–248.

[38] Biegler, L. T. Nonlinear Programming. MOS-SIAM Series on
Optimization. SIAM, 2010.

[39] Bock, H. Numerical treatment of inverse problems in chemical reaction
kinetics. In Modelling of Chemical Reaction Systems, K. Ebert, P. Deufl-
hard, and W. Jäger, Eds., vol. 18 of Springer Series in Chemical Physics.
Springer, Heidelberg, 1981, pp. 102–125.

[40] Bock, H. Randwertproblemmethoden zur Parameteridentifizierung in
Systemen nichtlinearer Differentialgleichungen, vol. 183 of Bonner Mathe-
matische Schriften. Universität Bonn, Bonn, 1987.

[41] Bock, H. G. Recent advances in parameter identification techniques for
ODE. In Numerical Treatment of Inverse Problems in Differential and
Integral Equations. Birkhäuser, 1983, pp. 95–121.

[42] Bock, H. G., Diehl, M., Kostina, E. A., and Schlöder,
J. P. Constrained optimal feedback control of systems governed by
large differential algebraic equations. In Real-Time and Online PDE-
Constrained Optimization. SIAM, 2007, pp. 3–22.

[43] Bock, H. G., Kirches, C., Meyer, A., and Potschka, A. Numerical
solution of optimal control problems with explicit and implicit switches.
Optimization Methods and Software 33, 3 (2018), 450–474.

[44] Bock, H. G., and Plitt, K. J. A multiple shooting algorithm for
direct solution of optimal control problems. In Proceedings of the IFAC
World Congress (1984), Pergamon Press, pp. 242–247.

BIBLIOGRAPHY 347

[45] Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G.,
Grossmann, I. E., Laird, C. D., Lee, J., Lodi, A., Margot, F.,
Sawaya, N., et al. An algorithmic framework for convex mixed integer
nonlinear programs. Discrete optimization 5, 2 (2008), 186–204.

[46] Branicky, M. S. Multiple lyapunov functions and other analysis tools
for switched and hybrid systems. IEEE Transactions on automatic control
43, 4 (1998), 475–482.

[47] Brenan, K., Campbell, S., and Petzold, L. Numerical solution
of initial-value problems in differential-algebraic equations. SIAM,
Philadelphia, 1996. Classics in Applied Mathematics 14.

[48] Brogliato, B. Some perspectives on the analysis and control of
complementarity systems. IEEE Transactions on Automatic Control
48, 6 (2003), 918–935.

[49] Brogliato, B. Nonsmooth Mechanics: Models, Dynamics and Control.
Springer, 2016.

[50] Brogliato, B., Daniilidis, A., Lemarechal, C., and Acary, V.
On the equivalence between complementarity systems, projected systems
and differential inclusions. Systems & Control Letters 55, 1 (2006), 45–51.

[51] Brogliato, B., and Tanwani, A. Dynamical systems coupled with
monotone set-valued operators: Formalisms, applications, well-posedness,
and stability. Siam Review 62, 1 (2020), 3–129.

[52] Brogliato, B., and Thibault, L. Existence and uniqueness of solutions
for non-autonomous complementarity dynamical systems. Journal of
Convex Analysis 17, 3&4 (2010), 961–990.

[53] Bürger, A. Nonlinear mixed-integer model predictive control of renewable
energy systems. PhD thesis, University of Freiburg, 2020.

[54] Bürger, A., Bull, D., Sawant, P., Bohlayer, M., Klotz, A.,
Beschütz, D., Altmann-Dieses, A., Braun, M., and Diehl, M.
Experimental operation of a solar-driven climate system with thermal
energy storages using mixed-integer nonlinear model predictive control.
Optimal Control Applications and Methods (2021), 1–27.

[55] Butcher, J. On the implementation of implicit Runge-Kutta methods.
BIT Numerical Mathematics 16, 3 (1976), 237–240.

[56] Butcher, J. C. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, Ltd, 2003.

348 BIBLIOGRAPHY

[57] Byrd, R. H., Lopez-Calva, G., and Nocedal, J. A line search exact
penalty method using steering rules. Mathematical Programming 133, 1
(2012), 39–73.

[58] Byrd, R. H., Nocedal, J., and Waltz, R. A. KNITRO: An integrated
package for nonlinear optimization. In Large Scale Nonlinear Optimization
(2006), G. Pillo and M. Roma, Eds., Springer Verlag, pp. 35–59.

[59] Çamlıbel, M. K., Heemels, W., and Schumacher, J. On linear
passive complementarity systems. European Journal of Control 8, 3 (2002),
220–237.

[60] Camlibel, M. K., and Schumacher, J. On the zeno behavior of linear
complementarity systems. In Proceedings of the 40th IEEE Conference
on Decision and Control (Cat. No. 01CH37228) (2001), vol. 1, IEEE,
pp. 346–351.

[61] Cao, Y., Li, S., and Petzold, L. Adjoint sensitivity analysis for
differential-algebraic equations: algorithms and software. Journal of
Computational and Applied Mathematics 149 (2002), 171–191.

[62] Caracotsios, M., and Stewart, W. Sensitivity analysis of initial
value problems with mixed ODEs and algebraic equations. Computers
and Chemical Engineering. 9 (1985), 359–365.

[63] Carius, J., Ranftl, R., Koltun, V., and Hutter, M. Trajectory
optimization with implicit hard contacts. IEEE Robotics and Automation
Letters 3, 4 (2018), 3316–3323.

[64] Caspari, A., Lüken, L., Schäfer, P., Vaupel, Y., Mhamdi,
A., Biegler, L. T., and Mitsos, A. Dynamic optimization with
complementarity constraints: Smoothing for direct shooting. Computers
& Chemical Engineering 139 (2020), 106891.

[65] Chen, W., Ren, Y., Zhang, G., and Biegler, L. T. A simultaneous
approach for singular optimal control based on partial moving grid. AIChE
Journal 65, 6 (2019), e16584.

[66] Chen, W., Wang, K., Shao, Z., and Biegler, L. T. Chapter
11: Direct transcription with moving finite elements. In Control and
Optimization with Differential-Algebraic Constraints. SIAM, 2012, pp. 233–
252.

[67] Cojocaru, M.-G. Dynamic equilibria of group vaccination strategies in
a heterogeneous population. Journal of Global Optimization 40, 1 (2008),
51–63.

BIBLIOGRAPHY 349

[68] Cortes, J. Discontinuous dynamical systems. IEEE Control systems
magazine 28, 3 (2008), 36–73.

[69] Cottle, R. W., Pang, J.-S., and Stone, R. E. The linear
complementarity problem. SIAM, 2009.

[70] De Marchi, A. Implicit augmented lagrangian and generalized
optimization. arXiv preprint arXiv:2302.00363 (2023).

[71] De Marchi, A., and Themelis, A. Proximal gradient algorithms under
local lipschitz gradient continuity: A convergence and robustness analysis
of panoc. Journal of Optimization Theory and Applications 194, 3 (2022),
771–794.

