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a b s t r a c t 

In recent years, nonlinear model predictive control has been extensively used for solving automotive mo- 

tion control and planning tasks. In order to formulate the nonlinear model predictive control problem, 

different coordinate systems can be used with different advantages. We propose and compare formula- 

tions for the nonlinear MPC related optimization problem, involving a Cartesian and a Frenet coordinate 

frame in a single nonlinear program. We specify costs and collision avoidance constraints in the more ad- 

vantageous coordinate frame, derive appropriate formulations and compare different obstacle constraints. 

With this approach, we exploit the simpler formulation of opponent vehicle constraints in the Cartesian 

coordinate frame, as well as road-aligned costs and constraints related to the Frenet coordinate frame. 

Comparisons to other approaches in a simulation framework highlight the advantages of the proposed 

methods. 

© 2023 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Trajectory optimization with obstacle avoidance is a major 

hallenge of motion planning and control in autonomous driving. 

rajectories need to be feasible to kinodynamic equations and 

void collisions with objects that are often hard to predict. 

ollision avoidance and the related generation of a reference 

rajectory or collision avoidance as part of the controller, e.g., non- 

inear model predictive control (NMPC), is often formulated as a 

onlinear optimal control problem [3,9,12,17] . Through a carefully 

hosen nonlinear programming (NLP) formulation and by using 

edicated real-time optimization solvers [23,25] , the problem can 

e solved efficiently. The transformation of the dynamics into a 

oad-aligned coordinate frame (CF), namely the Frenet CF (FCF), 

as shown many advantages, such as the simplification of refer- 

nces and road boundaries [9,19,28] . Nevertheless, the transformed 

oordinates also come with the disadvantage of transformed 

eometric obstacle shapes [29] , cf. Section 2.3 . Typical convex 

eometric shapes, such as boxes, ellipses or circles, are easier to 

escribe in the Cartesian reference CF and become nonconvex 
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fter transformation into the FCF. The shapes of objects in both 

rames are shown in Fig. 1 . In nonlinear optimization, “lifting” is 

 technique where the optimization problem is formulated and 

olved in a higher dimensional space, which offers advantages 

egarding convergence rates and the region of attraction [1] . We 

ontribute by an approach to extend and lift the state space of 

he vehicle model by including both CFs and formulate constraints 

nd costs in the more appropriate CF. We show an increase of 

he overall performance due to the improved description of the 

bstacle shapes with various deterministic obstacle avoidance for- 

ulations in simulation. Despite the increased state dimensions, 

ven the computation time can be lowered compared to a pure 

CF representation. Additionally, references can be set in any of 

he two CFs, which allows for flexible combinations with planning 

odules that use either CF, e.g., Vázquez et al. [24] . 

.1. Related work 

The effectiveness of NMPC using the FCF related to automotive 

asks was shown in numerous works [5,9,13,17,19,21,22,24,26–28] . 

one of them explicitly considers the shape transformation of ob- 

ects, which are rather over-approximated with convex shapes in 

he FCF. Convex obstacle shapes in the Cartesian CF (CCF) are con- 

idered in Rasekhipour et al. [18] with potential fields, in Wang 

t al. [27] , Ziegler et al. [30] with covering circles and Euclidean 
rved. 
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Fig. 1. Simulated overtaking of the same maneuver shown in the Cartesian (top 

plot) and the Frenet CF (bottom plot). Planned trajectories plotted with �t = 0 . 1 s 

and snapshots of boundary box alignments every 0.7 s. 
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Fig. 2. Kinematic vehicle model including wind drag in wind direction e wind . 
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l

x

istance constraints, in Brito et al. [3] with ellipses, in Brossette 

nd Wieber [4] , Nair et al. [16] with separating hyperplanes and 

n Evens et al. [6] , Sathya et al. [23] with a formulation related

o a conjunction of convex planes covering the obstacle. The most 

rominent variants are compared within this paper in the Frenet 

nd the lifted formulation. More importantly, the shape-fitting 

roblem with transformed objects in the FCF and an approach with 

urrogate representations in both CFs were recently considered in a 

elated way in Xing et al. [29] . However, Xing et al. [29] focuses on

inear MPC and does not consider dedicated obstacle formulations. 

urthermore, it integrates an approximation of the transformation 

tself into the model, i.e., an approximation of a differential alge- 

raic equation (DAE). In contrast, in our formulation, we provide 

 reduced index formulation which constitutes an ordinary differ- 

ntial equation (ODE), cf. Section 2.4 . Secondly, we eliminate alge- 

raic variables directly. Another variant of tracking along a refer- 

nce path stems from Lam et al. [11] and was extended to vehicles 

n Liniger et al. [12] . It uses a method called contouring control ,

hich uses a state on a path-length parameterized reference curve 

nd an additional state for its path position. Similarly to Xing et al. 

