
Optimization-Based Motion
Planning and Obstacle
Avoidance for Autonomous
Driving and Racing

Rudolf Reiter

November 12, 2024

University of Freiburg, Faculty of Engineering
Department of Microsystems Engineering
Systems Control and Optimization Laboratory

Optimization-Based Motion Planning and Obstacle
Avoidance for Autonomous Driving and Racing

Rudolf REITER

Dean: Prof. Dr. Frank Balle

Examination committee:

First reviewer: Prof. Dr. Moritz Diehl
Second reviewer: Prof. Dr. Melanie Zeilinger
Observer: Prof. Dr. Joschka Bödecker
Chair of committee: Prof. Dr. Stefan J. Rupitsch

Dissertation zur Erlangung
des Doktorgrades der
Technischen Fakultät der
Albert-Ludwigs-Universität
Freiburg im Breisgau

November 12, 2024

© 2024 University of Freiburg – Faculty of Engineering
Self-published, Rudolf Reiter, Georges-Köhler-Allee 102, DE-79110 Freiburg i. Br. (Germany)

Alle Rechte vorbehalten. Alle Inhalte dieses Werkes, insbesondere Texte, Fotografien und Grafiken, sind
urheberrechtlich geschützt. Das Urheberrecht liegt, soweit nicht ausdrücklich anders gekennzeichnet, bei der
Albert-Ludwigs-Universität Freiburg.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from Albert-Ludwigs-Universität Freiburg.

Acknowledgments

The journey of writing this thesis was an exciting and dense period of my life. I
met great people, immersed in interesting scientific fields, and visited stunning
research institutions and networking events worldwide.

My great thanks and admiration go to Moritz Diehl, who sparked my interest
in optimization, taught me the fundamentals constituting the base of this thesis,
set the ground for my vast network of scientists, and illuminated viewpoints
of complex topics far beyond research. Truly, Moritz Diehl is one of the most
influential people I have met. Not only does his profound technical analysis
of any topic he encountered impress me, but also the way he handles social
interaction, integration, and conflict resolution. Beyond his highest-quality
scientific supervision, he connects people of all fields to propel their careers and
strengthen the community. Moreover, he ignited inspiring discussions with our
diverse international group about challenging topics of our time.

I thank my co-supervisor, Alberto Bemporad, for the prosperous and insightful
discussions, with never-ending new ideas and facets of research problems.
Moreover, I am grateful to Stefano Di Cariano and Rien Quirynen for their
supervision and engagement in making my research visit at Mitsubishi Electric
Research Laboratories an excellent experience. Melanie Zeilinger enabled me
to visit her highly skilled team at the ETH in Zürich, which involved many
interactions about the latest research directions, which I highly appreciate.

At the University of Freiburg, the supervision of my senior research fellow, Armin
Nurkanović, and the collaboration with my favorite reinforcement learning
colleague, Jasper Hoffmann, substantially improved this research. Several
further colleagues gave highly constructive feedback to this thesis, including
SYSCOP fellows Andrea Ghezzi, Florian Messerer, and Jochem De Schutter,
senior researchers Johannes Köhler from ETH Zürich, Jon Arrizabalaga from
the Technical University of Munich, and Karin Festl from the Virtual Vehicle
Research Center.

My home institution, the SYSCOP laboratory in Freiburg, was a warm and
welcoming place, balancing fun coffee chats with serious discussions about

i

ii ACKNOWLEDGMENTS

research and politics. The diverse backgrounds of people made it very rich,
and our visitors always brought new points of view with them. I thank
the SYSCOP family, including, besides already mentioned colleagues, Katrin
Baumgärtner, Adrian Bürger, Leonardo Cecchin, Christian Dietz, Shiying Dong,
Lilli Frison, Gianluca Frison, Jonathan Frey, Yunfan Gao, Arne Groß, Jakob
Harzer, Hannes Homburger, David Kiessling, Mikhail Katliar, Rachel Leuthold,
Anton Pozharskiy, Per Rutquist, Tommaso Sartor, Leo Simpson, Wim Van Roy
and Wenliang Zhang.

