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Abstract: Trajectory planning with the consideration of obstacles is a classical task in
autonomous driving and robotics applications. This paper introduces a novel solution approach
for the subclass of autonomous racing problems which is additionally capable of dealing with
reward objects. This special type of objects is representing particular regions in state space,
whose optional reaching is somehow beneficial (e.g. results in bonus points during a race).
First, a homotopy class is selected which represents the left/right and catch/ignore decisions
related to obstacle avoidance and reward collection, respectively. For this purpose, a linear
mixed-integer problem is posed such that an approximated combinatorial problem is solved and
repetitive switching decisions between solver calls are avoided. Secondly, an optimal control
problem (OCP) based on a single-track vehicle model is solved within this homotopy class.
In the corresponding nonlinear program, homotopy iterations are performed on the race track
boundaries which correspond to the previously chosen homotopy class. This leads to an improved
convergence of the solver compared to the direct approach. The mixed-integer method’s
effectiveness is demonstrated within a real-world test scenario during the autonomous racing
competition Roborace. Furthermore, its combination with the OCP as well as the performance
gain resulting from the homotopy iterations are shown in simulation.
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1. INTRODUCTION

Autonomous racing poses great challenges for the develop-
ment of planning and control algorithms. As the vehicles
move with high velocities close to their physical limits,
nonlinear effects on their system dynamics arise and must
already be considered during planning. Sudden obstacles
or race opponents with uncertain behavior require evasion
or overtaking maneuvers, planned in real-time on hard-
ware with typically rather limited computational power.
As part of the racing series Roborace, the participating
teams develop software for the fully autonomous operation
of electric race cars and are confronted with increasingly
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demanding objectives from one event to the other. This
work addresses real-time trajectory planning for lap time
minimization while avoiding obstacles and collecting re-
wards. Whereas the vehicle moves on a real race track, the
purely virtual obstacles and rewards, which translate into
lap time penalties and bonuses respectively, are provided
to the car’s software about 200 m in advance. The planning
algorithm not only has to compute a trajectory which
eludes obstacles and is feasible regarding vehicle kinemat-
ics and dynamics as well as race track geometry. It also
must decide whether rewards are worth gathering, which
distinguishes the considered task from related problems in
literature. The proposed algorithm was successfully used
in the Roborace competition at the Bedford race circuit
in December 2020. Figure 1 shows the race car collect-
ing a virtual reward object, which was live-streamed as
augmented-reality animation during the race.
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Fig. 1. Race car hitting an augmented reality reward at
the competition in Bedford, England.

1.1 Related work

Trajectory planning with obstacle avoidance occurs in
many domains and consequently, different approaches
exist. Typically, in a certain situation there are in-
finitely many trajectories fulfilling the feasibility condi-
tions. Therefore, cost functions are used to choose an
optimal one depending on the application. Graph-based
methods perform a global search on the time- and space-
discretized configuration space to find the best trajectory.
However, their ability to find the global optimum strongly
depends on the chosen discretization and if that is fixed,
even finding a feasible solution may fail, e.g. in narrow
passages. Common graph search techniques include Dijk-
stra’s algorithm, A*, and D* with their variants (Paden
et al. (2016)). Exemplary, Rizano et al. (2013) describe
the graph construction for racing applications and use a
Dijkstra-like search algorithm. Depending on the vehicle
model fidelity and the discretization grid size, the com-
putation times of graph search quickly rise. Techniques
based on nonlinear continuous optimization (aka varia-
tional methods) tend to perform better in these cases,
although, they only provide locally optimal solutions un-
less the initial guess is sufficiently close to the global
optimum (Paden et al. (2016)). An application within
the racing domain is shown in Heilmeier et al. (2020a),
where first a minimum curvature path is computed via
solving of a quadratic program (QP). Afterwards, the ve-
locity profile is generated such that the acceleration limits
are not violated. Many variational methods have strong
similarities to nonlinear model predictive control (NMPC,
see e.g. Johansen (2011)), but instead of directly applying
their predicted model inputs to the plant, their computed
trajectories serve as references for underlying controllers.
Alcalá et al. (2020) demonstrate how to express an NMPC
formulation of the trajectory planning problem in a linear
parameter varying form. In Liniger et al. (2015), a for-
mulation as model predictive contouring control problem
leads to a progress maximization on the race track’s center
line. Bergman and Axehill (2017) introduce a homotopy
strategy to account for the strong nonlinearity of the
obstacles. In both papers obstacles are considered via vari-
ations of the track boundaries. Thereby, the decision on

which side an obstacle should be bypassed is delegated to
a higher-level planner. Bergman et al. (2019) and Bergman
et al. (2020) consider the combinatorial problem by com-
bining optimal control with lattice-based path planning.
Their work addresses the same underlying problem, but
focuses on unstructured environment like parking lots.
Schouwenaars et al. (2001) and Richards et al. (2002)
illustrate how to integrate these binary decisions into a
single mixed-integer linear program (MILP) and show its
application to solve obstacle avoidance for vehicles and
spacecrafts. In the context of controller design Janeček
et al. (2017) use similar ideas in an MPC based on mixed-
integer QP (MIQP) for avoiding obstacles. Park et al.
(2015) first decompose the collision free space into convex
cells which are connected to distinct homotopy classes and
subsequently solve MIQPs for each of them. Thereby, the
globally optimal solution is selected from the local optima
of each homotopy class.

