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A Long-Short-Term Mixed-Integer Formulation for
Highway Lane Change Planning
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Abstract—This work considers the problem of optimal lane
changing in a structured multi-agent road environment. A
novel motion planning algorithm that can capture long-horizon
dependencies as well as short-horizon dynamics is presented.
Pivotal to our approach is a geometric approximation of the long-
horizon combinatorial transition problem which we formulate
in the continuous time-space domain. Moreover, a discrete-time
formulation of a short-horizon optimal motion planning problem
is formulated and combined with the long-horizon planner. Both
individual problems, as well as their combination, are formulated
as mixed-integer quadratic programs (MIQPs) and solved in real-
time by using state-of-the-art solvers. We show how the presented
algorithm outperforms two other state-of-the-art motion planning
algorithms in closed-loop performance and computation time in
lane changing problems. Evaluations are performed using the
traffic simulator SUMO, a custom low-level tracking model pre-
dictive controller, and high-fidelity vehicle models and scenarios,
provided by the CommonRoad environment.

Index Terms—Autonomous Vehicles, Motion Planning, Control
and Optimization, Vehicle Control Systems.

I. INTRODUCTION

IN recent years many approaches have been proposed
for vehicle motion planning in structured multi-lane road

environments. However, considering combinatorial long-term
dependencies and providing optimal trajectories subject to dy-
namic constraints in real-time remains a challenging problem.
In fact, even deterministic two-dimensional motion planning
problems with rectangular obstacles are NP-hard [1], [2].

This work proposes a novel iterative planning algorithm,
referred to as long-short-term motion planner (LSTMP) that
reduces the combinatorial complexity by splitting the problem
into a short-term motion planning formulation (STF) and a
long-term motion planning formulation (LTF), both solved by
one MIQP, cf. Fig. 1. The STF aims at optimizing a four-
state discrete-time trajectory of a point-mass model including
obstacle constraints, similar to the formulations of [3], [4].
The STF trajectory is computed for a shorter horizon to
approximate a maximum of one lane change. In contrast, the
LTF aims at obtaining optimal lane transitions, defined by the
transition times and longitudinal transition positions, which are
both continuous variables. These lane transitions are used for
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Fig. 1. Overview of the proposed MIQP formulation for motion planning,
referred to as LSTMP. The MIQP consists of long-term and short-term
planning formulations where the decision variables of both are coupled
through consistency constraints. The short-term decision variables include a
continuous point-mass model trajectory to approximate a single lane change.
The long-term decision variables account for selecting gaps between SVs on
each lane.

long-term planning, i.e., the choice of gaps between vehicles
on several consecutive lanes. Reachability and the choice of
transition gaps on consecutive lanes are modeled by disjunctive
programming.

The planned trajectory of the STF and the transitions of the
LTF are formulated consistently, i.e., a transition point con-
strains the point-mass model trajectory to the corresponding
lane. Contrary to strict hierarchical decomposition, the coarser
approximation of the high-level plan cannot be infeasible for
the low-level planner.

A challenge of state-of-the-art motion planners is the scaling
of computational complexity with the horizon length [3],
which makes long-horizon planning most often intractable.
Within the formulation of the LTF, the locations of transitions
in time and position are continuous. The proposed modeling
uses integer variables only related to the gaps between vehicles
on each lane. Therefore, the number of integer variables does
not scale with the horizon length within the LTF. Conse-
quently, the constant small number of integer variables, even
for long-term predictions, allows for fast computation times
of the algorithm.

Evaluations of the proposed approach are performed with
both deterministic and interactive closed-loop simulations
that involve a CommonRoad [5] vehicle model, a low-level
nonlinear model predictive controller (NMPC), and interactive
traffic that is simulated with sumo.
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A. Related work

An abundance of fundamentally different techniques address
highway motion planning and were reviewed by [6] and,
more recently, by [7], [8] and particularly for deep learning
in [9], [10]. The authors in [6] identified geometric, variational,
graph-search, and incremental search methods as fundamental
planning categories, whereas the more recent and exhaustive
survey [7] adds a major part on artificial intelligence (AI),
among further refinements.

Historically, geometric and rule-based approaches were
more dominant. Parametric curves are used in highly struc-
tured environments, such as highways, due to their simplicity
and ease of alignment with the road geometry [11]–[13].
However, the motion plans are usually conservative and unable
to cope with complex environments [7].

In several works, the state space is discretized and some
sort of graph search is performed [6], [8]. Probabilistic road
maps [14], [15], Djikstra graph search and similar, rapidly
exploring random trees [16]–[18] are common in highway
motion planning. Nonetheless, they suffer from the curse
of dimensionality, the inability to handle dynamics, a poor
connectivity graph, and a poor repeatability of results [7].
By using heuristics, hybrid A∗ [19]–[21] aims to avoid the
problem of high-dimensional discretization in graph-search.
Choosing an admissible heuristic is challenging and a time-
consuming graph generation is performed in each iteration.
Moreover, authors try to improve graph- or sampling-based
algorithms by combining them with learning-based meth-
ods [17], [22].

Optimization-based methods can successfully solve motion
planning problems in high-dimensional state spaces in real-
time [23]. They are appealing due to numerous advantages,
e.g., consideration of dynamics and constraints, adaptability
to new scenarios, finding and keeping solutions despite envi-
ronmental changes, and taking into account complex scenarios.
Pure derivative-based methods are often restricted to convex
problem structures or sufficiently good initial guesses. High-
way motion planning is highly non-convex. Nonetheless, by
introducing integer variables, the problem can be formulated
as an MIQP [3], [4], [24], [25] and solved by dedicated high-
performance solvers, such as gurobi [26]. Yet, the planning
horizon of MIQP with a fixed discrete-time trajectory is still
limited due to the increasing number of integer variables for
increased horizon lengths. Therefore, keeping the computation
time limited remains a challenge, [7].

One successful structure exploitation for solving the high-
way motion planning problem faster is the decomposition of
the state space into spatio-temporal driving corridors [4], [25],
[27]–[30] with simple obstacle predictions. Still highly non-
convex, the region can be decomposed into convex cells [29],
[30] or used in a sampling-based planner [25].

To leverage the computational burden further, without sac-
rificing significantly the overall performance, the presented
approach uses a short-horizon planning similar to [3] and [4],
adding a long-horizon coarse geometric approximation in the
spatio-temporal domain (see Fig. 1). The proposed STF differs
from [4] by using only one binary variable per time step for

the first lane change and more accurately modeling occupied
regions, that also consider braking due to preceding obstacles.
Moreover, the consecutive gap is not fixed as in [4] but
determined by the LTF. The idea of combining two horizons
was presented in [31], yet not related to combinatorial motion
planning and hierarchically decomposed in [21] using a graph-
based planner.

AI-based methods often use exhaustive simulations to train
neural networks (NNs) by reinforcement learning (RL) [10] or
use expert data, such as data collected from human divers, to
perform imitation learning [32], [33]. They often struggle to
consider safety critical constraints and adapt to environment
changes [7], [9], [33]. Furthermore, sim-to-real challenges
apply [34] since these methods are mainly trained within
simulations. An advantage includes the capability of using raw
sensor inputs, such as camera images and the low computa-
tional requirements of trained NNs [9].

The performance of the LSTMP is compared to a state-
of-the-art hybrid A∗ method [20], which can be classi-
fied as both a deterministic planning AI and graph-search
method [35], and to the mixed-integer motion planning and
decision maker (MIP-DM) [3] which is a comparable state-
of-the-art optimization-based method.