Pivotal to this thesis was the Marie-Sklodowska Curie Innovative Training
Network program ELO-X, a stunning scientific program of the European Union.
It involved an utterly successful network buildup among 23 doctoral students,
14 professional supervisors, and six advisors. At the numerous events, we grew
together not only as a group of colleagues but also as friends. Particularly, I
want to mention the fellows Ramin Abbasi, Flavia Acerbo, Jean Pierre Allamaa,
Katrin Baumgärtner, Lahcen El Bourkhissi, Leonardo Cecchin, Andrea Ghezzi,
Yunfan Gao, Jasper Hoffmann, Nicolas Kessler, Kristoffer Loewenstein, Amon
Lahr, Florian Messerer, Leo Simpson, Wim Van Roy, Johannes Waibel, Renzi
Wang, Jing Xie, Shaohui Yang, Shuhao Zhang, Yuan Zhang. Moreover, the
scientific advisors Daniele Bernardini, Joschka Bödecker, Antonella Ferrara,
Lorenzo Fagiano, Boris Houska, Colin Jones, Silvia Mastellone, Ion Necoara,
Toshiyuki Ohtsuka, Panos Patrinos, Riccardo Scattolini, Jan Swevers, Son
Tong, Adrian Trachte and Melanie Zeilinger contributed to the success of the
program and, therefore to the outcome of this thesis. Moritz Diehl initiated
and excellently guided this program and made Freiburg the scientific hub of
this community.

The idea of this thesis originated in the Virtual Vehicle Research Center in
Austria with the fun group of friends Zlatan Ajanović, Christian Doppler, Karin
Festl, Hannes Holzer, Christoph Pilz, and the introduction to the scientific
world by Johannes Rumetshofer and Michael Stolz. My initial time in Graz
involved participation in race car competitions, which was very exciting. I
particularly thank the Autonomous Racing Graz colleagues and initiators Martin
Kirchengast, Tobias Renzler, Markus Schratter, Michael Stolz, Daniel Watzenig,
and Jasmina Zubača for their hard work in pushing our team toward top ranks
in the autonomous racing competitions and teaching me a lot about robotic
software development.

Numerous discussions along the way helped me grasp difficult scientific topics.
In addition to the already mentioned colleagues, I highly enjoyed digging into
complex problems with Johannes Köhler, Shamil Mamedov, Robert McAllister,
Angel Romero, and Jelena Trisovic.

Last but not least, I thank my parents, Susanne and Georg, for their encouraging
words and warm welcomes at their home, as well as my brother Gerald, his
wife Johanna, and their wonderful toddlers Klara, Lea, Paul, and Tobias, for

ACKNOWLEDGMENTS iii

brightening up our lives. My mother and father-in-law, Evelyn and Andreas,
also deserve a huge thanks for supporting me with kind words and delicious
food.

This work would not have been possible without Eli. My heartfelt gratitude
goes to the person who not only moved with me to Germany into a city
completely unknown to us but also stood behind me every second, supporting
and encouraging me in every situation. She managed to endure me in difficult
times and celebrated the good times with me. She always found the right words
to push me forward and the wrong words when proofreading my drafts.

Freiburg im Breisgau Rudolf Reiter
December 2024

Funding

This research was mainly funded by the European Union’s Horizon 2020 research
and innovation programme ELO-X (Embedded Learning and Optimization for
the Next Generation of Industrial Systems) under the Marie Sklodowska-Curie
grant agreement No. 953348.
Moreover, this research was supported by DFG via projects 424107692,
504452366 (SPP 2364), and 525018088, by BMWK via 03EI4057A and
03EN3054B, and from the ECSEL Joint Undertaking (JU) under grant
agreement No 826653. The JU receives support from the European Union’s
Horizon 2020 research and innovation program and Germany, Austria,
Netherlands, France, Finland, Italy, Belgium, Czech Republic, Spain, Cyprus,
Lithuania, and Turkey. This research was also funded by the program “IKT
der Zukunft” of the Austrian Federal Ministry for Climate Action (BMK).
Two publications were written at Virtual Vehicle Research GmbH in Graz
and partially funded by the COMET K2 Competence Centers for Excellent
Technologies from the Austrian Federal Ministry for Climate Action (BMK),
the Austrian Federal Ministry for Labour and Economy (BMAW), the Province
of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG).