[72] DeMiguel, V., Friedlander, M. P., Nogales, F. J., and Scholtes,
S. A two-sided relaxation scheme for mathematical programs with
equilibrium constraints. SIAM Journal on Optimization 16, 2 (2005),
587–609.

[73] Dieci, L., and Lopez, L. Sliding motion in filippov differential systems:
theoretical results and a computational approach. SIAM Journal on
Numerical Analysis 47, 3 (2009), 2023–2051.

[74] Dieci, L., and Lopez, L. Sliding motion on discontinuity surfaces
of high co-dimension. a construction for selecting a filippov vector field.
Numerische Mathematik 117, 4 (2011), 779–811.

[75] Diehl, M. Real-Time Optimization for Large Scale Nonlinear Processes.
PhD thesis, University of Heidelberg, 2001.

[76] Diehl, M., Bock, H. G., and Schlöder, J. P. A real-time iteration
scheme for nonlinear optimization in optimal feedback control. SIAM
Journal on Control and Optimization 43, 5 (2005), 1714–1736.

[77] Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy,
Z., and Allgöwer, F. Real-time optimization and nonlinear model
predictive control of processes governed by differential-algebraic equations.
Journal of Process Control 12, 4 (2002), 577–585.

[78] Diehl, M., Ferreau, H. J., and Haverbeke, N. Efficient numerical
methods for nonlinear MPC and moving horizon estimation. In Nonlinear
model predictive control, L. Magni, M. Raimondo, and F. Allgöwer, Eds.,
vol. 384 of Lecture Notes in Control and Information Sciences. Springer,
2009, pp. 391–417.

350 BIBLIOGRAPHY

[79] Diehl, M., Findeisen, R., Allgöwer, F., Bock, H. G., and
Schlöder, J. P. Nominal stability of the real-time iteration scheme for
nonlinear model predictive control. IEE Proc.-Control Theory Appl. 152,
3 (2005), 296–308.

[80] Diehl, M., and Gros, S. Numerical Optimal Control. –, expected to
be published in 2018.

[81] Diehl, M., Leineweber, D., and Schäfer, A. MUSCOD-II Users’
Manual. IWR-Preprint 2001-25, University of Heidelberg, 2001.

[82] Domahidi, A. Methods and Tools for Embedded Optimization and Control.
PhD thesis, ETH Zürich, 2013.

[83] Dontchev, A., and Lempio, F. Difference methods for differential
inclusions: A survey. SIAM review 34, 2 (1992), 263–294.

[84] Dontchev, A. L., and Rockafellar, R. T. Implicit Functions and
Solution Mappings. Springer, 2009.

[85] Dontchev, A. L., and Rockafellar, R. T. Implicit Functions and
Solution Mappings: A View from Variational Analysis. Springer, 2014.

[86] Doshi, N., Hogan, F. R., and Rodriguez, A. Hybrid differential
dynamic programming for planar manipulation primitives. In 2020 IEEE
International Conference on Robotics and Automation (ICRA) (2020),
IEEE, pp. 6759–6765.

[87] Edmond, J. F., and Thibault, L. Relaxation of an optimal
control problem involving a perturbed sweeping process. Mathematical
programming 104, 2 (2005), 347–373.

[88] Facchinei, F., Jiang, H., and Qi, L. A smoothing method for
mathematical programs with equilibrium constraints. Mathematical
Programming 85 (1999), 107–134.

[89] Facchinei, F., and Pang, J.-S. Finite-dimensional variational
inequalities and complementarity problems, vol. 1-2. Springer-Verlag,
2003.

[90] Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and
Diehl, M. qpOASES: a parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation 6, 4 (2014),
327–363.

BIBLIOGRAPHY 351

[91] Ferris, M., and Tin-Loi, F. On the solution of a minimum
weight elastoplastic problem involving displacement and complementarity
constraints. Computer Methods in Applied Mechanics and Engineering
174, 1-2 (1999), 108–120.

[92] Filippov, A. On certain questions in the theory of optimal control.
Journal of the Society for Industrial and Applied Mathematics, Series A:
Control 1, 1 (1962), 76–84.

[93] Filippov, A. Differential Equations with discontinuous right hand side.
AMS Transl. 42 (1964), 199–231.

[94] Filippov, A. Differential Equations with Discontinuous Righthand Sides:
Control Systems, vol. 18. Springer Science & Business Media, 1988.

[95] Flegel, M., and Kanzow, C. A Fritz John approach to first
order optimality conditions for mathematical programs with equilibrium
constraints. Optimization 52 (2003), 277–286.

[96] Flegel, M. L., and Kanzow, C. Abadie-type constraint qualification
for mathematical programs with equilibrium constraints. Journal of
Optimization Theory and Applications 124, 3 (2005), 595–614.

[97] Flegel, M. L., and Kanzow, C. On m-stationary points for
mathematical programs with equilibrium constraints. Journal of
Mathematical Analysis and Applications 310, 1 (2005), 286–302.

[98] Flegel, M. L., and Kanzow, C. On the guignard constraint
qualification for mathematical programs with equilibrium constraints.
Optimization 54, 6 (2005), 517–534.

[99] Fletcher, R. A New Low Rank Quasi-Newton Update Scheme for
Nonlinear Programming. Tech. Rep. NA/223, University of Dundee, 2005.

[100] Fletcher, R. Practical methods of optimization. John Wiley & Sons,
2013.

[101] Fletcher, R., and Leyffer, S. Nonlinear programming without a
penalty function. Mathematical Programming 91 (2002), 239–269.

[102] Fletcher, R., and Leyffer, S. Numerical experience with solving
mpecs as nlps. In Department of Mathematics and Computer Science,
University of Dundee, Dundee (2002), Citeseer.

[103] Fletcher*, R., and Leyffer, S. Solving mathematical programs
with complementarity constraints as nonlinear programs. Optimization
Methods and Software 19, 1 (2004), 15–40.

352 BIBLIOGRAPHY

[104] Fletcher, R., Leyffer, S., Ralph, D., and Scholtes, S.
Local Convergence of SQP Methods for Mathematical Programs with
Equilibrium Constraints. SIAM Journal on Optimization 17 (2006),
259–286.

[105] Frison, G., Sartor, T., Zanelli, A., and Diehl, M. The BLAS
API of BLASFEO: Optimizing performance for small matrices. ACM
Transactions on Mathematical Software (TOMS) 46, 2 (2020), 15:1–15:36.

[106] Fukushima, M., and Lin, G.-H. Smoothing methods for mathematical
programs with equilibrium constraints. In International Conference on
Informatics Research for Development of Knowledge Society Infrastructure,
2004. ICKS 2004. (2004), IEEE, pp. 206–213.

[107] Fukushima, M., Luo, Z.-Q., and Pang, J.-S. A globally convergent
sequential quadratic programming algorithm for mathematical programs
with linear complementarity constraints. Computational optimization and
applications 10, 1 (1998), 5–34.

[108] Fukushima, M., and Tseng, P. An implementable active-set algorithm
for computing a b-stationary point of a mathematical program with linear
complementarity constraints. SIAM Journal on Optimization 12, 3 (2002),
724–739.

[109] Gehring, C. Operational space control of single legged hopping. Master’s
thesis, Eidgenössische Technische Hochschule Zürich, Autonomous Systems
Lab, 2011.