29] , it considers the transformation implicitly, which involves ap- 

roximating a bi-level optimization problem for finding the closest 

oint on the reference curve. 

.2. Contribution 

We propose novel NMPC formulations that extend the state 

pace to two CFs and allow for more efficient consideration of 

he occurring costs and constraints. Thereby, the usually convex 

nd simple obstacle shapes in the CCF can be directly used in the 

MPC formulation. We show in simulation that we outperform the 

onventional approach of over-approximation [13,17,22,26] in terms 

f computation time and performance. Furthermore, the obstacle 

hapes are independent of the states and the road (up to Euclidean 

ransformations), which is not true in a conventional Frenet repre- 

entation. Additionally, we contribute with an extensive compari- 

on of common obstacle avoidance formulations in the proposed 

ormulations. 
2

. Vehicle models 

In order to formulate the NMPC problem, we use a rear 

xis referenced kinematic vehicle model of Kloeser et al. [9] , 

eiter and Diehl [19] , shown in Fig. 2 . Given a high enough 

ampling time and excluding highly dynamic maneuvers (e.g., 

mergency turns), kinematic vehicle models perform similarly to 

ynamic models for many automotive motion planning problems 

10] . The model comprises three states x c related to the CF. Par- 

icularly, we use x c , C = [ x y ϕ] � ∈ R 

3 for the Cartesian states

nd x c , F = [ s n α] � ∈ R 

3 for the Frenet states. We use the Carte-

ian (earth) position states x e , y e and the heading angle ϕ. Simi- 

arly, in the FCF we use longitudinal and lateral position states s 

nd n , together with the difference angle α (cf. Section 2.2 and 

ig. 1 ). The FCF position states are curvilinear coordinates along 

he reference road. Further states x ¬ c = [ v δ] � ∈ R 

2 are used for

oth, CCF and FCF, where v is the absolute value of the veloc- 

ty at the rear axis and δ is the steering angle. For the full CCF 

odel we use the state x C = [ x c , C � x ¬ c � ] � and for the FCF model

e use the state x F = [ x c , F � x ¬ c � ] � . We assume a rear wheel

rive force F d as input, including the acceleration and braking 

orce, which is a valid approximation for small steering angles (cf. 

loeser et al. [9] , Reiter and Diehl [19] ). The most prominent re- 

istance forces for wind F wind (v , ϕ) = c air v rel (v , ϕ) 2 and the rolling

esistance F roll (v ) = c roll sign (v ) are included, with the total resis-

ance force F res (v , ϕ) = F wind (v , ϕ) + c roll sign (v ) . The air drag de-

ends on the vehicle speed v in relation to the wind speed v wind 

ith the air friction parameter c air . The rolling resistance is pro- 

ortional to sign (v ) by the constant c roll . We drop the sign func- 

ion since we only consider strictly positive speeds. We model the 

elative speed related to the air drag, which we assume constant 

nd known by v rel (v , ϕ) = v − v wind cos (ϕ − ϕ wind ) , where ϕ wind is

he angle of the direction e wind in which the wind asserts force 

nd ϕ is the heading of the vehicle in the CCF. The wind speed 

as included in recent works [14,15] , particularly when it comes 

o energy-efficient trajectory planning. Real-time wind data can be 

btained by weather service providers, such as shown in Meshgin- 

alam and Bauman [14] . The wind speed demonstrates an influ- 

nce that can be easily modeled in the FCF, but is difficult to model 

n the CCF. 

The input of our model is given by u = [ F d r] � ∈ R 

2 , where r =
d δ
d t 

denotes the steering rate. The dynamics of the coordinate unre- 

ated states are written as 

˙ 
 

¬ c = f ¬ c (x ¬ c , u, ϕ) 

= 

[
1 
m 

(F d − F wind (v , ϕ) − F roll (v )) 
r 

]
, (1) 
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Fig. 3. State relations between the CFC and FCF. 

Table 1 

Comparison of the two model representations . 

Feature CCF FCF 

Reference definition ✗ 
√ 

Boundary constraints ✗ 
√ 

Obstacle specification 
√ 

✗ 

Disturbance specification 
√ 

✗ 
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here m denotes the vehicle mass. The lateral acceleration 

 lat (x ¬ c ) at the rear wheel axis is given by 

 lat (x ¬ c ) = 

v 2 tan (δ) 

l 
, (2) 

here l is the total wheelbase length of the vehicle. The wheelbase 

ength can be expressed as the sum of the distanced between the 

enter of gravity (CG) to the rear wheel axis l r or front wheel axis

 f by l = l f + l r . 