Abstract

Planning feasible trajectories and considering the nonconvex problem of
obstacle avoidance pose significant challenges in autonomous driving. The
complexity is, among other sources, due to the high-dimensional planning space,
combinatorial choices that scale the problem difficulty exponentially, hard real-
time requirements, major nonconvexities, and the difficult motion prediction of
other vehicles.

This thesis reports on motion planning and obstacle avoidance for autonomous
driving. The proposed algorithms address the abovementioned difficulties by
utilizing optimization-based methods. Particularly, this thesis proposes to
use nonlinear and combinatorial optimization techniques, possibly improved
algorithmically by machine learning techniques. The thesis pivots around three
main fields within this context: (i) the vehicle model for on-road driving as
part of an optimization solver, (ii) strategic decision-making and planning
in a highly nonconvex space, and (iii) interactive planning in competitive
scenarios. Optimization-based techniques provide the advantages of utilizing
model knowledge, providing safety guarantees (or at least safety certifications),
and separating the model identification, problem formulation, and solution
algorithms.

The vehicle models for on-road driving are based on road-aligned coordinates.
An a priori computation of the road-aligned coordinate transformation curve is
proposed to allow numerical optimization algorithms, particularly sequential
quadratic programming, to solve the problem efficiently. Due to the numerically
favorable properties of collision avoidance in the Cartesian coordinate frame, a
novel lifted formulation in both the transformed and the Cartesian configuration
states expands the state space. By barely increasing the computation time,
the obstacles can be tightly and safely over-approximated within the lifted
formulation, as shown in simulations.

A major challenge of obstacle avoidance is the inherent nonconvexity, which,
for example, involves the decision of overtaking left or right. Relying purely on
discrete planning is burdened by the high-dimensional planning space and suffers
from the curse of dimensionality. Mixed-integer optimization utilizes gradients

v

vi ABSTRACT

of continuous variables and discrete optimization to find integer assignments in
a combined framework. However, the computation time scales exponentially
with the number of integer variables. Three motion planning algorithms based
on mixed-integer optimization for specific obstacle characteristics are proposed
to reduce the online computational burden. For a static environment, a spatial
reformulation allows the consideration of a large number of obstacles. The
performance of this algorithm was evaluated on a real-world race track on
embedded hardware. For structured highway driving, a novel spatio-temporal
reformulation significantly reduces the number of integer variables and allows
for long-term planning. A final contribution proposes a generic way of learning
to predict integer variable assignments by machine learning, enabling real-time
planning with high closed-loop performance in the simulated scenarios.

Besides the challenge of nonconvexity, planning problems stemming from
autonomous racing competitions may also comprise the task of obtaining
interactive competitive behavior. For this third major field, this thesis
contributes with real-time feasible algorithms for planning and predicting other
vehicles. A hierarchical approach using reinforcement learning and model
predictive control can learn interactive behavior, such as blocking other vehicles
from overtaking in simulations. The optimization layer provides safety in this
context.

Kurze Zusammenfassung

Die Planung von sicheren Trajektorien für selbstfahrende Fahrzeuge in Echtzeit
ist komplex und höchst anspruchsvoll. Die Komplexität ist unter anderem
auf den hochdimensionalen Planungsraum, kombinatorische Entscheidungen,
welche die Schwierigkeit des Problems exponentiell erhöhen, Echtzeitanforde-
rungen, Nichtkonvexitäten und die schwierige Vorhersage anderer Fahrzeuge
zurückzuführen.