1.2 Contribution

This paper proposes a planning procedure considering
obstacles and rewards which consists of both offline and
online steps. Prior to the actual race, an optimal racing
line for the given track geometry is computed, assuming
that there are no obstacles. This is done with an approach
similar to Heilmeier et al. (2020a), however, since it is
not the focus of this paper, further details are omitted.
The online part is twofold: First, a MILP is formulated
whose solution selects a homotopy class, i.e. which rewards
are collected and on which side obstacles are eluded. This
homotopy class is represented by deformed boundaries of
the original track. Secondly, a continuous optimization
problem is stated where deflections from the racing line
are minimized, considering the modified boundaries from
the MILP and vehicle constraints. The NMPC-like opti-
mization problem is not directly solved, instead homotopy
iterations are performed which gradually put more weight
on the modified boundaries’ adherence and improve the
convergence of the solver. The paper contributes with a
motion planning approach which is capable of solving time-
optimal motion planning problems with a combinatorial
structure, without fully discretizing the state-space, as
opposed to graph-based state-of-the-art algorithms.

2. VEHICLE AND OBJECT MODELS

Separating the trajectory optimization from the combina-
torial homotopy class selection facilitates using different
models. For solving the combinatorial obstacle and reward
problem, an utterly simplified geometric model is utilized
which represents a deviation from the racing line with
limited maximum steepness. The continuous optimization
problem is stated on basis of a single-track model.

2.1 Single-track model for continuous optimization

The utilized kinematic model is given for instance in
Kloeser et al. (2020) and does not consider tire slip. In
order to reduce the computation time of the optimizer
later on, drifting motion is not considered during planning.
Instead, the subsequent trajectory following controller is
assumed to take lateral and longitudinal tire slip into
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Fig. 1. Race car hitting an augmented reality reward at
the competition in Bedford, England.
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Schouwenaars et al. (2001) and Richards et al. (2002)
illustrate how to integrate these binary decisions into a
single mixed-integer linear program (MILP) and show its
application to solve obstacle avoidance for vehicles and
spacecrafts. In the context of controller design Janeček
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(2015) first decompose the collision free space into convex
cells which are connected to distinct homotopy classes and
subsequently solve MIQPs for each of them. Thereby, the
globally optimal solution is selected from the local optima
of each homotopy class.

1.2 Contribution

This paper proposes a planning procedure considering
obstacles and rewards which consists of both offline and
online steps. Prior to the actual race, an optimal racing
line for the given track geometry is computed, assuming
that there are no obstacles. This is done with an approach
similar to Heilmeier et al. (2020a), however, since it is
not the focus of this paper, further details are omitted.
The online part is twofold: First, a MILP is formulated
whose solution selects a homotopy class, i.e. which rewards
are collected and on which side obstacles are eluded. This
homotopy class is represented by deformed boundaries of
the original track. Secondly, a continuous optimization
problem is stated where deflections from the racing line
are minimized, considering the modified boundaries from
the MILP and vehicle constraints. The NMPC-like opti-
mization problem is not directly solved, instead homotopy
iterations are performed which gradually put more weight
on the modified boundaries’ adherence and improve the
convergence of the solver. The paper contributes with a
motion planning approach which is capable of solving time-
optimal motion planning problems with a combinatorial
structure, without fully discretizing the state-space, as
opposed to graph-based state-of-the-art algorithms.

2. VEHICLE AND OBJECT MODELS

Separating the trajectory optimization from the combina-
torial homotopy class selection facilitates using different
models. For solving the combinatorial obstacle and reward
problem, an utterly simplified geometric model is utilized
which represents a deviation from the racing line with
limited maximum steepness. The continuous optimization
problem is stated on basis of a single-track model.

2.1 Single-track model for continuous optimization

The utilized kinematic model is given for instance in
Kloeser et al. (2020) and does not consider tire slip. In
order to reduce the computation time of the optimizer
later on, drifting motion is not considered during planning.
Instead, the subsequent trajectory following controller is
assumed to take lateral and longitudinal tire slip into

account. The movement direction of the center of gravity
(CG) with the vehicle mass m is given by the angle ψ + β,
where ψ is the vehicle orientation. The side slip angle

β = arctan

(
lr

lr + lf
tan δ

)
(1)

is defined as depicted in Fig. 2 and gives the relative angle
of motion related to the vehicle coordinate system (Kloeser
et al. (2020)). The vehicle motion is governed by

ṗX = v cos(ψ + β) (2a)

ṗY = v sin(ψ + β) (2b)

ψ̇ =
v

lr
sinβ (2c)

v̇ =
F d
x

m
cosβ (2d)

in the Cartesian coordinate frame where v is the longitudi-
nal velocity in movement direction of the CG. The vehicle’s
geometry is described by the longitudinal position of the
CG with front distance lf and rear distance lr. The input
force F d

x only acts on the rear wheel, whereas the steering
angle δ only deflects the front wheel. As second input the
steering rate r = δ̇ is utilized to avoid discontinuities in the
steering angle δ, which would arise with directly choosing
δ as an input.

