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Abstract— This paper proposes an optimization-based
approach to predict trajectories of autonomous race cars.
We assume that the observed trajectory is the result of an
optimization problem that trades off path progress against
acceleration and jerk smoothness, and which is restricted by
constraints. The algorithm predicts a trajectory by solving
a parameterized nonlinear program (NLP) which contains
path progress and smoothness in cost terms. By observing
the actual motion of a vehicle, the parameters of prediction
are updated by means of solving an inverse optimal control
problem that contains the parameters of the predicting NLP
as optimization variables. The algorithm therefore learns to
predict the observed vehicle trajectory in a least-squares
relation to measurement data and to the presumed structure of
the predicting NLP. This work contributes with an algorithm
that allows for accurate and interpretable predictions with
sparse data. The algorithm is implemented on embedded
hardware in an autonomous real-world race car that is
competing in the challenge Roborace and analyzed with respect
to recorded data.

I. INTRODUCTION
In real world autonomous driving scenarios, a core

challenge is the prediction of other agents in the environment.
The prediction algorithms differ related to the scenario and
to the availability of data. For instance, in urban driving,
a large amount of data might be available due to massive
data collection of the vehicle industry. For autonomous
racing tasks, there is a lack of extensive data sets, thus
supervised learning of data-driven predictions is not feasible.
In our research, we focus on a racing setting related to
a competition called Roborace. As part of this racing
series, the participating teams develop software for the fully
autonomous operation of electric race cars and are confronted
with increasingly demanding challenges from one event
to the other. Whereas the ego vehicle moves on a real
racetrack, the state observations of the (currently) purely
virtual opponent race cars are provided by the mixed-reality
simulator to the car’s software about 200 meters in advance.
The up to six virtually present opponent cars are set up
by the organizers with different racing algorithms that are
supposed to race with different performance and driving
style. The opponent cars are currently not considered as
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Fig. 1. Presented trajectory prediction in a simulation. The height and
color of the bars correspond to the predicted speed.

strategic decision makers, i.e., they are not performing game
theoretic actions such as blocking. Thus, the race cars can
be seen as non-interactive agents. Generally, there is no a
priori knowledge available about the opponents, except of
their racing intention. Therefore, it is impossible to use an
a priori fully parameterized vehicle model as a basis for
prediction. Furthermore, an extensive system identification is
impossible due to the short time the vehicle can be observed
before it needs to be overtaken. The goal of this paper is to
present a method that predicts the behavior of other race cars
even with sparse data. A typical scenario is shown in Fig.
1, where the ego race car and three other opponent cars are
on a racetrack and trajectories of our presented predictor are
shown with bars, corresponding to the predicted velocity.

Our work starts with framing the basic and limited
knowledge about the opponents as a sparsely parameterized
predictor whose parameters can be estimated by a limited
amount of data. Since it is known that the intention of
other opponents is time-optimal driving, the predictor is
stated as a parameterized optimization problem for progress
maximization, referred to as low-level nonlinear program
(LLNLP) which is assumed to be solved by the other agent.
The estimation of the parameters is performed by solving
an inverse optimal control (IOC) problem, which enforces
the optimality conditions for the LLNLP as constraints and
performs least-squares optimization on the deviation of the
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resulting LLNLP-trajectory to the collected observed data
of the particular opponent vehicle. This results in a set
of parameters for the LLNLP which are locally optimal
with respect to the chosen structure of the LLNLP and
the observed data. In fact, the chosen formulation only
finds a stationary point as opposed to an optimal point and
is dependent on the initialization due to its non-convex
structure, but in practice both were observed to not have
a significant influence on the performance. The LLNLP
is solved in real-time for each opponent, starting with an
initial set of parameters, which are updated as soon as
enough data is available.

The LLNLP is used to predict the velocity along a
curve, which is obtained by blending the current motion
into a previously computed minimum curvature path. The
parameters related to LLNLP are the constraint limits and
the square penalties on the input (jerk) and the acceleration
states. The estimation of the acceleration constraints is
separated from the bi-level optimization problem into a
separate constraint estimation QP (CQP) whose constraint
estimates update both the bi-level program for the weight
parameter estimation and the final LLNLP for predicting
the opponent trajectories in real time.

