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Abstract

The recently introduced Finite Elements with Switch Detection (FESD) discretization

for nonsmooth dynamical systems provides a new source of Mathematical Programs

with Complementarity Constraints (MPCCs), which are a particularly difficult form

of nonlinear program. This approach has multiple powerful properties that are

particularly useful when applied to Optimal Control Problems (OCPs). However

in order to be used in this context effectively, fast, robust solvers for MPCCs must

exist. This thesis evaluates the performance of various solution methods for MPCCs

that arise from the application of FESD to OCPs. The approach of interest is a

generally successful class of solution methods which solves MPCCs via a sequence of

relaxed nonlinear programs in a homotopy procedure where the relaxation is governed

by a parameter that is driven to zero. This thesis introduces a novel benchmark

suite, NOSBENCH, with a total set of 603 MPCCs, and uses it to evaluate the

performance of various relaxations and other reformulation parameters. It is observed

that only 73.8% of problems in the benchmark are solved by the best approaches,

often requiring minutes to tens of minutes to converge even for relatively small OCPs.

These results highlight the need for further work to be done to improve the state

of the art for MPCC solvers. Finally, this thesis evaluates several sparsities of the

complementarity constraints generated by FESD and proves that the sparsest form

violates certain constraint qualifications at all feasible points. This fact is then

augmented by empirically showing that the degeneracy of the sparsest mode indeed

affects practical performance.
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1 Introduction

Nonsmooth dynamical systems make up an extremely common class of models in a

variety of fields, but particularly in robotics applications where they can be used to

model contacts between rigid objects. However, their use extends beyond that into

modeling of electronic circuits, and biological systems [1, 2]. Such systems often pose

challenges both for accurate simulation as well as optimal control. For the former,

time stepping and switch detection methods are commonly used techniques, but these

are not of much use when applied in an optimal control context. This is due to the

fact that such techniques are not generally capable of providing accurate sensitivities

used in direct optimal control algorithms based on Newton-type methods.

This thesis builds on the work of Nurkanović and co-workers and the Finite Elements

with Switch Detection (FESD) method which is a discretization approach for sim-

ulation and optimal control problems subject to nonsmooth dynamical systems [3].

The FESD framework transforms Optimal Control Problems (OCPs) subject to

Filippov Differential Inclusions (DI) first into OCPs subject to Dynamic Complemen-

tarity Systems (DCS), and then into Mathematical Programs with Complementarity

Constraints (MPCCs).
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1 Introduction

MPCCs are a particularly nasty form of Nonlinear Program (NLP):

min
w ∈ Rnw

F (w) (1a)

s.t. 0 = g(w), (1b)

0 ≤ h(w), (1c)

0 ≤ G(w) ⊥ H(w) ≥ 0, (1d)

which contains constraints of the form in Equation (1d) which lead to significant

difficulties. This form contains five functions over the decision variable w: the objective

F : Rnw → R, the equality and inequality constraint functions g : Rnw → Rng ,

h : Rnw → Rnh , and the complementarity functions G : Rnw → Rnc , H : Rnw → Rnc .

In this case, the Equation (1d) is a combinatorial constraint that implies that only at

most one of each corresponding component Gi(w) and Hi(w) can be non-negative and

the other must be zero. This can algebraically be rewritten as the set of constraints:

0 ≤ G(w), (2a)

0 ≤ H(w), (2b)

0 = Gi(w)Hi(w), i = 1, . . . , nc. (2c)

This kind of problem violates the Linear Independence Constraint Qualification

(LICQ) at all feasible points. This can be proven via the fact that at any feasible

point we have linearly dependent gradients of two of the inequalities described above.

The same holds true for the Mangasarian-Fromovitz Constraint Qualification (MFCQ),

though the proof for that is marginally more involved and can be found in [4].

The study of such problems in the past has come primarily in the service of bi-level

optimization problems, structural optimization, and occasionally in dynamic systems

as described by Ferris and Pang [5]. These include work by Bard on convex two-level
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1.1 Notation

optimization [6], packaging problems that minimize membrane surfaces, examples

of which can be found in [7], and examples of Stackelberg games such as the one

found in [8]. The problems obtained by discretization of an optimal control problem

(OCP) via FESD are often much larger and have a higher number of complementarity

constraints than those found other MPCCs. They also contain many nonlinear

constraints in the form of discretized system dynamics. FESD in its standard, sparse,

form also produces problems that may further violate even specifically MPCC tailored

constraint qualifications. This makes the problems degenerate, which may complicate

their analysis. We discuss some of the theoretical properties of FESD problems in

future chapters.

In this thesis, we introduce a new benchmark that is made up of problems generated

via the FESD discretization implemented in the software package NOSNOC [9].

This benchmark is available publicly in its entirety in two formats at https://

github.com/apozharski/nosbench. We then run several experiments across various

parameters of the NOSNOC solver, as well as a comparison between existing NLP

solvers’ performance on the current iteration of the benchmark.

1.1 Notation

We now introduce some of the notation we will use in the remaining chapters of this

thesis:

Table 1: Notation

Symbol Meaning

w Primal optimization variable

x Differential state

z Algebraic state

nw Number of primal variables

3
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1 Introduction

Table 1: Notation

Symbol Meaning

nc Number of complementarity pairs

ng Number of algebraic constraints

nx Number of differential states

nu Number of control variables

nz Number of algebraic states

nq Number of generalized position states

nv Number of generalized velocity states

nf Number of regions with unique dynamics

Ns Number of control stages

Nfe Number of Finite Elements per control stage

ns Number of Runge-Kutta stages per Finite Element

θ Filippov multipliers

α Heaviside step function values

Ri Regions of a PSS

fi(x, u) System dynamics in region Ri

FF (x, u) System dynamics in terms of a Filippov differential inclusion

φ(x) Piecewise smooth system switching functions

G(w), H(w) Complementarity functions

ψ(a, b, σ) Relaxation function used to reformulate complementarities

a, b Complementarity arguments 0 ≤ a ⊥ b ≥ 0

σ Relaxation homotopy parameter

κ Linear update rate of σ

ζ Exponential update rate of σ

I00 Index set of bi-active complementarities

I+0 Index set of complementarities with positive G and zero H
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1.2 Related Work

Table 1: Notation

Symbol Meaning

I0+ Index set of complementarities with zero G and positive H

FMPCC
ΩMPCC

(w) MPCC linearized feasible cone

L(w, λ, µ, ν, ξ) MPCC Lagrangian

1.2 Related Work

This thesis’ primary contribution is the introduction of a new benchmark consisting of

a particular class of MPCCs. This is done primarily to evaluate deficiencies in existing

solution methods when comes to solving the problems that arise from discretizing

OCPs via the FESD method. In this section, we cover related work on solution

methods for MPCCs and benchmarking efforts for other classes of problem.

1.2.1 MPCC Solution Methods

There exists significant literature on various solution methods for MPCCs, though

often this comes in the form of methods for Mathematical Programs with Equilibrium

Constraints (MPECs) which are NLPs with Variational Inequalities (VIs). A vast

array of approaches using Nonlinear Complementarity Functions (NCPs) can be

found in Facchinei and Pang [8]. Other approaches include direct penalty methods

such as those suggested in [10]. So called direct methods that solve the MPCC as an

NLP are also often applied, where the complementarity constraints in Equation (1d)

are replaced with an equality constraint (Gi(x)Hi(x) = 0) or a relaxation of that

constraint to an inequality (Gi(x)Hi(x) ≤ 0) [11]. There is also existing work by

Anitescu that proposes elastic mode style algorithms (as are implemented in SQP

methods) for solving MPCCs [12].

5



1 Introduction

The primary method explored in this thesis is solving MPCCs via solving multiple,

related, NLPs. When it comes to regularization/relaxation methods there is a variety

of proposed methods that have differing theoretical properties that have been proposed

in [13, 14, 15, 16, 17], to name a few. These can all be used to generate relaxed NLPs

with a regularization parameter σk and solved in a homotopy with σk → 0. These

methods include the use of various regularization techniques with varying levels of

theoretical guarantees on what points they converge to. However, due to the relative

ease of existing benchmarks (which are discussed in the next section) there is not

a significant amount of comparison of these approaches on larger MPCCs. We also

discuss briefly the lifting methods as proposed by Stein [18] and extended by Izmailov

et al. [19] which attempt to project the degenerate complementarity constraints into

a 3rd dimension via an auxiliary variable and additional equality constraints. If

one limits themselves to just quadratic programs with only linear complementarity

constraints, i.e., G(w) = Aw, and H(w) = Bw, there is a specifically tailored solver,

LCQPow, developed by Hall et al [20] that uses a sequential convex programming

approach.

Beyond those solution methods directly benchmarked there are several other classes

of approaches that have been proposed. Interesting recent work related to solving

MPECs with a Non-Interior Point approach has been done by Lin and Ohtsuka [21]

which extends similar work done by Hotta and Yoshise [22] for non-linear MPCCs

and earlier by Chen and Harker [23] which focused on solving Linear Programs

with Complementarity Constraints. A separate class of approaches has also been

proposed, most recently by Kirches et al. [24] with an algorithm that uses sequential

linearization of an MPCC as a sub-problem for an Augmented Lagrangian scheme.

This builds upon a filterSQP extension proposed by Leyffer and Munson [25] which

introduces an additional element to the standard filterSQP to specifically handle the

complementarity conditions. An even earlier proposed algorithm is an “ε-active-set”

method by Fukushima and Tseng [26]. This approach solves a series of MPCCs

within a fixed but slightly relaxed active set at each iterate to generate a descent

6



1.2 Related Work

direction. A common factor that makes evaluation of these algorithms difficult is

that for many of these proposed algorithms there often does not exist a performant,

publicly available, implementation.

Finally, there is a completely separate set of approaches that attempt to take advantage

of the inherent combinatorial structure of MPCCs and attempt to solve them by

branching on the active sets of each complementarity and attempting to solve these

as Mixed-Integer Nonlinear Programming problems (MINLP). These are somewhat

similar to the work in [24], [25], and [27], as they also use the combinatorial structure

to fix the active set of a given problem.

1.2.2 Other Benchmarks

There does not exist a particularly large cohort of existing benchmarks focused on

MPCCs or MPECs. The primary set of problems used is a benchmark introduced by

Sven Leyffer in 2000 called MacMPEC which contains 193 problems of various sizes [28].

Less commonly used and cited is the MPEC library published by GAMS [29]. Both of

these benchmarks consist primarily of problems taken from operations research and

economics along with problems coming from elasto-statics and structural engineering.

Conversely, one can find a wide variety of benchmarks for other classes of problems

such as QPs [30], Semi-definite programming [31, 32], and NLPs [33, 34].

In present literature there are several examples of solvers that use MacMPEC as a

source for validation of performance on MPCCs and MPECs including filterSQP [35],

and several Augmented Lagrangian (AL) approaches to solving such problems such

as ALGENCAN as benchmarked by Izmailov et al. and more recently a variety of

AL methods by Guo and Deng [27, 36]. These benchmarks all tend to follow the

interpretation guidelines set forth by Dolan and Moré in their article on performance

profiles [37]. The article introduces an approach to interpreting the results of opti-

mization benchmarks via a more quantitative approach to data visualization which

7
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we describe in Section 5.1 and utilize during our discussion of experimental results in

Chapter 5.

1.3 Outline of the Thesis

This thesis is structured as follows. We first describe sufficient mathematical back-

ground on the theory underpinning MPCCs and their solution methods in Chapter 2.

This is followed by a brief discussion of the theory behind nonsmooth dynamical

systems, their difficulties, and the details of FESD, in Chapter 3. This chapter

also briefly mentions the structure of NOSNOC itself and the tool-chain that it

implements. Chapter 4 then first describes the structure of the benchmark as well

as a brief explanation of all included problems. Chapter 5 begins with a discussion

of performance profiles introduced by Dolan and Moré and their use in visualizing

the results of the various experiments run [37]. This is followed by a description of

experiments run against this benchmark, and their results are discussed in detail.

We conclude with on overview of the results along with proposed future work in

Chapter 6.

8



2 Mathematical Programs with

Complementarity Constraints

In this chapter, we cover the background on Mathematical Programs with Com-

plementarity Constraints (MPCCs) starting with tailored stationarity concepts and

constraint qualifications. We then move on to a description of the primary solution

method evaluated in this thesis: solving MPCCs via a relaxation of the complemen-

tarity constraints. To this end, we cover a myriad of existing relaxation functions

and several approaches to driving the relaxation parameter to zero. We then include

a brief description of lifting methods. Finally we discuss an attempt at re-scaling the

relaxed region of the problem, such that it’s relative size is normalized for all of the

approaches.

2.1 MPCC Theory

Due to the previously discussed degeneracy of MPCCs as a class of NLPs we cannot

use the standard first-order necessary conditions and Karush-Kuhn-Tucker (KKT)

conditions to describe solutions to such problems. Therefore, more specialized

conditions have been devised to describe the stationarity for MPCCs. In this section

we describe those stationarity conditions as well as the set of auxiliary NLPs that can

be used to classify the stationary points of the MPCC. We also discuss the inherently

9



2 Mathematical Programs with Complementarity Constraints

combinatorial nature of MPCCs as well as the standard combinatorial stationarity

conditions known as Bouligand Stationarity (B-Stationarity).

2.1.1 Stationarity Definitions

It is important to note that most of the theoretical difficulties in solving MPCCs stem

from bi-active constraints, i.e. when for 0 ≤ a ⊥ b ≥ 0 the solution lies in the point

where a = 0 and b = 0. On the other hand, when a solution to an MPCC lies in points

where either a > 0 or b > 0 for all complementarity conditions (a condition named

“strict complementarity”), standard KKT-conditions can be shown to be necessary

for optimality. The stationarity conditions of MPCCs have been described as both a

“zoo” and “alphabet-soup” by researchers in the field. This is due to the variety of

conditions which can cause solvers to halt on NLP formulations of the MPCC, even

if those points have trivial descent directions.

In order to treat the various conditions that follow we first define the index sets:

I00 = I00(w) = { i|Gi(w) = 0, Hi(w) = 0 } , (3a)

I0+ = I0+(w) = { i|Gi(w) = 0, Hi(w) > 0 } , (3b)

I+0 = I+0(w) = { i|Gi(w) > 0, Hi(w) = 0 } , (3c)

for a w that is feasible for the original form of the MPCC in Equation (1).

2.1.2 Bouligand Stationarity

In order to define the most generic stationarity concept for MPCCs, Bouligand-

Stationarity (B-Stationarity) we first define the MPCC specific first order linearized

10



2.1 MPCC Theory

feasible cone at a feasible point w:

FMPCC
ΩMPCC

(w) = {d ∈ Rnw |∇g(w)>d = 0,

∇hi(w)>d ≥ 0, for all i ∈ A(w),

∇Gi(w)>d = 0, for all i ∈ I0+(w),

∇Hi(w)>d = 0, for all i ∈ I+0(w),

0 ≤ ∇Gi(w)>d ⊥ ∇Hi(w)>d ≥ 0, for all i ∈ I00(w)}.

We note that, unlike the standard linearized feasible cone used in the theory for NLPs,

this cone is necessarily non-convex. w∗ is considered algebraically B-stationary if it is

feasible and it holds that:

∇f(w∗)>d ≥ 0, ∀d ∈ FMPCC
ΩMPCC

(w∗). (4)

It turns out that if FMPCC
ΩMPCC

(w∗) is equal to the true tangent cone at w∗, then this

condition is necessary for optimality. This is called “geometric B-stationarity” but

this is less computationally useful.