.1. CCF vehicle model 

Using simple kinematic relations, the dynamics of the Cartesian 

tates can be written as 

˙ 
 

c , C = f c , C (x C , u ) = 

⎡ 

⎣ 

v cos (ϕ) 

v sin (ϕ) 
v 
l 

tan (δ) 

⎤ 

⎦ . (3) 

he full five-state Cartesian vehicle model is given by 

˙ 
 

C = 

[
f c , C (x C , u ) 

f ¬ c (x ¬ c , u, ϕ) 

]
. (4) 

.2. FCF vehicle model 

Since in usual vehicle motion control tasks the vehicle moves 

ainly close to a reference curve γ : R → R 

2 , i.e., the street center 

ine, the transformation into a curvilinear CF is a natural choice. 

he reference curve γ (σ ) = [ γx (σ ) γy (σ )] � is parameterized by 

ts path length σ and can be fully described by one initial trans- 

ormation offset γ (σ0 ) , an initial orientation ϕ 0 and the curva- 

ure κ(σ ) = 

d ϕ γ

d σ
along its path. We use ϕ 

γ (σ ) for the tangent 

ngle in each point of the curve. As part of the Frenet transfor- 

ation, we project the Cartesian vehicle reference point p veh ∈ R 

2 

n the closest point along the reference curve with 

 

∗(p veh ) = arg min 

σ

∥∥p veh − γ (σ ) 
∥∥2 

2 
. (5) 

.l.o.g., we always set the initial reference point of the transfor- 

ation to zero. The position s along the curve is used as lon- 

itudinal FCF state. The vector (p veh − γ (s ∗)) is the difference of 

he closest point on the curve to the vehicle. By using the 90 de- 

ree rotation matrix R 90 and projection to the normal unit vec- 

or of the curve e n = R 90 γ ′ (s ∗) , we obtain the Frenet state n =
p veh − γ (s ∗)) � e n . The third Frenet state α relates the tangent an- 

le of the curve to the heading of the vehicle with α = ϕ − ϕ 

γ (s ∗) .
he transformation relations are shown in Fig. 3 . We write the 

ransformation of a Cartesian state x c , C = [ x y ϕ] � to a Frenet

tate x c , F = [ s n α] � by means of the transformation 

 

c , F = F γ (x c , C ) = 

⎡ 

⎣ 

s ∗

(p veh − γ (s ∗)) � e n 
ϕ 

γ (s ∗) − ϕ 

⎤ 

⎦ , (6) 

nd its inverse by 

 

c , C = F γ
−1 (x c , F ) = 

⎡ 

⎣ 

γx (s ) − n sin (ϕ 

γ (s )) 

γy (s ) + n cos (ϕ 

γ (s )) 

ϕ 

γ (s ) − α

⎤ 

⎦ . (7) 

he existence and uniqueness of the transformation are guaranteed 

nder mild assumptions, which are discussed in detail in Reiter 

nd Diehl [19] . As shown in Kloeser et al. [9] , we obtain the ODE

or the kinematic motion in the FCF as 

˙ 
 

c , F = f c , F (x F , u ) = 

⎡ 

⎢ ⎣ 

v cos (α) 
1 −nκ(s ) 

v sin (α) 

v 
l 

tan (δ) − κ(s ) v cos (α) 
1 −nκ(s ) 

⎤ 

⎥ ⎦ 

. (8) 
3 
he Cartesian state ϕ is needed in order to formulate the wind dis- 

urbance. It is not available in the FCF, consequently it needs to be 

omputed by evaluating the tangent angle ϕ 

γ (s ) of the current po- 

ition s on the reference curve γ (σ ) . This can be approximated by 

 spline function ˆ ϕ 

γ (s ) that is computed for the road layout and 

ields an approximation ˆ ϕ (s, α) = ˆ ϕ 

γ (s ) + α of the heading angle. 

he full FCF vehicle model is consequently given by the five-state 

odel 

˙ 
 

F = 

[
f c , F (x F , u ) 

f ¬ c (x ¬ c , u, ˆ ϕ ) 

]
. (9) 

.3. Model comparison 

As indicated in Section 1 and Table 1 , the CF models have dif- 

erent advantages when used in a NMPC formulation. The defini- 

ion of road boundaries and the reference curve, which are often 

ane-aligned curves, are straightforward to define in the FCF, but 

ard to define in the CCF. However, the obstacle definition in the 

CF is cumbersome for several reasons. Despite nonconvex obsta- 

le shapes in the FCF, safety cannot be guaranteed when using se- 

uential quadratic programming (SQP) to solve the NMPC problem 

ith the Frenet model. Convex obstacle shapes cannot be guaran- 

eed to be convex, if transformed into the FCF. This fact can be 

een from the following counterexample. Consider a straight line, 

hich is a convex set, and a circular road. Let the line intersect the 

oad at coordinates γ (σ1 ) = [ x 1 y 1 ] 
� and γ (σ2 ) = [ x 1 y 1 ] 