The performance of the described algorithm is shown with
recorded data from differently driving opponent race cars in
a Hardware-In-The-Loop setting.

A. Related work

Trajectory prediction in the domain of autonomous
vehicles is dominated by data-driven approaches which
are based on regression and pattern matching. This is
applicable if the availability of sufficient data related
to human driven vehicles on public streets is given. If
interaction and sequential decision making is considered,
often IOC or inverse reinforcement learning (IRL) are used.
Often deep neural networks (DNNs) are used as function
approximators [1] and the time dependency suggests the use
of recurrent neural architectures as seen in [2], [3], [4].
Also, various other DNN architectures are used, such as
convolutional neural networks [5]. If statistically qualitative
data is available, these approaches work well, and even
their application to real time systems as trained networks
is favorable due to the high evaluation speed of DNNs.
Using an optimization problem as a function approximator
or even within a neural network is a field with many related
research areas, ranging from reinforcement learning with an
embedded MPC structure [6] to generic optimization layers
[7]. Using bi-level optimization to estimate the parameters
of a low level problem is used more rarely. Related to
vehicle predictions, it was used in a similar approach, which
focuses on urban driving scenarios and the game theoretic
interaction between agents [8], [9]. Furthermore, for robotic
predictions [10] or even human motion predictions [11], a
bi-level problem was used. For unconstrained linear systems,
[12] the authors show that the IOC can even be stated as a

convex semidefinite program. A detailed survey of vehicle
prediction approaches is given in [1], although IOC appears
only in the context of IRL. A general survey on bi-level
optimization is given in [13], which mentions the presented
approach of solving the lower level program by restricting it
to a stationary point, especially for convex problems.

B. Contribution

In the domain of autonomous racing, to the best
knowledge of the authors, this work is the first that uses
bi-level optimization together with the LLNLP for real-
time trajectory prediction. Since bi-level problems are hard
to solve, this work also addresses novel techniques that
can be used in challenging real-world conditions such as
racing. This paper follows previous work for solving motion
planning problems for autonomous racing [14], [15].

II. PREDICTION ARCHITECTURE

In Fig. 2, the architecture of the proposed algorithm is
shown. The algorithm consists of an offline and an online
part. The precomputations in the offline part account for
the optimal racing path along the known racetrack. The
online part is constructed for each opponent vehicle that
is observed and is split into a slower (0.5 Hz) estimation
part and a faster (10 Hz) prediction part. In the path
prediction (PP) a curve is blended from the current opponent
vehicle position to the precomputed racing line. The main
prediction component is the LLNLP which computes the
trajectory with respect to the parameterized constraints and
the parameterized weights, starting at the observed current
opponent value. The constraint estimator (CQP) passes
its estimated constraint parameters to the high-level NLP
(HLNLP) and both the CQP and the HLNLP estimate the
parameters of the LLNLP. The online part is executed for
each of the M observed vehicles.

III. PREDICTION ALGORITHM

In the following, the prediction algorithm is described by
each component. In Sections III-A to III-D, the main blocks
of Fig. 2 are described and in the final part the pseudocode
(1) is stated.

A. Path prediction (PP)

Given the racetrack layout, a time-optimal path ptopt(s)
is computed by curvature minimization related to [14]. The
path variable s is related to the position on a reference
center track line. Given the current opponent vehicle state,
a linear extended constant motion path pc(s) is blended into
the precomputed path for s < sf with

pp(s) =
s

sf
ptopt(s) +

s− sf
sf

pc(s). (1)

For s ≥ sf the prediction path is set equal to the racing path.
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Fig. 2. Algorithm architecture. (a: global racing path, b: initial state
x̄0, c: trajectory data samples, d: constraints amax, e: weights w, f:
Cartesian coordinates and curvature parameters of blended path segment
κ̄, g: predicted trajectory)

B. Low-level program for the trajectory prediction (LLNLP)

The path predictor predicts the curve that is described by
its path length s and the associated curvature κ(s) = dϕ

ds .
The curvature is described by a piece-wise linear polynomial
and parameterized to interpolate Nκ precomputed values
κi for the curvature along the path segment. The values
are summarized as κ̄ =

[
κi . . . κNκ−1

]
. Details on

the computation can be found in [14]. Note that the
linear interpolation leads to discontinuous derivatives in the
inequality constraints and violates the condition of twice
continuously differentiable functions required for second
order NLP algorithms. Nevertheless, we empirically found
a speedup of a factor of 100 to 1000 compared to bsplines
as interpolating polynomials, with practically no convergence
problems.