Other Stationarity Concepts for MPCCs

In this section we will discuss multiplier based stationarity concepts for an MPCC

of the form in Equation (1). To handle this problem the literature introduces

several auxiliary NLPs, the KKT conditions of which are useful in characterizing the

stationarity conditions of the MPCC. These are the so called tightened NLP (TNLP):

11



2 Mathematical Programs with Complementarity Constraints

min
w

F (w) (5a)

s.t. 0 = g(w), (5b)

0 ≤ h(w), (5c)

0 = Gi(w), i ∈ I00 ∪ I0+, (5d)

0 ≤ Gi(w), i ∈ I+0, (5e)

0 = Hi(w), i ∈ I00 ∪ I+0, (5f)

0 ≤ Hi(w), i ∈ I0+, (5g)

and the relaxed NLP (RNLP):

min
w

F (x) (6a)

s.t. 0 = g(w), (6b)

0 ≤ h(w), (6c)

0 = Gi(w), i ∈ I0+, (6d)

0 = Hi(w), i ∈ I+0, (6e)

0 ≤ Gi(w), i ∈ I00 ∪ I+0, (6f)

0 ≤ Hi(w), i ∈ I00 ∪ I0+. (6g)

Stationarity Conditions

The above, along with a definition of an MPCC Lagrangian, which is the standard

Lagrangian for the TNLP/RNLP:

L(w, λ, µ, ν, ξ) = F (w)− λ · g(w)− µ · h(w)− ν ·G(w)− ξ ·H(w), (7)

12



2.1 MPCC Theory

allow for the the definition of “weak stationarity” (W-stationarity) conditions for

Equation (1):

∇wL(w∗, λ∗, µ∗, ν∗, ξ∗) = 0, (8a)

g(w∗) = 0, (8b)

0 ≤ µ∗ ⊥ h(w∗) ≥ 0, (8c)

G(w∗) ≥ 0, ν∗i = 0, i ∈ I+0, (8d)

H(w∗) ≥ 0, ξ∗i = 0, i ∈ I0+, (8e)

G(w∗) = 0, ν∗i ≥ 0, i ∈ I00 ∪ I0+, (8f)

H(w∗) = 0, ξ∗i ≥ 0, i ∈ I00 ∪ I+0. (8g)

Via simple comparison of the KKT conditions we see that this W-stationarity is

equivalent to stationarity in the TNLP. We can also see that the KKT conditions of

the RNLP correspond to Equation (8a) with non-negativity constraints on ν∗ and

ξ∗ (Equation (8f) and Equation (8g)). This condition is called “strong stationarity”

(S-Stationarity).

With both ends of the spectrum of stationarity described we can dive deeper into

the alphabet soup of stationarity conditions. All of these: Clarke (C), Mordukhovich

(M), and Abadie (A) stationarity conditions can be defined as constraints on the

multipliers ν∗ and ξ∗, along with the other W-stationarity conditions.

1. Abadie stationarity is characterized by the condition that for all i ∈ I00 either

νi ≥ 0 or νi ≥ 0.

2. Clarke stationarity is characterized by the condition that for all i ∈ I00, νiξi ≥ 0.

3. Mordukhovich stationarity is characterized by the condition that for all i ∈ I00

either νi > 0 ∧ ξi > 0 or νiξi = 0.

13



2 Mathematical Programs with Complementarity Constraints

S-Stationarity M-Stationarity

C-Stationarity

A-Stationarity

W-Stationarity

Figure 1: Stationarity implication graph.

It is important to note that for problems that exhibit strict complementarity we see

that each of these definitions collapses to the same conditions as I00 is the empty set.

In cases without strict complementarity, the implications in Figure 1 hold which can

easily be observed from the inequality conditions on the multipliers.

Constraint Qualifications

Here we briefly mention the constraint qualifications that are relevant to the relaxation

methods we discuss in the next section.

(i) MPCC-LICQ is satisfied for an MPCC of the form Equation (1) at point w∗ iff

for the inequality active set Ih(w∗) the gradients:

∇gi(w∗), i = 1, . . . , ng, (9a)

∇hi(w∗), i ∈ Ih(w∗), (9b)

∇Gi(w∗), i ∈ I00(w∗) ∪ I0+(w∗), (9c)

∇Hi(w
∗), i ∈ I00(w∗) ∪ I+0(w∗), (9d)

are linearly independent.

(ii) MPCC-MFCQ is satisfied for an MPCC of the form Equation (1) at point w∗

14



2.2 MPCC Solution Methods

iff for the inequality active set Ih(w∗) the gradients:

∇gi(w∗), i = 1, . . . , ng, (10a)

∇Gi(w∗), i ∈ I00(w∗) ∪ I0+(w∗), (10b)

∇Hi(w
∗), i ∈ I00(w∗) ∪ I+0(w∗), (10c)

are linearly independent and there exists a vector d ∈ Rnw such that:

∇gi(w∗)>d = 0, i = 1, . . . , ng, (11a)

∇hi(w∗)>d < 0, i ∈ Ih(w∗), (11b)

∇Gi(w∗)>d = 0, i ∈ I00(w∗) ∪ I0+(w∗), (11c)

∇Hi(w
∗)>d = 0, i ∈ I00(w∗) ∪ I+0(w∗), (11d)

These definitions can be found in more detail, along with other weaker constraint

qualifications, in [38].

2.2 MPCC Solution Methods

In this section, we discuss the solution methods evaluated in the experiments de-

scribed in Chapter 5. To this end we first describe the relaxation methods that are

implemented in NOSNOC and briefly mention their theoretical properties. This is

followed by a discussion of the unfortunate reality that many of these theoretical

properties do not necessarily exist in practice due to the limitations of imprecise

algebras. We then discuss several approaches to driving the relaxation parameter to

zero, and a normalization approach which we use to reduce the biases caused by the

different relaxations. Finally the lifting methods of Stein, and Izmailov et al. are

presented.
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2 Mathematical Programs with Complementarity Constraints

2.2.1 Relaxation Functions

The primary solution method tackled in this thesis is the relaxation approach which

solves a series of relaxed NLPs:

min
w

F (w) (12a)

s.t. 0 =g(w), (12b)

0 ≤h(w), (12c)

0 ≤G(w), (12d)

0 ≤H(w), (12e)

0 ≤ψ(G(w), H(w), σ), (12f)

which we call NLP(σ). Note this is not the same NLP as the RNLP which is used in

the stationairity definitions. The relaxation function ψ(G(w), H(w), σ) is assumed to

approach the true feasible set of 0 ≤ G(w) ⊥ H(w) ≥ 0 as σ approaches 0. There have

been many such functions proposed in the literature with various theoretical properties

proven about convergence of this homotopy procedure under various assumptions. In

the remainder of this section we discuss the relaxation functions that are implemented

in the NOSNOC software package and that are evaluated in Chapter 5.

Scholtes’ Global Relaxation

One of the earliest and simplest global relaxations was studied by Scholtes in [13].

The relaxation function in this case is defined as:

ψS(a, b, σ) = ab− σ (13)

Theorem 3.1 of the Scholtes paper states that a sequence xk which are solutions of

NLP(σk) converging to x∗, which is guaranteed to be a C-stationary point under the

16



2.2 MPCC Solution Methods

assumption that MPCC-LICQ holds at x∗. This sequence is also guaranteed to have

unique multipliers for each k. If the MPCC-LICQ requirement is relaxed to only

include MPCC-MFCQ it can still be shown that that x∗ is a C-stationary point, but we

lose the multiplier uniqueness. It can be further shown that if strict complementarity

holds then the points converged to by this sequence will be B-Stationary points of

the MPCC.

a

b

(a) σ = 1

a

b

(b) σ = 0.5

a

b

(c) σ = 0.1

Figure 2: Visualization of the Scholtes relaxation of 0 ≤ a ⊥ b ≥ 0.

Smoothed Nonlinear Complementarity Functions

These three functions fall into the class of smooth nonlinear complementarity functions

(NCPs). It is unclear if the convergence properties derived by Scholtes necessarily

hold for any arbitrary NCP, however some work has been done by Jiang and Ralph

that shows convergence for particular formulations using these functions [39]. [8]

further proves convergence to C-stationary points. However these results rely on

similar, relatively strong, assumptions on the non-degeneracy of the point that the

sequence converges to as the proof for the Scholtes relaxation does. It is important

to note that given a rescaling of the σ parameter the level sets of these three NCPs

are equivalent to that of the Scholtes relaxation.

ψNR(a, b, σ) =
a+ b−

√
(a− b)2 + σ2

2
(14)

ψFB(a, b, σ) = a+ b−
√
a2 + b2 + σ2 (15)

17



2 Mathematical Programs with Complementarity Constraints

ψCCK(a, b, σ) = α
(
a+ b−

√
a2 + b2 + σ2

)
+ (1− α)(ab− σ) (16)

For the Chen-Chen-Kanzow function we use α = 0.5 as is done in the paper that

introduced this function [40].

The Lin-Fukushima Relaxation

The Lin-Fukushima relaxation relaxes both sides of the inequality pair that makes

up the complementarity set by replacing 0 ≤ a⊥b ≥ 0 with the constraints:

ab ≤ σ2 (17)

(a+ σ)(b+ σ) ≥ σ2 (18)

This relaxation is shown to have the same theoretical guarantees as the Scholtes

relaxation under MPCC-LICQ and MPCC-MFCQ [41].

a

b

(a) σ = 1

a

b

(b) σ = 0.5

a

b

(c) σ = 0.1

Figure 3: Visualization of the Lin-Fukushima relaxation of 0 ≤ a ⊥ b ≥ 0.

Kadrani’s Nonsmooth Relaxation

The relaxation proposed by Kadrani et. al [16] produces a non-smooth feasible set

with a combination of the function:

ψK(a, b, σ) = (a− σ)(b− σ), (19)

18



2.2 MPCC Solution Methods

and relaxing the strict non-negativity of the complementaritiesG(x) ≥ 0 andH(x) ≥ 0

with G(x) ≥ −σ, H(x) ≥ −σ. From simple observation it is clear that the near

disjointness of this approach may lead to poor results in cases where the initial solution

is not on the correct orthant. However this work has some of the best theoretical

guarantees available and concludes with a convergence guarantee to M-stationary

points under MPCC-LICQ of the accumulating point which can actually be reduced

to only MPCC-CPLD.

a

b

(a) σ = 1

a

b

(b) σ = 0.5

a

b

(c) σ = 0.1

Figure 4: Visualization of the Kadrani relaxation of 0 ≤ a ⊥ b ≥ 0.

The Nonsmooth Kanzow-Schwartz Relaxation

The Kadrani relaxation was further improved by Kanzow and Schwartz [17] by using

a similarly non-smooth relaxation, but dealing with the near-disjointness problem of

the original. This is accomplished with a piecewise function that one can essentially

view as a shift of the original set along the (1, 1) ray:

ψKS(a, b, σ) =


(a− σ)(b− σ), a+ b− 2σ ≥ 0

−0.5((a− σ)2 + (b− σ)2), a+ b− 2σ < 0

(20)

This relaxation maintains the theoretical properties of the Kadrani relaxation and

can be shown to converge to M-stationary points under MPCC-CPLD.
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2 Mathematical Programs with Complementarity Constraints

a

b

(a) σ = 1

a

b

(b) σ = 0.5

a

b

(c) σ = 0.1

Figure 5: Visualization of the Kanzow-Schwartz relaxation of 0 ≤ a ⊥ b ≥ 0.

The Steffensen-Ulbrich Local Relaxation

As opposed to the global relaxation of all the prior options, the approach proposed by

Steffensen and Ulbrich relaxes only the “problematic” region of the problem, i.e, only

the origin. This is done by generating a function that maintains equality with the

complementarity constraints for any point a+ b ≥ σ, and smoothly transitions to the

relaxed portion (i.e. has continuous derivatives) at (a, b) = (0, σ) and (a, b) = (σ, 0).

The local relaxation is then formed by a function in Cartesian coordinates q = a+ b,

v = a− b and satisfy certain conditions including convexity and differentiability which

can be found in [42]. This allows for a whole family of relaxations including the two

we implement in NOSNOC which we describe below: Let x = a− b and z = x
σ .

ψSU1(a, b, σ) = a+ b−


|x| |x| ≥ σ,

σ
[

2
π sin

(
(z + 3)π2

)
+ 1
]
, |x| < σ

(21)

ψSU1(a, b, σ) = a+ b−


|x| |x| ≥ σ,

σ
8 (−z4 + 6 ∗ z2 + 3), |x| < σ

(22)

This relaxation can be shown to converge to a C-stationary point under MPCC-CPLD

assumptions, which is a marginally stronger statement than that which can be made

for the Scholtes relaxation [42].
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a

b

(a) σ = 1

a

b

(b) σ = 0.5

a

b

(c) σ = 0.1

Figure 6: Visualization of the Steffensen-Ulbrich relaxation of 0 ≤ a ⊥ b ≥ 0.

2.2.2 “The Price of Inexactness”

It is important to note that all of the above theoretical guarantees come from proofs

reliant on solving the problem, NLP(σk), to an exact KKT point. The effects of

solving KKT systems inexactly, in finite arithmetic, and using that as a sequence

of points converging to a true solution to the MPCC w∗ was studied in detail by

Kanzow and Schwartz [43]. This is a crucial caveat to much of the theory when

applied to implemented solvers due to the general inability of NLP solvers to provide

anything other than an ε approximation to a KKT point as encoded by termination

conditions. It has also played out frequently in practice, that the simpler Scholtes

and Scholtes-style NCP relaxations have performed better in practical applications

than their theory would suggest, which is a result that we will echo in Section 5.7.1.

Kanzow and Schwartz provide a proof that, under some mild assumptions on the

contraction of εk (the tolerance to which the approximate KKT point is solved

to) with regards to σk, both the Scholtes and Lin-Fukushima [44] relaxations still

converge to C-stationary points under MPCC-MFCQ. In the case of the Steffensen-

Ulbrich relaxation, the convergence to even a C-stationary point relies on further

conditions being placed on the intermediate points of the homotopy. In particular

these conditions geometrically suggest that near-bi-active points treated by the local

relaxation must disappear after some point in the sequence xk. Similar (but more

complex) conditions on xk are also derived for both the Kadrani and Kanzow-Schwartz

21



2 Mathematical Programs with Complementarity Constraints

kinked relaxations, without which only W-stationarity is guaranteed for x∗.

2.2.3 Driving the Relaxation Parameter to Zero

This section covers three different methods of driving the relaxation parameter to

zero, which allows us to recover the solution to the original MPCC. We note that

for methods other than the standard homotopy there is only limited theory for our

exact use of these methods, but we mention existing convergence properties when

relevant.

Standard Homotopy

The standard approach to getting a solution of the MPCC, which is equivalent to the

solution of NLP(0), is to solve a sequence of NLP(σk) with the sequence σk ↓ 0. This

is the approach taken by the vast majority of the published relaxation approaches

discussed in Section 2.2.1, and is the basis of the theory that leads to the convergence

properties described in that section. The exact method of obtaining σk+1 from σk is

generally not restricted by the theory, however, in the literature, the most common

implementation that exists is the update rule: σk+1 = κσk. In this scheme, κ ∈ (0, 1)

is a free meta-parameter which determines the rate at which σk approaches zero

in a geometric fashion. Examples are κ = 0.2 in Kadrani et. al [16], κ = 10−2 in

Scholtes [13], and κ = 0.1 in Steffensen and Ulbrich [42].

There exists a further improvement to this approach that involves a second parameter

ζ ∈ R+ and a new update rule:

σk+1 = min(κσk, σ
ζ
k), (23)

which provides an “acceleration” to the convergence rate of σk to zero. We call this

the “superlinear” update rule, and the original σk+1 = κσk the “linear” update rule.

22



2.2 MPCC Solution Methods
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5 = 0:25 1 = 1

Figure 7: Different sequences of σk using the superlinear update rule.

In practice we occasionally observe better performance from this as the active set of

the solution is often identified and no longer changes after σk reaches a small enough

value. We plot the trajectory of σk for several values of κ and ζ in Figure 7.