In dieser Doktorarbeit werden Methoden zur Trajektorienplanung und Hinder-
nisvermeidung für das autonome Fahren vorgestellt, welche die oben genannten
Schwierigkeiten durch den Einsatz von optimierungsbasierten Methoden
lösen. Insbesondere werden in dieser Arbeit nichtlineare und kombinatorische
Optimierungstechniken vorgeschlagen, die, unter anderem, durch maschinelle
Lerntechniken algorithmisch verbessert werden. Die Arbeit konzentriert sich in
diesem Zusammenhang auf drei Hauptbereiche: (i) das Fahrzeugmodell als Teil
eines Optimierungslösers, (ii) strategische Entscheidungsfindung und Planung
in einem hochgradig nichtkonvexen Raum und (iii) interaktive Planung bei
Rennwettbewerben mit autonomen Fahrzeugen. Optimierungsbasierte Techniken
bieten den Vorteil, dass sie Modellwissen in den Planungsalgorithmus integrieren,
Sicherheitsgarantien oder zumindest Sicherheitszertifizierungen bieten und die
Modellidentifikation, die Problemformulierung und die Lösungsalgorithmen
voneinander trennen.

Es werden Fahrzeugmodelle verwendet, die in straßenbündige Koordinaten
transformiert werden. Um einhergehende numerische Optimierungsalgorithmen
echtzeitfähig lösen zu können, wird eine effiziente Vorausberechnung der Transfor-
mationskurve verwendet. Zudem wird eine erweiterte Zustandsraumdarstellung
in zwei Koordinatensystemen entwickelt. Es werden die numerisch günstigen
Eigenschaften von Formulierungen der Kollisionsvermeidung im kartesischen
Koordinatensystem mit Vorteilen der straßenbündigen Transformation kombi-
niert. Bei kaum erhöhter Rechenzeit können die Hindernisse in der erweiterten
Formulierung effizent und sicher überapproximiert werden.

Eine große Herausforderung bei der Hindernisvermeidung ist die inhärente
Nichtkonvexität, die zum Beispiel die Entscheidung darüber beinhaltet, links

vii

viii KURZE ZUSAMMENFASSUNG

oder rechts zu überholen. Eine Planung im rein diskreten Zustandsraum
wird durch den hochdimensionalen Raum erschwert, der für zustandsdiskrete
Methoden Probleme bereitet. Die gemischt-ganzzahlige Optimierung nutzt
Gradienten von kontinuierlichen Variablen und Methoden der diskreten
Optimierung, um Optimierungsprobleme zu lösen. Allerdings skaliert die
Berechnungszeit exponentiell mit der Anzahl der ganzzahligen Variablen. Es
werden drei Algorithmen zur Trajektorienplanung vorgeschlagen, die auf der
gemischt-ganzzahligen Optimierung basieren, um den Online-Rechenaufwand
zu reduzieren. Für eine statische Umgebung ermöglicht eine räumliche
Umformulierung die Berücksichtigung einer großen Anzahl von Hindernissen.
Die Effktivität dieses Algorithmus wurde auf einer realen Rennstrecke auf
eingebetteter Hardware evaluiert. Für das strukturierte Fahren auf Autobahnen
reduziert eine neuartige Formulierung in den Weg- und Zeit-Koordinaten die
Anzahl der ganzzahligen Variablen erheblich und ermöglicht eine Planung in
großer zeitlicher Distanz. In einem letzten Kapitel wird eine generische Methode
zur Vorhersage von ganzzahligen Variablenzuordnungen durch maschinelles
Lernen vorgeschlagen, die eine Echtzeitplanung mit hoher Regelgüte in den
simulierten Szenarien ermöglicht.

Neben der Herausforderung der Nichtkonvexität können Planungsprobleme, die
vor allem in autonomen Rennwettbewerben auftreten, auch die Schwierigkeiten
des interaktiven Planens mit sich bringen. Diese Arbeit stellt in diesem
dritten großen Bereich Echtzeit-Algorithmen zur Planung und Vorhersage
der Trajektorien anderer Fahrzeuge vor. Ein hierarchischer Ansatz, der
Reinforcement Learning und modelprädiktive Regelung verwendet, kann
interaktives Verhalten in Simulationen erlernen. Dabei wird zum Beispiel
das Blockieren von Überholmanövern anderer Rennteilnehmer erlernt. Das
Optimierungsmodul und die zugehörigen Beschränkungen liefern in diesem
Zusammenhang die notwendige Sicherheit.