B. Contribution

This paper contributes a novel algorithm for optimal lane-
changing highway maneuvers. Compared to other highway
motion planning algorithms, the proposed lane change motion
planner approximates long-term dependencies in the spatio-
temporal (ST)-space, where the computational burden is inde-
pendent of the position and the time a lane change occurs.
Moreover, we solve the problem involving the long-term
approximation as a consistent single problem and, therefore,
avoid a problematic decoupling. The closed-loop performance
is improved by 15% compared to [3] and [20] and the
average computation time is lowered in randomized interactive
simulations by two orders of magnitude. Compared to [3], the
the number of integer variables used within the underlying op-
timization problem reduces from O(NvehN) to O(Nveh +N)
for a number of Nveh SVs and N discrete-time prediction
steps, with a comparable closed-loop performance on the
evaluated scenarios.

C. Outline

In Sect. II, important background concepts are defined
that are used throughout the paper. In Sect. III, the general
problem definition, related assumptions, and simplifications
are introduced. Next, the planning approach is described in
Sect. IV to VI and evaluated in Sect. VII. The approach is
discussed and conclusions are drawn in Sect. VIII.

II. PRELIMINARIES AND NOTATION

The set of non-negative real numbers is denoted by R+ =
{x ∈ R | x ≥ 0} and non-negative integers by N0 = {x ∈ Z |
x ≥ 0}. Integer sets are written as N[m:n] = {z ∈ N0 | m ≤
z ≤ n} with m < n. By using the notation f(x; y) in the
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context of optimization problems, we denote the dependency
of function f on variables x and parameters y. The convex
hull C ⊆ Rn of two polygons A ⊆ Rn and B ⊆ Rn is
C = conv(A,B). We use the floor function bxc for rounding
a number x ∈ R to the largest smaller integer and the ceil
function dxe for rounding to the smallest larger integer.

A. Propositional logic and mixed-integer notation

For a given compact set X ⊂ R and continuous function f :
X → R, let M ≥ maxx∈X f(x) and M ≤ minx∈X f(x)
denote an upper and lower bound of f(x) on X , respectively.
The following properties hold for a given f : X → R [36],
[37].

Property II.1. For a product y = βf(x), with y ∈ R, the
following equivalence holds for all x ∈ X and β ∈ N[0:1]:

y = βf(x)⇔


y ≤Mβ,

y ≥Mβ,

y ≤ f(x)−M(1− β),

y ≥ f(x)−M(1− β).

(1)

Property II.2. The implication [β = 1] =⇒ [f(x) ≥ 0] of a
binary variable β ∈ N[0:1] that activates constraint f(x) ≥ 0,
is formulated as

f(x) ≥M(1− β). (2)

Property II.3. The implication [f(x) > 0] =⇒ [β = 1]
of a binary variable β ∈ N[0:1] that gets activated if con-
straint f(x) > 0 is valid, is formulated as

f(x) ≤Mβ. (3)

Property II.4. The disjunction
∨N
i=1[fi(x) ≥ 0] is formulated

by adding N binary variables βi ∈ N[0:1] with i ∈ N[1:N ], and
the conditions

[βi = 1] =⇒ [fi(x) ≥ 0],∀i ∈ N[1:N ]

N∑
i=1

βi ≥ 1
(4)

B. Chebychev center

The Chebychev center (CC) of a polyhedron P = {x |
Ax ≤ b}, with A ∈ Rm×n and b ∈ Rm, is the center x? ∈ Rn
of the largest ball B(x?, r?) = {x | ‖x? − x‖ ≤ r?} contained
in P [38]. The radius r? is called the Chebychev radius. With
Ai and bi being the i-th row of A and b, respectively, the CC
and Chebychev radius can be computed by solving the linear
program

min
r, x

− r (5a)

s.t. Aix+ r‖Ai‖2 ≤ bi i ∈ N[1:m], (5b)
r ≥ 0 (5c)

III. GENERAL LANE CHANGING PROBLEM

The general problem for lane changing is stated as an
optimal control problem (OCP), similar to [39]. For a multi-
lane environment, a total of L lanes are defined by curvilinear
center curves and a lane width dlane. Moreover, we assume
the existence of a parametric function γ : R+ → R2

for the right-most reference lane that maps a longitudinal
path coordinate s to a Cartesian point. The reference lane
is parameterized by a vector θγ which is included in the
road geometry parameters θ :=

(
θγ , dlane

)
. We consider a

vehicle model in the Frenet coordinate frame [40]–[42] with
states x(t) ∈ Rnx and inputs u(t) ∈ Rnu , whose trajectories
are governed by the nonlinear ordinary differential equation
(ODE) ẋ = ξ(x(t), u(t)) with the initial condition x(t0) = x0.
Using Frenet coordinates poses mild assumptions on the
maximum value of the curvature, cf. [43]. Among others,
the state of the Frenet model includes a longitudinal position
state s, a lateral position state n, a velocity v and a heading
angle mismatch α [42].

States and controls are constrained by physical limita-
tions depending on θ, which are expressed by admissible
sets X (t; θ) and U(t).

For M vehicles on each lane, we consider Nveh = LM SVs
with states xsv

i (x(t), t) for i ∈ N[1:Nveh] that depend on the
planned ego trajectory x(t). Note that the dependency of
the states xsv

i (x(t), t) on the ego state x(t) is due to the
interaction of the ego vehicle with SVs and is a major source
of complexity [44], [45]. We assume that the obstacle-free set
can be approximated by Xfree(x(t), t). In the latter sections IV
and V, we explain how to define the set Xfree(x(t), t) in an
MIQP model.

In compliance with [30], multiple general objectives are
proposed in the Frenet coordinate frame in order to define the
desired behavior. A goal lane index l̃ ∈ N[1:L] and a reference
velocity ṽ ∈ R+, define the goal parameters

Θ := (l̃, ṽ).

Curvilinear reference paths are expressed as constant lateral
references ñi for i ∈ N[1:L]. One desired behavior is to track
the lateral lane reference the vehicle is currently driving on.
The current reference lane index l(n) w.r.t. the current lateral
state n is uniquely determined by

l(n) =

⌈
n

dlane
+

1

2

⌉
. (6)

Note that determining the lane as in (6) within an optimization
problem is not trivial and requires for instance the use of
additional integer variables, as shown in Sect IV. By using
the weights wn and wv , the cost of tracking the reference
lane index l(n(t)) and longitudinal reference speed ṽ is

gref(x(t), u(t); θ,Θ) =

wn

(
n(t)−

(
l(n(t))− 1

)
dlane

)2

+

wv

(
v(t)− ṽ

)2

+ u>(t)Ru(t),

(7)

which includes a quadratic penalty on the input u, with the
positive definite weighing matrix R ∈ Rnu×nu .
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Next, a cost for the distance to the goal lane l̃ ∈ N[1:L] with
a weight wg ∈ R+ is added, which is the main objective of
the presented planner and written as

glane(x(t); Θ) = wg

∣∣l(n(t))− l̃
∣∣. (8)

In the proposed approach, only lane changes towards the goal
lane l̃ are considered.

Finally, the objective functional is

J
(
x(·), u(·); θ,Θ

)
:=∫ ∞

t=t0

(
gref(x(t), u(t); θ) + glane(x(t); Θ)

)
dt,

(9)

and the considered general optimal control problem that is
approximately solved by the proposed approach is

min
x(·), u(·)

J
(
x(·), u(·); θ,Θ

)
(10a)

s.t.

x(t0) = x0, (10b)
ẋ = ξ(x(t), u(t)), t ∈ [t0,∞), (10c)

x(t) ∈ Xfree(x(t), t; θ) ∩ X (t; θ), t ∈ [t0,∞), (10d)
u(t) ∈ U(t), t ∈ [t0,∞). (10e)

A. Assumptions and simplifications

Several assumptions and simplifications are made for the
proposed planning approach in order to approximate (10) by
an MIQP. As a major simplification, the vehicle dynamics are
formulated by a point-mass model with mass m in a Frenet
coordinate frame [43], including the longitudinal and lateral
position states s and n, as well as associated velocities vs
and vn, with x = [s, n, vs, vn]>, and acceleration inputs as
and an, with u = [as, an]>. The dynamics are modeled by

ẋ = [vs, vn,
1

m
as,

1

m
an]>. (11)

We assume the absolute value of the curvature κ(s) and
its derivative κ′(s) to be small for highway roads and,
therefore, the acceleration in the Frenet coordinate frame is
approximately equal to the acceleration in Cartesian coordinate
frame [43]. This model was empirically shown to be valid for
the cases where vehicles are not driving at their dynamical
limits [4] and motivated in several other works, e.g., [3], [31],
[46]–[48]. Critical evasion maneuvers are passed to a NMPC
within the presented structure.