`∞-Mode

The first alternative approach to the standard homotopy is what we will call the

`∞-mode, due to its similarity to the `∞-exact penalty formulation. The NLPs we

solve in this case come in the form:

min
w ∈ Rw, s ∈ R

F (w) +
1

σ
s (24a)

s.t. 0 = g(w), (24b)

0 ≤ h(w), (24c)

0 ≤ G(w), (24d)

0 ≤ H(w), (24e)

0 ≤ ψ(Gi(w), Hi(w), s), i = 1, . . . , nc, (24f)

0 ≤ s ≤ σ. (24g)
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2 Mathematical Programs with Complementarity Constraints

Note that when ψ = ψS we obtain the `∞-exact penalty formulation of the MPCC [45].

For other choices of ψ the NLP still uses the `∞-exact penalty formulation formula-

tion for a problem where the orthogonality constraint is replaced with the equality

constraint ψ(a, b, 0) = 0. As such, we would expect that for all the relaxations, this

would be a valid approach to steer the relaxation parameter to 0. In some similar

formulations, such as the elastic mode NLP proposed by Anitescu [12], there is also

an upper bound set on the slack variable s as a guiding constraint. We combine

the ideas of the standard homotopy approach and `∞-mode approach by adding the

upper bound constraint s ≤ σ to sequentially shrink the upper bound along with

increasing the penalty at each iteration.

`1-Mode

The second alternative steering mode we call the `1-mode, once again due to its

similarity to the corresponding exact penalty formulation:

min
w, s ∈ Rnc

F (w) +
1

σ

nc∑
i=1

si (25a)

s.t. 0 = g(w), (25b)

0 ≤ h(w), (25c)

0 ≤ G(w), (25d)

0 ≤ H(w), (25e)

0 ≤ ψ(Gi(w), Hi(w), si), i = 1, . . . , nc, (25f)

0 ≤ s ≤ σ. (25g)

Again this is equivalent to the standard `1-exact penalty reformulation when using the

Scholtes relaxation. This approach also has more examples in the literature than the

`∞ version, for example Fukushima et al. present an algorithm using an `1 penalized

Fischer Burmeister function [46]. The exact `1-penalty formulation for MPCCs was
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2.2 MPCC Solution Methods

described by Anitescu and has been proven to converge to S-stationary points of the

MPCC for a large enough penalty parameter 1
σ under MPCC-LICQ [11]. In the same

paper it is however noted that a theoretical difficulty arises when the B-stationary

points of the MPCC do not coincide with S-stationary points (i.e. stationary points

of the RNLP). In such cases, the required penalty parameter grows infinitely and as

such makes the numerical properties of this method suspect. It is also shown in the

literature by Leyffer et al. [47] that the iterates of a penalty method such as this can

be shown to correspond to that of the the Scholtes relaxation method following the

same pattern of {σk}.

2.2.4 Lifting Methods

Gi(w)
Hi(w)

c

Figure 8: Representation of the lifted feasible set.

We also briefly experiment with an alternate approach to handling the degeneracy

caused by the orthogonality constraint as proposed by Stein and extended by Izmailov

et al. [18, 19]. The cornerstone of this approach is to replace the nonsmooth, ill-

conditioned, orthogonality constraint in 2 dimensions, with a set of constraints in

3 dimensions that encode the same behavior when projected back down into two

dimensions. The proposed lifting involves a function s : R→ R which satisfies:

(P1) s(c) = 0 over the negative reals,

(P2) s(c) is non-negative over the positive reals,
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2 Mathematical Programs with Complementarity Constraints

(P3) s is surjective from the set of non-negative reals to the set of non-negative reals,

(P4) s is in at least C1.

An example of such a function would be s(c) = max(0, c)k for any k. In his paper

Stein suggests k = 2 as an option and in Izmailov et al. k = 3 is used. This s(c) can

then be used to replace 0 ≤ Gi(w)⊥Hi(w) ≥ 0 with one additional variable c and 2

constraints:

Ψ1(Gi(w), Hi(w), c) = Gi(w)− s(c) = 0, (26a)

Ψ2(Gi(w), Hi(w), c) = Hi(w)− s(−c) = 0. (26b)

This approach has moderately worse theoretical properties than the relaxation meth-

ods described above and can only be shown to converge to C-stationary points under

MPCC-LICQ. Further, as we will discuss in Section 5.9, it is quite sensitive to initial

infeasibility as Stein himself comments on in his paper. This makes it a difficult

approach to use for FESD problems as providing a feasible initial guess that is

somewhat close to a local minimum is difficult due to the often complex dynamics of

the systems we treat.

2.2.5 Parameter Scaling

In this section, we discuss one potential way of equalizing a particular property of the

various relaxations in order to better compare them based on their intrinsic properties

rather than based on a particular choice of σ0 and κ. We introduce a metric for

each relaxation function ψ(a, b, σ) which measures the level of relaxation from the

L-shaped set of an MPCC as a function of σ: ρ(σ). One can theoretically choose any

number of values derived from σ to represent this, but in this case we choose the

simplest one: the distance to the level set ψ(a, b, σ) = 0 to the origin. A graphical

representation of this is shown in Figure 9. As one can see this function depends
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ρ(σ)
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b

(a) Geometric representation of
ρ(σ) for ψS.

ρ(σ)

a

b

(b) Geometric representation of
ρ(σ) for ψKS.

ρ(σ)

a

b

(c) Geometric representation of
ρ(σ) for ψK.

ρ(σ)

a

b

(d) Geometric representation of
ρ(σ) for ψSU1.

Figure 9: Geometric representations of ρ(σ).

heavily on the exact structure of the relaxation, but is in all cases trivial to solve for.

We list the ρ(σ) functions for all of the relaxation functions in Table 2.

Relaxation ρ(σ)

Scholtes
√

2σ
Fischer-Burmeister σ
Natural Residual σ

2

Chen-Chen-Kanzow σ
2 +

√
2σ
2

Steffensen-Ulbrich (trig)
(

2
√
2

π
sin( 3π

2 )+1

2

)
σ

Steffensen-Ulbrich (poly)
(

3
√

2
16

)
σ

Kadrani σ

Kanzow-Schwartz
√

2σ
Lin-Fukushima σ

Table 2: Table of ρ(σ) functions.
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It is proposed to scale the the parameter σ in each relaxation function to equilibrate

the rate at which ρ(σ) approaches zero. We note the structure of all of the ρ(σ) other

than Scholtes is some constant r times σ. Arbitrarily we choose to scale all of the

methods to have the same ρ(σ) as the Scholtes relaxation. This can be trivially done

by scaling the input by taking the square root of the relaxation parameter σ and

scaling it by the appropriate constant
√

2
r . An important thing to note is doing this

for the kinked relaxations increases the worst case complementarity violation for any

given σ more significantly due to the limits of these relaxations do not approach the

true L-shaped set as a or b tend to infinity. In the case of the Chen-Chen-Kanzow

function we only rescale the σ component of the part that contributes the σ
2 portion

of ρ(σ). This approach is discussed in Section 5.7.1 where we evaluate the relative

performance of the scaled and unscaled approaches.
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3 Nonsmooth Systems

This chapter first covers some rudimentary background on nonsmooth systems,

their behaviors, and the numerical difficulties they pose. We then follow this with

a brief overview of the newly introduced Finite Elements with Switch Detection

(FESD) discretization method and Time-Freezing reformulation, which can be used

to accurately discretize the aforementioned nonsmooth systems. Finally, this chapter

ends with a description of NOSNOC [9], the open-source tool that implements these

methods, and gives a brief overview of its structure and functionality.

3.1 Types of Nonsmooth Systems

All of the problems discussed in this thesis come from discretization of nonsmooth

dynamic systems, i.e, systems of Ordinary Differential Equations (ODEs) whose right

hand side (r.h.s) is defined by a vector field that is not necessarily differentiable

or even continuous. This leads to these types of systems to be difficult to treat

numerically without the development of additional theory to handle the difficulties

posed. These types of systems can broadly be separated into three classes based on

the characteristics of the right hand side (r.h.s) of the ODE, and the behavior of it’s

solutions:

(NSD1) Systems with continuous solutions but whose derivatives are nonsmooth.

One of the simplest examples of these kinds of system are ones that
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3 Nonsmooth Systems

contain absolute values, e.g, ẋ = |x| which, due to the nonsmoothness

of the derivatives already renders the accuracy guarantees for standard

integrators no longer valid.

(NSD2) This class contains ODEs of the form ẋ = f(x) where the r.h.s f(x) is

discontinuous, but the solutions to the ODE is continuous. These types

of systems make up the core of what NOSNOC is designed to handle.

They exhibit a variety of interesting behaviors such as sliding modes and

spontaneous switches which will be discussed in the section on Filippov

systems.

(NSD3) These ODEs contain state jump laws, i.e, solutions to them may not be

continuous in time. These are the most pathological of the three classes.

Examples of this are systems that model impacts such as the classic

elastic bouncing ball. As discussed in [48] these systems can be used

when modeling systems with discrete states.

An example of each of these is is given in Figure 10 Each of these system types

are difficult or impossible to treat accurately with standard fixed step integration

methods, and as such require the special handling that is provided by the FESD

discretization.

3.1.1 Piecewise Smooth Systems

The first formalism that we will use for NSD1 and NSD2 nonsmooth systems is the

concept of a Piecewise Smooth System (PSS). As we are interested in controlled

systems we will define everything in the section with a known control signal u(t).

Such a system with an index set I = {1, . . . , nf} is defined generally as:

ẋ = fi(x(t), u(t)), for x(t) ∈ Ri ⊂ Rnx , i ∈ I, (27)
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t
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(a) NSD1 system: ẋ = 1 + |x|.
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x
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(b) NSD2 system with a switch at
x = 0.

t

x
(t

)

(c) NSD3 bouncing ball.

Figure 10: Types of nonsmooth systems.

over a set of disjoint open sets Ri. The boundaries of these sets ∂Ri is assumed to be

piecewise smooth as well, and the closure of the sets is the whole set Rnx ,

Rnx =
⋃
i∈I

Ri, Ri ∩Rj = ∅,

where i 6= j, which can intuitively be interpreted as the sets fully tiling the set Rnx .

We take the functions fi ∈ C2 to be Lipschitz continuous on the corresponding set

Ri.

This generic formulation is quite powerful and has been applied as a model to a variety

of real world systems. A good overview of the theory of PSS and some examples

can be found in [49]. However, due to the nonsmoothness of the ODE, standard
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initial value problem theory does not generally apply. This along with several other

motivating factors leads to the tools in the next section.

3.1.2 Filippov Systems

The systems described in Equation (27), can produce a very rich behavior, however

that particular formalism does not define well the behavior of the system on the

boundary between sets. For example we can take the example piecewise smooth

system:

ẋ = − sign(x) + 0.5 sin(t). (28)

The interesting behavior we see occurs at x = 0, where sign(0) = 0 leading to the

dynamics ẋ = 0.5 sin(t). Intuitively one would expect this system to be stable at the

point x = 0 as the vector fields at x± ε point towards 0. However with the simple

PSS formulation this behavior is not recoverable, and we obtain that 0.5 sin(t) = 0

which is clearly an untenable state. Applying numerics to this problem will yield

unwanted results and artifacts such as numerical chattering.

As such we need a different formalism to consistently define the analytical behavior of

such systems. One such formalism is embedding the ODE into a differential inclusion

(DI) as is proposed by Filippov. A Filippov DI can generically be written as:

ẋ ∈ F (x(t), u(t)) =
⋂
δ>0

⋂
µ(N)=0

conv f(x+ δB(x) \N, u(t)), (29)

where B(x) is the unit ball, µ(N) the Lebesgue measure, and conv is the closed convex

hull of a set. Applying Equation (29) to the well behaved sets from Equation (27),

yields:

ẋ ∈

{∑
i∈I

θifi(x, u)

∣∣∣∣∣∑
i∈I

θi = 1, θi ≥ 0, θi = 0 for x /∈ Ri

}
, (30)

where I(x) is the “active set” at a given point x ∈ Rnx . The active set in this case
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3.2 Continuous Time Optimal Control with Dynamic Complementarity Systems

indicates which of the regions of the piecewise smooth system Ri have an effect on

the state dynamics. On the interior of each region Ri the derivative ẋ is trivially the

set of cardinality one defined as {fi(x, u)}. Due to this structure we can write the

Filippov DI via convex multipliers θi(x, u) as in Equation (30).

From the definition in Equation (30) we can see the variety of rich behavior Filippov

systems are capable of encoding. Depending on the behavior of the vector fields at

a boundary between two regions we can see one of four different outcomes in the

evolution of the system:

• Boundary crossing occurs when the vector fields on one side of the boundary

points towards the boundary and the other points away as in Figure 11a.

• Entering (or staying in) a sliding mode, shown in Figure 11b, occurs when the

vector field on both sides of the boundary points towards it.

• Exiting a sliding mode due to a change in the solution map for θ. This occurs

as shown in Figure 11c when the vector field conditions change from the one

required for a sliding mode to one that is required for a boundary crossing.

• Spontaneously exiting a sliding mode shown in Figure 11d. This case only

occurs when the vector field on both sides of the boundary points away. We

call this behavior “spontaneous” as there are infinitely many solutions to an

initial value problem that begins on such a boundary.

3.2 Continuous Time Optimal Control with Dynamic

Complementarity Systems

The normal process of direct optimal control is to first discretize the OCP and obtain

a finite dimensional version of the OCP as an NLP.
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(d) Spontaneous switches

Figure 11: Behaviors of Filippov Systems.

3.3 FESD and Time-Freezing

The core of the recent development in the optimal control of nonsmooth systems

has been the introduction of FESD, which is itself based on the work of Baumrucker

and Biegler [50]. This approach is necessary due to the limitations of standard

discretization methods when applied to nonsmooth systems. In particular, these

standard approaches are limited to O(h) accuracy where h is the fixed step size of

the discretization. They further fail to produce correct numerical sensitivities [51].

The FESD discretization is developed to overcome these challenges. In particular we

apply it to systems whose dynamics can be represented as Filippov systems, however

as we discuss in later subsections, similar concepts can be extended to more generic

Differential Inclusions (DIs), as well as directly to some classes of DCS. An optimal
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3.3 FESD and Time-Freezing

control problem of this type can be written generically as:

min
x(·), u(·)

∫ T

0
L(x, u)dt+ E(x(T )) (31a)

s.t. x(0) = x0, (31b)

ẋ(t) ∈ FF (x(t), u(t)), t ∈ [0, T ] , (31c)

0 ≥ h(x(t), u(t)), t ∈ [0, T ] , (31d)

0 ≥ r(x(T )), (31e)

where x ∈ Rnx is the state of the system, x0 is its initial conditions, and u ∈ Rnu is

the control signal. The system is subject to the Filippov DI FF (x, u), and L(x, u) and

E(x(T )) are the Lagrange and Mayer cost terms. We also include path constraints in

h(x, u) and terminal constraints r(x).

3.3.1 FESD

We now introduce the two primary types of reformulation for Equation (31c) that have

been described that transform the set inclusion into a more computationally friendly

form. This is followed by a description of the concept of “cross-complementarity” and

“step-equilibration” both of which are crucial to the FESD algorithm.

Stewart’s Reformulation

The first way we will discuss of reformulating the Filippov system was first introduced

by Stewart in [52]. It involves embedding the calculation of the Filippov multipliers

θ as a Linear Program (LP). This on first look seems to only transfer the difficulty

caused by the set definition to the necessity of solving an optimization problem.

However, we can simply replace the LP with it’s KKT conditions as they are both

necessary and sufficient conditions for optimality.
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3 Nonsmooth Systems

Stewart’s reformulation assumes that the regions Ri of the Filippov system are given

by:

Ri =

{
x ∈ Rnx

∣∣∣∣gi(x) < min
j 6=i

gj(x)

}
, (32)

which can be interpreted as all points x for which some “indicator function” gi(x) is

lower than all the other indicator functions. This may at first seem like an inconvenient

restriction but actually turns out to be sufficiently powerful to describe most systems.