[110] Giallombardo, G., and Ralph, D. Multiplier convergence in trust-
region methods with application to convergence of decomposition methods
for mpecs. Mathematical Programming 112, 2 (2008), 335–369.

[111] Gill, P., Murray, W., and Saunders, M. SNOPT: An SQP algorithm
for large-scale constrained optimization. SIAM Review 47, 1 (2005), 99–
131.

[112] Gill, P. E., and Wong, E. Methods for convex and general quadratic
programming. Mathematical Programming Computation 7, 1 (2015),
71–112.

[113] Goebel, R., Sanfelice, R., and Teel, A. Hybrid Dynamical Systems.
IEEE Control Systems Magazines 29, 2 (April 2009), 28–93.

[114] Grammel, G. Maximum principle for a hybrid system via singular
perturbations. SIAM journal on control and optimization 37, 4 (1999),
1162–1175.

BIBLIOGRAPHY 353

[115] Griewank, A., and Walther, A. Evaluating Derivatives, 2 ed. SIAM,
2008.

[116] Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and Diehl,
M. From linear to nonlinear MPC: bridging the gap via the real-time
iteration. International Journal of Control (2016).

[117] Grossmann, I. Review of Nonlinear Mixed-Integer and Disjunctive
Programming Techniques. Optimization and Engineering 3 (2002), 227–
252.

[118] Guddat, J., Vasquez, F. G., and Jongen, H. Parametric
Optimization: Singularities, Pathfollowing and Jumps. Teubner, Stuttgart,
1990.

[119] Guglielmi, N., and Hairer, E. An efficient algorithm for solving
piecewise-smooth dynamical systems. Numerical Algorithms 89, 3 (2022),
1311–1334.

[120] Guo, L., and Deng, Z. A new augmented lagrangian method for
mpccs—theoretical and numerical comparison with existing augmented
lagrangian methods. Mathematics of Operations Research 47, 2 (2022),
1229–1246.

[121] Guo, L., and Ye, J. J. Necessary optimality conditions for optimal
control problems with equilibrium constraints. SIAM Journal on Control
and Optimization 54, 5 (2016), 2710–2733.

[122] Hairer, E., Lubich, C., and Roche, M. The numerical solution
of differential-algebraic systems by Runge-Kutta methods. No. 1409 in
Lecture Notes in Mathematics. Springer, Heidelberg, 1989.

[123] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Differential
Equations. Springer, 2006.

[124] Hairer, E., Nørsett, S., and Wanner, G. Solving Ordinary
Differential Equations I, 2nd ed. Springer Series in Computational
Mathematics. Springer, Berlin, 1993.

[125] Hairer, E., Nørsett, S., and Wanner, G. Solving Ordinary
Differential Equations II – Stiff and Differential-Algebraic Problems,
2nd ed. Springer Series in Computational Mathematics. Springer, Berlin,
1996.

354 BIBLIOGRAPHY

[126] Hairer, E., and Wanner, G. Solving Ordinary Differential Equations
II – Stiff and Differential-Algebraic Problems, 2nd ed. Springer, Berlin
Heidelberg, 1991.

[127] Hall, J., Nurkanović, A., Messerer, F., and Diehl, M. A
sequential convex programming approach to solving quadratic programs
and optimal control problems with linear complementarity constraints.
IEEE Control Systems Letters 6 (2022), 536–541.

[128] Hall, J., Nurkanović, A., Messerer, F., and Diehl, M. Lcqpow–
a solver for linear complementarity quadratic programs. Mathematical
Programming Computation (accepted for publication) (2023).

[129] Halm, M., and Posa, M. Set-valued rigid body dynamics for
simultaneous frictional impact. arXiv preprint arXiv:2103.15714 (2021).

[130] Harzer, J., Schutter, J. D., and Diehl, M. Efficient numerical
optimal control for highly oscillatory systems. arXiv preprint (2022).

[131] Hatz, K., Leyffer, S., Schlöder, J. P., and Bock, H. G.
Regularizing bilevel nonlinear programs by lifting. Argonne National
Laboratory, USA (2013).

[132] Hauswirth, A., Bolognani, S., Hug, G., and Dörfler, F.
Optimization algorithms as robust feedback controllers. arXiv preprint
arXiv:2103.11329 (2021).

[133] Heemels, W., and Brogliato, B. The complementarity class of hybrid
dynamical systems. European Journal of Control 9, 2-3 (2003), 322–360.

[134] Heemels, W., Schumacher, J. M., and Weiland, S. Linear
complementarity systems. SIAM journal on applied mathematics 60,
4 (2000), 1234–1269.

[135] Heemels, W., Schumacher, J. M., and Weiland, S. Projected
dynamical systems in a complementarity formalism. Operations Research
Letters 27, 2 (2000), 83–91.

[136] Hempel, A. B., Goulart, P. J., and Lygeros, J. Every continuous
piecewise affine function can be obtained by solving a parametric linear
program. In 2013 European Control Conference (ECC) (2013), IEEE,
pp. 2657–2662.

[137] Hempel, A. B., Goulart, P. J., and Lygeros, J. Strong stationarity
conditions for optimal control of hybrid systems. IEEE Transactions on
Automatic Control 62, 9 (2017), 4512–4526.

BIBLIOGRAPHY 355

[138] Hoang, N. D., and Mordukhovich, B. S. Extended euler–lagrange
and hamiltonian conditions in optimal control of sweeping processes with
controlled moving sets. Journal of Optimization Theory and Applications
180 (2019), 256–289.

[139] Hoheisel, T., Kanzow, C., and Schwartz, A. Theoretical and
numerical comparison of relaxation methods for mathematical programs
with complementarity constraints. Mathematical Programming 137, 1
(2013), 257–288.

[140] Houska, B., Ferreau, H. J., and Diehl, M. ACADO toolkit – an
open source framework for automatic control and dynamic optimization.
Optimal Control Applications and Methods 32, 3 (2011), 298–312.

[141] Howell, T. A., Cleac’h, S. L., Kolter, J. Z., Schwager, M., and
Manchester, Z. Dojo: A differentiable simulator for robotics. arXiv
preprint arXiv:2203.00806 (2022).

[142] Howell, T. A., Le Cleac’h, S., Singh, S., Florence, P.,
Manchester, Z., and Sindhwani, V. Trajectory optimization with
optimization-based dynamics. IEEE Robotics and Automation Letters 7,
3 (2022), 6750–6757.

[143] HSL. A collection of Fortran codes for large scale scientific computation.,
2011.

[144] Hu, W., Long, J., Zang, Y., Han, J., et al. Solving optimal control
of rigid-body dynamics with collisions using the hybrid minimum principle.
arXiv preprint arXiv:2205.08622 (2022).

[145] Hu, X., and Ralph, D. Convergence of a penalty method for
mathematical programming with complementarity constraints. Journal
of Optimization Theory and Applications 123, 2 (2004), 365–390.

[146] Izmailov, A. F. Mathematical programs with complementarity con-
straints: regularity, optimality conditions, and sensitivity. Computational
Mathematics and Mathematical Physics 44, 7 (2004), 1145–1164.