The LLNLP predicts the estimated velocity along this
curve by solving an optimal control problem which consists
of a linear discrete model F (xk, uk,∆t), acceleration
constraints ha(xk, κ̄, amax) and state constraints x and x.
Since the path is given, the predicted motion along the curve
is described by means of three chained integrators, where the
input u is the jerk. The state vector consequently consists of
the path progress s, the velocity v and the acceleration a with
x =

[
s v a

]⊤ ∈ R3. Since the integrator chain is a linear
system, the discretization (zero-order-hold controls) of the
dynamics can be computed exactly by matrix exponentials

and leads to the affine function F (xk, uk,∆t) = A(∆t)xk+
B(∆t)uk. The only constraint captured in the box constraints
x ≼ xk ≼ x is the limitation of the speed v to vmax and to
positive values. The optimal control problem is discretized in
N−1 intervals using discrete multiple shooting and solved by
sequential quadratic programming using the real-time NMPC
solver acados [16]. To account for the progress maximizing
requirement for the resulting trajectory, a linear negative
cost qn =

[
−1 0 0

]⊤
for the last discrete position is

used. The matrix W = diag(
[
0 0 wacc

]
) and the scalar

R = wjerk are the weights that describe the motion of the
predicted opponent vehicle in the presented structure, if no
constraints are active. Finding the values of wacc and wjerk

is the objective of the HLNLP component. Slack variables
sLL =

[
sLL,0, . . . , sLL,N

]
∈ R8×N with weights α1, α2

are added for the online forward implementation to account
for the robustness of the SQP algorithm. We can then state
the lower-level problem PLL(w, x̄0, κ̄, amax) as

minimize
x0,...,xN ,

u0,...,uN−1
s0,...,sN

N−1∑
k=0

∥xk∥22,W + ∥uk∥22,R + q⊤NxN

+

N∑
k=0

α11
⊤sLL,k + α2 ∥sLL,k∥22

subject to x0 = x̄0,

xk+1 = F (xk, uk,∆t), k = 0, . . . , N − 1,

x ≼ xk ≼ x,

0 ≼ ha(xk, κ̄, amax) + sLL,k,

0 ≼ sLL,k, k = 0, . . . , N,
(2)

where 1 is a vector of all 1’s of appropriate size. The
acceleration constraints ha(xk, κ̄, amax) approximate the
friction, throttle and breaking boundaries of the vehicle by
means of a polytope in the space of the two-dimensional
acceleration vector a(xk, κ̄) =

[
alat(xk, κ̄) alon(xk)

]
and

which are often related to the ”Kamm’s circle”. The polytope
is typically symmetric to the longitudinal axis. It is chosen
such that it consists of box-constraints along the axes and
diagonal constraints that are parallel to the lines described
by the connection of the axis aligned maximum values.
Consequently, the diagonal constraints depend on values
of the axis aligned constraints. The presented approach
computes the axis aligned constraints first and uses those
values as inputs to the diagonal constraints. An example
of the fitted acceleration constraints can be seen in Fig.
3. Therefore, 8 linear constraints arise, where 6 of them
are pair-wise symmetric. The only non convexity in (2)
emerges from the dependency of alat(xk) = −v2kκ(sk, κ̄).
The acceleration constraints ha(xk, κ̄, amax) can be stated
as

ha(xk, κ̄, amax) = amax − diag(dlen)Da(xk, κ̄) (3a)

ā =
√
a2lat,max + a2lon,max (3b)

d⊤len =
[
1 1 1 1 ā ā ā ā

]
(3c)
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Fig. 3. Acceleration constraint estimation. In total 8 constraints are fitted
as a convex polytope to measurement data.