One can calculate these indicator functions from a much more intuitive format: a set

of switching functions φ(x) : Rnx → Rnf and a so called “sign” matrix S ∈ Rnf×nf ,

which at least in the case of the Stewart’s reformulation must be a dense matrix

containing only the elements 1 or −1. At this point it can be shown that Stewart’s

indicator function can simply be calculated as g(x) = −Sφ(x) [53].

Given this assumption one can reformulate Equation (31c) by the single valued

dynamics ẋ =
∑nf

i=1 θifi(x, u) and θ which is a member of the solution map of the

LP:

θ ∈ arg min

θ̃ ∈ Rnf

nf∑
i=1

gi(x)θ̃i (33a)

s.t. 0 ≤ θ̃, (33b)

1 =

nf∑
i=1

θ̃i, (33c)

at x.

We introduce a simplification of notation and define the matrix

F (x, u) =
[
f1(x, u), . . . , fnf (x, u)

]
∈ Rnx×nf .

The KKT conditions of Equation (33) can then be written along with the dynamics
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3.3 FESD and Time-Freezing

to form a Dynamic Complementarity system as discussed in Section 3.2:

ẋ = F (x, u)θ, (34a)

0 = g(x)− λ− µe, (34b)

0 ≤ θ ⊥ λ ≥ 0, (34c)

1 =

nf∑
i=1

θ, (34d)

where λ ∈ Rnf and µ ∈ R are the Lagrange multipliers and are introduced as algebraic

variables into the DCS.

We note that the system of algebraics is square in terms of θ, λ, and µ and as such

admit a unique solution under reasonable assumptions.

It is important to the development of FESD to note the properties of the algebraic

variables θ and λ that enter the complementarity in Equation (34c). As described in

more detail in [53] we can show that λ is a continuous function of time whereas θ

may be discontinuous when the trajectory interacts with the boundaries between the

sets Ri. It can also be shown that the DAE formed for a given “active set” of the

DCS, i.e. I(x(t)) = { i|θi(t) > 0 }, has a unique solution for given initial conditions

x(0) = x0.

Heaviside Step Function Reformulation

An alternate way to reformulate the Filippov system comes in the from described by

Nurkanović et al. in [54]. This uses the step valued Heaviside step function:

γ(x) =


{1} , x > 0,

[0, 1] , x = 0,

{0} , x < 0,

(35)
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which can, alternatively, be represented as an LP:

γ(x) = arg min
α ∈ R

− αx (36a)

s.t. 0 ≤ α ≤ 0. (36b)

In this reformulation we again use the switching function φ(x) and sign matrix S, as

it was described in the previous section, to describe the regions:

Ri = {x ∈ Rnx |Si,•φ(x) > 0 } , (37)

where However, in this case we relax the constraints on the elements of S to allow the

inclusion of zeros, making the S matrix sparse. The motivation for this reformulation

is contingent on this sparsity as it allows a more compact representation of certain

classes of regions. It is important to note that we still require the constraint on

the Ri in Equation (30). A particular motivating example here can be seen in

Figure 12 where using Stewart’s reformulation we require 4 separate regions with

their own algebraic variables and duplicated dynamics. On the other hand, with the

Heaviside Step reformulation we can combine R1, R2 and R3, using only 2 regions,

with φ(x) = [x1, x2]> and a sparse

S =


1 0

−1 1

−1 −1

 . (38)

We provide a comparison of the number of variables and constraints in the Table 4

produced by the two approaches as a function of nφ. From this analysis one can

clearly see that under the assumptions that for systems with a large number of

switching functions the Heaviside Step reformulation produces considerably fewer

complementarity conditions.
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R1R2

R3R4

x1

x2

Figure 12: Unions of sets is simplified by the Step reformulation, similar colored
regions contain the same vector field.

The question remains of how to calculate θi from the step values α. The process

for this is described in [54] and comes from the equivalent set arithmetic operations

shown in Table 3:

ẋ ∈ FF(x) :=
{ nf∑
i=1

θifi(x)
∣∣∣ (39)

θi =

nφ∏
j=1

(
1− Si,j

2
+ Si,jαj

)
, i = 1, . . . , 2nφ , αj ∈ γ(φj(x))

}
.

Using these definitions we define an aggregated LP for calculating the αi associated

with each region:

α = arg min
α ∈ Rnφ

− φ(x)>α (40a)

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nφ, (40b)

and by embedding its KKT conditions and using the same F (x) as in Stewart’s
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reformulation we get the DCS system:

ẋ = F (x, u)θ, (41a)

θi =

nφ∏
j=1

(
1− Si,j

2
+ Si,jαj

)
, i = 1, . . . , 2nφ , (41b)

φ = λp − λn, (41c)

0 ≤ λn ⊥ α ≥ 0, (41d)

0 ≤ λp ⊥ e− α ≥ 0. (41e)

As with Stewart’s reformulation we can show (and it is proven in [54]) that the

Lagrange multipliers of the LP λn and λp are continuous functions of time while α

may be discontinuous, for example in the case of a boundary crossing.

We can now treat our OCP in a different form as an OCP subject to a DCS, and in

particular we introduce GLP to collect the algebraic equations from the LP’s KKT

conditions. We also combine the the algebraic variables y = (θ, λ,mu) in the case of

the Stewart reformulation, and y = (α, λp, λn) for the Heaviside Step reformulation.

Definition Ri Expression θi
Ri = A θi = α1

Ri = A ∪B θi = α1 + α2

Ri = A ∩B θi = α1α2

Ri = int(Rnx \A) = {x|c1(x) < 0 } θi = 1− α1

Ri = A \B θi = α1 − α2

Table 3: Expressions of θi for different definitions of Ri.

Table 4: Comparisons of the problem sizes in Stewart’s and the Heaviside step
reformulation for a fixed nφ, with a dense S.

Method Number of systems nalg ncomp neq

Stewart 2nφ 2 · 2nφ+1 2nφ 2nφ+1
Heaviside step 2nφ 2nφ +3nφ 2nφ nφ+nf
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3.3 FESD and Time-Freezing

Using these we define:

min
x(·), u(·), y(·)

∫ T

0
L(x, u)dt+ E(x(T ))

s.t. x(0) = x0,

ẋ(t) = F (x(t), u(t))θ(t), t ∈ [0, T ] ,

0 = GLP(x(t), y(t)), t ∈ [0, T ] ,

0 ≥ h(x(t), u(t)), t ∈ [0, T ] ,

0 ≥ r(x(T )).

As a brief aside we mention that the Heaviside step reformulation can be used

for systems that expand beyond those which can be represented by a Filippov

system. These are called Aizerman–Pyatnitskii systems, and while we provide expert

functionality within NOSNOC for user to implement these, we do not treat them

further in this thesis [2, 55].

Switch Detection

We now have a process for converting Filippov PSS to two kinds of DCS, but as

described in Section 3.2, we still suffer from the numerical and theoretical difficulties

that come with discretizing such a system. As such we aim to discretize this DCS in

such a way that the solution to the resulting NLP exhibits switch detecting behavior,

i.e. the integrator can identify switches and place nodes of the integration method at

those times. This is crucial as one can clearly see that if the discrete integration nodes

coincide with switches, each integration step, or as we call them “Finite Element”,

in the discretization is not subject to the problems normally caused by the r.h.s.

of the ODE being discretized being discontinuous. In this section we will stick to

treating version of the DCS produced by Stewart’s reformulation, but the same
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general principles apply to the Heaviside step reformulation and more details for that

particular approach can be found in [54].

In order describe the process of FESD we will treat the optimal control formulation

of as single control interval and focus on a discretization of the DCS provided in

Equation (34a) over the time interval [0, T ]. The three primary components of the

FESD scheme:

1. Allowing integration interval length hi of each finite element to be an free

variable in the optimization,

2. Enforcing switch occurrence only on finite element boundaries,

3. Step equilibration to get rid of the spurious degrees of freedom when there are

no switches to detect.

We begin by treating Nfe steps of variable length hi which yields integration intervals

[tk, tk + hk] with t0 = 0, tk+1 = tk + hk, and tNfe
= T . Each finite element is treated

as an integration of a smooth system with an implicit Runge-Kutta integrator with

ns stage points. If we take a fixed grid of step with h = T
Nfe

and ai,j , bi, and ci

(i, j = 1, . . . , nc) being Butcher tableaux entries as described in [53] we get a simple
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3.3 FESD and Time-Freezing

time-stepping discretization of the form:

x0,0 = x0, (42a)

hn =
T

Nfe
, (42b)

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i, (42c)

xn,i = xn,0 + hn
∑ns

j=1 ai,jvn,j , (42d)

vn,i = F (xn,i, un,i) θn,i, (42e)

0 = g(xn,i)− λn,i − eµn,i, (42f)

0 ≤ θn,i ⊥ λn,i ≥ 0, (42g)

1 =

nf∑
i=1

θn,i, (42h)

with i = 1, . . . , ns and n = 0, . . . , Nfe − 1. This discrete-time system will clearly

exhibit the poor behavior discussed prior including introducing artificial local minima

and low order accuracy. FESD instead treats hn as a free variable and simply imposes

that the sum of step sizes is equivalent to the length of the interval. However we also

need to somehow enforce that all switches occur at the boundaries between finite

elements. In order to do this, we introduce the concept of “cross-complementarity”.

The intuition for these additional constraints is that in order to enforce the above

condition an equivalent condition is that for any given finite element the active set as

defined previously must stay constant. In order to do this we can take advantage of the

continuity properties of λ as mentioned previously. To the standard complementarity

constraints in Equation (42g) we add the “cross-complementarity” constraints:

0 = diag (θn,m)λn,m′ , for all m = 1, . . . , ns, m = 0, . . . , ns, m 6= m′, (43)

and can derive the following lemma, the proof of which is in [53]:

Lemma 3.3.1. Regard a fixed n = 0, . . . , Nfe− 1 and a fixed i1, . . . , nf . If any θn,m,i
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with m = 1, . . . , ns is positive, then all λn,m′,i with m′ = 0, . . . , ns must be zero.

Conversely, if any λn,m′,i is positive, then all θn,m,i are zero.

These constraints and the above lemma can be used to show that any active set change

outside of the boundary between finite elements is made infeasible. Recall also that

in the KKT conditions of the Stewart LP we have that µn,ns = minj gj(xn+1) and if

the active set changes at this point we get that φi,j(xn+1) = gi(xn+1)− gj(xn+1) = 0,

where φi,j is the boundary between Ri and Rj , i.e its zero level set. Therefore we get

that xn+1 must be exactly on that boundary and thus hn is enforced to move this

finite element to start exactly when a switch occurs. Using the above constraints we

get an FESD discretized DCS of the form:

x0,0 = x0, (44a)

T =

Nfe−1∑
n=0

hn, (44b)

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i, (44c)

xn,i = xn,0 + hn

ns∑
j=1

ai,jvn,j , (44d)

vn,i = F (xn,i, un,i) θn,i, (44e)

0 = g(xn,i′)− λn,i′ − eµn,i′ , (44f)

0 ≤ θn,i ⊥ λn,i′ ≥ 0, (44g)

1 =

nf∑
i=1

θn,i, (44h)

with i = 1, . . . , ns, i′ = 0, . . . , ns and n = 0, . . . , Nfe−1. We also enforce the continuity

of λ(t) we further introduce the constraint that λn,0 = λn−1,ns . In order to simplify
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some of our notation we introduce the collected vectors:

θn = (θn,1, . . . , θn,ns),

λn = (θn,0, . . . , θn,ns),

h = (h1, . . . , hn).

It is important to note that in adding hn as degrees of freedom we feasibly allow the

NLP solver to possibly use discretization error to reduce the objective of the OCP.

As such the final part of the FESD algorithm is introduced ν(θn, θn+1, λn, λn+1), the

Nurkanović function, who’s structure is described in [53] and is zero if a switch occurs

between finite elements n and n+ 1 and is non-zero otherwise. As such we add the

constraint:

0 = ν(θn′ , θn′+1, λn′ , λn′+1)(hn′+1 − hn′), n′ = 0, . . . , Nfe − 2, (45)

to Equation (44). With this the definition of the FESD discretization is primarily

complete. There are further complications that occur due to Runge-Kutta methods

for which cns 6= 1 which require additional continuity constraints but we direct the

reader to [53] for a more detailed explanation.

Cross-Complementarity Aggregation

The complementarity constraints described in Equation (44g) can be equivalently

formulated in several ways by aggregating the θn,i or λn,j values via summation. This

is due to the non-negativity constraints on both θ and λ. In [56] multiple extensions to

this sparse formulation are proposed including the use of inner products, summation

of the algebraics over each finite element or over all the finite elements. In this

thesis we primarily focus on the idea of summing the algebraics within each finite

element. This yields three additional aggregation modes along with the sparse version

previously described. In order to generate these modes we introduce the following
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values:

σθn =

ns∑
i=1

θn,i, (46a)

σλn =

ns∑
i=0

λn,i. (46b)

We then can redefine Equation (44g) in the following ways:

0 ≤ σλn ⊥ θn,i ≥ 0, n = 0, . . . , Nfe − 1, i = 1, . . . , ns, (47a)

0 ≤ λn,i ⊥ σθn ≥ 0, n = 0, . . . , Nfe − 1, i = 0, . . . , ns, (47b)

0 ≤ σλn ⊥ σθn ≥ 0, n = 0, . . . , Nfe − 1. (47c)

The above three modes are labeled 3, 4, and 7 respectively, while the original sparse

mode is called mode 1. We introduce some theory in a later section for these four

modes in a generic setting.

Step-Equilibration Modes and Heuristics

As described in [53, 54, 56], the function ν(θn, θn+1, λn, λn+1) is generally unpleasant

as it is both highly nonlinear and exhibits large variation in its magnitude which

can cause numerical difficulties. As such there are several alternative reformulations

of these so called step equilibration constraints that can achieve the same goal

of preventing the optimizer from taking advantage of step size being a degree of

freedom.

The first two of these approaches attempt to tackle both of the above issues at once.

If we simply want to discourage the optimizer from deviating from an equidistant

grid except when necessary due to the switch detection constraints, we can introduce

a heuristic penalty from diverging from the mean h̄ = T
Nfe

for this situation and
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augmenting the objective of the discrete-time OCP with:

Fh̄(h) = ρh

Nfe−1∑
n=0

(hn − h̄)2. (48)

Alternatively we can more closely approximate the behavior of the original step

equilibration constraint, which keeps the step sizes of adjacent finite elements constant

when there are no switches. To accomplish this we can augment the objective with:

F∆h(h) = ρh

Nfe−2∑
n=0

(hn − hn+1)2. (49)

Both of these heuristic approaches replace ν(·) with more well behaved formulations,

but come with a major caveat. In particular, one must be careful to choose an

appropriate ρh in order to both prevent the optimizer from driving the value of hn to

zero but also scaled in such a way as to limit biasing the solver towards controls that

lead to switches at the equidistant points.

An alternative approach to dealing with this is to introduce an `2-penalty formulation

to replace the constraint in Equation (45). This is a common approach for dealing with

pathologically nonlinear constraints when solving general NLPs and often improves

performance of methods on degenerate problems. This can be written as

F`2(h) = ρh

Nfe−2∑
n=0

ν(θn, θn+1, λn, λn+1)(hn − hn+1)2, (50)

and simplifies greatly the feasibility issues that step-equilibration can cause. It

however does not solve the pathological nature of the ν-function and this can cause

scaling issues which can wreak havoc on the linear algebra required by NLP solvers.

We can however re-scale the indicator function ν as we are only interested in whether

this function is zero to allow h to vary. A simple way to do this is simply to take the

hyperbolic tangent of ν which rescales the value to between 0 and 1. This leads to an
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“scaled-`2-relaxation” approach which is written as

Ftanh(`2)(h) = ρh

Nfe−2∑
n=0

tanh(ν(θn, θn+1, λn, λn+1))(hn − hn+1)2, (51)

and trades extra non-linearity in the objective for better scaling.