[147] Izmailov, A. F., Pogosyan, A., and Solodov, M. V. Semismooth
newton method for the lifted reformulation of mathematical programs
with complementarity constraints. Computational Optimization and
Applications 51, 1 (2012), 199–221.

[148] Izmailov, A. F., and Solodov, M. V. Stabilized sqp revisited.
Mathematical programming 133 (2012), 93–120.

356 BIBLIOGRAPHY

[149] Izmailov, A. F., and Solodov, M. V. Newton-Type Methods for
Optimization and Variational Problems, 1 ed. Springer, 2014.

[150] Izmailov, A. F., Solodov, M. V., and Uskov, E. Global convergence
of augmented lagrangian methods applied to optimization problems
with degenerate constraints, including problems with complementarity
constraints. SIAM Journal on Optimization 22, 4 (2012), 1579–1606.

[151] Jane, J. Y. Necessary and sufficient optimality conditions for
mathematical programs with equilibrium constraints. Journal of
Mathematical Analysis and Applications 307, 1 (2005), 350–369.

[152] Jäschke, J., Yang, X., and Biegler, L. T. Fast economic model
predictive control based on nlp-sensitivities. Journal of Process Control
24, 8 (2014), 1260–1272.

[153] Jean, M. The non-smooth contact dynamics method. Computer methods
in applied mechanics and engineering 177, 3-4 (1999), 235–257.

[154] Jean, M., and Moreau, J. J. Unilaterality and dry friction in the
dynamics of rigid body collections. In 1st Contact Mechanics International
Symposium (1992), pp. 31–48.

[155] Jeffrey, M. R., Jeffrey, M. R., and Chernyk. Hidden dynamics.
Springer, 2018.

[156] Johnson, A. M., Burden, S. A., and Koditschek, D. E. A hybrid
systems model for simple manipulation and self-manipulation systems.
The International Journal of Robotics Research 35, 11 (2016), 1354–1392.

[157] Kadrani, A., Dussault, J.-P., and Benchakroun, A. A new
regularization scheme for mathematical programs with complementarity
constraints. SIAM Journal on Optimization 20, 1 (2009), 78–103.

[158] Kanzow, C., and Schwartz, A. A new regularization method for
mathematical programs with complementarity constraints with strong
convergence properties. SIAM Journal on Optimization 23, 2 (2013),
770–798.

[159] Kanzow, C., and Schwartz, A. The price of inexactness: convergence
properties of relaxation methods for mathematical programs with
complementarity constraints revisited. Mathematics of Operations
Research 40, 2 (2015), 253–275.

[160] Karush, W. Minima of Functions of Several Variables with Inequalities as
Side Conditions. Master’s thesis, Department of Mathematics, University
of Chicago, 1939.

BIBLIOGRAPHY 357

[161] Kastner-Maresch, A. Implicit runge-kutta methods for differential
inclusions. Numerical functional analysis and optimization 11, 9-10 (1990),
937–958.

[162] Katayama, S., Doi, M., and Ohtsuka, T. A moving switching
sequence approach for nonlinear model predictive control of switched
systems with state-dependent switches and state jumps. International
Journal of Robust and Nonlinear Control 30, 2 (2020), 719–740.

[163] Kiessling, D., Zanelli, A., Nurkanović, A., Gillis, J., Diehl,
M., Zeilinger, M., Pipeleers, G., and Swevers, J. A feasible
sequential linear programming algorithm with application to time-optimal
path planning problems. In 2022 IEEE 61st Conference on Decision and
Control (CDC) (2022), IEEE, pp. 1196–1203.

[164] Kim, J., Cho, H., Shamsuarov, A., Shim, H., and Seo, J. H. State
estimation strategy without jump detection for hybrid systems using
gluing function. In 53rd IEEE International Conference on Decision and
Control (CDC) (2014), IEEE, pp. 139–144.

[165] Kim, Y., Leyffer, S., and Munson, T. Mpec methods for bilevel
optimization problems. In Bilevel Optimization. Springer, 2020, pp. 335–
360.

[166] Kirches, C. A Numerical Method for Nonlinear Robust Optimal Control
with Implicit Discontinuities and an Application to Powertrain Oscillations.
Diploma thesis, University of Heidelberg, October 2006.

[167] Kirches, C. Fast Numerical Methods for Mixed-Integer Nonlinear Model-
Predictive Control. PhD thesis, University of Heidelberg, 2010.

[168] Kirches, C., Kostina, E., Meyer, A., and Schlöder, M. Numerical
solution of optimal control problems with switches, switching costs and
jumps. Optimization Online 6888 (2018).

[169] Kirches, C., Larson, J., Leyffer, S., and Manns, P. Sequential
linearization method for bound-constrained mathematical programs with
complementarity constraints. SIAM Journal on Optimization 32, 1 (2022),
75–99.

[170] Kouzoupis, D., Frison, G., Zanelli, A., and Diehl, M. Recent
advances in quadratic programming algorithms for nonlinear model
predictive control. Vietnam Journal of Mathematics 46, 4 (2018), 863–882.

[171] Krasovskii, N. N. Stability of motion: applications of Lyapunov’s
second method to differential systems and equations with delay. Stanford
university press Stanford, 1963.

358 BIBLIOGRAPHY

[172] Kuhn, H. W., and Tucker, A. W. Nonlinear programming. In
Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability (Berkeley, 1951), J. Neyman, Ed., University of California
Press.

[173] Kundur, P. S., and Malik, O. P. Power system stability and control.
McGraw-Hill Education, 2022.

[174] Leine, R. I., and Van de Wouw, N. Stability and convergence of
mechanical systems with unilateral constraints, vol. 36. Springer Science
& Business Media, 2007.

[175] Lenders, F. J. M. Numerical methods for mixed-integer optimal control
with combinatorial constraints. PhD thesis, Heidelberg University, 2018.

[176] Letourneau, M., and Sharp, J. W. AMS Style Guide - Journals,
2017.

[177] Leyffer, S. Macmpec: Ampl collection of mpecs,”. Argonne National
Laboratory, 2000.

[178] Leyffer, S. Complementarity constraints as nonlinear equations: Theory
and numerical experience. In Optimization with Multivalued Mappings.
Springer, 2006, pp. 169–208.

[179] Leyffer, S., López-Calva, G., and Nocedal, J. Interior methods for
mathematical programs with complementarity constraints. SIAM Journal
on Optimization 17, 1 (2006), 52–77.

[180] Leyffer, S., and Munson, T. S. A globally convergent filter method for
mpecs. Preprint ANL/MCS-P1457-0907, Argonne National Laboratory,
Mathematics and Computer Science Division (2007).

[181] Liao-McPherson, D., Nicotra, M., and Kolmanovsky, I. Time
distributed sequential quadratic programming for model predictive control:
Stability and robustness. arXiv preprint arXiv:1903.02605 (2019).

[182] Lin, G.-H., and Fukushima, M. A modified relaxation scheme for
mathematical programs with complementarity constraints. Annals of
Operations Research 133, 1 (2005), 63–84.