Fig. 2. Kinematic single-track model.

2.2 Frenet transformation

System (2) is transformed into Frenet coordinates as
described in Kloeser et al. (2020) with the difference
that this transformation is performed along the racing
line instead of the center path. The resulting nonlinear
dynamic system ẋ = f(x, u) now depends on the curvature
κ(s) and reads as

ṡ =
v cos(α+ β)

1− nκ(s)
(3a)

ṅ = v sin(α+ β) (3b)

α̇ = ψ̇ − κ(s)ṡ (3c)

v̇ =
F d
x

m
cos(β) (3d)

δ̇ = r (3e)

with states x = [s, n, α, v, δ]
T
and controls u =

[
F d
x , r

]T
.

Path aligned states are used which describe the progress on
the transformation path s(t), the normal distance to the
transformation path n(t) and the heading angle mismatch
α(s, t) = ψ(t)−ψr(s). Note that κ(s) together with bounds

on the normal distance state n now fully describe the road
geometry. Fig. 3 shows the transformation of a point p

Fig. 3. Path-parametric model as in Kloeser et al. (2020).

with respect to the curve γ(s), normal distance n, the
error angle α and the heading angle ψr of γ(s). The path
parameter s∗ corresponds to the parameter of the closest
point γ(s∗) to the given position p of the vehicle model.
The lateral acceleration of this model can be stated as

alat =
1

lf + lr
v2δ +

F d
x

m
sin

(
δlr

lf + lr

)
. (4)

2.3 Linear model for mixed-integer programming

For the integer problem an utterly simplified model is used,
which basically just accounts for a geometric offset from
the Frenet transformation line and is formulated in the
Frenet frame as well. The model lacks time dependency, it
rather depends on the path progress s, which is discretized
on a grid related to the obstacles and written as sk.
The discretization is performed to represent the obstacle
shape related to the racing line. The lateral distance nk is
limited based on the road constraints nk,left and nk,right.
The continuous control variable u relates the only state
variables nk to each other and is split into a negative
and positive part, due to the integer formulation of the
optimization objective. The control variable u expresses
the steepness of the path deviation from the racing line
between two nodes and is limited by umax. The model can
be written as

nk+1 = fk(u
pos
k , uneg

k )

= nk + (upos
k − uneg

k )(sk+1 − sk)
(5a)

0 ≤ upos
k ≤ umax (5b)

0 ≤ uneg
k ≤ umax (5c)

nl,right ≤ nl ≤ nl,left (5d)

for k = 0...Nd − 1 and l = 0...Nd, where Nd is the number
of discretizations of the longitudinal path variable s.
This model describes a piece-wise linear path in Frenet
coordinates.

2.4 Object representation

Objects are modeled in the two dimensional Frenet frame
by means of polygons as shown in Fig. 4. A particular ob-
stacle i of totally NO obstacles is represented by a polygon
with NOi

p points and a reward d of NR rewards with NRd
p

points respectively. The object’s vertices are aligned with
the discretization of the longitudinal coordinate, which is
chosen such that it resembles the shape of the objects ”well
enough”. Therefore, a vertex always has an opposite side
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point with the same longitudinal coordinate. Right or left
sides are noted with {r, l}. The coordinate points in the
Frenet frame of the polygon characterizing each reward or
obstacle are written as

p
Rd,{r,l}
k =

[
sRd
k n

Rd,{r,l}
k

]T
(6a)

p
Oi,{r,l}
k =

[
sOi
k n

Oi,{r,l}
k

]T
(6b)

with k as the global spatial index of the longitudinal Frenet
axis.

Fig. 4. Object configuration in Frenet frame.

3. COMBINATORIAL OPTIMIZATION

3.1 Binary object-boundary relation

In order to find an optimal path through the obstacle
setting in the Frenet frame with the reduced model (5),
binary integer variables are used to construct a linear
mixed-integer problem. For each obstacle i, one binary
variable ωi indicates the passing side (left/right). Rewards
are treated differently because they could be catched on
different positions. For ”short” rewards (where ”short”
is related to the longitudinal extention of the reward)
one binary variable βd sufficiently specifies whether this
reward should be caught or ignored. For long rewards
”gates” with several binary variables βd

k are used. For
each long reward d, totally NRd

p /2 binary variables are

used, which are indexed by l = 0 . . . (NRd
p /2 − 1). Each

binary variable βd
l indicates, if boundaries are set to

”gate” the corresponding lateral state variable at the
particular longitudinal position of the reward. A logical
OR connective of the binary ”gate” variables

β̄d =βd
k ∨ · · · ∨ βd

k+NRd
p −1 (7)

indicates the final binary state for reward d, which is
then used to specifiy the associated cost. That means if
at least one gate is ”closed” (meaning the binary variable
sets the boundaries active), the final path is crossing the
reward polygon at some point. This formulation leads to
a high number of decision variables, which is necessary if
a reward can be caught at multiple positions. For example
a very long ”reward zone” aligned with the road might be
entered at very different positions. With known shapes of
the rewards, particularly where the longitudinal length in
Frenet frame is ”small” (e.g. smaller than 5 meters in the
setting used for the competition) (7) can be simplified by
taking the left-most and the right-most polygon points to

define a ”gate”, that is either switched active or inactive
by just one integer variable βd.