Abbreviations

AD autonomous driving

AI artificial intelligence

ARG Autonomous Racing Graz

BnB branch-and-bound

BFGS Broyden–Fletcher–Goldfarb–Shanno

CC Chebychev center

CCF Cartesian coordinate frame

CF coordinate frame

CG center of gravity

COCO combinatorial offline convex online

CP convex program

DAE differential algebraic equation

DAgger dataset aggregation

DM decision making

DNN deep neural network

DP dynamic programming

EDS equivariant deep set

EV ego vehicle

FCF Frenet coordinate frame

FF feed forward

ix

x ABBREVIATIONS

FONC first-order necessary condition

FP feasibility projector

GAIL generative adversarial inverse reinforcement learning

HLNLP high-level nonlinear program

IL imitation learning

IOC inverse optimal control

IRL inverse reinforcement learning

IVP initial value problem

KKT Karush-Kuhn-Tucker

LLNLP low-level nonlinear program

LP linear program

LSTM long short term memory

LSTMP long short term motion planner

LTF long-term motion planning formulation

MI mixed-integer

MILP mixed-integer linear program

MIMP mixed-integer motion planner

MINLP mixed-integer nonlinear programming

MIOCP mixed-integer optimal control problems

MIP-DM mixed-integer programming-based decision maker

MIP mixed-integer program

MIQP mixed-integer quadratic program

MPC model predictive control

MPPI model predictive path integral

NLP nonlinear program

NMPC nonlinear model predictive control

NN neural network

ABBREVIATIONS xi

OCP optimal control problem

ODE ordinary differential equation

PCC Pearson correlation coefficient

PPO proximal policy optimization

QP quadratic program

REDS recurrent equivariant deep set

RL reinforcement learning

RNN recurrent neural network

RTI real-time iteration

SAC soft actor critic

SD simulation distribution

SLT spatio-lateral-temporal

SQP sequential quadratic programming

ST spatio-temporal

STF short-term motion planning formulation

SV surrounding vehicle

TD training distribution

VT velocity-time

Notation and Symbols

In the following, the notation and symbols used within this thesis are listed in
a tabular form.

Notation
R set of real numbers
Rn set of real valued n-vectors
Rn×m set of real valued n×m-matrices
R≥0 set of non-negative real numbers
Z set of integer numbers
N set of natural numbers
N>0 set of strictly positive natural numbers
N[m:n] set of natural numbers in the interval [m,n],

with m < n

det(A) determinant of matrix A
∀ for all
dxe rounding x to the smallest larger integer
bxc rounding x to the largest smaller integer
x> the transposed of vector x
∂/∂x partial derivative w.r.t. x
d/dx total derivative w.r.t. x
ẋ time derivative dx/dt of x
x′ spatial derivative dx/dσ of x with spatial

variable σ
|x| absolute value of x
||x||, ||x||2 2-norm of x
||x||p p-norm of x

xiii

xiv NOTATION AND SYMBOLS

∇xf(x), f : Rn → R gradient vector of f(x) in Rn

∇2
xf(x), f : Rn → R Hessian matrix of f(x) in Rn×n

O
(
f(n)

)
“big O of f(n)”, asymptotic notation for limiting
behavior when argument n goes towards infinity

x ∈ A x is element of the set A
x /∈ A x is not element of the set A
A ⊂ B set A is strict subset of the set B
A ⊆ B set A is subset of set B
A ∪B union of set A and set B: x ∈ A ∪B ⇔

x ∈ A ∨ x ∈ B
A ∩B intersection of set A and set B: x ∈ A ∩B ⇔

x ∈ A ∧ x ∈ B
A \B set difference: x ∈ A \B ⇔ x ∈ A ∧ x /∈ B
x ∼ PX x has probability density PX
x ∼ PX (·|y) x has conditional probability density PX w.r.t. y
Ex∼PX

[
f(x)

]
,

E
[
f(x)

∣∣x ∼ PX] expectation of f(x) under random variable x with
probability density PX

N (µ,Σ) normal distribution with mean µ and variance Σ
min minimize
s.t. subject to
arg argument of
a =⇒ b proposition a implies proposition b
a ⇐= b proposition a is implied by proposition b
a⇔ b a =⇒ b and a ⇐= b