[183] Lin, K., and Ohtsuka, T. A non-interior-point continuation method for
the optimal control problem with equilibrium constraints. arXiv preprint
arXiv:2210.10336 (2022).

[184] Lions, P. Generalized Solutions of Hamilton-Jacobi Equations. Pittman,
1982.

BIBLIOGRAPHY 359

[185] Liu, X., and Sun, J. Generalized stationary points and an interior-
point method for mathematical programs with equilibrium constraints.
Mathematical Programming 101, 1 (2004), 231–261.

[186] Lunze, J., and Lamnabhi-Lagarrigue, F. Handbook of hybrid systems
control: theory, tools, applications. Cambridge University Press, 2009.

[187] Luo, Z., Pang, J., and Ralph, D. Mathematical Programs with
Equilibrium Constraints. Cambridge University Press, Cambridge, 1996.

[188] Lygeros, J., Johansson, K. H., Simic, S. N., Zhang, J., and Sastry,
S. S. Dynamical properties of hybrid automata. IEEE Transactions on
automatic control 48, 1 (2003), 2–17.

[189] Lygeros, J., Tomlin, C., and Sastry, S. Controllers for reachibility
specifications for hybrid systems. Automatica 35 (1999), pp. 349–370.

[190] Machina, A., and Ponosov, A. Filippov solutions in the analysis of
piecewise linear models describing gene regulatory networks. Nonlinear
Analysis: Theory, Methods & Applications 74, 3 (2011), 882–900.

[191] Manchester, Z., Doshi, N., Wood, R. J., and Kuindersma, S.
Contact-implicit trajectory optimization using variational integrators. The
International Journal of Robotics Research 38, 12-13 (2019), 1463–1476.

[192] Matsaglia, G., and PH Styan, G. Equalities and inequalities for
ranks of matrices. Linear and multilinear Algebra 2, 3 (1974), 269–292.

[193] McAllister, R. D., and Rawlings, J. B. Advances in mixed-integer
model predictive control. In 2022 American Control Conference (ACC)
(2022), IEEE, pp. 364–369.

[194] Messerer, F., Baumgärtner, K., Nurkanović, A., and Diehl, M.
Approximate propagation of normal distributions for stochastic optimal
control of nonsmooth systems. arXiv preprint arXiv:2308.03431 (2023).

[195] Michelsen, M. L. Semi-implicit Runge-Kutta methods for stiff systems:
program description and application examples. Inst. f. Kemiteknik,
Danmarks tekniske Højskole, Lynby (1976).

[196] Moreau, J. J. Rafle par un convexe variable (premiere partie). Lecture
notes, séminaire d’analyse convexe 15 (1971).

[197] Moreau, J. J. Evolution problem associated with a moving convex set
in a hilbert space. Journal of differential equations 26, 3 (1977), 347–374.

360 BIBLIOGRAPHY

[198] Moreau, J. J. Unilateral contact and dry friction in finite freedom
dynamics. In Nonsmooth mechanics and Applications. Springer, 1988,
pp. 1–82.

[199] Moreau, J. J. Numerical aspects of the sweeping process. Computer
methods in applied mechanics and engineering 177, 3-4 (1999), 329–349.

[200] Nguyen, N. S., and Brogliato, B. Comparisons of multiple-impact
laws for multibody systems: Moreau’s law, binary impacts, and the LZB
approach. In Advanced Topics in Nonsmooth Dynamics. Springer, 2018,
pp. 1–45.

[201] Nocedal, J., and Wright, S. J. Numerical Optimization, 2 ed. Springer
Series in Operations Research and Financial Engineering. Springer, 2006.

[202] Nurkanović, A., Albrecht, S., Brogliato, B., and Diehl,
M. The time-freezing reformulation for numerical optimal control of
complementarity lagrangian systems with state jumps. Automatica 158
(2023), 111295.

[203] Nurkanović, A., Albrecht, S., and Diehl, M. Limits of MPCC
Formulations in Direct Optimal Control with Nonsmooth Differential
Equations. In 2020 European Control Conference (ECC) (2020), pp. 2015–
2020.

[204] Nurkanović, A., Albrecht, S., and Diehl, M. Multi-level Iterations
for Economic Nonlinear Model Predictive Control. Springer International
Publishing, Cham, 2021, pp. 65–105.

[205] Nurkanović, A., and Diehl, M. Continuous optimization for control
of hybrid systems with hysteresis via time-freezing. IEEE Control Systems
Letters (2022).

[206] Nurkanović, A., and Diehl, M. NOSNOC: A software package for
numerical optimal control of nonsmooth systems. IEEE Control Systems
Letters (2022).

[207] Nurkanović, A., Frey, J., Pozharskiy, A., and Diehl, M. Finite
elements with switch detection for numerical optimal control of nonsmooth
dynamical systems with set-valued heaviside step functions. arXiv preprint
arXiv:2307.03482 - under review in Nonlinear analysis: hybrid systems
(2023).

[208] Nurkanović, A., Frey, J., Pozharskiy, A., and Diehl, M.
Finite elements with switched detection for direct optimal control of
nonsmooth systems with set-valued step functions. Proceedings of the
IEEE Conference on Decision and Control (CDC) 2023 (2023).

BIBLIOGRAPHY 361

[209] Nurkanović, A., Frey, J., Pozharskiy, A., and Diehl, M. Fesd-j:
Finite elements with switch detection for numerical optimal control of rigid
bodies with impacts and coulomb friction. Nonlinear Analysis: Hybrid
Systems 52 (2024), 101460.

[210] Nurkanović, A., Mešanović, A., Sperl, M., Albrecht, S., Münz,
U., Findeisen, R., and Diehl, M. Optimization-based primary and
secondary control of microgrids. at - Automatisierungstechnik 68, 12
(2020), 1044–1058.

[211] Nurkanović, A., Mešanović, A., Zanelli, A., Frey, J., Frison,
G., Albrecht, S., and Diehl, M. Real-time nonlinear model predictive
control for microgrid operation. In Proceedings of the American Control
Conference (ACC) (Denver, USA, July 2020). (accepted).

[212] Nurkanović, A., Sartor, T., Albrecht, S., and Diehl, M. A
Time-Freezing Approach for Numerical Optimal Control of Nonsmooth
Differential Equations with State Jumps. IEEE Control Systems Letters
5, 2 (2021), 439–444.

[213] Nurkanović, A., Sperl, M., Albrecht, S., and Diehl, M. Finite
Elements with Switch Detection for Direct Optimal Control of Nonsmooth
Systems. Submitted to Numerische Mathematik - under review (2022).

[214] Nurkanović, A., Zanelli, A., Albrecht, S., and Diehl, M. The
Advanced Step Real Time Iteration for NMPC. In Proceedings of the
IEEE Conference on Decision and Control (CDC) (Nice, France, December
2019).

[215] Nurkanović, A., Zanelli, A., Frison, G., Albrecht, S., and
Diehl, M. Contraction properties of the advanced step real-time iteration.
In Proceedings of the IFAC World Congress (2020), vol. 51. (accepted).