D =



1 0
−1 0
0 −1
0 −1

alon,max alat,max

−alon,max alat,max

alon,min −alat,max

−alon,min −alat,max


, amax =



alat,max

alat,max

alon,max

alon,min

aq,north
aq,north
aq,south
aq,south


(3d)

The term diag(dlen)D collects the row vectors with unit
length that represent direction vectors that are used to project
the acceleration vector and to constrain to the consecutive
projected scalar value. Obviously, the second part of the
vector dlen and the lower part of the matrix D shows the
dependency on the axis aligned constraints. The maximum
acceleration values are collected in the vector amax, the
initial observed state x̄0, together with the weights w⊤ =[
wjerk wacc

]
are the input parameters of the LLNLP.

The parameters that are not subject to be changed by the
estimation within the HLNLP are summarized as p⊤ =[
x̄0 a⊤max κ̄

]
.

C. Quadratic program for constraint estimation (CQP)

In order to remove computational complexity from the
HLNLP, the constraint estimation was separated. Even with
fixed constraints, the structure of the HLNLP is highly
non-convex and challenging to solve. By means of a
Kalman-filter-based vehicle state estimation, the observed
accelerations ai are computed and stored as a data set of Na

data samples in R2. Those acceleration data are used to fit
linear constraints. The projection e⊤k Dai for the estimation
of the linear constraint ck is performed for the 8 constraints.
The vector ek represents the k-th unit vector in R8. Since
the measured data is noisy, it requires a robust estimation of

the constraints which accounts for outliers. This is achieved
by the quadratic program (4), where the estimated constraint
violation is penalized linearly and realized by means of a
hinge loss h(x) = max(0, x). This function adds no costs
if the measured value is lower than the constraint, and
penalizes linearly otherwise. The deflection of the constraint
is penalized quadratically with a weight ω and a minimum
at the prior estimated value ĉk. Since the prior estimated
value acts as a lower bound and would not decrease during
iterations, the value is lowered by a factor r < 1 in each
iteration for the axis aligned constraints with ĉk ← rĉk.
For the diagonal constraints, ĉk is chosen as the distance
of the diagonal line of the origin. The problem formulation
for estimating constraint k in the bounding polytope with 8
linear constraints, is stated as

minimize
ck ∈ R

1

Na

Na−1∑
i=0

max(0, e⊤k Dai − ck)

+ ω(ck − ĉk)
2.

(4)

The problem can be formulated into a smooth quadratic
program using slack variables ζ for implementing the hinge
function which leads to the formulation

minimize
ck∈R,
ζ∈RNa

ω(ck − ĉk)
2 +

1

Na

Na−1∑
i=0

ζi

subject to 0 ≤ ζi

e⊤k Dai − ck ≤ ζi i = 0, . . . , Na − 1.

(5)

The solutions of the CQP are directly used as acceleration
constraints amax in (3d).

D. Bi-level program for the LLNLP parameter estimation
(HLNLP)

The HLNLP fits the LLNLP with the parameters derived
from the CQP to observed measurement data x̄ with a least
squares error measure. The observed trajectory might differ
at the last points from the predicted trajectory, even if the true
parameters were used, since the controller of the observed
vehicle most likely had adapted to even further distant
constraints like a sharp curve. To account for this structural
uncertainty, the weight matrix Qk is linearly reduced to zero
for the final NR points. Problem (6) shows the basic structure
of the problem. The optimization variables are the estimated
trajectory x of the LLNLP and the weighting parameters
w. To account for the iterative estimation of the parameter
w, the previously estimated parameter ŵ together with the
associated weight matrix P is used as an arrival cost, as
shown with MHE in [17]. To simplify the algorithm, the
weight matrix is set constant. The basic structure of the
problem can be written as

minimize
x, u, w

NT−1∑
k=1

∥xk − x̄k∥22,Qk
+ ∥w − ŵ∥22,P−1

subject to x, u ∈ argminPLL(w, x̄0, κ̄, amax),

w ≽ 0,

(6)
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where x ∈ RNx×NT , u ∈ RNu×(NT−1) and w ∈ R2. The
optimization variables are the estimated trajectory x of the
LLNLP and the weighting parameters w.

