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Abstract— Model predictive control (MPC) and nonlinear
optimization-based planning for autonomous vehicles are often
formulated in a transformed coordinate frame, namely the
curvilinear Frenet frame. Mostly the center line of the road
is used as a transformation curve, but the choice of the
transformation curve might have properties which make the
optimization problem hard or even infeasible to solve in the
whole search space. This paper proposes an optimization-based
parameterization approach to establish an alternative trans-
formation curve which yields favorable numerical properties
for the consecutive use of numerical optimization approaches
such as MPC. The optimization objective minimizes the change
of curvature and pushes the evolute (i.e. singular region)
of the transformation curve outside the feasible region. The
convergence improvement of the proposed parameterization
approach in terms of integrator precision, optimization time
and iteration counts is compared in simulation examples, using
a time-optimal nonlinear optimization formulation.

I. INTRODUCTION
In the last decade nonlinear optimization-based approaches

for both, trajectory planning and control of autonomous
vehicles have been investigated actively in scientific research
and real-world applications ([1], [2], [3]). Nonlinear opti-
mization helps to either perform control tasks which respect
nonlinearities and constraints or plan optimal trajectories
or paths for motion control systems. Many of the existing
approaches use a particular state transformation, which maps
the Cartesian states to a road aligned path, formulated as
a curve in the Cartesian frame. The transformed frame is
referred to as ”Frenet frame” and used for example in [4],
[5], [6], [7], [8]. This leads to favorable properties of the
resulting system model regarding optimization objectives
and the structure of the resulting nonlinear program (NLP).
The formulation of maximum path progress with a constant
time horizon, which corresponds to time-optimal planning
is straight-forward by maximizing over the system state
of path progress and the tracking of the transformation
curve can be achieved easily by minimizing over the lateral
distance state. Also the motion of other traffic participants
is typically aligned with the road, which can be integrated
easily into the constraints. The choice of the road center
line as a transformation curve comes naturally since often
the reference curve and the road boundaries are parallel to
the center line. Other traffic participants also often move
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along center lane aligned trajectories. This usual choice of
the transformation curve is shown in Fig. 1. Due to these

Fig. 1. Center line transformation.

advantages, the center line is widely taken as the transforma-
tion to the road geometry and restrictions are put on the road
geometry itself to make this transformation unique and free
of singularities [4], [8]. In contrast to academic cases, real
world scenarios come with several differences, which make
the choice of the transformation curve a design parameter
or even require a necessary adaption, so that the whole
road space is feasible for the system states. So far no work
has considered this transformation as a design parameter, it
was rather taken as given input. Given a point on a curve,
an osculating circle describes a circle that has the same
tangent as the curve in this point and which has the same
curvature (Fig. 7 shows the osculating circle in point pi). The
curve, describing the evolution of the center of the osculating
circles is referred to as evolute. As a hard constraint for
the choice of the transformation curve, the road boundary
perpendicular to the transformation curve must be closer
than its oriented radius of all osculating circles of the planar
transformation curve. Since an NLP is an approximation of
the optimal control problem (OCP) and approximated with
a discretization in time, the distance of the road boundary to
the evolute must even be raised by a certain factor to achieve
numerical robustness. By transforming the vehicle model into

2021 European Control Conference (ECC)
June 29 - July 2, 2021. Rotterdam, Netherlands

978-94-6384-236-5 ©2021 EUCA 2414

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on March 16,2022 at 13:41:45 UTC from IEEE Xplore.  Restrictions apply. 



the Frenet coordinates, the curvature becomes part of the
dynamic system. Consequently, also the nonlinearity of the
curvature directly becomes part of the vehicle model. Besides
of the hard constraint regarding the singularity emerging
from the curvature, this work also addresses further favorable
properties of the transformation choice. The dynamic state
equations (including the curvature) enter the NLP by equality
constraints and at least one derivative is used by the solver.
Good convergence properties are achieved if higher order
derivatives of the NLP constraints can be lowered and
this is performed by the presented parameterization of the
transformation curve. An example of the parameterized curve
is shown in Fig. 2. For known tracks (e.g. race tracks, known
road networks) the transformation can be computed offline
in advance.