[216] Ohtsuka, T. A continuation/GMRES method for fast computation of
nonlinear receding horizon control. Automatica 40, 4 (2004), 563–574.

[217] Outrata, J. Optimality Conditions for a Class of Mathematical Programs
with Equilibrium Constraints. Math. Oper. Res. 24, 3 (1999), 627–644.

[218] Outrata, J., Kocvara, M., and Zowe, J. Nonsmooth approach to
optimization problems with equilibrium constraints: theory, applications
and numerical results, vol. 28. Springer Science & Business Media, 2013.

[219] Pang, J.-S., and Fukushima, M. Complementarity constraint
qualifications and simplified b-stationarity conditions for mathematical
programs with equilibrium constraints. Computational Optimization and
Applications 13, 1 (1999), 111–136.

362 BIBLIOGRAPHY

[220] Pang, J.-S., and Stewart, D. E. Differential variational inequalities.
Mathematical programming 113, 2 (2008), 345–424.

[221] Paoli, L., and Schatzman, M. A numerical scheme for impact problems
i: The one-dimensional case. SIAM Journal on Numerical Analysis 40, 2
(2002), 702–733.

[222] Paoli, L., and Schatzman, M. A numerical scheme for impact problems
ii: The multidimensional case. SIAM journal on numerical analysis 40, 2
(2002), 734–768.

[223] Patterson, M. A., Hager, W. W., and Rao, A. V. A ph mesh
refinement method for optimal control. Optimal Control Applications and
Methods 36, 4 (2015), 398–421.

[224] Pontryagin, L. S., Boltyanski, V. G., Gamkrelidze, R. V., and
Miscenko, E. F. The Mathematical Theory of Optimal Processes. Wiley,
Chichester, 1962.

[225] Posa, M., Cantu, C., and Tedrake, R. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal
of Robotics Research 33, 1 (2014), 69–81.

[226] Quirynen, R. Numerical Simulation Methods for Embedded Optimization.
PhD thesis, KU Leuven and University of Freiburg, 2017.

[227] Raghunathan, A. U., and Biegler, L. T. An interior point method
for mathematical programs with complementarity constraints (mpccs).
SIAM Journal on Optimization 15, 3 (2005), 720–750.

[228] Ralph, D., and Wright, S. J. Some properties of regularization and
penalization schemes for mpecs. Optimization Methods and Software 19,
5 (2004), 527–556.

[229] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M. Model Predictive
Control: Theory, Computation, and Design, 2nd ed. Nob Hill, 2017.

[230] Reich, S. On an existence and uniqueness theory for nonlinear differential-
algebraic equations. Circuits Syst. Signal Process. 10, 3 (May 1991),
343–359.

[231] Robinson, S. M. Strongly Regular Generalized Equations. Mathematics
of Operations Research, Vol. 5, No. 1 (Feb., 1980), pp. 43-62 5 (1980),
43–62.

[232] Rockafellar, R. Fundamentals of optimization. Lecture Notes 2007
(2006).

BIBLIOGRAPHY 363

[233] Rockafellar, R., and Wets, R. Variational Analysis, vol. 317 of
Grundlehren der mathematischen Wissenschaften. Springer, 2004.

[234] Rockafellar, R., and Wets, R. J.-B. Variational Analysis. Springer-
Verlag, 1997.

[235] Sager, S. Numerical methods for mixed–integer optimal control problems.
Der andere Verlag, Tönning, Lübeck, Marburg, 2005.

[236] Scheel, H., and Scholtes, S. Mathematical programs with
complementarity constraints: Stationarity, optimality, and sensitivity.
Math. Oper. Res. 25 (2000), 1–22.

[237] Scholtes, S. Convergence properties of a regularization scheme for
mathematical programs with complementarity constraints. SIAM Journal
on Optimization 11, 4 (2001), 918–936.

[238] Scholz, R. Model-Based Optimal Feedback Control For Microgrids. PhD
thesis, University of Heidelberg, 2022.

[239] Scholz, R., Nurkanović, A., Mešanović, A., Gutekunst, J.,
Potscka, A., Bock, H. G., and Kostina, E. Model-based Optimal
Feedback Control for Microgrids with Multi-Level Iterations. Operations
Reserach 2019 (2019).

[240] Schultz, G., and Mombaur, K. Modeling and optimal control of
human-like running. IEEE/ASME Transactions on mechatronics 15, 5
(2009), 783–792.

[241] Schwartz, A. Mathematical programs with complementarity constraints:
Theory, methods and applications. PhD thesis, Universität Würzburg,
2011.

[242] Shaikh, M. S., and Caines, P. E. On the hybrid optimal control
problem: theory and algorithms. IEEE Transactions on Automatic Control
52, 9 (2007), 1587–1603.

[243] Shen, J., and Pang, J.-S. Linear complementarity systems: Zeno states.
SIAM Journal on Control and Optimization 44, 3 (2005), 1040–1066.

[244] Shen, J., and Pang, J.-S. Semicopositive linear complementarity
systems. International Journal of Robust and Nonlinear Control: IFAC-
Affiliated Journal 17, 15 (2007), 1367–1386.

[245] Simic, S. N., Johansson, K. H., Lygeros, J., and Sastry, S.
Towards a geometric theory of hybrid systems. Dynamics of Continuous,
Discrete and Impulsive Systems Series B: Applications and Algorithms
12, 5-6 (2005), 649–687.

364 BIBLIOGRAPHY

[246] Smirnov, G. V. Introduction to the Theory of Differential Inclusions,
vol. 41. American Mathematical Soc., 2002.

[247] Sperl, M. Numerical methods for optimal control problems involving
differential complementarity systems. Master’s thesis, University of Passau,
2021.

[248] Steffensen, S., and Ulbrich, M. A new relaxation scheme for
mathematical programs with equilibrium constraints. SIAM Journal on
Optimization 20, 5 (2010), 2504–2539.

[249] Stein, O. Lifting mathematical programs with complementarity
constraints. Mathematical programming 131, 1 (2012), 71–94.

[250] Stewart, D. A high accuracy method for solving odes with discontinuous
right-hand side. Numerische Mathematik 58, 1 (1990), 299–328.

[251] Stewart, D. E. High accuracy numerical methods for ordinary
differential equations with discontinuous right-hand side. PhD thesis,
University of Queensland, St. Lucia, Queensland 4072, Australia, 1990.

[252] Stewart, D. E. A numerical method for friction problems with multiple
contacts. The ANZIAM Journal 37, 3 (1996), 288–308.

[253] Stewart, D. E. Existence of solutions to rigid body dynamics and the
painlevé paradoxes. Comptes Rendus de l’Académie des Sciences-Series
I-Mathematics 325, 6 (1997), 689–693.

[254] Stewart, D. E. Convergence of a time-stepping scheme for rigid-body
dynamics and resolution of painlevé’s problem. Archive for Rational
Mechanics and Analysis 145, 3 (1998), 215–260.

[255] Stewart, D. E. Rigid-body dynamics with friction and impact. SIAM
review 42, 1 (2000), 3–39.

[256] Stewart, D. E. Uniqueness for index-one differential variational
inequalities. Nonlinear Analysis: Hybrid Systems 2, 3 (2008), 812–818.