There is also a final reformulation that takes advantage of the geometric structure of

the step-equilibration constraint and it’s similarity to complementarity. In particular

we show in Figure 13 that we can relax the constraint via the generation of 2

complementarity constraints. This unfortunately violates several of the constraint

qualifications we will discuss in the next chapter, however in practice this can

sometimes still improve performance in combination with the relaxation homotopy

we also describe in Chapter 2.

ν

∆h

(a) Original step-equilibration con-
straint.

ν

∆h

(b) Relaxed step-equilibration con-
straints.

Figure 13: A plot of a single step-equilibration constraint and it’s homotopy
relaxation.

3.3.2 The Time-Freezing Reformulation

The prior section has described a discretization that allows us to accurately handle

NSD1 and NSD2 systems, however we have heretofore not described any methods

for dealing with NSD3 systems, i.e, those that contain state jumps. However, it

would be a shame to not be able to re-use the machinery of the previous section to
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handle all kinds of non-smoothness. To this end Nurkanović et al. introduce in [57] a

reformulation that allows for the transformation of NSD3 systems into NSD2 systems,

which can then be treated exactly as described above. In this section we, for brevity,

do not describe the entirety of the approach but will go over an example for a simple

one dimensional particle that makes an elastic impact with the ground, and omit

the reformulation machinery required to handle, for example, friction, and inelastic

impacts.

The Time-Freezing reformulation comes from two primary observations of dynamic

systems with state jumps. The first is the fact that one can introduce time as a state

variable (which we call “physical time”) which is often done when formulation time

optimal control problems. We then treat numerical time (which in the time-freezing

reformulation is called τ) and physical time as independent quantities, and ensure

fixed time steps by introducing a speed-of-time variable s and a terminal constraint

t(T ) = T where T is the terminal time of a step in the discretization. The second

is that in the cases of dynamic systems with impacts, there are regions of the state

space that are not used as they are not valid configurations of the system. The

Time-Freezing reformulation introduces new dynamics in that unused state space

which do not advance physical time, but implement the state jump law for that

contact. We show a schematic representation of this in phase plot form in Figure 14.

We use a one dimensional particle with state (q, v) ∈ R2 and the dynamics (q̇, v̇) =

(v,−g) with g ∈ R, and it makes contact with the ground at x = 0. For the

contact we define the contact function fc(x) = x. The first step of the Time-Freezing

reformulation is then to augment the state with physical time t so the state space

becomes x(τ) = (q(τ), v(τ), t(τ)). The forbidden region in this case is the region

q < 0 which means we define two regions R1 = {x|q > 0 } and R2 = {x|q < 0 } with
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Figure 14: Phase plot of an elastic time freezing system.

dynamics

f1 = s


v

−g

1

 ,

f2 = s


v

−kq

1

 ,

for an arbitrary k > 0. This becomes an NSD2 system that we can now discretize

with FESD.

For brevity we point to a more in-depth explanations in [57, 58]. We also note that

in [56] an alternative direct reformulation for such systems is introduced which can

handle different elasticites and friction characteristics on a per-impact basis, which is

called FESD-J.
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3.4 Theoretical Properties of FESD

In this section we will briefly treat the theoretical properties of the MPCCs produced

by the FESD discretization. In particular we treat a generic MPCC with cross

complementarity conditions that shares it’s structure with a single FESD finite

element:

minimize
x, λ, θ

F (x, λ, θ) (52a)

subject to 0 = g(x, λ, θ), (52b)

0 ≤ h(x, λ, θ), (52c)

0 ≤ G(λ) ⊥ H(θ) ≥ 0, (52d)

where g, h are arbitrary equality and inequality constraints and G and H encode the

cross complementarity constraints. For ease of notation we treat:

λ = λi,j , i = 0, . . . , ns, j = 1, . . . , nf , (53a)

θ = θi,j , i = 1, . . . , ns, j = 1, . . . , nf , (53b)

λi = λi,j , j = 1, . . . , nf , (53c)

θi = θi,j , j = 1, . . . , nf . (53d)

We also introduce the notation

kv =


v

v
...

v




k times

where v is a vector and k is a positive integer.
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3.4.1 Sparse Cross-Complementarity

We then define the cross-complementarity functions:

G(λ) =



nsλ0

nsλ1

...
nsλns

 , (54a)

H(θ) = (ns+1)θ, (54b)

which match the cross complementarities given for a single finite element in their

sparsest form in Section 3.3.1.

We now analyze the constraint qualification properties of this form under the assump-

tions that nf ≥ 2 and nc ≥ 2 and propose that:

Theorem 3.4.1. For any problem of the form shown in Equation (52) with comple-

mentarity functions G(λ) and H(θ), described in Equation (54), that arises from an

FESD discretization, any feasible point x̄, λ̄, θ̄ violates MPCC-LICQ and MPCC-

MFCQ.

Proof. In order to prove this we must recall that there are three sets of indices that

are critical to evaluating the constraint qualifications of a given point: I00, I0+,

I+0. We first treat the case where we have no bi-active constraints, i.e., I00 = ∅.

In this case, I0+ and I+0 partition the set I := {1, . . . , nsnf (ns + 1)}. As such in

order to prove this theorem for this case we need to show that there is indeed no

way to partition the corresponding columns of ∇G and ∇H that leads to a linearly

independent set of vectors. We note that these sets of vectors G := {∇Gi(λ)|i ∈ I0+ }

and H := {∇Hi(θ)|i ∈ I+0 } are mutually independent and as such our partition is

only concerned with the linear independence of the vectors within each set.
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In order to show this we use a trick to reformulate this into a set theoretic problem.

One can clearly see that we can map each i ∈ I to a set of 3-tuples

S := { (a, b, c)|a ∈ {0, . . . , ns} , b ∈ {1, . . . , ns} , c ∈ {1, . . . , nf} } .

The problem of partitioning I into I0+ and I+0 that produces a set of independent

vectors G and H, can thus be recast into the problem of partitioning the set S into

SG and SH such that for both of those sets the following condition holds:

∀(a, b, c), (a′, b′, c′) ∈ S•.((a = a′)∧(c = c′)⇒ (b = b′))∧((b = b′)∧(c = c′)⇒ (a = a′)).

(55)

The intuitive way to interpret this condition is that each set cannot contain two

distinct elements (a, b, c) and (a′, b′, c′) that share their first and third, or second

and third entries. To prove that this is indeed not possible we apply the well known

“pigeon-hole” principle for ns > 1. This is done by seeing that for any ns > 1 there

are ns + 1 members of the set S of the form (a, 1, 1) with a ∈ {0, . . . , ns}, which must

be partitioned into only two sets. By the “pigeon-hole” principle there must be at

least 2 tuples of this form in at least one of the sets as ns + 1 > 2.

This means that for any partition of I into I0+ and I+0 the independence conditions

on the complementarity functions required for MPCC-LICQ and MPCC-MFCQ are

violated at all feasible points with strict complementarity. To extend this to include

points without strict complementarity we simply observe that the addition of a 3rd

set i ∈ I00 for which both vectors ∇Gi and ∇Hi must be checked for independence

strictly adds more vectors to the set that must be linearly independent. This relaxes

the partitioning constraint for SG and SH , to one where S = SG ∪ SH . However in

this situation we can apply the same argument to prove that a pair of sets (SG, SH)

that satisfies Equation (55) does not exist. As such we have proven that in its

sparsest form, the FESD discretization produces MPCCs that violate MPCC-LICQ

and MPCC-MFCQ.
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3.4.2 Dense Cross-Complementarity

The dense version of the cross-complementarity constraints is both the most intuitive

and also possesses some interesting theoretical properties. It can be shown that

in the cases of problems with only “crossing” style switches (such as those seen in

Figure 11c), that any solution w∗, λ∗, θ∗, will exhibit strict complementarity, and

therefore that point is guaranteed to be S-stationary. We also can prove that the

dense cross-complementarity mode does not have the same LICQ violation problems.

This can be done by directly calculating the gradients of Gj(λ) =
∑ns

i=0 λi,j and

Hj(θ) =
∑ns

i=1 θi,j . It can clearly be seen that these gradients are made up of nf

stacked identity matrices which yields nf linearly independent vectors for both ∇G(λ)

and ∇H(θ).

3.5 NOSNOC

The previously described approaches are implemented in the open-source tool NOS-

NOC [9], which is available both as a MATLAB and python package. This package

uses CasADi [59], a modeling and Automatic Differentiation tool, to provide a user

friendly method of defining the nonsmooth continuous time system. The continuous

time OCP or simulation problem is then reformulated into MPCCs and these are

solved via a variety of methods and the solutions are provided back to the user. We

also include some functionallity to automatically reformulate ODEs with nonsmooth

operators, such as “min”, “max”, and “sign”.

3.5.1 Tool-chain

An overview of the NOSNOC tool-chain is shown in Figure 15 and describes the

transformations applied at each step of the process. We will in this section briefly
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Figure 15: The NOSNOC Tool-chain

describe the available features in the NOSNOC package and the interfaces it provides.

NSD2 System Tool-chain

When using NOSNOC in conjunction with a system of type NSD2, the problem

formulation that the tool supports are a simulation problem or an OCP with dynamics

described by a Filippov system. As such we either simulate a system:

ẋ ∈

{∑
i∈I

θifi(x, u)

∣∣∣∣∣∑
i∈I

θi = 1, θi ≥ 0, θi = 0 for x /∈ Ri

}
, (56)
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or, in the case of an OCP, we solve a problem of the form:

min
x(·), u(·), z(·), v

∫ T

0
L(x, u, z, v)dt+ E(x(T ), z(T ), v) (57a)

s.t.

x(0) = x0, (57b)

ẋ(t) ∈ FF (x(t), u(t), z(t), v), t ∈ [0, T ] , (57c)

x ≤ x(t) ≤ x, t ∈ [0, T ), (57d)

z ≤ z(t) ≤ z, t ∈ [0, T ], (57e)

0 = gz(x(t), u(t), z(t), v), t ∈ [0, T ] , (57f)

g ≤ g(x(t), u(t), z(t), v) ≤ g, t ∈ [0, T ), (57g)

0 ≤ Guser(x(t), u(t), z(t), v) ⊥ Huser(x(t), u(t), z(t), v) ≥ 0, t ∈ [0, T ] , (57h)

g
T
≤ gT (x(T ), z(T ), v) ≤ gT , (57i)

xT ≤ x(T ) ≤ xT , (57j)

which is a generic OCP and allows for encoding a large number of different behaviors

and constraints. While most of the above components are self-explanatory, the

remaining difficulty is how to allow the user to pass in the Filippov system FF . To

this end we use the previously introduced approaches that are taken advantage of in

Section 3.3.1. As such the interface provides the options to provide the definition

of the Filippov system via providing F (x, u, z, v) = [f1(·), f2(·), . . .] which are the

dynamics in Ri and one of two ways to define that region. This is done by either

providing gStewart
i (x), the Stewart indicator functions for region Ri, or by providing

φ(x) and the sign matrix S as described in Section 3.3.1.

In order to discretize the system described in Equation (57c), NOSNOC first uses one

of the two reformulations described previously to convert the Filippov system into a

DCS which can be discretized via FESD. If this S matrix is dense then the user may

choose to use either the Stewart or Heaviside Step reformulation, but only the latter

56



3.5 NOSNOC

is available if the S matrix is sparse. This DCS now includes the algebraic variables

θ, λ, µ for α, λn, λp, in the case of the Stewart and Heaviside Step reformulation

respectively, but is still essentially in continuous time.

At this point we discretize the DCS and OCP with the discretization parameters Ns,

Nfe, and ns, and the user selected Runge-Kutta method. These represent the number

of control stages with piecewise constant controls, the number of finite elements,

and the number of stages used by the IRK scheme, respectively. We further provide

the functionality to the user to choose at what frequency to enforce the constraints

defined by Equation (57g), with the three options: at each IRK stage point, at the

boundary of each Finite Element, and only at the boundaries of each control interval.

The same is provided as an option for the user defined complementarity conditions

0 ≤ Guser ⊥ Huser ≥ 0. Further FESD options are provided including one of the four

cross-complementarity aggregation modes described in the earlier section on FESD,

along with all of the described heuristic and relaxation approaches to implementing

step-equilibration.

After this step we now have an MPCC which represents the discretization of the

either the OCP or simulation problem at hand. This MPCC is then currently solved

via one of many relaxation methods which we describe in Section 2.2. The default

NLP solver used to solve the relaxed NLPs is IPOPT [60], however we also provide

plugin functionality for SNOPT [61], WORHP [62], and UNO [63].

NSD3 Systems

NOSNOC further provides functionality to automatically reformulate NSD3 sys-

tems and solve problems where Equation (57c) is replaced with a Complementarity

Lagrangian system modeling rigid bodies with frictional impacts. When defining

such a system the user provides the state space in terms of generalized positions q

and generalized velocities v, yielding x = (q, v). In particular it allows the user to
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3 Nonsmooth Systems

define the signed distance functions f iφ(x) : Rnx → Rncontacts which define the contact

dynamics of the system. Each contact is also permitted to have distinct coefficients

of restitution ei and coefficients of friction µi, but only in the case of the FESD-J

reformulation. Otherwise, those coefficients must be the same for all impacts. This

system’s free-flight (i.e. when there are no active contacts) dynamics are defined by

the time derivative of the generalized velocities v̇ = fv(x, u), and an inertia matrix

M(q).

This system then is handled in one of two ways: via the Time-Freezing reformulation

previously described or via the FESD-J reformulation [56] that directly creates a

complementarity-Lagrangian system from the above data. We note a limitation of the

Time-Freezing reformulation here: in particular that it requires that it is impossible

to mix inelastic and elastic contacts in the same problem. As such for such systems

the FESD-J reformulation is the only approach that is viable.

3.5.2 Software Structure

We briefly summarize the current software architecture of the package in this section.

The user input for the OCP or simulation problem to be solved is split into two

classes: NosnocModel, which contains the continuous time forms of the Filippov

system or Lagrangian dynamics with contacts that are described in the previous

section, and NosnocProblemOptions which contains the options used by NOSNOC

to discretize the system. The latter also contains all of the options involved in the

FESD discretization, and the simulation discretization parameters when NOSNOC is

being used as an integrator. A third input structure, NosnocSolverOptions, is used

to house the settings that relate to the regularization homotopy solver that is used to

solve the MPCCs that are the output of the FESD pipeline.

If using NOSNOC purely for integration one can simply use the three input structure

and the NosnocIntegrator class in order repeatedly solve the MPCC and produced
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3.5 NOSNOC

a simulated trajectory of the system based on initial conditions. On the other hand

if one wants to solve an OCP the program flow is slightly different. In that case

the user must create the MPCC (an NosnocMPCC object) from the NosnocModel and

NosnocProblemOptions. This MPCC can then be passed to the NosnocSolver object

along with the NosnocSolverOptions, and then one can call NosnocSolver.solve()

to acquire the solution to the OCP. Internally NosnocSolver does the conversion from

MPCC to relaxed NLP that we describe in the Chapter 2, and uses the NosnocNLP

class to encode this NLP and maintain the index sets for all relevant variables.
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The primary contribution of this thesis is the introduction of a benchmark suite of

MPCCs that come from the discretizing OCPs and Simulation problems with the

Finite Elements with Switch Detection method discussed before. We first briefly

discuss the formatting of the benchmark as well as various options for extracting the

problems from the provided files. We then describe the problem set in detail.