Fig. 2. Suggested transformation with objective as in (13).

II. SYSTEM MODEL

A. Single Track Model

A kinematic model in a curvilinear reference frame is
used, which was presented first in [9] and leads to a slip-free
tire model. The direction of the movement of the center of
gravity (CG) with the vehicle mass m is given by the angle
ψ + β, where ψ is the vehicle orientation. The side-slip angle
β is defined as depicted in Fig. 3 and gives the relative angle
of motion related to the vehicle coordinate system. The side-
slip angle is given by

β = arctan

(
lr

lr + lf
tan δ

)
. (1)

The system model can then be described by the following
Equations (2) in the Cartesian coordinate frame. The velocity

vector v denotes the velocity related to the CG.

ṗX = v cos(ψ + β) (2a)
ṗY = v sin(ψ + β) (2b)

ψ̇ =
v

lr
sinβ (2c)

v̇ =
F d
x

m
cosβ (2d)

The geometry of the vehicle is simply described by the
longitudinal position of the CG with the front distance lf
and the rear distance lr. The input force F d

x only acts on
the rear wheel, where as the steering angle δ only deflects
the front wheel, which is an arbitrary choice and does not
influence the proposed algorithm.

Fig. 3. Kinematic single-track model.

B. Curvilinear Transformation

So far the system model is independent of any road geom-
etry, but as pointed out, a useful transformation leads to the
vehicle system equations in the Frenet frame. It leads to the
dynamic system (3) with the states x =

[
s, n, α, v

]T
and controls u =

[
F d
x , δ

]T
, which now depend on the

curvature. Here, path aligned states are used which describe
the progress on the transformation path s(t), the normal
distance to the transformation path n(t) and the heading
angle mismatch α(s, t) = ψ(t)−ψc(s). In many works (e.g.
[8], [4]) this transformation is performed along the center
line, which is generally not the case here.

ṡ =
v cos(α+ β)

1− nκ(s)
:= fs(x) (3a)

ṅ = v sin(α+ β) (3b)

α̇ = ψ̇ − κ(s)ṡ := fα(x) (3c)

v̇ =
F d
x

m
cos(β) (3d)

The equations can be summarized by the nonlinear dynamic
system equations of first order.

ẋ = f(x, u) (4)

Note that the curvature κ(s) together with bounds on the
normal distance state n now fully describe the road geometry.
Fig. 4 shows the transformation of a point to the curve γ(s),
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Fig. 4. Path-parametric model as in [4].

normal distance n, the error angle α and the heading angle
of the reference ψr.

III. NEWTON-TYPE OPTIMIZATION

As described in [4], the time-optimal racing problem
can be described very generally by the following multiple
shooting NLP and allows the usage of a Gauß-Newton
Hessian approximation but might also be solved with an
exact Hessian ([10]). It is important to emphasize that the
presented approach shifts the reference line, which might not
be desired for certain applications. For those applications, a
reference offset could be used but is out of the scope of this
work. The time dependence of the states x and controls u is
discretized with fixed time intervals ∆t and an integration
scheme F (xk, uk,∆t). Equation (5e) puts constraints on the
states, which can depend on the path variable s as well as
on the time index k, to account for time varying constraints
like moving obstacles.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

‖xk − xk,ref‖2Q + ‖uk‖2R + ‖xN − xN,ref‖2QN

(5a)
s.t. x0 = xc, (5b)

xk+1 = F (xk, uk,∆t), k = 0, . . . , N − 1, (5c)
u ≤ uk ≤ u, k = 0, . . . , N − 1, (5d)

xk(sk) ≤ xk ≤ xk(sk), k = 0, . . . , N − 1, (5e)

Newton-type algorithms use first order (Gauß-Newton Hes-
sian) or second order derivatives (exact Hessian) of the
constraints, which are particularly interesting for (5c) and
(5e), since both equations are influenced by the chosen
representation of the road geometry κ(s). Since (5e) is in
general driving scenarios not exactly known a priori, it can
just be assumed that obstacles move and their geometry
is aligned along the center line. Nevertheless the model
integration (5c) is of fixed structure which can be exploited
in order to parameterize the transformation of the road
geometry, resulting in κ(s). By taking a closer look at the
system dynamics (3a), the function value is heading towards
infinity if the normal distance of the transformation line n
is close to the reciprocal value of κ(s), which corresponds
to the radius of curvature. The curvature ratio ρ(s, n) can
be defined as the ratio of the lateral distance n to the

radius of the osculating circle R(s) = 1
κ(s) , which yields

ρ(s, n) = n
R(s) = nκ(s).