� . The

ransformed Frenet states n 1 , n 2 are zero in either point. At σ3 ∈ 

σ1 , σ2 ) , the transformed state n 3 � = 0 , thus the transformed set

s not convex. Considering Lemma 2.1 , it can be shown that con- 

ex obstacles are guaranteed to be a subset of the linearized con- 

traints within an SQP iteration, thus safely over-approximated. 

emma 2.1. Regard the set C = { x ∈ R 

n | g(x ) ≥ 0 } and C lin (x ∗) =
 x ∈ R 

n | g(x ∗) + ∇g(x ∗) � (x − x ∗) ≥ 0 } . Suppose that the function g :

 

n → R is convex, then C ⊆ C lin (x ∗) for any x ∗. 

roof. Due to convexity, g(x ∗) + ∇g(x ∗) � (x − x ∗) ≤ g(x ) and there-

ore, it follows that C ⊆ C lin . �
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Table 2 

Comparison of CF Formulations in NMPC. Formulations are compared among their CF specifications, the required number of differential/algebraic states n x / n z and their 

relevance. Bold-typed formulations are compared within this paper. 

Formulation ODE CF Obstacle CF Cost CF n x n z Practical relevance Issues 

Conventional Frenet Frenet Frenet Frenet 5 0 yes nonconvex state-dependent obstacle shapes 

usually over-approximated [13,17,22,26] 

Direct Elimination Frenet Frenet Cartesian Frenet 5 0 yes additional nonlinearities (objective, constraints) 

Lifted ODE Frenet Frenet Cartesian Frenet 8 0 yes redundant states 

DAE Frenet Frenet Cartesian Frenet 5 3 no bad convergence in our experiments 

Conventional Cartesian Cartesian Cartesian Cartesian 5 0 no nonconvex boundary constraints [12] 

Cartesian with Frenet States Cartesian Cartesian Frenet { 5 , 8 } { 0 , 3 } yes Difficult bi-level problem. Approximations, e.g. [12] 

v

S

F

t

z  

f

t

f

g

a

s

c

2

 

f

f

g

s

m

e

x

o

x

T

i

t

a

f

e

o  

p

m

t

i

t

a

l

i

a

x

0

Fig. 4. Schematic drawing of obstacle constraints. (a: ellipse CCF, b: covering circles 
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ing hyperplanes FCF). 
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Nonconvex obstacles, which result of the transformation of con- 

ex shapes into the FCF, are not safely over-approximated within 

QP algorithms. Another problem that arises with objects in the 

CF is the dependence of the shape on the state. Consequently, if 

he obstacle constraints are defined along a discretized time hori- 

on, at each time step i = 0 , . . . , N, the shape has to be trans-

ormed separately, cf. Fig. 1 . In typical applications, this could lead 

o N transformations for each obstacle in every NMPC iteration, 

ollowed by a convexification (e.g., bounding boxes, convex poly- 

ons, covering circles) to guarantee safety. Alternatively, an over- 

pproximation could be used to capture all possible transformed 

hapes. However, this would lead to a striking conservatism, espe- 

ially for long vehicles and small curve radii. 

.4. Overview of CF lifting formulations 

As outlined in Section 2.3 , having states of both CFs in the NLP

ormulation is beneficial to simplify the constraints. Several dif- 

erent ways of including both CFs are possible, and a summary is 

iven in Table 2 . 

First, one can choose the primary CF ODE and introduce the 

tates related to the other CF as algebraic variables that are deter- 

ined by the primary CF and obtain a DAE of index 1. One could 

ither have a CCF based DAE 

˙ 
 

C = f C (x C , u ) 

0 = x c , F − F γ (x c , C ) (10) 

r a FCF based DAE 

˙ 
 

F = f F (x F , x c , C , u ) 

0 = x c , C − F γ
−1 (x c , F ) . (11) 

he inverse transformation F γ
−1 is computationally cheap since 

t just needs explicit function evaluations, whereas the forward 

ransformation F γ requires solving an NLP as in (5) , resulting in 

 computationally expensive bi-level problem in the final NMPC 

ormulation. Therefore, we choose the FCF of (11) as a basis and 

xclude CCF formulations (10) from further comparisons. The DAE 

f index 1 ( Lifted DAE Frenet ) is one possible way to formulate the

roblem and was similarly used in Xing et al. [29] for a linearized 

odel. Another possible formulation ( Direct Elimination Frenet ) is 

o directly eliminate the algebraic variables in (11) by using the 

nverse Frenet transformation in the nonlinear constraint formula- 

ion. If the objective includes Cartesian states with quadratic costs 

nd lifted constraints, the direct elimination would lead to a non- 

inear objective and constraints. Alternatively, we can perform an 

ndex reduction of (11) , which is obtained by differentiation of the 

lgebraic constraint, leading to 

˙ 
 

c , F = f c , F (x c , F , u ) (12a) 

 = 

˙ x c , C − ∂ F γ
−1 (x c , F ) 

∂x c , F 
f c , F (x c , F , u ) , (12b) 

and x c , C (0) := F γ
−1 (x c , F ) . (12c) 
4 
Detailed computation (not presented here) shows the equiva- 

ence of (12b) to 

˙ 
 

c , C = f c , C (x c , C , u ) (13) 

he approach in (12) or (13) ( Lifted ODE Frenet ) results in redun-

ant states in both CFs, which are coupled through the inputs and 

he initial state. 