The binary variables are subsequently used to adjust
boundaries forming a homotopy class for the gradient-
based optimization. Detailed considerations about homo-
topy classes in this context are shown in Bergman and

Axehill (2017). Obstacle boundary values n
Oi,{r,l}
k and its

binary variables ωi are related to state constraint on nk

with the inequalities

nk ≥ ωinOi,r
k + (1− ωi)nk,right = Hlow(k, ω) (8)

nk ≤ (1− ωi)nOi,l
k + ωink,left = Hupp(k, ω), (9)

for k = 0...Nd where a binary state equal ”0” is defined
as ”passing left”. For relating the borders to the reward
polygon, the equations

nk ≥ βd
kn

Rd,r
k − (1− βd

k)nk,right = Ilow(k, β) (10)

nk ≤ βd
kn

Rd,l
k − (1− βd

k)nk,left = Iupp(k, β), (11)

are used, where the binary variable equal to ”1” is defined
as ”catch”. Fig. 5 shows the changed bounds due to the
integer variables.

Fig. 5. Road bounds aligned to object integer variables.

3.2 Decision-flickering avoidance

During real-world conditions on vehicle hardware the
perception system receives slightly shifted versions of
the same problem, where just infrequently new objects
appear. Very often, two solutions nearly have the same
cost (e.g. an obstacle in the middle of the road) which
could lead to jumping binary variables. For that reason,
a penalty for changes to previous decisions is introduced
that is increasing with the number this decision was
computed previously by the algorithm and decreasing with
the distance of the object to the vehicle. In other words,
binary re-decisions for objects that are far from the vehicle
and which have just appeared are ”cheaper” than re-
decisions for closer and longer present objects. To account
for re-decisions, the binary values of cRi and cOi are used to
form a logic XOR connective between the binary decision

variables βi or ωi and the previous decisions β̂i or ω̂i.

cRi = βi(1− β̂i) + (1− βi)β̂i (12)

cOi = ωi(1− ω̂i) + (1− ωi)ω̂i (13)

A parameter pi accounts for the weight that this decision
should be kept. The weight is updated iteratively and
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In order to find an optimal path through the obstacle
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mixed-integer problem. For each obstacle i, one binary
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3.2 Decision-flickering avoidance

During real-world conditions on vehicle hardware the
perception system receives slightly shifted versions of
the same problem, where just infrequently new objects
appear. Very often, two solutions nearly have the same
cost (e.g. an obstacle in the middle of the road) which
could lead to jumping binary variables. For that reason,
a penalty for changes to previous decisions is introduced
that is increasing with the number this decision was
computed previously by the algorithm and decreasing with
the distance of the object to the vehicle. In other words,
binary re-decisions for objects that are far from the vehicle
and which have just appeared are ”cheaper” than re-
decisions for closer and longer present objects. To account
for re-decisions, the binary values of cRi and cOi are used to
form a logic XOR connective between the binary decision

variables βi or ωi and the previous decisions β̂i or ω̂i.

cRi = βi(1− β̂i) + (1− βi)β̂i (12)

cOi = ωi(1− ω̂i) + (1− ωi)ω̂i (13)

A parameter pi accounts for the weight that this decision
should be kept. The weight is updated iteratively and

related to the mentioned criteria of distance and decision
account by

pi =w0,bin max

(
1− ∆si

d0
, 0

)
exp(a0ci)

1 + exp(a0ci)
, (14)

with w0,bin, d0 and a0 as scaling constants, ci as the
counter of decision repetitions for each binary variable and
∆si as the longitudinal distance of an obstacle correspond-
ing to the binary variable i to the vehicle position. In (26)
the related cost function for re-decisions is stated.

3.3 Cost functions

The final cost function consists of several parts. First, the
L1-norm of the deviation from the Frenet-transformation
line (i.e. the optimal racing line) is stated. It is propor-
tional by a weight wn to the area of absolute lateral error
in the Frenet frame and computed as

Cn = wn

Nd∑
k=0

|nk|. (15)

The L1-norm cannot be directly formulated as linear
function. Therefore (5) is used, with the splitting of u into
a positive and negative part according to a reformulation
shown in Boyd and Vandenberghe (2004). With ∆sk :=
sk+1 − sk, the variable nk = npos

k − nneg
k and the cost Cn

can also be written as

Cn = wn

Nd∑
k=0

npos
k + nneg

k (16)

with npos
k ≥ 0, nneg

k ≥ 0. (17)

The positive and negative parts of nk can be directly
obtained by summing up the associated controls uk. The
inequalities (17) are therefore fulfilled with (5). The initial
value n0 is a constant and can also be ”split” into a
positive npos

0 and a negative nneg
0 with n0 = npos

0 − nneg
0 .