4.1 Problem Format

Chapter 1 introduced the classical form of an MPCC in Equation (1). This however

is not the form that we provide the problems in due to the influence of the CasADi

interface as well as the interface of other NLP solvers. We provide parametric MPCCs

in the following form:

min
w ∈ Rnw

F (w, p) (58a)

s.t. `w ≤ w≤ uw, (58b)

`g ≤ g(w, p)≤ ug, (58c)

0 ≤ G(w, p) ⊥ H(w, p) ≥ 0, (58d)

where p ∈ Rnp is a parameter vector. This form permits complementarity constraints

between arbitrary functions of the optimization variables G(w, p) and H(w, p). Equal-

ity constraints are provided by setting `gi = ugi. We provide each problem in one of
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4 NOSBENCH - An MPCC Benchmark

two forms, the first of which is a NOSNOC specific pair of a model and the problem

options, as described in Section 3.5, which can be used to generate the MPCC on the

fly with the NOSNOC package. The alternative more generic format that is likely to

be more useful to solver developers, is the MPCC in Equation (58) using a JSON

object. In this format, the problem contains the variables w and parameters p as

CasADi variables, the bounds `w, uw`g, ug as numerical vectors, and the functions

G,F,H, g. All CasADi functions and variables are converted to strings using CasADi’s

serialization functionality. Also provided is the unagumented objective function which

can be used to evaluate the OCP performance without the heuristic step equilibration

methods previously described. From this, a user can simply reconstruct the problem

by loading in all of the components and using the provided CasADi deserialization

functionality to interface their solver with NOSBENCH problems. In future, we

expect to expand the availability of these problems to include a library of problems

in the AMPL format.

4.2 Problem Set

NOSBENCH contains a total of 603 distinct MPCCs within the full problem set.

We provide in Figure 16 a scatter plot of the number of primal variables versus the

dimension of g(w) and versus the number of complementarity pairs. We do not go

into a detailed description of each problem as many are alternate discretizations of

each other. In this section, we first discuss the continuous time systems that these

problems are derived from, then the discretization options.

4.2.1 Original ODEs and OCPs

NOSBENCH problems are generated through FESD discretization of systems governed

by nonsmooth ODEs. Table 5 presents the origins of each of these problems in
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Figure 16: Size characteristics of the NOSBENCH Test-set.

continuous time along with references to them in the literature. This set includes

both simulation and optimal control problems as both can and do produce interesting

and difficult MPCCs and are an important use case of FESD. We briefly describe

each of the systems along with some statistics about each of them in a later section.

Table 5: Continuous time problems used to generate the NOSBENCH test set

Nr. Problem Slug Short Description Type Class Citation

1 3CPCLS Two dimensional representation

of three carts with only one actu-

ated.

OCP CLS direct [21]

2 3CPTF One dimensional representation

of three carts with only one actu-

ated.

OCP CLS time-freezing [21]

3 CARHYS Turbo car example with hys-

teretic behavior.

OCP HA time-freezing [48]

4 CARTIM Turbo car example with velocity

dependent switch.

OCP Filippov System [53]

5 CPWF Inverted pendulum on a cart with

Coulomb friction

OCP Filippov System [64]

6 DAOBCLS Disc control example from FESD-

J paper.

OCP CLS direct [56]

7 DISCM Disc control example from FESD-

J paper.

OCP CLS time-freezing [56]
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4 NOSBENCH - An MPCC Benchmark

Table 5: Continuous time problems used to generate the NOSBENCH test set

Nr. Problem Slug Short Description Type Class Citation

8 DRNLND Two dimensional control of a

landing drone.

OCP CLS time-freezing [65]

9 DSCOB Disc control example from FESD-

J paper with a central obsta-

cle, modeled as a nonlinear con-

straint.

OCP CLS time-freezing [56]

10 DSCSP Disc control example from FESD-

J paper with discs switching posi-

tions.

OCP CLS time-freezing [56]

11 HOPOCP Hopping robot actuated with a

linear leg and reaction wheel in

two Dimensions.

OCP CLS time-freezing [64]

12 MFTOPT Time optimal control of a linear

voice-coil motor.

OCP Filippov System [66]

13 MNPED Two dimensional control of a

monoped robot.

OCP CLS time-freezing [67]

14 MWFOCP Optimal control of a linear voice-

coil motor.

OCP Filippov System [66]

15 SCHUMI Simple two dimensional car model

with Cartesian track constraints.

Both time optimal and non-time

optimal forms.

OCP Filippov System [51]

16 SMOCP Simple two dimensional optimal

control with sliding modes.

OCP Filippov System [53]

17 TFBIB Two dimensional control of a

particle in a box with a rotating

reference.

OCP CLS time-freezing

18 TNKCSC Cascade of tanks with state de-

pendent switches in flow rate.

OCP Filippov System [50]

19 TIMF1D One dimensional particle with

contacts.

Simulation CLS time-freezing [56]

20 2BCLS Two balls connected with a stiff

spring, that undergo contact dy-

namics.

Simulation CLS direct [68]

21 986EQ Simplified model of structural

pounding used in the study of the

effects of earthquakes.

Simulation Filippov System [69]
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Table 5: Continuous time problems used to generate the NOSBENCH test set

Nr. Problem Slug Short Description Type Class Citation

22 986FO Two masses linked by a spring

and moving on a surface with

Coulomb friction.

Simulation Filippov System [69]

23 986FV Oscillator with varying friction. Simulation Filippov System [69]

24 986OM Oscillating mass with contact

surfaces.

Simulation Filippov System [69]

25 CLS1D One dimensional particle with

contacts.

Simulation CLS direct [56]

26 FBS1S Simulation of connected blocks

with Coulomb friction.

Simulation Filippov System [70]

27 OSCIL Simulation of an unstable oscilla-

tor with state dependent switch.

Simulation Filippov System [53]

28 RFB1S Relay feedback system simulation. Simulation Filippov System [71]

29 SMCRS Simple Filippov system with a

boundary crossing.

Simulation Filippov System [53]

30 SMLSM Simple Filippov system with state

entering a sliding mode.

Simulation Filippov System [53]

31 SMSLM Simple Filippov system with state

leaving a sliding mode.

Simulation Filippov System [53]

32 SMSPS Simple Filippov system with state

spontaneously leaving an unstable

sliding mode.

Simulation Filippov System [53]

33 TFPOB Two dimensional simulation of a

pile of balls with contacts.

Simulation CLS time-freezing [53, 56]

4.2.2 Discretization Options

In order to generate problems of varying complexity and internal structure, we vary

several discretization and MPCC parameters. The simplest of these are the actual

discretization parameters of the FESD scheme:

• Ns: The number of control intervals in the case of optimal control problems or

the number of time steps solved as a single MPCC in the case of simulation

problems. This is always one in the case of simulation problems.
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• Nfe: The number of finite elements per control stage.

• irk scheme: One of several available discretization schemes (defined by their

Butcher tableau). In order to limit the number of MPCCs generated, and due

to their accuracy, we primarily use the Radau-IIA or Gauss-Legendre schemes.

• ns: The number of stage points used by the selected implicit Runge-Kutta

scheme within each finite element in the FESD discretization.

We also vary the so called “cross-complementarity mode” for various problems. This

is primarily done to facilitate the experiments regarding the performance of these

various modes in the experiments described in Chapter 5. These modes as described

in Section 3.3 provide different sparsity to the complementarity constraints that

enforce switch identification. And finally we vary the level of lifting done to the

complementarity functions G(x), H(x) in the problem.

The set full set of problems is described in Table 6, where each column contains the

values used for the corresponding parameter. Any values in curly braces are taken as

a set and we provide a Cartesian product of all the sets for a given problem. Every

problem is also provided in a lifted form where each Gi(x) and Hi(x) are a single

variable.

Table 6: Problem discretizations for problems which make up NOSBENCH

Slug irk_scheme Ns Nfe ns Cross-Comp.

Mode

Param.

Var.

Total

2BCLS Gauss-Legendre 1 2 3 {3, 4, 7} 3 9

3CPCLS Radau-IIA {15, 30} 3 2 {3, 4, 7} 3 18

3CPTF Radau-IIA {20, 30} 3 1 {3, 4, 7} 3 18

986EQ Gauss-Legendre 1 3 2 {3, 4, 7} 2 12

986FO Radau-IIA 1 2 3 {3, 4, 7} 3 18

986FV Gauss-Legendre 1 2 2 {3, 4, 7} 3 18

986OM Radau-IIA 1 2 3 {3, 4, 7} 2 12

CARHYS Radau-IIA {20, 31} 3 2 {3, 4, 7} 2 12

CARTIM Radau-IIA {10, 12, 35, 40} 3 2 {3, 4, 7} 1 24

CLS1D Gauss-Legendre 1 {2, 3} 1 {3, 4, 7} 2 12
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Table 6: Problem discretizations for problems which make up NOSBENCH

Slug irk_scheme Ns Nfe ns Cross-Comp.

Mode

Param.

Var.

Total

CPWF Radau-IIA {30, 33, 50, 57} 2 2 {3, 4, 7} 2 48

DAOBCLS Radau-IIA {23, 25, 31} 3 2 {3, 4, 7} 3 9

DISCM Radau-IIA {11, 25, 33} 3 1 {3, 4, 7} 1 9

DRNLND Radau-IIA {23, 30, 37} 3 2 {3, 4, 7} 2 18

DSCOB Radau-IIA {22, 25, 31} 3 1 {3, 4, 7} 3 27

DSCSP Radau-IIA {20, 23, 31} 3 1 {3, 4, 7} 1 9

FBS1S Radau-IIA 1 3 2 {3, 4, 7} 3 18

HOPOCP Radau-IIA {20, 23, 37, 40} 3 2 {3, 4, 7} 1 12

MFTOPT Radau-IIA {27, 30, 50, 53} 3 2 {3, 4, 7} 1 24

MNPED Radau-IIA {40, 43, 57, 60} 3 2 {3, 4, 7} 3 36

MWFOCP Radau-IIA {27, 30, 50, 53} 3 2 {3, 4, 7} 1 24

OSCIL Radau-IIA 1 2 4 {3, 4, 7} 2 12

RFB1S Radau-IIA 1 2 2 {3, 4, 7} 3 18

SCHUMI Radau-IIA {50, 80} 2 2 {3, 4, 7} 6 72

SMCRS Radau-IIA 1 32 2 {3, 4, 7} 1 6

SMLSM Radau-IIA 1 32 2 {3, 4, 7} 1 6

SMOCP Radau-IIA {30, 37, 50, 63} 3 3 {3, 4, 7} 2 48

SMSLM Radau-IIA 1 32 2 {3, 4, 7} 1 6

SMSPS Radau-IIA 1 32 2 {3, 4, 7} 1 6

TFBIB Radau-IIA {40, 43} 4 2 {3, 4, 7} 2 12

TFPOB Radau-IIA 1 5 2 {3, 4, 7} 4 12

TIMF1D Gauss-Legendre 1 {3, 4} 1 {3, 4, 7} 2 12

TNKCSC Gauss-Legendre {96, 100} 2 1 {3, 4, 7} 1 6

Table 9 lists the particular variations of initial parameters or problem formulations

that we use for the problems. This is done to provide some variety in the benchmark

problems and to mitigate the effects of pre-tuning which has been done on some of

these examples in the corresponding references. It also allows for simulation problems

to be tested both in cases where there are no switches and cases where switches must

be detected.
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4.2.3 Problem Naming Scheme

The names of the problem files encode some information about the problem. This is

done so that the formation of sub-sets of the whole benchmark can be done systemat-

ically. The structure of these names is an underscore delimited string containing the

following data in order: Problem slug, parameter index, Ns, Nfe,ns, IRK scheme, DCS

mode (“Step”, “Stewart”, or “CLS”), cross complementarity mode, type, and whether

the problem is lifted into vertical form. The type of the problem is split into “FIL”,

Filippov systems, “IEC”, problems with only inelastic collisions, “ELC”, problems with

some elastic (and possibly also inelastic) collisions, and “HYS” for problems containing

hysteresis. For example the problem titled: 986EQ_001_001_003_2_GL_STEP_7_FIL_1

would be the earthquake example from [69] with the first parameter set and Ns = 1,

Nfe = 3, ns = 2, using a Gauss-Legendre integrator. The problem is generated using

the Step reformulation and cross complementarity mode 7, and is lifted into the

vertical form.

4.2.4 Problem Subsets

As it is both often infeasible to run the full NOSBENCH suite, and doing so is

not necessary to gain insight into the comparative performance of different solution

methods. Therefore, we provide several smaller subsets of problems which can be

used to benchmark any future solvers and are used in Chapter 5 to evaluate existing

solver options.

Simple Problem Benchmark - NOSBENCH-S

The first subset of NOSBENCH is a benchmark that only uses 100 MPCCs which

come exclusively from Filippov systems, and only contain the simplest time-freezing

and CLS examples. These tend to produce relatively easier to solve MPCCs and as
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Figure 17: Size characteristics of the NOSBENCH Simple Problem Benchmark.

such this set is an effective way to identify particularly poor performing algorithms.

It contains approximately equivalent numbers of simulation and optimal control

problems and the vast majority of the problems can be solved with the existing state

of the art in less than an hour. The size characteristics of the problems in this set

can be seen in Figure 17.

Small Representative Benchmark - NOSBENCH-RS

This subset of NOSBENCH is an even smaller but more representative benchmark. It

contains 32 MPCCs that include ones from FESD-J and time-freezing reformulations.

This subset is primarily used to as a second preliminary screen for solvers as it provides

more insight into the performance of solvers on problems ranging from the easiest to

the most difficult within NOSBENCH. The size characteristics of the problems in

this set can be seen in Figure 18.

Large Representative Benchmark - NOSBENCH-RL

This subset is a set of 167 problems that is made up of a representative sample of

all problem difficulties. This benchmark is meant to be the full problem set that is
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Figure 18: Size characteristics of the NOSBENCH Small Representative Bench-
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Figure 19: Size characteristics of the NOSBENCH Large Representative Bench-
mark.

used to benchmark solvers, and will continue to be expanded as new and interesting

problems are added to NOSBENCH. The size characteristics of the problems in this

set can be seen in Figure 19.
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In this chapter we discuss several experiments done to evaluate different solution

methods for MPCCs. We First briefly evaluate the effectiveness of the parameter

scaling introduced in Section 2.2.5 via comparing several of the relaxations used with

and without the scaling. This is followed by an evaluation of the different relaxation

options introduced in Section 2.2.1 and evaluate their performance quantitatively.

We then explore the space of the homotopy parameters which are used to drive the

complementarity relaxations toward the exact complementarity set.

This is followed by a comparison of three major NLP solvers (IPOPT, SNOPT, and

WORHP) used to solve the regularized NLPs. These experiments are designed to

extract some rules of thumb for the optimal default solver in NOSNOC.

We follow this with several experiments comparing the discretization options offered

within NOSNOC. The first of these is a comparison between the performance of the

two reformulations: Stewart and Heaviside step functions. This is used to evaluate the

relative performance of the two reformulations. We follow this with a comparison of

the cross complementarity modes to evaluate the importance of the complementarity

sparsity or lack thereof. We finally briefly mention a comparison between lifting and

direct methods (ones where the complementarities are treated directly with inequality

constraints) and the sensitivity of each to perturbations of initialization.
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5 Numerical Experiments

5.1 Performance Profiles

We first introduce some necessary background on the visualization and analysis

techniques used in this chapter The primary tool that we use is the “performance

profile” approach introduced by Dolan and Moré to compare the relative performance

of optimization solvers. In order to generate a performance profile for a set of solvers

S and a set of problemsP, first a performance metric ts,p is chosen and recorded

via benchmarking for each pair of solver and problem (s, p). One could imagine any

number of valid performance metrics, wall time, CPU time, objective value, number

of function calls, etc, but the most common tend to be wall time, CPU time, and

number of function calls. The next step in generating a performance profile is to

extract the performance ratio for each pair:

rs,p =
ts,p

min {ts,p : s ∈ S}
. (59)

The final important addition of Dolan and Moré here is to then use this ratio to

describe a cumulative distribution function (CDF),

ρs(τ) =
1

|P|
|{ p ∈ P|rs,p ≤ τ }|, (60)

which can obviously be viewed as the probability that for a given bound on the ratio,

the ratio for a given solver is within that bound.