Assumption III.1. Lane-changes of SVs can be detected.

Ass. III.1 can be satisfied by perception techniques
described in [6], [49] or by vehicle-to-vehicle communication.

Assumption III.2. Considering two vehicles in the same lane,
the rear vehicle is responsible for avoiding collisions. The
leading vehicle must maintain general deceleration limits.
Vehicles that change lanes must give way to vehicles on the
lane they are changing to.

Taking into account interactions among traffic participants
within Xfree(x(t), t; θ) is essential for certain maneuvers in
order to avoid prohibitive conservatism [50]. However, the
interdependence of plans among interactive agents leads to
computationally demanding game-theoretic problems [45],
[51]. Similar to [4], the leader-follower interaction is simplified
by ignoring collision constraints of followers on the same lane
at the current state, leaving the responsibility for collision
avoidance to the follower. Other SVs that are not following
on the current lane are considered obstacles independent of
the ego plan as long as these SVs are on adjacent lanes or in
front of the ego vehicle.

The following assumptions consider constraints in the three-
dimensional SLT-space [30], i.e., the space of the longitudinal
and the lateral Frenet position states s and n and time t.

On each lane, a maximum of M vehicles is considered.
We use indices i ∈ N[1:LM ] for the enumeration of the
resulting maximum LM vehicles on the lanes in ascending
order, starting from lane l = 1 from rear to front. The free
space on the back of each vehicle along the lane is referred to
as gap and enumerated according to the leading vehicle index,
cf., Fig. 2. A number of L indices are added for the gaps in
front of the first vehicle on each of the L lanes. Therefore
the number of gap indices is L(M + 1). The function lveh(i)
returns the lane index of vehicle i. The function lgap(i) returns
the lane index of gap i. The function Mlane(i) returns the
total number of vehicles on lane l = lveh(i) for a vehicle with
index i.

In the following, we assume that Xfree(x(t), t) can be parti-
tioned into sets X Ifree(x(t), t) related to SVs x̂sv

i within indices
in the set i ∈ I ⊆ N[1:LM ], with Xfree(x(t), t) ⊆ X Ifree(x(t), t)

and Xfree(x(t), t) = XN[1:LM]

free (x(t), t).
By inflating the obstacle shapes and lane boundaries by a

safe distance according to all allowed configurations of the
ego and the SVs, the planning problem can be formulated
by a point-wise set exclusion of the curvilinear ego position
states s(t) and n(t) [2].

Assumption III.3. For all SVs not driving at the current ego
lane l, defined by the index set I(l) = {k ∈ N[1:LM ] | l 6=
lveh(k)}, an obstacle-free set Nl = {n ∈ R | nl ≤ n ≤ nl}
w.r.t. the ego lateral state n can be found such that

n ∈ Nl =⇒ x(t) ∈ X I(l)
free (x(t), t).

Ass. (III.3) is used to define collision avoidance constraints
to vehicles on adjacent lanes by formulating constraints on the
lateral state n. Without further details, it is assumed that the
bounds in Ass. III.3 are tight enough to contain most of the
adjacent lanes as free space, i.e., Nl 6= ∅.
Assumption III.4. Given an SV with index i, upper position
bounds ssv

i and velocity bounds vsv
i can be found that define

the collision-free set

S−i =
{

(s, t) ∈ (R+ × R+)
∣∣ s ≥ ssv

i + tvsv
i

}
. (12)

such that it holds that

(t, s(t)) ∈ S−i =⇒ x(t) ∈ X {i}free(x(t), t).
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Fig. 2. The first figure shows the enumeration of lanes and gaps and the rightmost three figures show the sets related to free spaces. Surrounding vehicles
(SVs) are uniquely enumerated. Gaps are the free spaces on a lane w.r.t. SVs and are enumerated according to the leading vehicles. An additional index is
used for each frontmost gap. The sets Nl,S+i and S−i define half-spaces in the SLT-space and are plotted in green for the position dimensions. The sets
are tightened to include all configurations of the SVs and ego vehicle to allow collision-free planning with a point-mass model. All leading vehicles on the
same lane are considered to construct the set S+i , since any slower vehicle requires all following vehicles to brake. For the following vehicle set S−i only
the closest vehicle to gap i is considered, since preceding ones are assumed to not influence leading vehicles.

Oi

Oi+1

Oi+2

ŝsvi+2(t0)

ŝsvi+1(t0)

ŝsvi (t0)

s
(m

)

t (s)

∆si+1

SV sample trajectories
constrained by leading vehicles

S+
i

∆si+2

t0

s
(m

)

t (s)

Fig. 3. Construction of longitudinal ostacle-free space S+i for an SV with
index i and two leading vehicles. The left plot shows the nominal prediction
sets Oi. The right plot shows the blocking lower-bound set, enforced on the
following vehicles. Red trajectories are plotted corresponding to samples of
actually driven trajectories.

Assumption III.5. For all SVs on lane l, with indices i ∈
N[1:M ], lower position bounds ssv

i , velocity bounds vsv
i and

leading vehicle distances ∆si can be found that define the set

S+
i =

{
(s, t) ∈ (R+ × R+)

∣∣∣∣
s ≤ ssv

i + tvsv
i +

Mlane(i)∑
k=i+1

ssv
k + tvsv

k −∆sk−1

}
.

(13)

such that for 0 ≤ t ≤ t it holds that

(t, s(t)) ∈ S+
i =⇒ x(t) ∈ X {i,...,M}free (x(t), t).

Similar assumptions are made in related work, e.g., [4], [27],
and with a more accurate lateral shape in [3]. The bounds in
Ass. III.5 approximate a distribution that is generated by the
intelligent driver model [52], where a vehicle either drives
or approaches a range around a reference velocity ṽsv

i , with
vsv
i ≤ ṽsv

i ≤ vsv
i , or drives within a certain distance ∆si to a

slower leading vehicle [4], [27], cf., Fig. 3. The set

Oi =
{

(s, t) ∈ (R+ × R+)
∣∣ ssv

i + tvsv
i ≤ s ≤ ssv

i + tvsv
i

}
is referred to the nominal SV prediction set in the absence
of leading vehicles. In each planning step, the bounds of Oi
are updated based on the current SV state x̂sv

i , where for the
velocity bounds it additionally holds that vsv

i ≤ v̂sv
i ≤ vsv

i and
for the position bounds ssv

i ≤ ŝsv
i ≤ ssv

i holds.

Assumption III.6. The duration of a lane-change tlc is upper-
bounded by tlc ≤ tlc.

For a concise notation, no offsets are assumed, i.e., the
current lane and gap index are 1, the current planning time
is assumed at zero seconds and the initial lateral reference
and longitudinal estimated state are set to 0, therefore ñ0 = 0
and ŝ = 0.

B. Obstacle-free set approximations

In the following, convex obstacle-free sets in the SLT-space
are defined as intersections of the sets S+

i ,S−i and Nl, which
serve as a basis for the proposed LSTMP.