Consequently, nk+1 can be decomposed according to the
following steps.

nk+1 = nk +∆skuk (18a)

nk+1 = n0 +

k∑
i=0

∆siui (18b)

nk+1 = (npos
0 +

k∑
i=0

∆siu
pos
i )− (nneg

0 +

k∑
i=0

∆siu
neg
i )

(18c)

nk+1 = npos
k+1 − nneg

k+1 (18d)

The result (18d) is used to state (16) and therefore the
cost in (15).

Secondly, the steepness of the deviation from the racing
line defines the cost term C∆n with its associated cost
w∆n in a similar way by using the approach of Boyd
and Vandenberghe (2004) for the ”basis pursuit problem”.
Since the controls uk represent the steepness of deviation,
the decomposed parts of (5) can be added as costs for the
steepness by

C∆n = w∆n

Nd∑
k=0

(upos
k + uneg

k ). (19)

Thirdly, negative costs are added for catching a reward by

Crew =

{
Cext

rew, if lR ≥ l̄R
Cshort

rew , otherwise
. (20)

These reward costs with their associated negative weight
wrew are split into extended costs Cext

rew for long rewards
(with ”long” referring to the longitudinal dimension lR
in the Frenet frame) and simplified ones Cshort

rew for short
rewards. A threshold l̄R is used for their classification.
The simpler version of the problem for longitudinally short
rewards reads as

Cshort
rew = wrew

NR−1∑
i=0

βi. (21)

In the extended reward formulation (25) the logic OR
connective is needed. Auxiliary continuous optimization
variables xRi for the cost reduction of reward i are intro-
duced. These auxiliary variables realize the OR connective
between the l reward ”gates” associated with their binary
”gating” variable βi

l when being minimized in the overall
optimization problem. The set Krew restricts the auxiliary
cost variable to the (negative) weight value wrew as a
general lower bound or to 0 if all ”gates” are open, thus
their binary values are zero. This set reads as

Krew(β) =
{
xR ∈ RNR |xRi ≥ wrew,

xRi ≥ wrew

NRi/2−1∑
l=0

βi
l , i = 0...NR − 1

} (22)

with cost summarized as

β =
[
β0, . . . , β(NR−1)

]
, (23)

ω =
[
ω0 . . . , ω(NO−1)

]
. (24)

The extended reward costs

Cext
rew =

NR−1∑
i=0

xRi with xR ∈ Krew(β) (25)

are simply the sum of auxiliary variables realizing the OR
connective under their minimization.

Finally, the ”re-decision costs” Cbin penalize toggling of
binary variables. Here, the weights pi are different for every

binary variable, as described in (14). The variable cO,R
i

for obstacles and rewards indicates if the binary variable
for the object has changed, which is equal to an XOR
logic connective in (12) and (13). Please note that for each
reward there might be several binary variables, therefore
N̄R is used to account for all binary variables related to
rewards.

Cbin =

N̄R−1∑
i=0

pic
R
i +

NO−1∑
i=0

pic
O
i (26)

3.4 Final problem formulation

For the ease of notation, the continuous optimization
variables are combined in

u =

[
uneg
0 . . . uneg

Nd−1

upos
0 . . . upos

Nd−1.

]
(27)

With the set of binary numbers B = {0, 1}, the final mixed-
integer problem (28) is stated by combining the model (5)
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with the cost model function (16) by using the result of
(18c) splitting the race path deviation nk.

min
u∈R2×Nd ,

β∈BNβ ,

ω∈BNω ,

xR∈RNR

Cn(u) + C∆n(u) + Crew(x
R) + Cbin(β, ω)

(28a)

s.t. nk+1 = fk(u
pos
k , uneg

k ), (28b)

0 ≤ upos
k ≤ umax, (28c)

0 ≤ uneg
k ≤ umax, (28d)

Ilow(k, β) ≤ nk ≤ Iupp(k, β), (28e)

Hlow(k, ω) ≤ nk ≤ Hupp(k, ω), (28f)

with k = 0, . . . , Nd − 1,

xR ∈ Krew(β) (28g)

Also, the reduced costs for reward catching (21) as well as
the costs for keeping binary variables in (26) are included.
Nβ and Nω denote the total count of all binary decision
variables for rewards and obstacles.

4. TRAJECTORY OPTIMIZATION

After solving (28), a homotopy class is computed from
the object polygons and their associated binary states.
The road bounds are described by n(s) and n(s) which
linearly interpolate the original road boundary points or
the associated object boundaries (see Fig. 5) according to
the homotopy class. As described in Kloeser et al. (2020),
the optimal control problem (OCP) of time-optimal racing
can be described very generally by the following multiple
shooting nonlinear program (NLP)

min
x0,...,xN ,
u0,...,uN−1

ζ0,...,ζN

N−1∑
k=0

‖xk − xk,ref‖2Q + ‖uk‖2R + (29a)

µi ‖ζk‖2 + νi ‖ζk‖1 + ‖xN − xN,ref‖2QN

s.t. x0 = x̄0, (29b)

xk+1 = F (xk, uk,∆t), (29c)

u ≤ uk ≤ u, (29d)

x ≤ xk ≤ x, (29e)

n(sk)− ζk ≤ nk ≤ n(sk) + ζk, (29f)

−alat ≤ alat(xk) ≤ alat, (29g)

ζk ≥ 0, (29h)

with k = 0, . . . , N − 1.