This piecewise constant probability distribution is very useful in the relative analysis

of solvers. In particular, it is very simple to choose an optimal solver in the two

primary categories practitioners often care about: raw speed and robustness. This is

because to compare solvers on raw speed one can compare the percentage of “wins”

a solver has which is represented by ρs(1), and to compare the robustness of the

solvers one needs to simply look at ρs(τmax) to discern which solver will solve the

most problems given infinite time. We however also use a similar CDF formulation
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with the raw performance metric on occasion as, given a good knowledge of the data

and problem set that can elucidate differences in performance on specific subclasses

of problem.

5.2 General Experiment Setup

In this section, we cover the common experimental setup that applies to all of the

following benchmarks. The benchmarks are run using a Intel Xeon W-2225 4 core

processor with a base clock of 4.1 GHz and a boost clock of 4.6 GHz. In all cases

where we are not explicitly varying the NLP solver used, the default for NOSNOC

is used which is IPOPT. IPOPT is used with default except the settings listed in

Table 7, wherever we do not explicitly mention changes. It is particularly important

to note that we set the bound-relaxation factor to zero, as such preventing IPOPT

from internally relaxing the inequality constraints that we give it.

IPOPT can use a variety of linear algebra solvers, including those provided by HSL,

which is a collection of FORTRAN libraries implementing a variety of scientific

computing tasks [72]. This collection contains three solvers of interest, in particular,

MA27 [73], MA57 [74], and MA97 [75]. We default to using MA27 [73] as the linear

solver in IPOPT as it has, in our experience, been the most stable of the HSL solvers.

This is due to our observation that both MA57, and MA97, the solvers recommended

as state of the art, occasionally cause IPOPT crashes due to segmentation faults.

The single threaded nature of MA27 also allows us to run multiple IPOPT instances

in parallel in order to improve throughput of the benchmark.

In order to facilitate the parallelization we use the “parfor” functionality of matlab

to run four separate MATLAB processes. We measure the performance of each

solver primarily using a wall time timer which sums the real time taken to solve each

NLP, and ignore any processing time in between, both as it is not relevant to solver

performance, and as it is generally equivalent between different solution methods as it
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5 Numerical Experiments

Option Value

bound_relax_factor 0
mu_strategy adaptive
mu_oracle quality-function
acceptable_tol 10−6

tol 10−12

dual_inf_tol 10−12

comp_inf_tol 10−12

Table 7: IPOPT options that deviate from the default in out experiments.

primarily depends on the size of the problem. While the author admits that in most

case wall time is not the optimal metric of performance, the fact that we use a single

threaded solver mitigates the overhead effects of the OS-scheduler. In much of the

literature surrounding the benchmarking of NLP and MPCC solvers it is popular to

use the number of function evaluations as a performance metric. For completeness we

include this in the plots for some of the following benchmarks, but would like to note

that this is not a particularly useful metric when comparing different reformulations

of the same problem rather than just the same problem using different approaches.

This is because the different reformulation fundamentally alter the linear algebra

that is done by the solver and as such any comparison that uses just the number of

function evaluations ignores the fact that one reformulation or another may lead to

more numerically pathological matrices and turn the inversion of said matrices into

the true performance bottleneck.

5.3 Stopping Criteria and Solution Quality

Beyond the NLP stopping criteria used in the underlying NLP solver, use a further

stopping criteria on the homotopy iteration that is based on what we call the

“complementarity residual”:

r⊥(w) = max({Gi(w)Hi(w)|i = 1, . . . , nc }).
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The stopping condition used is the achievement of a successful NLP solve in the

homotopy loop, whose result has a complementarity residual smaller than a given

tolerance. For all the following experiments (except if otherwise noted) we use a

complementarity residual tolerance of 10−7. In the case of IPOPT we treat any

solution that is reported as optimal or “solved to an acceptable level” as a successful

solve. We further accept solutions where the search direction becomes too small if

they meet the complementarity tolerance as well as are primal feasible.

When analyzing the results in following sections we include in the analysis the quality

of a given solution when the problem comes from a discretized OCP. We do not

apply this check for simulation problems as it can be proven that for such problems

the solutions are sufficiently isolated. This verification is done through checking the

relative objective value of a given problem-solver pair against the best known found

solution. For this check we only use the “true” objective of the OCP without any

augmentation, i.e. any penalty terms or step equilibration heuristics. We then treat

solutions which exceed the best known objective by at least a factor of two as failures.

This approach is used in order to better evaluate the solution methods specifically in

an optimal control context as in this context a significantly worse solution is often a

sign of a failure of the solver to achieve the goals of the controller.

5.4 Verification of Methods Against MacMPEC

In order to verify the correctness of our methods we further include a test of our

implementations against an existing benchmark that is commonly used in prior

literature such as [35], [36], and [27]. The problem set for this benchmark is available

in the form of a tarball of AMPL [76] format .mod and .dat files from https:

//wiki.mcs.anl.gov/leyffer/index.php/MacMPEC. We use a modified version of

CasADi [59] to extract 95 of the MPEC problems from this benchmark. This is done

by first generating .nl files for each problem, then reading these in and generating
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Figure 20: Evaluating several approaches against a section of the MacMPEC
benchmark suite.

CasADi MPCCs of the form in Equation (58). We drop any problems that contain

complementarities with a “body” parameter of 3, as described in [77], which are

slightly more generic than our implementation permits. This test suite is then run on

four different approaches: `1-penalty, standard Scholtes relaxation, `∞-mode Scholtes

relaxation, and the direct method, using the three NLP solvers we evaluated in a

prior section.

We note that several of these approaches solve each of the 95 problems in under ten

minutes, and most solve more than 90% of the problem set in the same amount of time.

These results are summarized in Figure 20 and Figure 47, and show an interesting

trend in comparison to those that will be presented in Section 5.7.3. In particular we

see much better performance of the direct method on the smaller problems in this
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Figure 21: Evaluating several approaches against a section of the MacMPEC
benchmark suite using relative speed.

test set, along with much better performance from SNOPT, again tied to the smaller

size of the problems.

In general this supports our prior assertions on the relative difficulty of the NOS-

BENCH test suite when compared to existing state-of-the-art benchmarks.

5.5 Cross Complementarity Modes

We now discuss the aggregation levels of the cross-complementarity modes. This

experiment is run on a subset of NOSBENCH that contains problems that use all

three cross-complementarity modes (see Table 6). This is augmented with all of these

problems additional discretized in the sparsest mode.
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5 Numerical Experiments

As noted in Section 3.4 the different cross-complementarity modes have some different

theoretical properties, which may impact the convergence of the relaxation method.

In particular one would expect that the sparsest mode (cc_mode = 1) would have

the poorest performance in terms of robustness due to the constraint qualification

violations. We do in fact see this play out in Figure 22 particularly in the `∞-

mode case. There we see a significant improvement in performance for the denser

cross-complementarity modes, and even a minor improvement in robustness.

For the standard relaxation we see something that may seem unexpected though

does match our numerical experience. We see much better robustness from one of the

two semi-sparse modes cc_mode = 3. It is an open question as to whether there is a

theoretical reason for this improvement in both speed and robustness. These results

and the theoretical result shown in Section 3.4, we do not include problems in the

sparsest cross-complementarity mode in the remaining experiments.

5.6 Comparing σ Scaling vs No σ Scaling

In this section we briefly evaluate the parameter scaling approach discussed in

Section 2.2.5, first on the NCP functions that have the same level sets as the Scholtes

relaxation. We then evaluate the same for the Steffensen-Ulbrich local relaxation [42],

and then the two kinked relaxations of Kadrani et al. and Kanzow-Schwartz [16, 17].

These evaluations are done on the NOSBENCH-S test-set and use IPOPT as the NLP

solver. The homotopy parameters are fixed for all of the relaxations with σ0 = 1 and

κ = 0.1, and we use the “linear” update rule, i.e., σk+1 = κσk. We experiment with

this change for both the standard homotopy and the `1 and `∞ modes.
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5.6 Comparing σ Scaling vs No σ Scaling

Smoothed Nonlinear Complementarity Functions

We observe some insightful results from the comparisons of the scaled and unscaled

versions of the NCP function relaxations. While the standard relaxation method

does not see a significant improvement in any of the three NCP function approaches,

there is a significant improvement in the elastic modes both in terms of speed of

convergence and robustness. In the case of the Natural Residual for example in

Figure 24 we see that the scaled version of the relaxation performs both consistently

faster winning outright on almost 80% of problems for both elastic modes, and solving

significantly more problems. This is mirrored almost exactly in the performance
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Figure 22: Evaluating cross complementarity modes.
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of the Fischer-Burmeister function which sees the same improvements in its elastic

modes. On the other hand the Chen-Chen-Kanzow relaxation only sees improvement

from σ scaling when it comes to the `1-mode relaxation. Recall that we treat the

Chen-Chen Kanzow relaxation in a unique way, only scaling the σ in its quadratic

form that corresponds to the Fischer-Burmeister component of the NCP.

This performance improvement is unsurprising as it brings it closer to the Scholtes

relaxation in performance, as seen in Figure 31 and Figure 32. This is because it

can be shown that the each of these NCPs with the scaling apply has exactly the

same zero-level sets as the Scholtes relaxation as a function of σ. As such the only

difference between these and the Scholtes relaxation becomes the gradient of the

function with respect to its inputs, the unscaled versions of which we list in Table 8.

Due to these results we choose to use the rescaled relaxation for the Natural Residual,

Fischer-Burmeister, and Chen-Chen-Kanzow, relaxation.

The Lin-Fukushima Relaxation

For the Lin-Fukushima relaxation we see little improvement for the standard relax-

ation from the rescaling, as with the NCP functions. In addition we see significant

improvement in performance for the `∞-mode relaxation but a decrease in perfor-

mance for the `1-mode relaxation. The improvement of the `∞-mode relaxation

is somewhat expected as we see the same change in ρ(σ) as we do for the NCP

functions, however the lack of commensurate improvement in the `1-mode is not so

Name ψ(a, b, σ) ∇aψ(a, b, σ) ∇bψ(a, b, σ) ∇σψ(a, b, σ)

Scholtes ab− σ b a −1

NR a+b−
√

(a−b)2+σ2

2
1
2 −

a−b
2
√

(a−b)2+σ2

1
2 + a−b

2
√

(a−b)2+σ2

−σ
2
√

(a−b)2+σ2

FB a+ b−
√
a2 + b2 + σ2 1− a√

a2+b2+σ2
1− b√

a2+b2+σ2
−σ√

a2+b2+σ2

Table 8: Gradients of NCP functions.
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Figure 23: Evaluating σ scaling for the Fischer-Burmeister relaxation.

easily explained. Based on the results (seen in Figure 26) we choose to use σ-scaling

for only the `∞-mode of the Lin-Fukushima relaxation.
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Figure 24: Evaluating σ scaling for the Natural Residual relaxation.

The Steffensen-Ulbrich Local Relaxation

Here we also see a significant improvement due to the σ rescaling, but contrary to the

NCP functions, this improvement is primarily seen in the standard relaxation method.
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(d) `∞-mode relaxation.
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Figure 25: Evaluating σ scaling for the Chen-Chen-Kanzow relaxation.

We posit that this is simply due to the fact that without the scaling this relaxation

only very slightly relaxes the problem and in many cases the NLP solver simply cannot

find a feasible solution. As such we also proceed to use the σ re-scaling technique

for the Steffensen-Ulbrich relaxation for the standard relaxation in the following
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(d) `∞-mode relaxation.

10!2 100 102 104

wall time (s)

0

0.2

0.4

0.6

0.8

1

p
ro
p
o
rt
io
n
so
lv
ed

Lin-Fukushima `1

Unscaled
Scaled

(e) `1-mode relaxation.

0 2 4 6 8 10

2x worse than best

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n

so
lv

ed

Lin-Fukushima `1

Unscaled
Scaled

(f) `1-mode relaxation.

Figure 26: Evaluating σ scaling for the Lin-Fukushima relaxation.

experiments, and an unscaled version for the two elastic modes. The performance

profiles can be seen in Figure 29 and in Figure 30.
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(b) Standard relaxation.
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(c) `∞-mode relaxation.
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(d) `∞-mode relaxation.
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(e) `1-mode relaxation.
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(f) `1-mode relaxation.

Figure 27: Evaluating σ scaling for the Steffensen-Ulbrich trigonometric relax-
ation.
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(b) Standard relaxation.
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(c) `∞-mode relaxation.
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(d) `∞-mode relaxation.
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(e) `1-mode relaxation.
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(f) `1-mode relaxation.

Figure 28: Evaluating σ scaling for the Steffensen-Ulbrich trigonometric relax-
ation.

Kinked Relaxations

The kinked relaxations pose a different challenge when it comes to doing sigma

re-scaling as their structure permits an unbounded complementarity residual. As
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(b) `∞-mode relaxation.
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(c) `1-mode relaxation.
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Figure 29: Evaluating σ scaling for the Kanzow-Schwartz nonsmooth relaxation.

such, in the case of both the Kanzow-Schwartz and Kadrani relaxation we see that

if we scale the sigma as suggested via normalizing ρ(σ), we do not converge to a

sufficiently small complementarity residual in the maximum number of outer loop

iterations. Therefore, we provide only the plots for the `∞ and `1-mode relaxations

for these relaxations. However even for these we see only detrimental effects from the

rescaling and as such we do not use the rescaling for any of the approaches using the

kinked relaxations.
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(b) `∞-mode relaxation.
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(c) `1-mode relaxation.
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(d) `1-mode relaxation.

Figure 30: Evaluating σ scaling for the Kadrani nonsmooth relaxation.

5.7 Improved Relaxation Solver Parameters

In this section we discuss four experiments which pertain to the relaxation method

solver that is implemented in the software package NOSNOC. Namely we first

explore and compare the types of relaxations described in Section 2.2.1, along with

the methods for steering the complementarity relaxation described in Section 2.2.3.

We further include in this comparison, as “control” solvers, the direct method, i.e.

replacing a ⊥ b with the constraint ab ≤ 0, and an exact-`1-penalty method without

slacks introduced. As we discussed in Section 2.2.3, the algorithms implemented in

NOSNOC for solving MPCCs have several free parameters, namely σ0, κ, and ζ. In

the second and third experiments we vary these parameters for both an `∞ and a
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(a) Standard relaxation.
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(b) `∞-mode relaxation.
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(c) `1-mode relaxation.
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(d) Direct method and `1-penalty.

Figure 31: Evaluating relaxation methods for MPCCs.

standard homotopy approach in order to evaluate a good set of default parameters

for most NOSNOC users. We finally compare three NLP solvers’ (IPOPT [60],

SNOPT [61], and, WORHP [62]) performance on our particular problems.

5.7.1 Relaxation Benchmark

In order to evaluate the practical performance of the various relaxation functions

ψ(a, b, σ) and approaches of driving the relaxation parameter to zero, we run the set

of 29 methods on the NOSBENCH-S test set, solving 2900 MPCCs in the process. In

this experiment we use the homotopy parameters σ0 = 1, κ = 0.1, and the linear
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update rule. The NLP solver IPOPT is used to solve the regularized NLPs with

default settings outside of those explicitly mentioned in Section 5.2 and a one hour

(3600 second) cumulative wall time limit on each problem, implemented as described

in that section. An overview of the absolute performance of each solver can be seen

in Figure 31.

The first notable result is that while for about half the problems in this set the direct

approach solves the problem in an acceptable time-frame, it quickly stalls at that

point. It’s failures as seen in Figure 33 are fairly evenly split between converging

to unacceptable local minima, and failing to converge at all, primarily due to either
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Figure 32: Evaluating relaxation methods for MPCCs, relative performance.
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Figure 33: Failure reasons for different relaxation methods.

step calculation failures at unacceptable points, or due to claiming infeasibility. This

already points to the usefulness of the homotopy methods as it is clear to see that

those methods perform better on a large proportion of problems with little to no

impact on absolute performance.

The general outcome of this benchmark is a victory for the Scholtes relaxation

approach in all of its three versions. From the absolute performance plots we can

clearly see that for all three methods of steering the relaxation parameter, the

Scholtes relaxation successfully solves almost as many or more problems than the

other relaxation methods.