Two convex three-dimensional sets in the SLT-space are
used to formulate a lane change from lane l and gap index g
on the same lane, i.e., l = lgap(g), to gap index g+ on the
next lane l+ 1, i.e., l+ 1 = lgap(g+). First, for lane-keeping,
obstacle avoidance reduces to the problem of staying within
the current lane boundaries (Ass. III.3), ignoring following
SVs on the same lane (Ass. III.2) and consider leading SVs,
with an upper-bound related to (13), stated as the convex
obstacle-free set over the longitudinal and lateral position and
time

F+
g =

{
(t, s, n) | (t, s) ∈ S+

g , n ∈ Nlgap(g)

}
. (14)

Next, the free set for a lane change is defined in the two-
dimensional ST-space, which is a subspace of the SLT-space,
as

S lc
g,g+ =

{
(t, s) ∈ S+

g ∩ S+
g+ ∩ S

−
g+

}
. (15)

Finally, as shown in Fig. 4, the free space related to a lane
change from lane l and the related gap index g to lane l + 1
and the related gap index g+ is

F lcg,g+ =
{

(t, s, n) ∈ S lc
g,g+ × R

∣∣
n ∈ conv(Nlgap(g) ∪Nlgap(g+))

}
.

(16)

For a lane change, both lanes are required to be free of SVs and
for the next lane l+1, also rear vehicles need to be considered
for the duration of the lane change, cf. Ass. III.2. Only the
closest rear vehicle on the next lane needs to be considered,
since more distant vehicles are constrained by preceding ones,
cf. Fig. 4.

The convexity of (14), (15) and (16) stems from the fact
that each set is an intersection of hyperplanes, which implies
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Fig. 4. Sketch of obstacle-free sets F lc (green) for lane changing related to
three SVs on the two lanes l and l + 1. The left plot shows the curvilinear
space with coordinates s and n. The right plot shows the ST-space. Three
possible gaps with indices g2, g3, and g4 on the consecutive lane l + 1 are
available for a transition from gap index g1 and lane l.

convexity [38]. In case of a detected lane change of an
obstacle, which we assume to be detectable (Ass. III.1), both
lanes are considered to be blocked for the whole prediction
horizon, cf. Ass. III.1.

IV. SHORT-HORIZON APPROXIMATIONS

The short-term motion planning formulation (STF) approx-
imates the vehicle dynamics for a prediction horizon tf and a
maximum of one lane change towards the goal lane l̃, similar
to [3], [4]. The selection of the particular gap index g+ on the
next lane is part of the long-term motion planning formulation
(LTF), which is vice versa constrained by the trajectory of the
STF in the final LSTMP formulation.

Discretizing the model (11) with a discretization time td
yields the linear discrete-time model

xk+1 = Axk +Buk. (17)

A prediction horizon tf = Ntd with N steps is used to
approximate the infinite horizon in (10).

We define the acceleration bounds on the Frenet coordinate
frame accelerations by the admissible control set

U =
{
u ∈ Rnu

∣∣ u ≤ uk ≤ u}, (18)

where u = [alon,−alat]
> and u = [alon, alat]

>. Nonetheless,
higher curvatures and its derivatives can be inner-approximated
by convex sets according to [43]. Moreover, the constraint

αlvs ≤ vn ≤ αrvs (19)

limits the lateral velocity in order to approximate the nonholo-
nomic motion of a kinematic vehicle model.

The reference tracking cost (7) is approximated for the
STF, whereas the remaining costs of the objective (9) are
approximated as part of the LTF. Binary variables λk ∈ N[0:1],
with Λ = [λ0, . . . , λN ], are used to indicate whether the
planned position is on the current lane, λk = 0, or on the
next lane, λk = 1. The lane indices are always updated w.r.t.
the current state such that λk = 0 corresponds to the current
lane. A lateral reference can therefore be expressed by

ñk = dlaneλk, k ∈ N[0:N ], (20a)
λk+1 ≥ λk, k ∈ N[0:N−1]. (20b)

Constraint (20b) is used to cut off binary assignments to ease
the solution of the MIQP problem. The constraint

ñk −
dlane

2
≤ nk ≤ ñk +

dlane

2

is added to guarantee that from ñk > 0 the planned ego vehicle
state is located on the next lane. Cost (7) can consequently be
approximated with Frenet states as

gst
ref(xk, uk, λk) =

wn(dlaneλk − nk)2 + wv(ṽ − vs,k)2 + u>k Ruk.
(21)

Cost (21) includes the term (dlaneλk − nk)2 =
(dlaneλk)2 − 2dlaneλknk + n2

k with the bilinear
term −2dlaneλknk which cannot directly be handled by
MIQP solvers [26]. Thus, this bilinear term is reformulated
by introducing continuous auxiliary variables qbin,k ∈ R+,
the additional constraint qbin,k = λknk and further related
constraints according to Property II.1.

Finally, safety constraints approximating the
set Xfree(x(t), t) for the current and the next lane are
formulated by considering M vehicles on the current lane,
which is always set to l = 1 and the next lane l+ = 2 and a
chosen gap index g+ ∈ N on the next lane, with 2 = lgap(g+).

Changing lane at time τ1 follows three stages (cf. also [4])
where, in each stage, the constraints can be formulated as
convex sets, cf., Fig. 5. First, at time t ≤ τ1− 1

2 tlc, the ego lane
is tracked, second the lane is changed until the time limit τ1 +
1
2 tlc, and thirdly constraints for driving on the next lane hold
for t ≥ τ1 + 1

2 tlc. The lane change time on either lane is
approximated by the upper-bound related to the time indices,
nlc = d tlc2td

e. Consequently, the lane change phases can be
formulated in terms of index shifts of λk, with [(1−λk+nlc

) =
1] indicating the first stage, [(λk+nlc

−λk−nlc
) = 1] indicating

the transition phase and [λk−nlc
= 1] indicating the last stage

on the next lane, cf. Fig. 5. For out-of-range indices, i.e., k < 0
or k > N , the first value λ0 or the last value λN are padded.
For each position and time tuples (tk, sk, nk) with k ∈ N[0:N ]

and the current gap index g = 1, we require

[1− λk+nlc
= 1] =⇒ (tk, sk, nk) ∈ F+

1 , (22a)

[λk+nlc
− λk−nlc

= 1] =⇒ (tk, sk, nk) ∈ F lc
1,g+ , (22b)

[λk−nlc
= 1] =⇒ (tk, sk, nk) ∈ F+

g+ , (22c)

where the implications are reformulated according to Prop-
erty II.2.

Recursive feasibility requires disjunctive terminal velocity
constraints depending on the final lane, which is either the
current lane implying [λN = 0] or the next lane, implying
[λN = 1]. Therefore, the terminal set is expressed by

[λN = 1] =⇒ vs,N ≤ ssv
g+ + tdNv

sv
g+ , (23a)

[1− λN = 1] =⇒ vs,N ≤ ssv
1 + tdNv

sv
1 , (23b)

vn,N = 0. (23c)

Note that this terminal set is restrictive since it upper-bounds
the final velocity with the velocity of the preceding vehicle
on the respective lane. An increased terminal safe set
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Fig. 5. Visualization of SVs sets O{1,2,3} in the SLT-space and consecutive convex free regions between gap index 1 and gap index 2. The time sub-
spaces T lc− = {(t, s, n)|t ≤ τ1 − tlc/2}, T lc = {(t, s, n)|τ1 − tlc/2 ≤ t ≤ τ1 + tlc/2} and T lc+ = {(t, s, n)|t ≤ τ1 + tlc/2} define the consecutive
time-related spaces on the planning horizon. The set F+

1 ∩ T lc− is the obstacle-free space on the first lane before the lane change, F lc
1,2 ∩ T lc is the free

space during the lane change and F+
2 ∩ T lc+ is the obstacle-free space on the next lane after the lane change. Rear vehicles in the same lane are ignored,

i.e., a vehicle is always allowed to brake. The binary variables λk determine, which set constraints are active for each xk .

could be formulated by piece-wise linear approximations
of deceleration constraints which requires further binary
variables, cf. [4].