The low-level program PLL(w, x̄0, κ̄, amax) in (2) can be
written as

minimize
z ∈ RNz

fLL(z, w)

subject to gLL(z) = 0,

hLL(z, x̄0, κ̄, amax) ≽ 0,

(7)

with z =
[
vec(x)⊤ vec(u)⊤

]⊤
and Nz = NxNT +

Nu(NT − 1). The domains and co-domains of the functions
are fLL : RNz×Nw → R, gLL : RNz → RNTNx and
hLL : RNz → RNTNh,LL , where Nh,LL = 10 in this case,
with two bounds on the velocity state and 8 acceleration
constraints. The number of weights corresponding to the
smoothness is Nw = 2. The constraints amax are parameters
and updated by means of the estimation of the CQP.
To solve the problem, the bi-level problem can be formulated
as an NLP which is summarized as

minimize
x, u, w, τ, λ, µ, s

NT−1∑
k=0

∥xk − x̄k∥22,Qk
+ qττ (8a)

+ β11
⊤s+ β2 ∥s∥22 + ∥w − ŵ∥22,P−1 (8b)

subject to 0 =∇zf(z, w)−∇zgLL(z)λ

−∇zhLL(z, p)µ, (8c)
0 ≼w, (8d)
0 =gLL(z), (8e)
0 ≤τ, (8f)
0 ≼µ, (8g)
0 ≼hLL(z, p) + s, (8h)
τ ≥µihLL,i(z, p), i = 0, . . . , Nh,LL − 1, ,

(8i)
s ≽0, (8j)

where x ∈ RNx×NT , u ∈ RNu×(NT−1), w ∈ R2, s ∈
RNTNh,LL , τ ∈ R, λ ∈ RNTNx , and µ ∈ RNTNh,LL .

We enforce a stationary point in the LLNLP as constraint
in the high level problem by enforcing the KKT conditions
by means of constraints which are stated in (8c-8i). For this
aim, additional optimization variables arise that are the dual
variables λ and µ. A major challenge here is to account for
the highly non-convex complementarity conditions arising
from the inequalities of the LLNLP. Therefore, a relaxed
problem is stated within the constraints, which is lower
bounded by the actual complementarity condition and upper
bounded by its relaxed version related to the interior point
approach as seen in (8f-8i). If the complimentarity is relaxed
too much, the estimation of the weight parameters can
become wrong. Consequently, the relaxing parameter τ ∈ R
is also integrated as an optimization variable into the HLNLP
and initialized with a ”high” value (e.g. 1.0). A high value for
qτ together with the linear penalty of τ is used to achieve the
exact complementarity constraints. Slack variables s account
for infeasibilities.

The number of primal variables in the high level program,
which are Nvar,HL = 2NxNT + Nu(Nx − 1) + 2NhNT

rises notably compared to the low level program, which
are Nvar,LL = NxNT + Nu(Nx − 1), but is of the same
complexity w.r.t. Nx, NT and Nh. This program is solved
using the interior point solver IPOPT [18] formulated
in CasADi [19], which again uses a relaxation of the
problem in order to account for the inequality constraints.
By using the presented formulation, we can explicitly
account for the accuracy of the complementarity constraint
in the stationary point of the low level program. Note, that
the Hessian of the HLNLP actually contains third-order
derivatives of the original LLNLP, thus posing the condition
of three times differentiable smooth functions in the LLNLP.

E. Algorithm

Algorithm (1) describes the sequential interaction of the
components with respect to the architecture in Fig. 2. The
solvers CQP and HLNLP are executed as threads that update
the estimation values in a lower frequency than the main
predicting solver LLNLP, together with the path prediction
PP.

input : Initial weights and constraints ŵ, ck,
Observed state measurements x̄0

output: Predicted trajectory xpred

1 HLNLPsolved←True;
2 CQPsolved←True;
3 while True do
4 if CQPsolved then
5 CQPsolved←False;
6 x̄←last Na state samples;
7 κ̄←curv(x̄);
8 ĉk ← rck k = 0, . . . 3;
9 ĉk ← dist(ĉ) k = 4, . . . 7;