It represents a tracking problem of a vehicle model, where
the final reference point xN,ref is set ”out-of-reach” to ob-
tain approximate time-optimal trajectories. Here, the 1.2-
fold maximum achievable distance was chosen for the final
reference point, where the maximum distance would cor-
respond to the distance obtained by the maximum speed
driven for the given time interval (N +1)∆t. Its structure
of a tracking problem and the associated quadratic cost
function allows the usage of a fast Gauss-Newton Hes-
sian approximation. As opposed to Kloeser et al. (2020),
the reference in (29) is set as a previously approximated
optimal racing path, rather than the center line of the
road. The final values for the cost function weightings
were tuned by experiments and are shown in Table 2.
The vehicle model (3) is discretized with an integration
scheme F (xk, uk,∆t) with fixed time intervals ∆t and

incorporated as (29c) into the NLP. Inequality (29e) puts
box constraints on the states, which include maximum
velocity and steering angle. The lateral state constraints
(29f) represent the road boundary and dependent on the
longitudinal state variable s. Slack variables ζk for violat-
ing (29f) are used. An iterative procedure increases their
penalty weighting in consecutive optimization iterations,
which we call homotopy iterations. The lateral acceleration
(4) is limited via (29g).

After nSQP sequential quadratic programming (SQP) it-
erations of the solver, the weighting parameters µi and νi
are increased as shown in Algorithm (1). Strictly increasing
scheduling functions αµ(i) and αν(i) govern the weighting
of the boundary slack variables. This lets the weights for
the boundary slack variables ”grow”, which leads to a
smooth transition of the boundary non-linearity. With this
procedure, the convergence time is reduced, which is shown
in the results Section 5.2. As a drawback the re-weighting
might be unnecessary for smooth obstacle boundaries and
takes additional time.

i = 0;
while i ≤ imax do

µ ← αµ(i);
ν ← αν(i);
solve NLP with nSQP iterations;
i ← i+ 1;

end
Algorithm 1: Homotopy iterations for the NLP.

5. REAL-WORLD AND SIMULATION RESULTS

The presented strategies for combinatorial optimization by
mixed-integer programming (COMIP) and the trajectory
optimization of Section 4 (TO) are two independent algo-
rithms, which were tested in two settings. Both, COMIP
and TO were tested in simulations together. The COMIP
algorithm was furthermore used on embedded hardware
in the third Roborace competition in its so called ”season
beta” (second series of competitions in 2020), where the
presented TO was replaced by a simpler decoupled trajec-
tory planning algorithm. The competition took place on
the Bedford race circuit (England) in December 2020.

5.1 Field test on the Bedford race circuit (COMIP only)

The proposed COMIP algorithm was tested on the
NVIDIA DRIVE PX2, with Ubuntu 16.04. This electronic
control unit (ECU) provides two CPUs (4x ARM Denver,
8x ARM Cortex A57) and two GPUs (2x Tegra X2, 2x
Pascal GPU). The open-source Coin-OR CBC solver was
used in a mixed Python/C++ ROS-framework for solving
problem (28) with a nominal rate of 0.5 Hz. A varying
amount between 0 and 50 virtual objects was received in
generally random sizes but rectangular shapes in Carte-
sian coordinates. The race car ”devbot” is described in
Roborace (2020). This algorithm was also tested in sim-
ulations with the second setup, namely a HP Elitebook
with an Intel Core i7-8550 CPU (1.8 GHz), which turned
out to be faster by a factor of 4-20. In this setup, the
output of the COMIP was used together with a subse-
quent algorithm for curvature minimization (which is a
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with the cost model function (16) by using the result of
(18c) splitting the race path deviation nk.

min
u∈R2×Nd ,

β∈BNβ ,

ω∈BNω ,

xR∈RNR

Cn(u) + C∆n(u) + Crew(x
R) + Cbin(β, ω)

(28a)

s.t. nk+1 = fk(u
pos
k , uneg

k ), (28b)

0 ≤ upos
k ≤ umax, (28c)

0 ≤ uneg
k ≤ umax, (28d)

Ilow(k, β) ≤ nk ≤ Iupp(k, β), (28e)

Hlow(k, ω) ≤ nk ≤ Hupp(k, ω), (28f)

with k = 0, . . . , Nd − 1,

xR ∈ Krew(β) (28g)

Also, the reduced costs for reward catching (21) as well as
the costs for keeping binary variables in (26) are included.
Nβ and Nω denote the total count of all binary decision
variables for rewards and obstacles.

4. TRAJECTORY OPTIMIZATION

After solving (28), a homotopy class is computed from
the object polygons and their associated binary states.
The road bounds are described by n(s) and n(s) which
linearly interpolate the original road boundary points or
the associated object boundaries (see Fig. 5) according to
the homotopy class. As described in Kloeser et al. (2020),
the optimal control problem (OCP) of time-optimal racing
can be described very generally by the following multiple
shooting nonlinear program (NLP)

min
x0,...,xN ,
u0,...,uN−1

ζ0,...,ζN

N−1∑
k=0

‖xk − xk,ref‖2Q + ‖uk‖2R + (29a)

µi ‖ζk‖2 + νi ‖ζk‖1 + ‖xN − xN,ref‖2QN

s.t. x0 = x̄0, (29b)

xk+1 = F (xk, uk,∆t), (29c)

u ≤ uk ≤ u, (29d)

x ≤ xk ≤ x, (29e)

n(sk)− ζk ≤ nk ≤ n(sk) + ζk, (29f)

−alat ≤ alat(xk) ≤ alat, (29g)

ζk ≥ 0, (29h)

with k = 0, . . . , N − 1.