So far, constraints and costs have been introduced that are
used as part of the STF to plan a collision-free discrete-time
trajectory from the current lane to a certain gap at the next
lane. Noteworthy, this trajectory is constrained such that it is
always safe w.r.t. the obstacle constraints. The selection of
the possible gap indices and also all further gaps towards the
goal lane are formulated in the LTF and explained in the next
section. The STF and the LTF are formulated in the final MIQP
with mutual constraints, such that the rather approximate LTF
cannot plan transitions that are infeasible w.r.t. the STF.

V. LONG-HORIZON APPROXIMATIONS

Within the LTF, costs and constraints are formulated that se-
lect collision-free transition gaps between two adjacent lanes.
For long horizons, a fixed discretization in time is prohibitive,
since the number of variables increases with the horizon length
and would make the optimization problem hard to solve [3]. To
circumvent the computational scaling with the prediction time,
we propose a formulation in the two-dimensional continuous
ST-space, where we exclusively model the transitions as points
in time and longitudinal position for each lane change, with
the transition times T = [τ1, . . . , τL−1]> and longitudinal
transition positions Σ = [σ1 . . . , σL−1]>.

In the following, three synergetic concepts are formulated to
approximate the transitions, i.e., constraints that approximate
reachability, a formulation for guaranteeing and maximizing
the distance to SVs and a disjunctive formulation for choosing
among gaps between vehicles for each lane. Binary variables
are used to indicate whether transitions are invalid, resulting
in the tuples of valid transitions for L̄ ≤ L lanes.

A. Approximate reachability
Reachability between transitions is approximated by the

set R(τl, σl) using constraints defined by operating velocity

ttr

R(τl, σl)

(τl+1, σl+1)

(τl, σl)

R(τl+1, σl+1)
s

(m
)

t (s)

Oi2

l = lveh(i1)
l + 1 = lveh(i2) = lveh(i3)

rl+1

Oi3

Oi1

s
(m

)

t (s)

Fig. 6. The left plot shows the reachable sets after the transition to lane l and
after the transition to lane l+1. The reachable set has an offset related to the
estimated traversal time t̃lc. The right plot shows the Chebychev center (CC)
of the transition to lane l + 1 from gap index i1 to gap index i3 with two
SVs on the next lane l+ 1 (yellow) and one SV on the current lane l (grey).
The time axis is scaled by the reference velocity ṽ, which is here assumed to
be 1.

bounds vop and vop and an approximation t̃lc of the time
required to traverse a lane. The operating velocity bounds are
artificially added to approximate the true reachable set around
the expected velocity range of the vehicle.

The approximated set is used to define constraints for the
next transition (τl+1, σl+1), cf. Fig. 6. Each reachable set
depends on the last transition (σl, τl) by the shifted cone

R(τl, σl) =

{
(τl+1, σl+1)

∣∣∣∣σl+1 ≤ σl + vop(τl+1 − τl − t̃lc)
σl+1 ≥ σl + vop(τl+1 − τl + t̃lc)

}
.

(24)
The convex reachable set (24) is an approximation using
the velocity bounds vop and vop. Using bounds on the ac-
celeration would result in nonconvex quadratic constraints
which could be still approximated by the problem specific
parameters t̃lc, vop and vop.

B. Chebychev centering for transitions

Next, criteria for determining the locations of continuous
transition points are defined. Transitions require an obstacle-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

free area for a minimum of the duration of the lane-change tlc,
as defined for the STF. Beyond the minimum required time,
an approach based on the Chebychev center (CC) is proposed
that centers the transition in the ST-space related to obstacle
constraints, i.e., the transition should be planned at a maximum
weighted distance to constraints.

The CC formulation of (5) is used as a basis for further
considerations. Centering constrains for the polytope defined
by [τ, σ] ∈ S+

g are written as h+
g (τ, σ, r) ≤ 0 according

to (5), which includes the centering radius r. For the polytope
defined by [τ, σ] ∈ S−g ∩ S−g , the centering constraints are
denoted by hg(τ, σ, r) ≤ 0.

Notice, that the ST-space has different units, namely lon-
gitudinal distance and time. To achieve a meaningful distance
measure, the time coordinate is scaled by the reference veloc-
ity ṽ. Therefore the unit of the radius is Meters.

The constraint (5c) is tightened to r ≥ r to guarantee
the minimum distance to obstacle constraints in the ST-
space, i.e., the centering is only feasible for a centering
radius higher than a threshold r. Using the sequence of
gap indices [g1, . . . , gL−1], with l = lgap(gl), for each lane
transition and the accumulated cost

Gsafe(R) = −wsafe

L−1∑
l=1

rl,

with transition radii R = [r1, . . . , rL−1]> and a weight wsafe

to promote a further safety distance beyond the hard con-
straints, all transitions can be formulated in the shared linear
program

min
R,Σ, T

Gsafe(R) (25a)

s.t. h+
gl

(τl, σl, rl) ≤ 0, l ∈ N[1:L−2], (25b)

hgl(τl, σl, rl) ≤ 0, l ∈ N[2:L−1], (25c)
r ≤ rl, l ∈ N[1:L−1]. (25d)

Fig. 6 shows the centering of a transition (τl+1, σl+1, rl+1)
from lane l to lane l+1 in the presence of a leading SV i1 on
lane l with l = lveh(i1) and two SVs i2, i3 on the next lane l+1
with l+ 1 = lveh(i2) = lveh(i3). Besides the SVs constraints,
the center of the transition (τl+1, σl+1) is constrained by the
approximated reachable set.
The linear program (25a) is not directly solved but its cost and
constraints are included in the final LSTMP MIQP. Notice
that, therefore, the centering is solved as a weighted trade-
off to other constraints such as the duration of the lane
change. The sequence of gap indices is determined by the
disjunctive formulation including the constraints within a ”big-
M” formulation, cf. Property II.4, and explained in the next
Section V-C. Notice that computing the transitions purely by
maximizing the distance to SVs, without including a measure
along the time axis, would ignore the safety distance related
to the relative velocity of vehicles.

C. Disjunctions among gaps

A fundamental combinatorial aspect of lane change plan-
ning is the choice of gap indices on each lane. In Sect. V-A,

it was shown how to constrain transitions to an approximate
reachable set and in Sect. V-B, a formulation to center a
transition in the ST-space was introduced, given a sequence
of gap indices. As an essential final component of the LTF, a
disjunctive formulation of choosing a single gap on each lane
is proposed according to Property II.4. To activate constraints
related to a certain gap, on each transition (τl, σl) binary vari-
ables βi ∈ N[0:1] are used and summarized in the vector B ∈
(N[0:1])

(L−1)(M+2). The activation of gaps starts on the second
lane since the current lane gap is trivially fixed. In each lane,
one additional binary variable is added to account for the op-
tion of no transition or lane-keeping. Therefore, this particular
binary variable with index ĝ implies the variables (τl, σl) to
be unconstrained by defining hĝ(τl, σl, rl) ≤ M , where M
is a large number. For the following definitions, we define
the set Gl := {g | l = lgap(g)}, i.e., the set of all gap
indices on a particular lane, including the additional virtual
unconstrained one and the set Ĝ ∈ N[1:L−1] that contains all
indices of unconstrained added gaps. The disjunctions∨

g+∈Gl+1

[
βg+

hg+(τl, σl, rl) ≤ 0

]
, ∀l ∈ N[1:L−1], (26)

constrain the transition (τl, σl) onto lane l + 1 by the lead-
ing and following vehicles of a selected gap index g+,
where βg+ = 1 and the disjunctions∨

g∈Gl

[
βg

h+
g (τl, σl, rl) ≤ 0

]
, ∀l ∈ N[2:L−1], (27)

constrains the transition (τl, σl) from lane l to the next lane
only by the leading vehicles. In the case of no transition,
i.e., the additional binary variables βĝ is activated, where ĝ
the index of the virtual added unconstrained gap, a high
cost Glane(Σ, T, B) is added that approximates (8) for not
changing the lane.