We can then first analyze the relaxations using the standard approach to drive

the relaxation parameter to zero. Here we see a performance lead for the Scholtes

relaxation, albeit a very slim one. For this method relaxations an be split into three

different groups based on performance (in order): the group containing the Scholtes

relaxation as well as those that use NCP functions, Lin-Fukushima and Kanzow-

Schwartz which are nearly as fast but plateau earlier, and the Steffensen-Ulbrich and

Kadrani relaxations which gain only about 10% robustness over the direct method
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but are somewhat slower. We note that Figure 32 suggests that we see very few

outright victories for the standard method, however it is the most robust, achieving

the highest fraction of problems solved, 95%.

We then move on to our analysis of the `∞-mode relaxation where we see that the

Scholtes version of this relaxation wins on the largest fraction of solvers. It maintains

its lead but only reaches a solution on about 92% of the problems. Once again we see

that the NCP function relaxations approach the performance of the Scholtes relaxation

and match it in robustness. We also see the Lin-Fukushima relaxation perform well

again but not quite at the level of the Scholtes and NCP group. On the other hand,

we see extremely poor performance from the Steffensen-Ulbrich relaxations and the

kinky relaxations of Kadrani et al. and Kanzow and Schwartz. We posit that this is

due to poor performance of the NLP solver when it comes to the sensitivity of the

relaxation with respect to the relaxation parameter s. From Figure 33 we see that

both the Kadrani and Kanzow-Schwartz relaxations fail frequently with a point which

the NLP solver claims is optimal, but still has a large complementarity residual.

Finally, we analyze the performance of the `1-mode relaxations and the `1-penalty

formulation. The `1-penalty method nearly ties the `∞ Scholtes relaxation in absolute

wins, however it fails to break the 90% of problems solved. This performance is nearly

mirrored by the `1-mode Scholtes relaxation albeit without the outright victories of

the penalty method. Here we also see the second major gap between the Scholtes

relaxation and the NCP function based relaxations, though they remain the best

performing group. The remaining relaxations perform worse than even the direct

method and as such can be neglected.

In general it is clear to see that the best methods in terms of speed and robustness are

the `∞-mode Scholtes relaxation and the standard Scholtes relaxation respectively.

The latter is certainly the choice for robustness as we will show in future experiments

as it’s robustness can even be improved by adjusting the σ0 and κ parameters which

govern the trajectory of the relaxation parameter.
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5.7.2 Homotopy Parameters

As described in the previous section we note that the Scholtes relaxation is the optimal

choice in its standard and `∞ forms. In order to elucidate a default set of parameters

we run an experiment on the NOSBENCH-RL test set, first varying the initial relaxation

parameter σ0 and then vary κ, the slope at which we drive the relaxation parameter

to zero. These two parameters have a moderate influence on the stability and speed

of the homotopy solver converging to an acceptable solution.

We first discuss the effects of σ0 the performance plots for which can be seen in

Figure 35. The first major takeaway from the analysis of the performance plots is

that this has a much less significant effect on the `∞-mode relaxation. Intuitively

this does make sense as in this mode we simply use a penalty factor 1
σ in order to

drive the complementarity residual to zero. It is, as such, not a limiting factor on

the complementarity residual in each step, depending of course on the scaling of the

problem at hand. On the contrary, it is observed that for the standard relaxation

the solvers converge to points with a complementarity residual exactly equal to σ

especially in all Scholtes and NCP relaxation schemes. However, minimal effect is

not no effect and we still see a penalty to convergence if we choose a σ0 that is

sufficiently small. It is notable that this reduction in performance primarily comes

from convergence to significantly worse local minima as seen in Figure 38.

On the other hand we see much earlier and much more pronounced decay in perfor-

mance for the standard Scholtes relaxation technique. We see almost a 30% reduction

in number of problems solved and from Figure 38 we see that the primary reason

for failure is a failure of the NLP solver to converge to a good local minimum. In

general the homotopy procedure will tend to be stuck closer to the initialization if we

take a smaller σ0 which matches what is observed in smoothing methods when small

smoothing parameters are used [51].

The effect of κ on convergence is surprisingly minimal compared to to the initial
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(a) Standard relaxation.
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Figure 34: Evaluating σ0, the initial homotopy parameter.

relaxation parameter. In particular we see essentially no difference in performance

for the `∞-mode relaxation. This is very likely due to the fact that for a majority

of problems we see only several (and occasionally only one) homotopy iterations

before the solver converges to an acceptable complementarity residual, which can

be observed in Figure 45 and Figure 46 in the appendix. The standard relaxation

does clearly show both the weakness and the strength of a relatively slow homotopy.

We note that for smaller κ the problem converges quicker due to having to take less
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Figure 35: Evaluating σ0, the initial homotopy parameter with relative perfor-
mance.
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Figure 36: Evaluating κ, the initial homotopy slope parameter.

homotopy iterations to converge to a sufficient solution. We also see that this benefit

disappears as you get to more difficult problems, i.e. OCPs. This is likely because

of the observed behavior that many of the intermediate NLP solves for the larger κ

are shorter due to more easily being able to follow the path to the solution. This

also is likely caused by a smaller initial infeasibility caused by the updated relaxation

parameter. We also see a mild improvement (around 10%) in the number of problems

that are solved with the larger κ. This makes it likely that a larger homotopy update

slope is particularly useful for ensuring convergence for more difficult problems while

a smaller κ (or use of the `∞-mode) is the superior option for simulation problems.

5.7.3 NLP Solvers

We also test several popular NLP solvers as engines for the homotopy solver on

the full NOSBENCH test set. In this case we use the existing default homotopy

parameters σ0 = 1 and κ = 0.1 and use the standard default settings for both SNOPT

and WORHP, except for those related to maximum iterations and timeouts which are

set as for IPOPT. SNOPT is also used in its warm-start mode, however as WORHP

labels its warm-starting mode as experimental we do not make use of it.
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Figure 37: Evaluating κ, the initial homotopy slope parameter with relative per-
formance.

We observe some significant wins for SNOPT, particularly on smaller problems, which

is expected due to the specialization of active set methods on small to medium size

problems. This speed comes at the cost of the worst robustness out of the three

solvers for both relaxation versions. WORHP on the other hand is is not particularly

fast but is more robust than SNOPT, and this gap is more prevalent in the standard
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Figure 38: Failure reasons for different values of σ0.
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Figure 39: Evaluating different NLP solvers.

relaxation. It is however clear to see that IPOPT is by far the winner here with both

the most overall wins in the `∞-mode with it solving 30.5% of problems the fastest,

and in terms of robustness where it successfully solves 73.8% of the problem set.

It is possible that further tuning may improve the performance of each of these solvers,

however in their current state IPOPT is a clear choice.
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Figure 40: Evaluating different NLP solvers with relative performance.
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Figure 41: Failure reasons of different NLP solvers.

Stationarity

We use this benchmark of the full test set to evaluate the stationarity properties of the

points our methods converge to. In Figure 42a we show the number of problems with

an empty and nonempty bi-active set I00. Recall that this implies the S-stationarity

of the point as described in Section 2.1. We then solve a TNLP for problems with

nonempty bi-active set I00, and extract the multipliers ν and ξ to calculate the type

of stationarity. This bi-active set is calculated via checking the values of G(w) and

H(w) and comparing this with the square root of the complementarity tolerance. An

iterative approach is then applied, wherein we try to solve the TNLP with a fixed

active set, and if this fails we iteratively remove the complementarity pair which is

furthest from the origin. In some cases however this approach still fails and we label

these points as “ND” or “not determined”.

We then evaluate the B-stationarity of each of these points. In the case of points where

the TNLP converged, we use the improved point from the output of the TNLP to

check B-stationarity, and in cases where the TNLP fails we use the original point that

the solver converged to. This B-stationarity check is done through solving a linear
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Figure 42: Evaluating type of stationarity points in the NOSBENCH-F test set.

program with complementarity constraints (LPCC) that arises from Equation (4):

min
d∈Rn

∇f(w∗)>d s.t. d ∈ FMPCC
ΩMPCC

(w∗). (61)

and verifying that d = 0 is a local minimum of that problem, as described in [78, 4].

We do this by formulating the LPCC as an mixed-integer linear program within a trust

region which we solve using Gurobi. The results of this B-stationarity verification is

shown in Figure 42b.

We note that the vast majority of the converged to points satisfy B-stationarity.

However we do also note that in many of the more interesting problems, those being

time-freezing and CLS problems, we sometimes fail to verify B-stationarity even in

cases where from analysis of the solution we clearly see the found solution is a optimal

solution. In some cases solving those problems to a higher accuracy, i.e. a lower

complementarity tolerance, allows us to verify the B-stationarity of the solution. This

suggests that the sequence of solutions will indeed converge to a B-stationary point,

but it requires more steps to do so.
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Figure 43: Evaluating Heaviside Step vs Stewart Reformulations.

5.8 Heaviside Step vs Stewart

This experiment is run on a subset of the NOSBENCH test set that contains all

problems which have the same parameters differing only by the reformulation used

for the Filippov system. This set tends to contain only easier problems as there are

no problems that contain state jumps. In Figure 43 we see that there is very little

difference between the Heaviside Step and Stewart reformulations when it comes to

the performance of solver.

We draw the readers attention to the fact that while for the standard relaxation it

seems that the Heaviside step wins more than 60% of the problems but the difference
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Figure 44: Evaluating direct and lifting modes, red marks represent failures to
converge.

is withing a factor of 1.5 to the Stewart reformulation which we do not view as

significant. This is backed up in our numerical experience, however this also speaks

to the fact that the majority of the systems we treat in NOSBENCH have few regions

and lack the structure that would be beneficial to take advantage of for the Heaviside

step reformulation as they do not permit very sparse S matrices.

5.9 Lifting vs Direct

Finally we evaluate the lifting approach against direct approaches. In order to do

this we took 3 simulation problems from the NOSBENCH test set with known good

solutions w∗ and attempted to solve the problem from an perturbed initial point w̄.

w̄ is generated via an additive Gaussian random perturbation with three different

standard deviations: 0.1, 1 and 5. We attempt to solve 100 of these randomly

perturbed problems with each standard deviation and each simulation problem and

plot the results in Figure 44. We see pretty clearly that the lifting method performs

more poorly with a smaller perturbation, which matches the behavior described

in [18].
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6 Conclusions & Outlook

In this chapter we briefly review the work done in the production of this thesis and

the results contained in prior chapters. We conclude the thesis with some possible

continuations of this work, as well as directions for further work on MPCC solvers.

6.1 Conclusions

In this thesis we introduce a new benchmark suite of MPCCs and use it to evaluate

a popular and generally successful class of algorithms. This is done in order to

further the goals of developing a fast and reliable solver for problems that arise from

nonsmooth optimal control. We compared a variety of relaxation approaches to

solving MPCCs and verified that of these the Scholtes relaxation is the best approach,

and that both standard homotopies and penalty based approaches to driving the

relaxation perform similarly.

We also introduce a theorem which suggests the degeneracy of the sparse formulation

(cross complementarity mode 1) of the Finite Elements with Switch Detection (FESD)

discretization. This is followed up with an empirical test of the performance of

the cross complementarity modes of the FESD discretization which back up the

theoretical assertions with worse practical performance for the sparse formulation.

This has led to a change in the NOSNOC software package towards defaulting to the

most dense cross complementarity mode 7, and, in future, a complete phase out of
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cross complementarity mode 1 as an option. The other experiments that were run

in the course of this thesis in order to evaluate the performance of various solver

settings in the NOSNOC package revealed that the existing parameters are at least

acceptable, or even optimal for the current set of problems that it has been used to

solve. Finally, the parity of the two reformulations of Filippov systems, the Stewart

and Heaviside step reformulations, was empirically confirmed.

As it stands we observe generally passable if not real-time performance on simulation

problems, which is in contrast to the performance on anything but simple optimal

control problems which cause even the most robust methods to perform unacceptably.

This points to the fact that further work must be done to allow FESD and NOSNOC

to be used for more interesting applications.

6.2 Future Work

The existing solution methods for MPCCs are clearly not sufficient for the purposes

of applying FESD to real time problems. As such there is certainly open directions

for research into better, possibly tailored solvers for FESD problems. In particular

we note that solvers that take advantage of the combinatorial nature of MPCCs are

an interesting avenue of research that is currently being pursued by various groups,

and would be interesting to apply to the problems produced by FESD.

We also note that there are likely structures specific to FESD problems that are likely

able to be exploited for further improved solvers. In particular the FESD active

set can be used to map to the complementarity active set which may yield more

combinatorially tractable problems.

Beyond the development of novel solvers there is some further improvements to be

made to the NOSBENCH problem set, including the addition of an AMPL interface

to ease it’s use for more researchers in the field. We also would like to continue to
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6.2 Future Work

extend the problem set to include more applications of nonsmooth optimal control to

better cover the whole range of possible problems. In particular an extension of the

Time-Freezing reformulation that allows the use of the Stewart reformulation would

allow us to evaluate that approach on the more difficult OCPs.
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A Additional NOSBENCH Description

and Results

Table 9: Parameters for for problems which make up NOSBENCH

Problem Slug Parameter Description

2BCLS Initial state:

x0 = (1, 2, 0, 0)

x0 = (0.2152, 1.2152,−3.9240,−3.9240)

x0 = (0.2119, 1.1741,−2.8636, 1.8424)

3CPCLS Cart mass:

m = {0.5, 1.0, 2.0}

3CPTF Cart mass:

m = {0.5, 1.0, 2.0}

986EQ Initial state:

x0 = (−10−12,−10−12, 0)

x0 = (0.0045, 0.1673, 0.4020)

986FO Initial state:

x0 = (3, 0)

x0 = (−2.1740,−0.3669)

x0 = (−0.2028, 0.0331)
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A Additional NOSBENCH Description and Results

Table 9: Parameters for for problems which make up NOSBENCH

Problem Slug Parameter Description

986FV Initial state:

x0 = (−2, 3, 0, 0)

x0 = (−0.0075, 0.7870, 3.0307,−3.4507)

x0 = (1.9337,−1.8933, 0.0055,−0.9974)

986OM Initial state:

x0 = (3, 0, 0)

x0 = (1.2992, 1.2595, 26.1000)

CARHYS Fuel cost enabled or not.

CARTIM None

CLS1D Initial particle height h = {0.03, 0.2}

CPWF Friction force F = {2, 5}

DAOBCLS Obstacle radius robs = {0.5, 1, 1.5}

DISCM None

DRNLND Linear or nonlinear controls.

DSCOB Obstacle radius robs = {0.5, 1, 1.5}

DSCSP None

FBS1S Initial state:

x0 = (−1.0991, 1.0902,−0.7588,−0.4115, 0.2943, 2.3575, 0.1411)

x0 = (0.3491,−0.0470,−0.3207, 0.1599,−0.2828, 2.1859, 2.1176)

x0 = (−1, 1,−1,−1, 1, 1, 0)

HOPOCP None

MFTOPT None

MNPED Distance of target: d = {2.0, 3.0, 4.0}

MWFOCP None
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Table 9: Parameters for for problems which make up NOSBENCH

Problem Slug Parameter Description

OSCIL Initial state:

x0 = (e−1, 0)

x0 = (0.9633,−0.1527)

RFB1S Initial state:

x0 = (0.0,−0.9388,−0.9388)

x0 = (0.0003, 0.9820,−1.7315)

x0 = (0,−0.001,−0.02)

SCHUMI 3 track options and time optimal/not time

optimal modes

SMCRS None

SMLSM None

SMOCP Linear or nonlinear control

SMSLM None

SMSPS None

TFBIB Reference rotational velocity: ω = {−2π,−3π}

TFPOB 5 different initial states

TIMF1D Initial particle height h = {0.04, 0.2}

TNKCSC None
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Figure 45: `∞-mode iteration time share.
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Figure 46: Standard relaxation iteration time share.
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Figure 47: Relative performance based on number of jacobian evaluations.
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