10 Set CQP parameters ĉk, ω, a(x̄, κ̄);
11 Start CQP solver (Updates: CQPsolved, ck);
12 end
13 if HLNLPsolved then
14 HLNLPsolved←False;
15 x̄← last NT state samples;
16 κ̄← curv(x̄);
17 ŵ ← w;
18 alat,k ← ck k = 0, . . . 7;
19 Set HLNLP parameters alat, x̄, κ̄, ŵ;
20 Start HLNLP solver (Updates: HLNLPsolved,

w);
21 end
22 x̄0 ← State measurement input;
23 alat,k ← ck k = 0, . . . 7;
24 κ̄← PP (x̄0);
25 xpred ←solve LLNLP(x̄0, κ̄, w, alat);
26 end

Algorithm 1: IOC Prediction
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TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
ck,0 . . . ck,3 5, 5, 2.5, -5 m/s sf 300m

wT
0 [0.5 0.2] N 111
ω 12.5 ∆T (LL) 0.1s
Na 103 ∆T (HL) 1s
Nκ 700 α1, α2 104, 108

NT 25s β1, β2 105, 106

P diag([2 · 10−7 9 · 107]) qτ 107

TABLE II
COMPONENT SETTINGS

Component Samples/Nodes Notes Runs
PP 150 1e3

CQP 500 Eval. per constraint (1/5) 1e2
HLNLP 35 ∆t=1s 50
LLNLP 60 ∆t=0.1s 1e3

IV. RESULTS

The algorithm was tested with recorded data. Qualitatively,
these tests fully describe the performance of the algorithm.
Nevertheless, the embedded performance, especially the real-
time performance of the LLNLP was proven in several real
racing events. This shows that the proposed algorithm can
work in embedded real-world systems.

A. Hardware and Software Setup

The proposed LLNLP was tested on a race car hardware
(Section IV-C) including the NVIDIA DrivePX 2 in a Docker
Environment with Ubuntu 20.04. This electronic control unit
(ECU) provides two CPUs (4x ARM Denver, 8x ARM
Cortex A57) and two GPUs (2x Tegra X2, 2x Pascal GPU).
The open-source OSQP solver [20] was used in a mixed
Python/C++ ROS-framework for solving problem (III-C)
using CasADi [19] as an interface. CasADi was also used as
an interface together with IPOPT [18] to solve the HLNLP of
Section III-D. The time critical real-time estimation related to
the LLNLP (Section III-B) was performed using acados [16]
as an NLP solver. For each opponent car a separate solver
was created which was executed as a thread, updating a data-
structure that contained the most recent prediction. The full
algorithm was tested offline (Section IV-B) in simulations
with an Alienware m-15 Notebook and an Intel Core i7-
8550 CPU (1.8 GHz).The parameters used for the evaluation
are shown in Table I. In Table III, the time statistics of the
different optimization parts are shown and in Table II the
relevant settings are given. Notably, the LLNLP was failing
in 2 out of 1000 randomly parameterized test runs, which was
due to the linear interpolation of the curvature as described
in Section III-B. This failure rate is out-weighted in practice
by the enormous speed gain of a linear interpolation.

B. Performance analysis with recorded data

1) Validation of the CQP: Figure 3 shows the estimation
of constraints related to 1000 recorded acceleration data
samples. The acceleration was computed out of the observed

TABLE III
SOLVER TIMING STATISTICS

Component Solver tmax (ms) tave (ms) fail rate (%)
PP none < 1 < 1 0

CQP OSQP 15.5 8.1 0
HLNLP IPOPT 6237 520 5

LLNLP acados
hpipm(QP) 2748 91 0.2
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Fig. 4. Mean and standard deviation of the position estimation errors
for the constant velocity estimator ēs,const/σs,const and the presented
algorithm ēs/σs along the path obtained from the PP component evaluated
on recorded data.

and estimated trajectory state. Obviously, the constraints of
any observed race car acceleration data could be of any
shape, but the representational capacity of the constraint
assumptions have to be traded off for a fast and reliable real-
time execution in the LLNLP. According to our experience,
the approximation with either 4 (box only) or 8 (adding
diagonals) constraints achieved the best performance.