Note that the binary variables B are related to the gaps
on each lane, starting with the second lane l = 2. The
transitions (τl, σl) are related to two adjacent lanes l and l+1,
starting with the transition from the first lane l = 1. This
distinction is crucial to the disjunctive constraints for each
transition. For a transition l related to the departing lane l,
only leading vehicle constraints h+

g (τl, σl, rl) ≤ 0 related to
gap index g are considered according to Ass. III.2. For the
next lane gap index g+ both, the preceding constraints and
the leading vehicle constraints in hg+(τl, σl, rl) ≤ 0 are used.
This formulation models interactive behavior by allowing to
slow down SVs on the current lane to reach a certain gap on
the next lane.

The following further constraint on the binary variables∑
g∈Gl

βg = 1, ∀l ∈ N[2:L], (28)

reduces the search space for the mixed-integer (MI) solver.
For each pair of consecutive virtual gaps ĝ and ĝ+, with
lgap(ĝ+) = lgap(ĝ) + 1, the physical constraint

βĝ+ ≥ βĝ, (29)

sets all further lane-changes l > l1 to lane-keeping, if a lane
is blocked.
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D. Cost approximations

In the following, a lane changing cost Glane(Σ, T, B) that
approximates (8) and a reference velocity cost glh

ref(Σ, T ) that
approximates (7) and penalizes transitions with deviations of
the reference velocity ṽ are formulated.

Cost (8) linearly penalizes the number of lanes distant from
the goal lane and is integrated over time in the final objective.
This integral can be approximated over a horizon tf by the
following sum∫ tf

t=t0

glane(x(t); Θ)dt ≈

Glane(Σ, T, B) := wg
∑
ĝ∈Ĝ

τl(1− βĝ) + tfβĝ,
(30)

which penalizes the duration τl on each lane l, if there was
a valid transition, i.e., βĝ = 0. If no transition was computed
for lane l, i.e., βĝ = 1, the cost for the full horizon staying
on the lane is summed in (30). Note that (30) contains
bilinear terms of binary variables βĝ and σl, both decision
variables. The terms are treated by introducing an additional
variable qbi,l for each bilinear term, cf., Property II.1. All
auxiliary variables related to bilinear terms are summarized
by Qbi = [qbi,1, . . . , qbi,L, qbin,1, . . . , qbin,N−1]

Finally, the difference of the reference speed according
to (7) is penalized for two consecutive transitions by

Gref(T,Σ) =
wvtf
lg

(
lg∑
l=2

(
(σl − σl−1) + (τl − τl−1)ṽ

)2)
.

(31)

Cost (31) approximates the duration between lane transitions
with the constant value tf

lg
, starting from the second transi-

tion as the reference cost approximation of (7) for the first
transition is included in the STF cost (21).

Notably, this cost approximation for the reference velocity
neglects the planned time driving on each lane.

VI. LONG-SHORT-HORIZON MOTION PLANNER

In the following, we complete the final motion planning
MIQP problem with necessary additional formulations for
combining the STF of Sect. IV and the LTF of Sect. V.

First, the formulations of the STF and the LTF are combined
consistently according to the following definition for the first
transition (τ1, σ1).

Definition VI.1. A transition (τ, σ) is consistent with the
longitudinal states sk and the lateral states nk of a trajectory,
with k ∈ N[0:N ], if and only if the following inequalities hold

nk ≤
dlane

2
,∀k ∈ {i ∈ N[0:N ] | itd ≤ τ}, (32a)

nk >
dlane

2
,∀k ∈ {i ∈ N[0:N ] | itd > τ}, (32b)

sk ≤ σ, ∀k ∈ {i ∈ N[0:N ] | itd ≤ τ}, (32c)
sk > σ, ∀k ∈ {i ∈ N[0:N ] | itd > τ}. (32d)

Def. VI.1 states that the position states of the STF trajectory
must be located on the current lane, closer than the longitu-
dinal position σ and before the transition time τ and on the
consecutive lane and position, thereafter.

In the following, the consistency formulation for the first
transition (τ1, σ1) of a feasible solution of the LSTMP is
shown. Therefore, constraints among the discrete decision
variables λk, the transition (τ1, σ1) and positions sk of the STF
are defined by the pair-wise exclusive disjunctions according
to Property II.4,[λk = 1]

ktd ≥ τ1
sk ≥ σ1

 ∨
[λk = 0]
ktd < τ1
sk < σk

 , ∀k ∈ N[1:N ], (33)

For each pair k, the disjunctions (33) use the same binary
variable λk, yet, with the opposite indication, i.e., either [λk =
0] or [λk = 1], which makes it exclusively choosing the related
constraints.

Moreover, a terminal set formulation for the STF is required
to reach a transition (τ1, σ1) with τ1 ≥ Ntd, i.e., the transi-
tion time τ1 is further distant than the final STF prediction
time Ntd. It holds that τ1 ≥ Ntd ⇔ [λN = 0], so the
reachable set can be conditioned on λN by

[λN = 0] =⇒ (τ1, σ1) ∈ R(Ntd, sN ). (34)

The final LSTMP, formulated as an MIQP, can be stated by
decisions variables, costs, and constraints of the STF, the LTF,
and with the additional coupling constraints (33) and (34).

The STF decision variables are Xs = (X,U,Λ) ∈ Vs, where

Vs = RN×nx × RN−1×nu × (N[0:1])
N ,

and the LTF decision variables are Xl := (Σ, T,R,Qbi, B) ∈
Vl, where

Vl := RL−1 × RL−1 × RL−1 × RL−1+N × (N[0:1])
L−1×M+2.

In total, 3(L − 1) continuous and (L − 1)(M + 2) binary
variables are used to model the transitions for LM SVs.
Another (N − 1)(nx + nu) + nx continuous and N binary
variables model the first lane change for a horizon of tdN . A
total of L+N − 1 variables are used as auxiliary variables.

Remarkably, the total number of binary variables is Nbin =
(L − 1)(M + 2) + N , which is with O(LM + N) usually a
much lower number in contrast to O(LMN) of [3].

The cost function (9) is approximated by the cost of the
STF trajectory

Ĵs(Xs) =

N∑
k=0

gst
ref(xk, uk, λk),

and the cost of the long horizon is

Ĵl(Xl) = Glane(Σ, T, B) +Gref(T,Σ) +Gsafe(R).

The relations of the general OCP objective in (10) approxi-
mated by the LSTMP, comprising the LTF cost Ĵl(·) and the
STF cost Ĵs(·) are shown in Fig. 7.

Including a constraint x0 = x̂ that constrains the decision
variable x0 to the current state x̂, the constraints of the STF are
summarized by gs(Xs) ≤ 0 and include the discrete dynamic
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Fig. 7. Overview of the approximations of the general OCP objective
function (10) by the LTF cost Ĵl(·) and the STF cost Ĵs(·). The reference
cost gref(·) is approximated for the first two lanes within the STF and,
thereafter, by the LTF.

model (17), the control and state constraints (18) and the
constraints related to the first lane-change (20), (21), (22) and
(23).

For the LTF, a constraint gl(Xl) ≤ 0 summarizes the
reachability constraints (24), the CC constraints (25a), and
the constraints used to formulate the disjunction among gaps
in (26), (27), (28), and (29).

The coupling constraints (33) and (34) between states of the
LTF and STF are concisely written as gc(Xs, Xl) ≤ 0.

Ultimately, the LSTMP approximates the solution of the
OCP (10) by solving the following MIQP in each iteration

min
Xs∈Vs,
Xl∈Vl

Ĵs(Xs) + Ĵl(Xl) (35a)

s.t. gs(Xs) ≤ 0, gl(Xl) ≤ 0, gc(Xs, Xl) ≤ 0. (35b)

The output X∗ = (Xs, Xl) of the LSTMP is always safe
w.r.t. the obstacle constraints (14) and (16). This follows
directly from the constraint formulations of the STF, including
the terminal safe set (23). Approximation errors in the LTF
formulations may lead to sub-optimal behavior. However,
they do not influence safety related to the feasibility of the
trajectory X∗s .