¬a not a (proposition)
a ∧ b a and b (proposition)
a ∨ b a or b (proposition)
[x > y] proposition “x is bigger than y”
F(x) Frenet transformation of Cartesian states x
F−1(y) inverse Frenet transformation of Frenet states y

NOTATION AND SYMBOLS xv

Symbols
x ∈ Rnx state vector with dimension nx
u ∈ Rnu control vector with dimension nu
w ∈ Rnw noise vector with dimension nw
X ⊆ Rnx state space
U ⊆ Rnu control space
X state constraints set X ⊆ X
Xt terminal state constraints set Xt ⊆ X
U control constraints set U ⊆ U
f(x, u) continuous-time differential equation right-hand side,

deterministic controlled system model ẋ = f(x, u)
F (x, u) discrete-time integration function right-hand side,

deterministic system model xk+1 = F (xk, uk)
F (x, u, w) discrete-time integration function right-

hand side, stochastic system model xk+1 =
F (xk, uk, wk), w ∼PW(·|xk, uk)

l(x, u) running or stage cost
t∆ sampling or discretization time
N horizon length
γ discount factor
π(x) policy or control law as a function of state x
πsv(x) policy of surrounding vehicle (SV)
Π policy function space
πθ(x), π(x; θ) policy parameterized by θ
Jmpc terminal value function approximation of model

predictive control (MPC)
Jπ value function under policy π
Jγ value function involving a discounted running cost
Jπ

?

, J? optimal value function
Ĵπ approximated value function under policy π
Qπ action-value function under policy π
Qπ

?

, Q? optimal action-value function
σ path length

xvi NOTATION AND SYMBOLS

γ(σ) path function γ : R≥0 → R2 parameterized by path
length σ ∈ R≥0

Γ path Γ := {γ(σ) | σ ∈ R≥0}
T unit tangent vector
Ñ unit normal vector
N signed unit normal vector
κ̃ curvature
κ signed curvature
px, py Cartesian position in x and y coordinate
ϕ heading angle
s projected longitudinal position on path
n signed lateral distance to path
ϕγ tangent angle of curve Γ := {γ(σ) | σ ∈ R≥0}
α heading angle mismatch
v velocity
δ steering angle
m vehicle mass
lf , lr vehicle wheelbase from center of gravity to front (f) or

rear (r)
O set of all points that are occupied by an obstacle

Contents

Abstract v

Kurze Zusammenfassung vii

Abbreviations ix

Notation and Symbols xiii

Contents xvii

1 Introduction 1
1.1 Motion Planning and Control in Autonomous Driving 3
1.2 Contributions and Outline . 9

2 Optimal Control 19
2.1 Mathematical Background . 20

2.1.1 Optimization Problem Classes 20
2.1.2 Continuous Optimization 23
2.1.3 Mixed-Integer Programming 27

2.2 Optimal Control Problem . 33
2.3 Optimal Control Algorithms . 35

2.3.1 Environment Models . 36
2.3.2 Implicit and Explicit Policies 39
2.3.3 Derivative-Based Online Optimization 41
2.3.4 Sampling-Based Online Optimization 45
2.3.5 Imitation Learning . 46
2.3.6 Reinforcement Learning and Dynamic Programming . . 48

3 Vehicle Models for Motion Planning 57
3.1 Double-Track Model . 58
3.2 Dynamic Single-Track Model 59
3.3 Kinematic Single-Track Model 62
3.4 Point-Mass Model . 62

xvii

xviii CONTENTS

3.5 Tires and Longitudinal Dynamics 64
3.5.1 Tire Models . 64
3.5.2 Longitudinal Forces . 65

3.6 Comparison of Models . 66
3.7 Coordinate Frames for Motion Planning 67

3.7.1 Projection of Configuration States 71
3.7.2 Contouring Control Formulation 75
3.7.3 Projected Formulation 76

3.8 Collision Avoidance . 80
3.8.1 Obstacle Shapes and Deterministic Formulation 80
3.8.2 Stochastic Collision Avoidance 84
3.8.3 Game-Theoretic Collision Avoidance 85