. Obstacle avoidance formulations 

Different formulations for obstacle avoidance constraints are 

sed in NMPC and visualized in Fig. 4 . We assume that rect- 

ngles represent the real vehicle shapes. Often simple geometric 

overing shapes (circles [8] or ellipses [3] ) and related distance 

unctions are used. Alternatively, covering polygons and restric- 

ions on edges or vertices (hyperplanes) are formulated in Bros- 

ette and Wieber [4] , Evens et al. [6] , Sathya et al. [23] . Further-

ore, the road boundaries can be deflected in order to cover the 

bstacle by the boundary constraints [9] . The latter approach is 

ot within the scope of this work due to the generally differ- 

nt formulations that for instance, include a combinatorial plan- 

er for choosing the passing side [20] . We compare the formu- 

ation of obstacle avoidance constraints by an ellipse [3] , covering 

ircles [8,27] and separating hyperplanes [4] . We also implemented 

 formulation introduced in Sathya et al. [23] , which we refer to 

s set-vertices-exclusion , but which poorly converged in our ex- 

eriments. We assume a rectangular shape of the vehicles with 

he rear/front chassis length l ch = l r , ch + l f , ch related to the vehi- 

le CG and chassis width w ch . The separating hyperplane formula- 

ion does not require increased obstacle sizes beyond their actual 

ectangular shape, whereas circle and ellipse formulations require 

ver-approximations. 

.1. Obstacle approximation by an ellipse 

Constraining the distance between a circle and an ellipse is 

ess complex than constraining the distance between two el- 

ipses. This can be easily argued by the rotational invariance of 

 circle which allows for a simple shape inflation of the ellipse 
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y the radius of the circle, followed by a level set constraint. 

he distance between two ellipses depends on the orientation 

f both, thus shape inflation of the one ellipse and a point re- 

uction of the other one is inhibited. Thus, we cover the ego 

ar with a circle. The main axes a, b of an ellipse covering a 

ectangle are computed by a = 

1 √ 

2 
(l f , ch + l r , ch ) and b = 

1 √ 

2 
w ch . In- 

reased by the ego radius r ego , this leads to the extended el- 

ipse matrix D = diag ( [ a + r ego , b + r ego ] ) . With the rotation ma- 

rix R (x c , opp ) ∈ R 

2 ×2 and a translation vector t(x c , opp ) ∈ R 

2 re-

ated to the orientation and position of the obstacle vehicle, we 

an formulate the collision avoidance constraint with the ma- 

rix 
(x c , opp ) = R (x c , opp ) DR (x c , opp ) � via the feasible set 

 

ell (x c , opp ) 

= 

{ 

x c ∈ R 

3 

∣∣∣‖ 

x c − t(x c , opp ) ‖ 

2 

−1 (x c , opp ) ≥ 1 

} 

. (14) 

.2. Obstacle approximation by covering circles 

We use the union of a set of circles to cover the vehicle shape

s shown in Khorkov and Galiev [8] , Wang et al. [27] , Ziegler et al.

30] . For l ch ≥ w ch , the number of covering circles n circ must be

arger than � l ch 
w ch 

� and have a radius r { ego , opp } of w ch 
1 √ 

2 
. For each

ombination of the n circ , ego and n circ , opp circles a distance con- 

traint must be satisfied, leading to n circ , ego n circ , opp inequality con- 

traints. The covering circle center points are computed according 

o Ziegler et al. [30] , which gives us a function p i : R 

3 → R 

2 for the

ircle center i that computes the center positions p i = p i (x c , C ) from

he states x c , C . With �r = r ego + r opp and x := x c , C , we can denote

he free set as 

 

circ (x opp ) = 

{ 

x ∈ R 

3 
∣∣∥∥p i (x ) − p j (x opp ) 

∥∥
2 

≥ �r, 

for 1 ≤ i ≤ n circ , ego , 1 ≤ j ≤ n circ , opp 

} 

(15) 

.3. Obstacle approximation by separating hyperplanes 

When formulating collision avoidance with separating hyper- 

lanes, we optimize for a feasible solution of the parameters θ ∈ 

 