IV. SINGULARITY AND SMOOTHNESS PROBLEM

By symbolically computing the first (6) and second (7)
partial derivatives of the state s, it is further obvious that
the denominators have a quadratic dependence on the non-
linearity described above, which make the resulting Jacobian
of the constraints arbitrarily ill-conditioned if the curvature
ratio ρ(s, n) is sufficiently close to 1. Equation (6) shows
that higher order derivatives for the differential equations
of the integrator in (5c) can be lowered by reducing the
maximum possible value for the denominator, which is the
main subject of the presented parameterization approach.
According to [11], it can generally be assumed that lowering
higher order derivatives increases convergence properties of
usually applied numerical solvers.

∂fs(x)

∂s
=
v cos(α+ β)nκ(s)′

(1− nκ(s))2
(6a)

∂fα(x)

∂s
= −(κ(s)′fs(x) + κ(s)

∂fs(x)

∂s
) (6b)

∂2fs(x)

∂s2
=
v cos(α+ β)n((1− nκ(s))κ(s)′′ + 2n(κ(s)′)2)

(1− nκ(s))3

(7a)

∂2fα(x)

∂s2
= −κ(s)′′fs(x)− 2κ(s)′

∂fs(x)

∂s
− κ(s)

∂2fs(x)

∂s2
(7b)

Also the partial derivative κ(s)′ should stay small to reduce
higher order derivatives.

V. OPTIMAL CURVILINEAR
PARAMETERIZATION

Using the previously defined weaknesses of the center line
transformation approach (i.e. mainly the singularities close or
inside the feasible region) as costs, a novel parameterization
approach is presented, which is formulated as an NLP. By
means of discrete geometric considerations the singularity is
pushed outside the feasible region and the curvature along
the path length variable is smoothed while the distance to
the center line is kept as close as possible. The solution
transformation not only guarantees that no singularities are
located inside the feasible region but also pushes these
very nonlinear regions outside the feasible region as far as
possible. Here, the waypoints oi ∈ R2 describe N discrete
points of a given piece-wise linear reference curve Γo(s) in
the Cartesian frame, depending on the path length s. The
vector vi ∈ R2 represents the tangent norm vector, with
‖vi‖ = 1 pointing ”left” facing the positive road direction, as
shown in Fig. 5. The scalar value ti ∈ R is used as the i-th
element of the optimization variables t = [t0, ..., tN ]T ∈ RN
and shifts the reference point towards the road boundaries,
resulting in the shifted point pi (Fig. 6). The road borders
are given as maximum or minimum deflection ti of point pi
into direction vi, which are denoted by tmax

i or tmin
i . At the

discrete total path length si of the piece-wise linear reference
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Fig. 5. Geometry of waypoint borders.

path it holds that Γ(si) = pi. The distance vector between
point pi and pi+1 is given by hi, where ∆si = si+1 − si =
‖hi‖.

Fig. 6. Geometry of waypoint displacement.

pi =

[
px,i
py,i

]
= oi + tivi (8)

hi =

[
hx,i
hy,i

]
= pi+1 − pi (9)

As shown in [12], the discrete curvature κi for unequally
spaced points can be computed by means of the first central
and second finite differences, with the notation of D1

i for
first, D2

i for second discrete derivatives and the composition
of Dn

i =
[
Dn
x,i, Dn

y,i

]T
. Another method to compute the

discrete curvature would be the method of osculating circles
as shown in [13].