4 Software and Hardware Environments 87
4.1 Autonomous Racing Graz Stack 87
4.2 CommonRoad Interactive Simulation Environment 90
4.3 Custom Python-Based Environment Vehiclegym 91

5 Model Formulations for Optimization-Based Motion Planning 95
5.1 Parameterization Approach of the Frenet Transformation for MPC 96

5.1.1 Introduction . 96
5.1.2 System Model . 98
5.1.3 Newton-Type Optimization 101
5.1.4 Singularity and Smoothness Problem 102
5.1.5 Optimal Curvilinear Parameterization 103
5.1.6 Simulation Results . 106
5.1.7 Conclusions . 109

5.2 Frenet-Cartesian Model Representations for NMPC 110
5.2.1 Introduction . 111
5.2.2 Vehicle Models . 113
5.2.3 Obstacle Avoidance Formulations 119
5.2.4 NMPC Formulation . 121
5.2.5 Numerical Experiments 124
5.2.6 Conclusions . 126

5.3 Critical Discussion . 128

6 Mixed-Integer Optimization for Collision Avoidance 131
6.1 Mixed-Integer Optimization-Based Planning 133

6.1.1 Introduction . 134
6.1.2 Vehicle and Object Models 136
6.1.3 Combinatorial Optimization 139
6.1.4 Trajectory Optimization 145
6.1.5 Real-World and Simulation Results 147
6.1.6 Conclusion . 150

6.2 A Long-Short-Term Mixed-Integer Formulation 151

CONTENTS xix

6.2.1 Introduction . 152
6.2.2 Preliminaries and Notation 156
6.2.3 General Lane Changing Problem 157
6.2.4 Short-Horizon Approximations 163
6.2.5 Long-Horizon Approximations 167
6.2.6 Long-Short-Horizon Motion Planner 172
6.2.7 Evaluation . 175
6.2.8 Conclusion and Discussion 184

6.3 Learning of Mixed-Integer Optimal Control Solutions 185
6.3.1 Introduction . 186
6.3.2 Problem Setup and Formulation 190
6.3.3 Expert Motion Planner 192
6.3.4 Scalable Equivariant Deep Neural Network 197
6.3.5 Soft QP Solution and Selection Method 201
6.3.6 Feasibility Projection and SQP Algorithm 202
6.3.7 Implementation Details 205
6.3.8 In-Distribution Evaluations 206
6.3.9 Closed-loop Validations with SUMO Simulator 210
6.3.10 Conclusions and Discussion 213
6.3.11 Appendix . 216

6.4 Critical Discussion . 219

7 Collision Avoidance for Autonomous Racing 223
7.1 Inverse Optimal Control for Trajectory Prediction 224

7.1.1 Introduction . 225
7.1.2 Prediction Architecture 228
7.1.3 Prediction Algorithm . 228
7.1.4 Results . 236
7.1.5 Conclusions . 240

7.2 Hierarchical Approach for Strategic Motion Planning 243
7.2.1 Introduction . 244
7.2.2 Background and Motivation 245
7.2.3 General Method . 246
7.2.4 Parameterized Model Predictive Planner 248
7.2.5 Hierarchical Learning-based Predictive Planner 252
7.2.6 Simulated Experiments 256
7.2.7 Conclusions . 259

7.3 Critical Discussion . 260

8 Conclusion 265

Bibliography 271

Curriculum Vitae 301

List of Publications 303

Chapter 1

Introduction

According to a study from McKinsey published in 2023 [75], autonomous
driving (AD) could create revenue of up to $300 to $400 billion in 2035. While
in 2022, only partial driving automation dominated the market with a revenue of
$30 to $40 billion, the study estimates that highly automated driving functions
will dominate the market in 2035 with a revenue of $170 to $230. Moreover,
the study claims that, besides some setbacks, the mobility community still
agrees that AD could remarkably shape the future of transportation. Also, a
quarter of all car buyers are willing to pay more than $10.000 for premium
AD features. Shared autonomous vehicles could potentially even reduce energy
consumption by 53% to 61%, according to an urban sustainability report [322],
despite difficulties measuring the environmental impact due to unknown business
models of AD industries.