[257] Stewart, D. E. Uniqueness for solutions of differential complementarity
problems. Mathematical programming 118, 2 (2009), 327–345.

[258] Stewart, D. E. Dynamics with Inequalities: impacts and hard
constraints. SIAM, 2011.

[259] Stewart, D. E., and Anitescu, M. Optimal control of systems
with discontinuous differential equations. Numerische Mathematik 114, 4
(2010), 653–695.

BIBLIOGRAPHY 365

[260] Stewart, D. E., and Trinkle, J. C. An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb friction.
International Journal for Numerical Methods in Engineering 39, 15 (1996),
2673–2691.

[261] Studer, C. W. Augmented time-stepping integration of non-smooth
dynamical systems. PhD thesis, ETH Zurich, 2008.

[262] Sussmann, H. J. A maximum principle for hybrid optimal control
problems. In Proceedings of the 38th IEEE conference on decision and
control (Cat. No. 99CH36304) (1999), vol. 1, IEEE, pp. 425–430.

[263] Tassa, Y., Erez, T., and Todorov, E. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(2012), IEEE, pp. 4906–4913.

[264] Taubert, K. Converging multistep methods for initial value problems
involving multivalued maps. Computing 27, 2 (1981), 123–136.

[265] Tedrake, R., and the Drake Development Team. Drake: Model-
based design and verification for robotics, 2019.

[266] Thierry, D. Nonlinear Optimization based frameworks for Model
Predictive Control, State-Estimation, Sensitivity Analysis, and Ill-posed
Problems. PhD thesis, Carnegie Mellon University, 2019.

[267] Thierry, D., and Biegler, L. The ℓ1—exact penalty-barrier
phase for degenerate nonlinear programming problems in ipopt. IFAC-
PapersOnLine 53, 2 (2020), 6496–6501.

[268] Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on
intelligent robots and systems (2012), IEEE, pp. 5026–5033.

[269] Tran-Dinh, Q., Savorgnan, C., and Diehl, M. Adjoint-
based predictor-corrector sequential convex programming for parametric
nonlinear optimization. SIAM J. Optimization 22, 4 (2012), 1258–1284.

[270] Ulbrich, M. Mathematical modeling with variational inequalities.

[271] Valadier, M. Lipschitz approximation of the sweeping (or moreau)
process. Journal of Differential Equations 88, 2 (1990), 248–264.

[272] Van Der Schaft, A. J., and Schumacher, H. An introduction to
hybrid dynamical systems, vol. 251. springer, 2007.

366 BIBLIOGRAPHY

[273] van der Schaft, A. J., and Schumacher, J. M. The complementary-
slackness class of hybrid systems. Mathematics of control, signals and
systems 9, 3 (1996), 266–301.

[274] Van Roy, W., Nurkanović, A., Abbasi-Esfeden, R., Frey, J.,
Pozharskiy, A., Swevers, J., and Diehl, M. Continuous optimization
for control of finite-state machines with cascaded hysteresis via time-
freezing. IEEE Conference on Decision and Control (2023).

[275] Vandenberghe, L., De Moor, B., and Vandewalle, J. The
generalized linear complementarity problem applied to the complete
analysis of resistive piecewise-linear circuits. IEEE transactions on circuits
and systems 36, 11 (1989), 1382–1391.

[276] Vanderbei, R. J. Loqo: An interior point code for quadratic
programming. Optimization methods and software 11, 1-4 (1999), 451–484.

[277] Veelken, S. A new relaxation scheme for mathematical programs with
equilibrium constraints: Theory and numerical experience. PhD thesis,
Technische Universität München, 2009.

[278] Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., van
Duijkeren, N., Zanelli, A., Novoselnik, B., Albin, T., Quirynen,
R., and Diehl, M. acados – a modular open-source framework for fast
embedded optimal control. Mathematical Programming Computation (Oct
2021).

[279] Vieira, A., Brogliato, B., and Prieur, C. Quadratic optimal control
of linear complementarity systems: First-order necessary conditions and
numerical analysis. IEEE Transactions on Automatic Control 65, 6 (2019),
2743–2750.

[280] Visintin, A. Differential models of hysteresis, vol. Appl. Math. Sci. 111.
Springer-Verlag, Berlin, 1994.

[281] Wächter, A., and Biegler, L. T. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming 106, 1 (2006), 25–57.

[282] Walther, A. Automatic differentiation of explicit Runge-Kutta methods
for optimal control. Computational Optimization and Applications 36, 1
(2006), 83–108.

[283] Wensing, P. M., Posa, M., Hu, Y., Escande, A., Mansard, N.,
and Del Prete, A. Optimization-based control for dynamic legged
robots. arXiv preprint arXiv:2211.11644 (2022).

BIBLIOGRAPHY 367

[284] Werling, K., Omens, D., Lee, J., Exarchos, I., and Liu, C. K.
Fast and feature-complete differentiable physics for articulated rigid bodies
with contact. arXiv preprint arXiv:2103.16021 (2021).

[285] Westenbroek, T., Xiong, X., Ames, A. D., and Sastry, S. S.
Optimal control of piecewise-smooth control systems via singular
perturbations. In 2019 IEEE 58th Conference on Decision and Control
(CDC) (2019), IEEE, pp. 3046–3053.

[286] Wirsching, L. Multi-Level Iteration Schemes with Adaptive Level Choice
for Nonlinear Model Predictive Control. PhD thesis, Ruprecht-Karls-
Universität Heidelberg, 2018.

[287] Zanelli, A., Tran-Dinh, Q., and Diehl, M. Contraction estimates
for abstract real-time algorithms for NMPC. In Proceedings of the IEEE
Conference on Decision and Control (Nice, France, Dec 2019).

[288] Zanelli, A., Tran-Dinh, Q., and Diehl, M. A lyapunov function
for the combined system-optimizer dynamics in inexact model predictive
control. Automatica 134 (2021), 109901.

[289] Zavala, V., and Anitescu, M. Real-Time Nonlinear Optimization as a
Generalized Equation. SIAM J. Control Optim. 48, 8 (2010), 5444–5467.

[290] Zavala, V. M., and Biegler, L. T. The advanced step NMPC
controller: Optimality, stability and robustness. Automatica 45 (2009),
86–93.

[291] Zhang, J., Johansson, K. H., Lygeros, J., and Sastry, S. Zeno
hybrid systems. International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal 11, 5 (2001), 435–451.

[292] Zhong, Y. D., Han, J., and Brikis, G. O. Differentiable physics
simulations with contacts: Do they have correct gradients wrt position,
velocity and control? In ICML 2022 2nd AI for Science Workshop (2022).

[293] Zhu, F., and Antsaklis, P. J. Optimal control of hybrid switched
systems: A brief survey. Discrete Event Dynamic Systems 25 (2015),
345–364.

[294] Zhuravlev, V. F. Equations of motion of mechanical systems with ideal
one-sided constraints. Prikladnaia Matematika i Mekhanika 42 (1978),
781–788.