It represents a tracking problem of a vehicle model, where
the final reference point xN,ref is set ”out-of-reach” to ob-
tain approximate time-optimal trajectories. Here, the 1.2-
fold maximum achievable distance was chosen for the final
reference point, where the maximum distance would cor-
respond to the distance obtained by the maximum speed
driven for the given time interval (N +1)∆t. Its structure
of a tracking problem and the associated quadratic cost
function allows the usage of a fast Gauss-Newton Hes-
sian approximation. As opposed to Kloeser et al. (2020),
the reference in (29) is set as a previously approximated
optimal racing path, rather than the center line of the
road. The final values for the cost function weightings
were tuned by experiments and are shown in Table 2.
The vehicle model (3) is discretized with an integration
scheme F (xk, uk,∆t) with fixed time intervals ∆t and

incorporated as (29c) into the NLP. Inequality (29e) puts
box constraints on the states, which include maximum
velocity and steering angle. The lateral state constraints
(29f) represent the road boundary and dependent on the
longitudinal state variable s. Slack variables ζk for violat-
ing (29f) are used. An iterative procedure increases their
penalty weighting in consecutive optimization iterations,
which we call homotopy iterations. The lateral acceleration
(4) is limited via (29g).

After nSQP sequential quadratic programming (SQP) it-
erations of the solver, the weighting parameters µi and νi
are increased as shown in Algorithm (1). Strictly increasing
scheduling functions αµ(i) and αν(i) govern the weighting
of the boundary slack variables. This lets the weights for
the boundary slack variables ”grow”, which leads to a
smooth transition of the boundary non-linearity. With this
procedure, the convergence time is reduced, which is shown
in the results Section 5.2. As a drawback the re-weighting
might be unnecessary for smooth obstacle boundaries and
takes additional time.

i = 0;
while i ≤ imax do

µ ← αµ(i);
ν ← αν(i);
solve NLP with nSQP iterations;
i ← i+ 1;

end
Algorithm 1: Homotopy iterations for the NLP.

5. REAL-WORLD AND SIMULATION RESULTS

The presented strategies for combinatorial optimization by
mixed-integer programming (COMIP) and the trajectory
optimization of Section 4 (TO) are two independent algo-
rithms, which were tested in two settings. Both, COMIP
and TO were tested in simulations together. The COMIP
algorithm was furthermore used on embedded hardware
in the third Roborace competition in its so called ”season
beta” (second series of competitions in 2020), where the
presented TO was replaced by a simpler decoupled trajec-
tory planning algorithm. The competition took place on
the Bedford race circuit (England) in December 2020.

5.1 Field test on the Bedford race circuit (COMIP only)

The proposed COMIP algorithm was tested on the
NVIDIA DRIVE PX2, with Ubuntu 16.04. This electronic
control unit (ECU) provides two CPUs (4x ARM Denver,
8x ARM Cortex A57) and two GPUs (2x Tegra X2, 2x
Pascal GPU). The open-source Coin-OR CBC solver was
used in a mixed Python/C++ ROS-framework for solving
problem (28) with a nominal rate of 0.5 Hz. A varying
amount between 0 and 50 virtual objects was received in
generally random sizes but rectangular shapes in Carte-
sian coordinates. The race car ”devbot” is described in
Roborace (2020). This algorithm was also tested in sim-
ulations with the second setup, namely a HP Elitebook
with an Intel Core i7-8550 CPU (1.8 GHz), which turned
out to be faster by a factor of 4-20. In this setup, the
output of the COMIP was used together with a subse-
quent algorithm for curvature minimization (which is a

simplified and decoupled approach compared to the one
described in Section 5.2). It obtained a minimum curvature
path approximation as well as a final analytical speed
maximization based on this minimum curvature path and
road friction parameters as shown in Subosits and Gerdes
(2015) and Kapania et al. (2016). According to Braghin
et al. (2008) and Heilmeier et al. (2020b), the minimum
curvature path is a good approximation for the optimal
race path. The curvature approximation was computed
with the algorithm described in Heilmeier et al. (2020b),
but with only first order differences for race line deviations.
Fig. 6 illustrates planning results from this event. Table 1
shows the maximum computation times for the combined
algorithm (due to logging limitations by the embedded
system), where the COMIP part accounts for 70% of the
computation time on average.

Fig. 6. Visualization of recorded data of an evasion maneu-
ver on the Bedford race circuit. The track boundaries
are shown in blue and the racing line (Frenet trans-
formation line) in red. The car follows the computed
trajectory that is shown in green.