2) Validation of the velocity profile estimation: Using
the same recorded real-world trajectory as in IV-B.1 and
also its estimated constraints amax as seen in Fig. 3,
we use the HLNLP to estimate the parameters w. All
estimated parameters together are then forwarded to the
LLNLP, which predicts the velocity and the progress along
the given curve by solving the nonlinear program. The
results are compared to the standard constant velocity
predictor, which is often used in robotic applications [21]
and that assumes a vehicle progression with the measured
constant velocity. In Fig. 4, the mean position error of
the presented algorithm ēs is compared to the mean
position error of the constant velocity predictor ēs,const.
Furthermore, the standard deviations σs and σs,const are
compared respectively. In Fig. 5 the prediction velocity error
ēv and its standard deviation σv of the presented algorithm
are compared to the mean error and standard deviation
of the velocity of the constant velocity estimator, that are
ēv,const and σv,const The presented algorithm outperforms
the constant velocity predictor significantly, although in a
short prediction horizon the errors are similar.
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Fig. 6. Weight estimates for the jerk and acceleration weighting obtained
by the HLNLP component. Low weights correspond to aggressive driving
that is only limited by the velocity and acceleration constraints.

C. Validation of the full algorithm

The algorithm was evaluated with two opponent vehicles
in a simulation environment as shown in Fig. 1. The
two opponent race cars follow a racing line that was
computed by a semi-analytic velocity profile computation
as shown in [22] together with differently parameterized
racing paths according to [14]. Therefore, the resulting
trajectories are not in the solution space of the LLNLP
and consequently can not be approximated exactly, which
is similar to real observations. The HLNLP estimates the
weight parameters and keeps converging to a semi-stationary
solution after approximately 200 seconds as shown in Fig.
6. The convergence behavior depends heavily on the choice
of hyperparameters, particularly on the arrival weight P
in (8). After the weights converged, the predictions of all
active components (all components) were compared to other
estimation algorithms. First, the initial parameter setting
was simulated, where the weights and constraints were
kept constant and only the LLNLP was active (LLNLP).
Secondly, a constant velocity estimation was used, where
the path was computed by means of the PP component,
but the velocity was set constant to the observed velocity
(constant velocity). Fig. 7 shows the comparison of the
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Fig. 7. Box plot statistics (mean, standard deviation, maximum and
minimum values) of the Euclidean position error of the prediction compared
to the ground truth for different prediction algorithms and at particular
prediction horizons

three settings by evaluating the Euclidean position error after
certain prediction horizons. It can be seen that for increasing
prediction horizons, the differences in the error measures
becomes large, due to the acceleration constraints related
to curves and the integrating errors. For short prediction
horizons, the constant velocity estimator is performing
similarly in our test cases, which was also observed in [21].
The prediction performance with respect to the Euclidean
position error was further compared by deactivating either the
CQP or the HLNLP part. Fig. 8 shows the comparison with
either components active (CQP active or HLNLP active),
with all parameters fixed (fixed parameters) or with the full
algorithm (all active) at a prediction horizon of 6 and 8
seconds. The results looked similar for all observed race cars.
In our simulation the biggest improvement originated from
the HLNLP part which can be seen in Fig. 8 and which is
due to the rather aggressive driving behavior of the observed
vehicles and the moderate initialization of the corresponding
weight parameters of the LLNLP.

V. CONCLUSIONS

The paper presents a novel approach for predicting race
car trajectories in real time and with sparse observation
data. It is shown that the algorithm works in an embedded
setting and yields satisfying predictions. The key advantage
of using an optimization problem as a predictor is the
natural integration of constraints. Nevertheless, the quality
of the solution is restricted by the assumptions related to the
low-level problem, e.g., which norms are used as penalties
and what quantities are supposed to be penalized. The
expressiveness of the low-level problem is limited due to its
KKT conditions arising in a high level optimization problem,
which poses a non-smooth optimization problem with no
guaranteed solution. Yet, in practice, the problem as stated is
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Fig. 8. Box plot statistics (mean, standard deviation, maximum and
minimum values) of the Euclidean position error of the prediction compared
to the ground truth for different active components at a prediction horizon
of 6 and 8 seconds.

posed well enough to be solvable by means of a robust solver
like IPOPT. Future investigations might include an algorithm
that also estimates an uncertainty measure and updates the
arrival cost correspondingly and investigating rich function
approximators in various parts of the algorithm to achieve a
vanishing error, as the number of samples increases.
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Baumgärtner, Jasper Hoffmann, Martin Kirchengast and the
other members of the Autonomous Racing Graz team for
their valuable input to this work.