Curriculum Vitae

Armin Nurkanović was born in 1992 in Zagreb, Croatia. In 2015, he graduated
from the University of Tuzla in Bosnia and Herzegovina with a Bachelor’s
degree in Electrical Engineering. He was awarded with the Golden Plaque of
the University of Tuzla for his outstanding performance during his studies (GPA
10.0/10.0). He completed his Master’s degree in Electrical Engineering and
Information Technology at the Technical University of Munich in 2018. For
his master studies he received a DAAD scholarship for master studies for all
academic disciplines. Since 2018, Armin is a PhD student at the University of
Freiburg (first external-industrial, now internal) under the supervision of Prof.
Moritz Diehl. Until October 2021 he was an industrial PhD student at Siemens
Technology in the research group Autonomous Systems and Control, under
the supervision of Dr. Sebastian Albrecht. Together with his co-authors, he
received the IEEE Control Systems Letters Outstanding Paper Award for 2022.
In September 2023, he was the main organizer of the summer school on Direct
Methods for Optimal Control of Nonsmooth Systems, which covered the topics
developed in this thesis. The school was attended by about 70 participants,
both from industry and academia, from eight different European countries.

369

FACULTY OF ENGINEERING
DEPARTMENT OF MICROSYSTEMS ENGINEERING

SYSTEMS CONTROL AND OPTIMIZATION LABORATORY
Georges-Köhler-Allee 102

79110 Freiburg in Br.

	Contents
	Introduction
	Classification of nonsmooth dynamical systems
	Contributions and outline
	Software contributions - nosnoc
	Outline and specific contributions

	List of publications
	Notation

	Nonlinear Optimization with Complementarity Constraints
	Smooth nonlinear optimization: theory and algorithms
	Optimality conditions
	Nonlinear programming algorithms

	Variational inequalities and complementarity problems
	Variational inequalities and generalized equations
	Complementarity problems
	Nonsmooth equations

	Mathematical programs with complementarity constraints
	Introduction to MPCCs
	First-order optimality conditions for MPCCs

	MPCC solution methods
	NLP solution methods
	Regularization methods
	Exact penalty methods
	Lifting methods
	Combinatorial methods
	Implicit methods
	Summary of MPCC methods

	Direct Optimal Control Methods
	Controlled dynamical systems
	Ordinary differential equations (ODEs)
	Differential algebraic equations (DAEs)

	Numerical integration methods
	Runge-Kutta methods
	Sensitivity computation

	Numerical optimal control
	Solution methods for OCPs
	Direct optimal control

	Nonsmooth Dynamical Systems
	Introduction
	Hybrid versus nonsmooth dynamical systems
	Why nonsmooth dynamical systems?
	Numerical simulation of nonsmooth systems

	Phenomena specific to nonsmooth dynamical systems
	Infinitely many switches in finite time - Zeno's phenomenon
	Reduced system dimensions and sliding modes
	Stability and instability due to switches and jumps
	Numerical chattering
	Order integration of accuracy
	The sensitivities are discontinuous

	Modeling frameworks for nonsmooth dynamical systems
	Some basics from nonsmooth and set-valued analysis
	Differential inclusions
	Differential variational inequalities
	Dynamic complementarity systems
	Discontinuous ODEs and Filippov systems
	Projected dynamical systems
	Moreau's sweeping processes

	Conclusions and further reading

	Limitations in Nonsmooth Direct Optimal Control
	Survey on direct optimal control methods for nonsmooth systems
	Fundamental limitations of standard direct methods for NSD2 systems
	A bimodal NSD2 system
	The numerical sensitives are wrong independent of the step size
	Smooth approximations of NSD2 systems
	The bimodal system as a DCS
	Failure of standard direct optimal control

	Limitations of direct methods for NSD3 systems
	Conclusion and summary

	Reformulation of Filippov Systems into Dynamic Complementarity Systems
	Piecewise smooth and Filippov systems
	Piecewise smooth differential equations
	Filippov convexification

	Stewart's reformulation
	How to obtain Stewart's indicator functions?
	Fixed active set
	Active-set changes and continuity of and
	Predicting the new active set
	Sum of Filippov systems
	Sensitivities with respect to parameters and initial values

	Heaviside step reformulation
	Set-valued Heaviside step functions
	Aizerman–Pyatnitskii differential inclusions
	Filippov set expressed via Heaviside step functions
	Active-set changes and continuity of p and n
	Fixed active set in the Heaviside step formulation
	Predicting a new active set
	Efficient modeling with Heaviside step functions
	A lifting algorithm for the multi-affine terms
	Comparisons of Stewart's and the Heaviside step reformulation

	Conclusions and summary
	Relations between different formalisms
	Summary

	Finite Elements with Switch Detection
	Introduction and related work
	FESD for Stewart's reformulation
	Standard Runge-Kutta discretization
	The step-sizes as degrees of freedom
	Cross complementarity
	Step size equilibration
	The FESD discretization

	Convergence theory of FESD for Stewart's reformulation
	Main assumptions
	Solutions of the FESD problem are locally isolated
	Convergence and order of FESD
	Illustrating the integration order
	Convergence of discrete-time sensitivities
	Illustration of numerical sensitivity convergence

	FESD for the Heaviside step representation
	Standard Runge-Kutta discretization
	Cross complementarity
	Step size equilibration
	The FESD discretization

	FESD in direct optimal control
	A multiple shooting-type discretization
	A numerical optimal control example

	Conclusions and summary

	The Time-Freezing Reformulation for Nonsmooth Mechanical Systems
	Introduction
	Complementarity Lagrangian systems
	Related work

	The time-freezing reformulation
	A guiding example
	Main ideas behind time-freezing

	Time-freezing for elastic impacts
	The time-freezing system
	Auxiliary dynamics for elastic impacts
	Auxiliary dynamics for nonlinear constraints
	Solution relationship

	Time-freezing for inelastic impacts
	The time-freezing reformulation
	Solution relationship
	Frictional impact

	Numerical optimal control of time-freezing systems
	Continuous-time OCP with a CLS
	Continuous-time OCP with a time-freezing system
	Discrete-time OCP with the time-freezing system

	Numerical examples with time-freezing
	Ball inside a box - elastic impacts
	A hopping robot - inelastic impact with friction
	Manipulation task - inelastic impacts

	Conclusions and outlook

	The Time-Freezing Reformulation for Nonsmooth Systems with Hysteresis
	Hybrid systems with hysteresis
	Introduction
	Model equations

	The time-freezing reformulation for hybrid systems with hysteresis
	The time-freezing system
	A tutorial example

	Solution equivalence
	Numerical example: time-optimal problem of a car with turbo charger
	Conclusion

	The Advanced Step Real-Time Iteration for Nonlinear Model Predictive Control
	Introduction to real-time NMPC
	NMPC and continuation methods
	Predictor-corrector path-following methods
	Algorithmic ingredients

	The advanced step real-time iteration
	Contraction theory for the AS-RTI
	Contraction estimate for abstract real-time algorithms
	Contraction properties of the AS-RTI scheme

	Numerical example
	Conclusion

	Conclusions and Future Research
	Summary and conclusions
	Future research directions

	Bibliography
	Curriculum Vitae