Table 1. Maximum computation times of the
overall optimization algorithm

ECU Simulation

max. comp. time 6.0s 0.4s

av. comp. time 1.9s 0.2s

5.2 Simulation in virtual environments (COMIP + TO)

The COMIP algorithm was also tested extensively on dif-
ferent race tracks with different object settings, including
up to 40 differently shaped objects simultaneously within
a prediction horizon of 300 meters. The measured times
for the simulated algorithm on the Bedford race circuit
are shown in Table 1.

The proposed subsequent TO was tested on the same sim-
ulation setup. After COMIP, the boundaries in (29f) were
approximated by linear splines with a spatial discretization
interval of the longitudinal coordinate s of 1 meter. For
solving the NLP in (29), the kinematic vehicle model of
Section 2.1 was used with a center of gravity at lengths
lr = 1.4m and lf = 1.6m and parameters according to Ta-
ble 2. The NLP was solved with acados (Verschueren et al.
(2018)), where a Gauss-Newton Hessian approximation
was used together with a two-stage implicit Runge-Kutta
integration scheme. For solving the quadratic program
(QP), the interior point solver HPIPM (Frison and Diehl
(2020)) was used. Altogether, with Algorithm (1) 8 SQP

Fig. 7. Trajectory obtained by the presented algorithms in
a ROS simulation framework with obstacles (red) and
rewards (green).

Table 2. Parameters for Algorithm 1

Parameter Name Value

Q
[
10−6 10−3 1 10−4 10−1

]T
QN

[
10−2 10−1 10−2 10−4 2 · 10−3

]T
R

[
10−3 10−2

]T
αµ(i) 10i

αν(i) 0.1 · 100.7i
imax 3

nSQP 2

alat 5m
s

N 100

∆t 0.05s

iterations are performed, with different weights for the
slack variables, accounting for the homotopy iterations.
The algorithm was compared to a standard setting with
8 SQP iterations on the final slack weights according to
i = 3 in Table 2. With the constant slack weight setting
the NLP solver acados could not find solutions for several
obstacle configurations, where either QP iterations failed
or the solution trajectory got stuck in front of obstacles.
With the presented homotopy iterations both problems
were mitigated. The results are summarized in Table 3.

Table 3. Results for Algorithm 1

Name Value

Single SQP iteration comp. time (mean) 0.009s

Single SQP iteration comp. time (min) 0.006s

Single SQP iteration comp. time (min) 0.02s

Total SQP iterations 8

Total NLP solution time (mean) 0.072s

QP iterations (mean) 8

QP iterations (max) 10

QP iterations (min) 6



106	 Rudolf Reiter  et al. / IFAC PapersOnLine 54-6 (2021) 99–106

6. CONCLUSION

This work presents two contributions to the sophisticated
sub-problems of trajectory planning for autonomous rac-
ing. First, a novel approximation of the combinatorial
problem as Frenet-frame based linear mixed-integer prob-
lem is derived, which allows a fast and robust computa-
tion of a distinct homotopy class. Secondly, a homotopy
strategy is presented to obtain robust convergence of a
consecutive NLP. By using these approaches on a real
embedded setup, it is verified to achieve high performance
on novel autonomous race car competitions and provide an
alternative to the full state-space discretization of graph-
search methods. Further considerations may include the
combination of homotopy iterations with the integer prob-
lem and the extension to time varying objects.
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Alcalá, E., Puig, V., and Quevedo, J. (2020). Lpv-mp
planning for autonomous racing vehicles considering ob-
stacles. Robotics and Autonomous Systems, 124, 103392.
doi:https://doi.org/10.1016/j.robot.2019.103392.

Bergman, K. and Axehill, D. (2017). Combining Homo-
topy Methods and Numerical Optimal Control to Solve
Motion Planning Problems. arXiv:1703.07546 [math].
00015 arXiv: 1703.07546.

Bergman, K., Ljungqvist, O., and Axehill, D. (2020). Im-
proved Path Planning by Tightly Combining Lattice-
Based Path Planning and Optimal Control. IEEE
Transactions on Intelligent Vehicles, 1–1. doi:
10.1109/TIV.2020.2991951. 00005.

Bergman, K., Ljungqvist, O., Glad, T., and Axehill, D.
(2019). An Optimization-Based Receding Horizon Tra-
jectory Planning Algorithm. arXiv:1912.05259 [math].
00003 arXiv: 1912.05259.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, USA.

Braghin, F., Cheli, F., Melzi, S., and Sabbioni, E. (2008).
Race driver model. Computers & Structures, 86(13-14),
1503–1516. doi:10.1016/j.compstruc.2007.04.028. 00094.

Frison, G. and Diehl, M. (2020). Hpipm: a high-
performance quadratic programming framework for
model predictive control.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz,
J., Lienkamp, M., and Lohmann, B. (2020a). Minimum
curvature trajectory planning and control for an au-
tonomous race car. Vehicle System Dynamics, 58(10),
1497–1527. doi:10.1080/00423114.2019.1631455.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz,
J., Lienkamp, M., and Lohmann, B. (2020b). Minimum
curvature trajectory planning and control for an au-
tonomous race car. Vehicle System Dynamics, 58(10),
1497–1527. doi:10.1080/00423114.2019.1631455. 00021.
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