3 of a hyperplane h θ (p) . The parameterized hyperplane needs to 

eparate all (four) vertices p 
{ ego , opp } 
i 

(x c { ego , opp } ) of either vehicle’s 

ounding box. We write the feasible region using the related hy- 

erplane existence problem with points p̄ { . }� = [ p { . }� 1] as 

 

hp (x opp ) = 

{ 

x ∈ R 

3 , θ ∈ R 

3 

∣∣∣ θ2 
1 + θ2 

2 = 1 , 

θ� p̄ ego 
i 

(x ) ≤ 0 , θ� p̄ opp 
i 

(x opp ) ≥ 0 , ∀ i = 0 , . . . , 3 

} 

. (16) 

ith the constraint θ2 
1 

+ θ2 
2 

= 1 for the hyperplane parameters we 

void a degenerate solution. 

. NMPC formulation 

The NMPC aims to plan a feasible trajectory for a vehicle to 

rive on a road with bounded curvature on a reference lane par- 

llel to the center line and with a desired reference speed. Fur- 

hermore, the NMPC must avoid static and dynamic obstacles. As 

otivated in Section 2.4 , we use two variants of an FCF-based ODE 

o obtain Cartesian states, i.e., the direct elimination and lifted ODE 

ormulation and compare it to the conventional formulation with 

ver-approximation, such as shown in Raji et al. [17] , Rosolia et al. 

22] . First, we define the costs and constraints. 
5 
.1. General costs & constraints 

Some constraints are unrelated to the CF, such as the lower and 

pper bounds for states x ¬ c and inputs u . For control costs u � Ru ,

e use the positive semi-definite weight matrix R ∈ R 

2 ×2 . 

.2. FCF related costs & constraints 

State costs are related to FCF states since there is no practical 

dvantage of including CCF state costs. A cost related to a desired 

eference path parallel to the road center line is accounted for by 

 square penalty of the deviation of the Frenet lateral coordinate n 

o its reference n ref . For a reference speed v ref , a square penalty

ith positive weight w s , as well as a penalty on precomputed lon- 

itudinal reference positions s ref ,i = ˆ s 0 + i �tv ref is used, with the 

easured state ˆ s 0 and sampling time �t . Since we assume a road 

ith constant width, boundary constraints simplify in the FCF to 

ox constraints for an upper bound n and a lower bound n . 

.3. CCF related costs & constraints 

We use the collision avoidance formulations, which could be 

ne out of O = { ell , circ , hp } in the CCF, thus have the constraint

 

c , C ∈ P 

{ ell , circ , hp } . FCF costs are defined via the positive weight ma- 

rix Q = diag (q ) with the weight vector q ∈ R 

5 and the reference

tates x F 
ref 

. We use a terminal cost Q N = diag (q N ) with the weight

ector q N ∈ R 

5 after N discrete time steps. We can therefore write 

he objective function as 

J(x F 0 , . . . , x 
F 
N , u 0 , . . . , u N−1 ) 

= 

N−1 ∑ 

k =0 

‖ 

u k ‖ 

2 
R + 

∥∥x F k − x F ref ,k 

∥∥2 

Q 
+ 

∥∥x F N − x F ref ,N 

∥∥2 

Q N 
. (17) 

.4. Direct elimination NMPC formulation 

With the direct formulation, we can directly use the inverse 

ransformation x c , C = F γ
−1 (x c , F ) to eliminate the Cartesian states 

n the constraint formulation. Consequently, we obtain fewer states 

ut “more” nonlinear constraints. We discretize the continuous tra- 

ectory with N − 1 control intervals and use direct multiple shoot- 

ng [2] with one step of an RK4 integration function �F (x F , u, �t) 

or the ODE in (9) and the NLP formulation 

min 

x F 0 , . . . , x 
F 
N , 

u 0 , . . . , u N−1 

θ1 , . . . , θn opp 

J(x F 0 , . . . , x 
F 
N , u 0 , . . . , u N−1 ) (18a) 

s.t. 

 

F 
0 = 

ˆ x F 0 , (18b) 

 

F 
i +1 = �F (x F i , u i , �t) , i = 0 , . . . , N − 1 , (18c) 

 ≤ u i ≤ u , i = 0 , . . . , N − 1 , (18d) 

 

F ≤ x F i ≤ x 
F 
, i = 0 , . . . , N , (18e) 

 

c , C ≤ F γ
−1 (x c , F ) ≤ x 

c , C 
, i = 0 , . . . , N , (18f) 

 

lat ≤ a F lat (x i ) ≤ a 
lat 

, i = 0 , . . . , N , (18g) 

 N ≤ v N , (18h) 

 γ
−1 (x c , F ) ∈ P(x c , opp , j 

i 
, θ j ) , i = 0 , . . . , N − 1 , 

j = 1 , . . . , n opp . (18i) 

Decision variables θ1 , . . . , θn opp , where θ j = [ θ0 
j 
, . . . , θN 

j 
] ∈ R 

3 ×N 

re only used for the separating hyperplanes formulation. 
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Table 3 

Environment parameters. 1 Randomized with uniform distribution. 2 Parameters only 

differ in long vehicle scenario. The parameters are equal for all vehicles, if not noted 

explicitly. We use SI units, if not stated explicitly. 