REFERENCES

[1] F. Leon and M. Gavrilescu, “A review of tracking and trajectory
prediction methods for autonomous driving,” Mathematics, vol. 9,
no. 6, 2021. [Online]. Available: https://www.mdpi.com/2227-
7390/9/6/660

[2] S. Capobianco, L. M. Millefiori, N. Forti, P. Braca, and P. Willett,
“Deep learning methods for vessel trajectory prediction based
on recurrent neural networks,” CoRR, vol. abs/2101.02486, 2021.
[Online]. Available: https://arxiv.org/abs/2101.02486

[3] J. Zhang, H. Liu, Q. Chang, L. Wang, and R. X.
Gao, “Recurrent neural network for motion trajectory
prediction in human-robot collaborative assembly,” CIRP
Annals, vol. 69, no. 1, pp. 9–12, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0007850620300998

[4] A. Ip, L. Irio, and R. Oliveira, “Vehicle trajectory prediction based
on lstm recurrent neural networks,” in 2021 IEEE 93rd Vehicular
Technology Conference (VTC2021-Spring), 2021, pp. 1–5.

[5] N. Nikhil and B. T. Morris, “Convolutional neural network for
trajectory prediction,” 2018.

[6] S. Gros and M. Zanon, “Data-driven economic nmpc using
reinforcement learning,” IEEE Transactions on Automatic Control,
vol. 65, no. 2, p. 636–648, Feb 2020. [Online]. Available:
http://dx.doi.org/10.1109/TAC.2019.2913768

[7] A. Agrawal, B. Amos, S. T. Barratt, S. P. Boyd,
S. Diamond, and J. Z. Kolter, “Differentiable convex optimization
layers,” CoRR, vol. abs/1910.12430, 2019. [Online]. Available:
http://arxiv.org/abs/1910.12430

[8] S. L. Cleac’h, M. Schwager, and Z. Manchester, “Lucidgames: Online
unscented inverse dynamic games for adaptive trajectory prediction
and planning,” CoRR, vol. abs/2011.08152, 2020. [Online]. Available:
https://arxiv.org/abs/2011.08152

[9] S. Le Cleac’h, M. Schwager, and Z. Manchester, “Algames:
A fast solver for constrained dynamic games,” Robotics:
Science and Systems XVI, Jul 2020. [Online]. Available:
http://dx.doi.org/10.15607/RSS.2020.XVI.091

[10] M. Menner, P. Worsnop, and M. N. Zeilinger, “Constrained inverse
optimal control with application to a human manipulation task,” IEEE
Transactions on Control Systems Technology, vol. 29, no. 2, pp. 826–
834, 2021.

[11] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion-an inverse optimal control approach,” Auton.
Robots, vol. 28, pp. 369–383, 04 2010.

[12] M. Menner and M. N. Zeilinger, “Convex formulations and algebraic
solutions for linear quadratic inverse optimal control problems,” 2018
European Control Conference (ECC), pp. 2107–2112, 2018.

[13] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–
295, 2018.

[14] R. Reiter and M. Diehl, “Parameterization approach of the frenet
transformation for model predictive control of autonomous vehicles,”
Proceedings of the European Control Conference (ECC), 2021.

[15] R. Reiter, M. Kirchengast, D. Watzenig, and M. Diehl, “Mixed-integer
optimization-based planning for autonomous racing with obstacles and
rewards,” Proceedings of the IFAC Conference on Nonlinear Model
Predictive Control (NMPC), 2021.

[16] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, J. Frey, T. Albin, R. Quirynen,
and M. Diehl, “acados: a modular open-source framework for
fast embedded optimal control,” arXiv preprint; accepted at:
Mathematical Programming Computation, 2019. [Online]. Available:
https://arxiv.org/abs/1910.13753

[17] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation, and Design, 2nd ed. Nob Hill, 2017.
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