D1
i :=− ∆si

∆si−1(∆si + ∆si−1)
pi−1−

∆si + ∆si−1
∆si∆si−1

pi +
∆si−1

∆si(∆si + ∆si−1)
pi+1 (10a)

D2
i :=2

∆sipi−1 − (∆si + ∆si−1)pi + si+1pi+1

∆si−1∆si(∆si + ∆si−1)
(10b)

κi(ti−1, ti, ti+1) =
D1

x,iD
2
y,i −D1

y,iD
2
x,i

((D1
x,i)

2 + (D1
y,i)

2)
3
2

(11)

The discrete curvature is now used to formulate an overall
objective, which is the sum of several objectives. First, the
maximum value of the ratio of the ”inner” (the side where
the curve bends) boundary distance (tmin

i − ti if κi < 0
or tmax

i − ti if κi > 0) to the signed radius of curvature
Ri = 1/κi is minimized by means of the slack variable ρ̄.
The osculating circle to point pi is sketched in Fig. 7, which
also shows the maximum deflection tmin

i −ti of the reference
curve Γ(s) at point s = si. Note that the vector to the center
of the osculating circle which is a multiple of the new tangent
vector v̄i to Γ(si) generally does not need to be parallel to
the tangent vector vi of the initial curve Γ0(si). Nevertheless
it is assumed that the vectors vi and v̄i are equal, since the
mismatch is generally small, if the curve Γ0 is initialized
properly, i.e. close to the center line. The slack variable ρ̄
bounds the maximum allowed value of the curvature ratio
ρ = nκ and is also bounded by a value ρ̄max, which should
be between 0.5 and 0.95 and penalized by a cost Tρ(ρ̄).
The optimization figuratively pushes the evolute shown in
Fig. 2 off the boundaries and guarantees that they do not
intersect by the constraint on ρ̄. The parameter wρ contributes
to the shape of the penalty function for relevant values 0 <
ρ̄i < ρ̄max and might also be set to zero, if ρ̄max is used
conservatively (i.e. low values). It is noteworthy that this

Fig. 7. Geometry of osculating circle.

objective stated alone would lead to a flat minimum, which
would result in nonsingular solutions. Secondly, the discrete
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derivative of the curvature is minimized and weighted by
wdκ in objective Tdκ. Thirdly, a term Tdc(t) is added, which
can be used to force the resulting transformation line towards
the road center. This might be useful if obstacles parallel to
the center-line are added.

Tdκ(t) =

N−2∑
i=1

(κi+1(ti, ti+1, ti+2)− κi(ti−1, ti, ti+1)

‖hi(ti, ti+1)‖

)2
(12a)

Tdc(t) =

N∑
i=0

( tmin
i + tmax

i

2
− ti

)2
(12b)

Tρ(ρ̄) =

N−1∑
i=1

ρ̄i
1− ρ̄i

(12c)

min
ρ̄ ∈ RN−1, t ∈ RN

wρTρ(ρ̄) + wdκTdκ(t) + wdcTdc(t)

s.t. tmin
i ≤ ti ≤ tmax

i i = 0, . . . , N,

(tmin
i − ti)κi ≤ ρ̄i i = 1, . . . , N − 1,

(tmax
i − ti)κi ≤ ρ̄i i = 1, . . . , N − 1,

ρ̄i ≤ ρ̄max i = 1, . . . , N − 1
(13)

VI. SIMULATION RESULTS

A. Integration error

Since the integration scheme which is used in order to
obtain an NLP out of the OCP by direct multiple shooting is
one of the most important contributors to the overall accuracy
of the OCP solution, the improvement of the integration
performance is shown in a simplified setting (Fig. 8). The
vehicle model (lr = 2 m and lf = 1 m) in the Cartesian
frame (3) as well as the vehicle model in the Frenet frame
(3a) are forward simulated with a constant speed of 1m