Module Name Variable Value 

Road road bounds 2 n , n ±10 , ±8 . 5 

curvature 1 κ [ −0 . 05 , 0 . 05] 

wind speed v wind 20 

wind direction ϕ wind 0 

Ego vehicle length wheelbase l r , l f 1.7 

length chassis l r , ch , l f , ch 2 

width chassis w ch 1.9 

mass m 1160 

lateral acc. bound a lat , a lat ±5 

input bounds u , u ±[10 kN , 0 . 39] 

velocity bound v 40 

steering angle bound δ, δ ±0 . 3 

starting position 1 x c , F 
0 

[0 , −5 , 0] − [0 , 5 , 0] 

reference speed v ref 40 

Opp. vehicles length wheelbase 2 l r , l f 10 

length chassis 2 l r , ch , l f , ch 13 

width chassis 2 w ch 4 

mass 2 m 3000 

input bounds 2 u [30 kN , 0 . 39] 

input bounds 2 u [ −45 kN , −0 . 39] 

starting position 1 i s i 0 50(i + 1) 

n i 0 [ −5 , 5] 

reference speed v ref 15 

Table 4 

Parameters for NMPC in SI units. 

Name Variable Value 

nodes / disc. time N/ �t 40/ 0.1 

terminal velocity v N 15 

state weights q [1 , 500 , 10 3 , 10 3 , 10 4 ]�t

terminal state weights q N [10 , 90 , 100 , 10 , 10] 

control weights R diag( [10 −3 , 2 × 10 6 ])�t

Table 5 

Mean and standard deviation of computation times for different scenarios, obstacle 

formulations and lifting formulations. Additionally, the difference in percent to the 

conventional formulation is given. 

Computation times (ms) for truck-sized obstacles 

Conventional Direct elimination Lifted ODE 

EL 1 . 5 ± 0 . 4 1 . 9 ± 0 . 2 28 . 9% 1 . 4 ± 0 . 3 −6 . 6% 

C5 7 . 2 ± 1 . 9 7 . 6 ± 1 . 7 5 . 5% 7 . 2 ± 1 . 8 −0 . 0% 

C7 14 . 0 ± 3 . 2 14 . 0 ± 2 . 8 −0 . 1% 13 . 9 ± 2 . 9 −0 . 4% 

HP 7 . 5 ± 1 . 5 7 . 5 ± 1 . 5 −0 . 1% 7 . 4 ± 1 . 7 −1 . 6% 

Car-sized obstacles 

EL 1 . 5 ± 0 . 5 2 . 0 ± 0 . 4 29 . 6% 1 . 4 ± 0 . 4 −5 . 7% 

C1 1 . 4 ± 0 . 4 1 . 9 ± 0 . 4 34 . 0% 1 . 4 ± 0 . 4 −3 . 5% 

C3 3 . 6 ± 1 . 1 4 . 0 ± 1 . 0 12 . 4% 3 . 6 ± 1 . 1 0 . 6% 

HP 8 . 0 ± 2 . 3 7 . 9 ± 1 . 9 −0 . 6% 7 . 7 ± 2 . 0 −4 . 0% 

p

b

r

t

t

c

p

o

t

s

d

m

t

m

o

.5. Lifted ODE NMPC formulation 

In this formulation we use the extended state x d = 

 x F � x c , C � ] � and the extended ODE (13) . The additional states in-

rease the size of the state-space to eight states in our case, where 

hree states stem from either CF and additional two states are CF 

ndependent states. In this formulation, we use the RK4 integra- 

ion function �d (x d , u, �t) of dynamics (13) . We can write the fi-

al NLP for the lifted ODE formulation as 

min 

x d 0 , . . . , x 
d 
N , 

u 0 , . . . , u N−1 

θ1 , . . . , θn opp 

J(x F 0 , . . . , x 
F 
N , u 0 , . . . , u N−1 ) (19a) 

s.t. (19a) 

 

d 
0 = 

ˆ x d 0 , (19b) 

 

d 
i +1 = �d (x d i , u i , �t) , i = 0 , . . . , N − 1 , (19c) 

 ≤ u i ≤ u , i = 0 , . . . , N − 1 , (19d) 

 

d ≤ x d i ≤ x 
d 
, i = 0 , . . . , N , (19e) 