VII. EVALUATION

We evaluate the proposed LSTMP approach in two different
setups. First, deterministic SVs are simulated as they are
modeled in the LSTMP and exact tracking of the provided plan
is assumed. A second setup includes more realistic scenarios,
where the traffic is simulated interactively by the traffic
simulator SUMO [53], based on benchmark scenarios provided
by the CommonRoad-framework [5], cf., Fig. 8. Moreover,
the LSTMP is integrated into an autonomous driving (AD)-
stack with a low-level NMPC tracking controller of [42] that
tracks the LSTMP trajectory X∗ by controlling a simulated
single-track BMW 320i medium-sized passenger car model
provided by CommonRoad. The SV states X̂SV and the
current estimated point-mass state x̂ are the inputs of the
planner. The point-mass state x̂ is obtained from the six-
dimensional simulated single-track vehicle state ẑ.

For both setups, the LSTMP is compared against the
MIP-DM of [3] and a hybrid A∗ formulation according
to [20]. Rendered simulations can be found on the website
https://rudolfreiter.github.io/lstmp vis/

Long Short-Term Motion
Planner

Traffic Simulation

Vehicle Simulation and 
Control

Low-Level
NMPC

Ego Simulator

LTFSTF

Fig. 8. Overview of the adopted simulation architecture. After obtaining
the ego vehicle state ẑ and the SVs states Xsv, the LSTMP solves in each
planning iteration the MIQP (35). The computed plan X∗ related to the point-
mass model is forwarded to the low-level NMPC for tracking. For the ego
vehicle simulation, a BMW 320i vehicle model provided by CommonRoad is
used. The position of the ego vehicle ẑ is passed to the SUMO traffic simulator.

TABLE I
PARAMETER FOR EVALUATIONS.

General parameters

td, M 300ms, 7
wn, wv , wg , wsafe 10−2, 10−1, 200, 10−5

R diag
(
[5 · 10−4, 2 · 10−3]

)
dlane 3.75m (Germany), 12 feet (US)
[alon, alat] [−8, −3] m

s2

[alon, alat] [5, 3] m
s2

LSTMP - deterministic scenario

td, N , M 300ms, 15, 7
tf , tlc 105s , 2.7s
vsv, vsv v̂sv, v̂sv

LSTMP-V0 - interactive scenario

vsv, vsv, L v̂sv + 1m
s

, v̂sv − 1m
s

, 5

LSTMP-V1 - interactive scenario

vsv, vsv, L v̂sv + 1m
s

, v̂sv − 1m
s

, 3

LSTMP-V2 - interactive scenario

vsv, vsv, L v̂sv + 3m
s

, v̂sv − 3m
s

, 5

A. Implementation details

We describe the setup used for evaluation in the following.
Parameters are chosen according to Tab. I.

1) Preprocessing: The SVs states XSV are processed be-
fore either planner is executed. First, SVs that drive closer
to each other than a longitudinal threshold distance of 15m
are merged by setting the corresponding upper and lower
velocity bounds and increasing the occupied space. Second,
a maximum number of M = 7 SVs per lane are considered,
which are the 7 closest vehicles at the current time step on
each lane.

2) Benchmark MIP-DM: The first benchmark is based on
the MIP-DM formulation of [3]. It uses a fixed discrete-
time trajectory, similar to the STF, however, with four binary
variables per obstacle and per time step to account for the
rectangular obstacle shape. One further binary variable per
time step indicates a lane change. The number of binary

https://rudolfreiter.github.io/lstmp_vis/
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variables for the MIP-DM is therefore Nbin = 4NML + N .
The MIP-DM is adapted to be comparable to the LSTMP.
First, only one lane change direction is allowed, which reduces
the number of binary variables. Second, obstacle shapes are
inflated to occupy the whole lane, equally to the LSTMP.
Finally, the interactive braking behavior of succeeding SVs on
the same lane is implemented by deactivating corresponding
obstacles on the current lane at the current time step. For the
MIP-DM a total number of M = 3 vehicles are considered
on L = 5 consecutive lanes, while the horizon length N is
10, 15 or 20 steps.

3) Benchmark hybrid A∗: The second benchmark is based
on the hybrid A∗ of [20]. This planner considers lateral
motion only at the discrete lane indices, with a search space
of (t, s, l). In order to be comparable to the other planners,
we modify the search space to (s, l, vs), which includes the
velocity vs instead of time. Since the hybrid A∗ of [20]
does not consider lateral states between lane centers, we
use a sampling time of 7td to allow full lane changes in
one expansion, i.e., it is guaranteed that the final planning
vertex is always located on the center of a lane. We use the
same planner model (17) for vertex expansions. Note that
hybrid A∗ could use nonlinear models without increasing the
computation time, which, in contrast, would be challenging
for the LSTMP and MIP-DM. As an admissible heuristic,
the relaxed solution of (35) without obstacle constraints is
computed for each lane. The longitudinal acceleration control
is discretized into 11 intervals and the lateral acceleration is
computed by using 11 lane change primitives. The lateral
states correspond to the number of lanes, the longitudinal
position is discretized with 100 intervals, and the velocity
with 20 intervals. The number of node expansions is varied in
experiments between 5 and 500.

4) Low-level NMPC: The low-level NMPC is formulated
as shown in [42], using a nonlinear single-track vehicle model,
a sampling time of 10ms and a horizon of 1.5s. The controls
comprise the acceleration a and the steering rate δ̇.

5) Scenarios: For deterministic comparisons in Sect. VII-B
and interactive closed-loop comparisons in Sect. VII-C, the
scenarios are chosen according to Tab. II. Due to traffic
congestion, the velocity can be zero. Traffic flow and density
are averaged over the simulation. The velocity range V sv cor-
responds to the measured SVs velocities during all simulations.
The scenarios are simulated for 40 seconds or until the end of
the road is reached. Snapshots of the CommonRoad scenarios
for interactive simulations are shown in Fig. 9.

6) Computations and numerical solvers: The MIQPs of the
LSTMP and the MIP-DM are solved with gurobi [26]. The
nonlinear program (NLP), arising in the low-level NMPC,
is solved by the open-source solver acados [54]. Simu-
lations are executed on a LENOVO ThinkPad L15 Gen
1 Laptop with an Intel(R) Core(TM) i7-10510U @
1.80GHz CPU.

B. Evaluation for deterministic traffic and exact tracking
In order to compare the performance of the planner without

interference from the traffic prediction error, simulation model-
ing error, and controller performance, the planner is simulated

TABLE II
DIFFERENT SCENARIO SETTINGS FOR SVS USED IN EVALUATIONS.

Scenario Name tr.-flow tr.-density L V sv ṽ

SVs
lane·min

SVs
lane·km

m
s

m
s

Deterministic

custom 14.6 12.2 9 [15, 35] 25

Closed-loop interactive

USA US101-22 1 I-1 11.8 14.0 6 [0, 22.2] 15
DEU Col.-63 5 I-1 22.3 26.9 3 [11.0, 16.5] 11
DEU Col.-63 5 I-1 s 8.9 10.5 3 [11.1, 16.5] 15

Fig. 9. Different tracks from the CommonRoad scenario database used for
the closed-loop simulation.

with deterministic SVs and exact tracking. Deterministic SVs
are simulated with constant speed, if they are at a minimum
distance to a slower leading SVs and with the speed of the
leading SV if they are below the threshold distance. The
planned trajectory X∗ is assumed to be tracked exactly. This
setup resembles the model of the traffic used in the LSTMP,
where tight bounds for the obstacle-free sets (14) and (16)
can easily be found. In Fig. 10, snapshots of a randomized
simulation with five lanes are shown, where the vehicle starts
at the bottom lane and has to reach the top lane. Red areas
indicate the SVs after pre-processing. The STF trajectory X∗

of the LSTMP is shown in black, whereas the transition
gaps are shown in blue. The evaluated closed-loop cost
and computation time of 100 randomized custom scenarios
according to Tab. II for the deterministic setup are shown in
Fig. 11 on the Pareto front.