s and
a constant steering angle of δ = −0.15 rad. The ”Frenet
model” is transformed into the Frenet frame with respect
to a transformation curve, given as a circle. This circular
transformation curve leads to a constant curvature and the
center point of the circle represents the whole singularity.
In subsequent experiments this circle is displaced along a
line which crosses the motion path of the vehicle. The
displacement is characterized by the maximum curvature
ratio ρmax, which is the maximum value of the curvature
ratio ρ(s, n) along the exactly simulated trajectory. This
value would be equal to zero if the integrated trajectory
lies exactly on the transformation curve (circle perimeter)
and equal to one if the trajectory crosses the radius center
(singularity). Two different integration schemes are used
(Euler and Runge-Kutta-4 (RK4)) in order to demonstrate
the superior integration result in terms of the end-point
error to exactly simulate a quarter-circle path. Additionally,
each integration scheme is performed with different step
lengths. As a step size ∆t0 = 2.6 s is used. In Fig. 9
the integration schemes are compared, dependent on the
curvature ratio ρ for a certain step size. The Euler integration
was performed with 4 times the number of steps than the

Fig. 8. Integration setting.

RK4 integration to compare them related to their number of
function evaluations. It can easily be verified that at some
value of the curvature ratio ρ each integration scheme shows
high errors and at some ratio ρ the end-point simulation error
is rather randomly close to the exact solution. Based on this
observations, for a given integration scheme it is obvious to
set an upper border for the curvature ratio ρ in order to define
the transformation curve.

Fig. 9. Integration errors.

The integration performs best if the simulated path is
located exactly at the transformation curve (curvature ratio
ρ = 0) and performs poorly, if the path is located close to the
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singularity (curvature ratio ρ = 1). For negative curvature
ratios ρ Euler integration performs always better with the
Frenet model. Although, if the Runge-Kutta-4 integration
scheme is used, the Cartesian model is superior, despite for
a curvature ratio of ρ = 0.

B. Model predictive control

To point out the superior properties of the presented
approach for parameterizing the transformation curve, an
exemplary task for time-optimal MPC is solved. The time-
optimal trajectory for the curve in Fig.2 is obtained by
solving an NLP of the form (5). Two different transformation
curves are compared as shown in Fig. 1 for the center line
and Fig. 2 for the numerically better behaving parameterized
optimal transformation curve, which was obtained by solving
(13) (wdc = 10, wρ = 10, ρ̄max = 0.7 and wdκ = 108).
The parameters of the vehicle model were taken from a real
race car model with wheel bases lr = 1.4m, lf = 1.6m, a
maximum lateral and longitudinal acceleration of 5m

s2 for
both. The OCP was discretized with a horizon T = 9s
and a discretization time of ∆T = 0.05s. Other values are
equivalent to [4]. For solving the NLP, acados [14] was
used with a RK4 integrator performing one step per multiple
shooting interval. The problem was solved with 40 different
starting positions as marked in Fig. 1 and the resulting
numerical differences are shown in Table I. The presented
parameterization results in superior numerical properties for
all relevant performance measures. Note that the so called
”center curve” was also re-parameterized slightly in order
to obtain smooth system differential equations (wdc = 103,
wρ = 10, ρ̄max = 0.9 and wdκ = 106). Without the
presented parameterization the solver failed in a significant
amount of simulation runs, which is another indicator that
some form of parameterization like the presented approach is
even necessary for most applications of Frenet model MPC.

TABLE I
COMPARISON OF TRANSFORMATION CURVES FOR MPC.

Statistical NLP value center line optimal trans. curve
solution time (mean) 611.1ms 470.9ms

SQP iterations (mean) 11.0 8.2
QP iterations (mean) 22.3 11.1

QP solver fails 40% 0%

VII. CONCLUSIONS
The paper presents a parameterization approach that is

suggested to be used with Frenet transformations related to
numerical optimization approaches for autonomous driving.
It formalizes the problem of finding the transformation
curve, which must not have singularities in the feasible
driving region. A parameterization, stated as an optimization
problem is presented, which ensures feasibility as well as
superior numerical properties for Newton-type optimization.
The performance increase is shown by means of a plain
integration and a small but relevant test example. Further
considerations and future work might focus on the related

nonconvexity of the constraints, the implementation as a real
time capable NLP or the consecutively needed transformation
of the borders.
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