 

lat ≤ a lat (x d i ) ≤ a 
lat 

, i = 0 , . . . , N , (19f) 

 N ≤ v N , (19g) 

 

c , C 
i 

∈ P(x c , opp , j 
i 

, θ j ) , i = 0 , . . . , N − 1 , 

j = 1 , . . . , n opp . (19h) 

. Numerical experiments 

In order to evaluate the performance of the proposed approach, 

e simulate two randomized scenarios that constitute three non- 

go vehicles in front of the ego vehicle with a lower cruise speed. 

he scenario is simulated for 20 s, where usually three overtakes 

re possible. In total, 500 full simulation runs are evaluated for 

ach scenario type. We record the solution times of the NMPC 

nd the final driven distance after the simulation ends, which we 

ake as a performance indicator. We use different types of obsta- 

les, particularly long ones in the dimensions of a truck (truck- 

ized), as well as short ones resembling normal cars (car-sized). 

e make several simplifications in order to avoid performance in- 

uences of sources unrelated to our formulation. Firstly, there is 

o model-plant mismatch, i.e., the simulation framework and the 

LP use the same kinematic vehicle model and discretization. Sec- 

ndly, the ego NMPC has complete knowledge of the other vehi- 

les’ planned trajectories to avoid the influence of prediction er- 

ors. Finally, we model non-ego participants to be non-interactive. 

hey aim at driving along a reference line parallel to the cen- 

er line. The simulations were run on an Alienware m-15 Note- 

ook with an Intel Core i7-8550 CPU (1.8 GHz). The parameters 

or the environment and the NMPC are shown in Tables 3 and 4 ,

espectively. 

We use the NLP solver acados [25] with HPIPM [7] , RTI itera- 

ions and a partial condensing horizon of N 
2 . 

We use obstacle constraint formulations of Section 3 . Besides 

he different obstacle dimensions, the proposed NMPC formula- 

ions conventional , direct elimination and lifted ODE were evalu- 

ted with the different obstacle formulations of Section 3 . We use 

he ellipse (“EL”), the n covering circles (“C n ”) and the separating 

yperplane (“HP”) formulation. In Fig. 5 , the computation times 

nd the maximum achieved progress of the randomized scenar- 

os are shown for truck- and car-sized vehicles. Clearly, the final 
6 
rogress after overtaking in the truck-sized scenario is increased 

y the proposed formulation significantly due to the more accu- 

ate representation of the obstacle shape. For car-sized vehicles, 

he extended states do not yield a prominent advantage since in 

his case, the Frenet transformation does not deform the obsta- 

les vastly. The maximum progress is nearly equal for both pro- 

osed approaches since the obstacle constraint formulations based 

n Cartesian states are equal. A striking difference between the 

wo proposed formulations can be seen in the computation times, 

hown detailed in Table 5 . While the lifted ODE formulation even 

ecreases the average computation time for nearly all obstacle for- 

ulations, the direct elimination formulation increases the compu- 

ation time by around 30%. Remarkably, the ellipsoidal obstacle for- 

ulation in the proposed lifted ODE formulation outperforms all 

ther obstacle formulations in both, the computation time as well 
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Fig. 5. Box-plot comparison of the NMPC solution timings for each real-time itera- 

tion and the final progress after 20 s for different obstacle formulations for truck- 

and car-sized vehicles. 
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[

s the performance measured in the average progress after over- 

aking, which highlights the advantage of the formulation. Contrary 

o our expectations, the separating hyperplane formulation shows 

eaker performance in computation time and average progress. In 

heory, separating hyperplanes should be more accurate in captur- 

ng the obstacle shape. Nevertheless, due to the disadvantageous 

inearizations within the SQP iterations, the shape is not captured 

ell. This might be mainly due to the nonconvex and nonlinear 

onstraint in (16) . Note that the proposed lifting approach is not 

imited to kinematic vehicle models. It extends to higher fidelity 

odels, since the lifting is limited to the six coordinate related 

tates that appear equally in high fidelity models [24] , namely CCF 

ositions x and y , the CCF heading angle θ , the FCF position states

 and n , as well as the FCF angle α. 

. Conclusions 

We have presented two novel FCF-based formulations of NMPC 

or vehicles that include states of the CCF in order to gain nu- 

erical advantages. Simulated evaluations and the comparison of 

everal wide-spread obstacle constraint formulations show that 

he proposed approaches are capable of representing the obsta- 

le shapes more suitably and that with the lifted ODE formulation, 

ven the computation time was decreased. Furthermore, our evalu- 

tions show that an ellipsoidal obstacle representation outperforms 

ll other obstacle formulations in computation time. In conclusion, 
7 
he combination of the ellipsoidal obstacle constraint formulation 

ith the lifted ODE formulation yields superior results in all cate- 

ories. 
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