The comparisons include evaluations for different parameter
settings of the algorithms, i.e., the number of considered con-
secutive lanes in the LSTMP, the maximum node expansions
in hybrid A∗, and the horizon length of the MIP-DM.

The MIP-DM with the longest horizon outperforms the
LSTMP in the average closed-loop cost over the full simula-
tions, however, at a high computational expense which violates
the real-time requirement. In fact, the computation time of the
MIP-DM is an order of magnitude higher than of the LSTMP.

The hybrid A∗ can be faster to execute compared to the the
LSTMP, but it yields a higher closed-loop cost. In our exper-
iments, increasing the iterations of hybrid A∗ could not yield
a better performance. This may be due to the longer duration
of motion primitives to allow lane changes and the resulting
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Fig. 10. Snapshots during lane-changes on a five-lane deterministic envi-
ronment with randomized SV (gray) initial speeds and lanes. Blue regions
indicate computed gaps of the LSTMP, with green points corresponding to
the expected transition position σl and the black STF trajectory X∗. Red areas
correspond to occupied sets O(tsim), where tsim is the current simulation
time of the snapshot.
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Fig. 11. Pareto comparison of planners in randomized deterministic traffic
scenarios. The hybrid A∗ planner can be parameterized to have the fastest
computation time and the MIP-DM achieves the lowest costs. However, the
novel LSTMP formulation performs best when both, a low computation time
as well as low costs are required.

coarser time discretization. Further relevant properties related
to the lane change multi-objective (9) are shown in Tab. III.
This includes the mean deviation from the reference speed ∆ṽ,
mean and maximum values for the lateral and longitudinal
accelerations, and the maximum reached lane lmax at the end
of the simulation. It shows that the LSTMP with a longer
horizon better keeps the reference speed and also changes
lanes more often. By utilizing large acceleration values, the
MIP-DM achieves the highest number of lane changes and
the overall lowest closed-loop cost, c.f., Fig. 11.

TABLE III
COMPARISON OF PLANNERS IN RANDOMIZED DETERMINISTIC TRAFFIC

SCENARIOS FOR DIFFERENT MEAN (MAXIMUM) QUANTITIES.

Planner ∆ṽ alat alon lmax

Par. Val. Nbin
m
s

10-1 m
s2

10-1 m
s2

LSTMP

Lp 2 22 1.75 0.71 (4.58) 1.40 (5.30) 3.92
3 29 0.42 0.63 (3.82) 1.46 (6.35) 4.20
4 36 0.03 0.66 (3.70) 1.48 (6.45) 4.34
5 43 0.07 0.64 (3.62) 1.37 (4.96) 4.62
6 50 0.03 0.67 (3.62) 1.55 (6.15) 4.66

MIP-DM

N 10 610 2.50 0.48 (2.68) 0.69 (5.14) 3.62
15 915 2.10 0.52 (2.67) 1.06 (8.16) 4.17
20 1220 1.98 0.65 (2.67) 1.83 (8.70) 4.75

hybrid A∗

iter. 5 N/A 1.78 0.47 (2.40) 0.14 (1.00) 2.61
50 N/A 1.73 0.47 (2.40) 0.17 (1.14) 2.63
500 N/A 1.70 0.43 (2.40) 0.22 (1.43) 2.58

Notably, the number of binary variables required in the
MIP-DM is much larger than in the LSTMP, which leads to a
significantly longer computation time. For a prediction horizon
of N = 10 and settings of Tab. I, the MIP-DM requires 610
binary variables and for a prediction horizon of N = 20 a
total of 1220 binary variables. The LSTMP that considers in
total Lp = 2 lanes, requires only 22 binary variables, whereas
considering Lp = 5 lanes requires only 50 binary variables.

C. Evaluation for interactive traffic and closed-loop control

For different randomized scenarios according to Tab. II and
Fig 9, the lane changing problem is simulated with interactive
SVs, using a software architecture corresponding to Fig. 8. The
ego vehicle starts at random free positions and has to reach the
leftmost lane, according to cost (9), with parameters of Tab. I.
The LSTMP, hybrid A∗, and MIP-DM are compared with a
low-level tracking controller in closed-loop simulations. States
are assumed to be estimated exactly, however, the velocity
range of SVs is unknown. Different settings of the planners
are used according to Tab. I to create the statistical evaluation
of performance measures as shown in Fig. 12.

The performance evaluations show rare collisions of all
planners due to prediction errors. For the conservative
LSTMP-V1 configuration, no collisions were recorded. Com-
putation times are lowest for the LSTMP planner and well
below the planning time threshold tplan. The computation
times for the hybrid A∗ are nearly constant since the planning
nodes are expanded with a fixed number of iterations. Notably,
the computations for hybrid A∗ were not performed on a
runtime-optimized code. The velocity varies the most for
the LSTMP, which promotes acceleration and deceleration
to reach certain gaps. This can also be verified by the high
number of lane transitions of the LSTMP. Particularly, in
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Fig. 12. Closed-loop evaluation of variants of the proposed LSTMP planner (blue) compared to hybrid A∗ (red) and MIP-DM (green). The total number of
collisions, the computation time, velocities, the total number of lane changes, and the closed-loop cost compared to the most exact MIP-DM formulation are
compared for different randomized scenarios. The proposed LSTMP has the lowest computation time below the planning time tplan and a high number of
lane changes for all scenarios. Moreover, it can reduce the closed-loop cost significantly. Occasional collisions are observed for all variants, irrespective of
their parameters.

the DEU Col.-63 5 I-1 s scenario long-term decisions sig-
nificantly raised the number of lane transitions in the LSTMP.
The closed-loop cost for LSTMP configurations are below the
benchmark comparisons, particularly, below the MIP-DM-20
with the longest horizon of 20 steps, which we define as expert.
Costs are relatively expressed to the cost of MIP-DM-20 and
outperformed by LSTMP-V0 and LSTMP-V1.

VIII. CONCLUSION AND DISCUSSION

Under the variety of different planning methods for
autonomous driving (AD), the proposed long-short-term mo-
tion planner (LSTMP) for lane change planning achieves a
good trade-off between performance and computational costs,
thanks to the use of state-of-the-art mixed-integer quadratic
program (MIQP) solvers. The considered problem has rele-
vant combinatorial and continuous parts, which makes MIQP
formulations particularly suited to solve the proposed motion
planning problem. Building on previous work to minimize
the number of combinatorial variables, we introduced a novel
long-horizon approximation. Together with a discrete-time
trajectory, a single MIQP, which is computationally very
efficient, was formulated consistently.

We compared our approach to the mixed-integer motion
planning and decision maker (MIP-DM) [3], which uses more
integer variables to model rectangular obstacle shapes that
are not required to be aligned with the lane boundaries and
to model lane transitions in both directions. This makes the
MIP-DM a more versatile approach, i.e., lane changing is only
a subset of problems that can be addressed with it.

The fundamental modeling approach of the LSTMP is the
decomposition into convex cells together with a simplification
due to the road alignment. The authors assume that is possible
to add integer variables to achieve lane transitioning in both
directions for a fixed maximum number of transitions and
additional convex decompositions to resemble nonconvexities
in the spatio-temporal (ST)-space, as for instance traffic lights.

In the future we will evaluate whether more flexible mixed-
integer nonlinear programming can achieve better performance
under real-time requirements.
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[47] D. Heß, R. Lattarulo, J. Pérez, J. Schindler, T. Hesse, and F. Köster,
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