Self-driving vehicles operating in real-world conditions in the US caused eleven
deaths within only four months in 2022 [66]. This underscores the importance
of safety in autonomous driving. One primary requirement to achieve public
acceptance for AD is preventing accidents, i.e., collision avoidance is a core
interest. Collision avoidance requires several sub-tasks to be solved reliably.
Objects need to be recognized by computer vision systems, and their behavior
needs to be predicted intertwined with the own planning of decisions. On
top of the recognition of objects, reliable motion planning algorithms in an
environment with other agents are crucial.

Motion planning for autonomous vehicles involves determining feasible and
optimal paths while considering dynamic constraints, such as vehicle kinematics
and road conditions, as well as avoiding collisions or forcing emergency behavior
of other agents. Effective collision avoidance requires accurate prediction of
potential collision hazards and appropriate reactions to these hazards in a
short response time. The complexity of this problem is significantly increased

1

2 INTRODUCTION

by the need to ensure real-time performance. Traditional methods, often
based on rule-based systems or heuristic approaches, struggle to cope with
the difficulties inherent in real-world scenarios. This gap shows the need for
advanced techniques to provide safe and adaptive solutions.

Machine learning plays a crucial role in AD technologies at the current state-of-
the-art. However, machine learning techniques also lack some crucial properties
related to safe motion planning [66]. Remarkably, the review [66] mentions the
stochastic behavior of the ego decision-making system, limited interpretability,
and intricate debugging. This thesis focuses on deterministic optimization-based
algorithms that are possibly supported by machine learning. Optimization-based
motion planning has emerged as a promising approach due to its ability to handle
constraints and objectives systematically. By formulating motion planning as an
optimization problem, we can leverage mathematical optimization techniques
to find solutions that not only satisfy all constraints but also optimize specific
performance criteria, such as minimizing travel time and energy consumption or
maximizing passenger comfort. Moreover, compared to pure machine learning,
optimization-based algorithms are interpretable, easier to debug, and their
results are deterministic and reproducible. This paradigm enables a more
rigorous and flexible framework for developing motion planning algorithms.
Along the lines of this paradigm, this thesis shows in several variants that a
combination of machine learning and optimization-based algorithms can achieve
superior overall performance on the specific scenarios that were chosen for
evaluation.

The following chapters delve into various optimization techniques, including but
not limited to linear, quadratic, and nonlinear programming, inverse optimal
control, mixed-integer programming, and optimization methods supported
by machine learning predictions. They are all required to address the
challenges of motion planning. The algorithms were tested on various platforms,
including interactive traffic simulations and real-world autonomous racing
events. Autonomous racing competitions effectively contributed to advancing
AD planning and control technologies. Citing the authors in [41]: “What
aerospace engineering is to aviation, motorsport is to automotive technology”.
Possibly, some parallels can be drawn between autonomous racing competitions
and autonomous driving. By advancing the field of optimization-based motion
planning and control, this research aims to contribute to the broader goal of
realizing safe and efficient autonomous transportation systems. The insights
and methodologies developed in this thesis aim to bridge the gap between
theoretical advances and practical applications, adding a puzzle piece to the
next generation of autonomous vehicles.

MOTION PLANNING AND CONTROL IN AUTONOMOUS DRIVING 3

1.1 Motion Planning and Control in Autonomous
Driving

Motion planning for autonomous vehicles considers the task of using vehicle
and environment information to compute vehicle control signals that maintain
safety and carry out a desired high-level plan. In autonomous racing, this could
be finishing the race fastest or, in conventional autonomous vehicles, driving
to a desired location on a map. This field of research has attracted a great
deal of attention in industry and academia and requires the combined efforts
of many research areas. However, the challenges remain immense, and some
open problems persist. Different communities have emerged that favor specific
technologies and algorithms. As machine learning significantly impacts certain
technological fields, a particular stream of work aims to solve huge, or even all,
parts of the autonomous driving stack by machine learning techniques. Replacing
most parts of the autonomous driving stack by machine learning is called end-to-
end learning [278] and suffers from the disadvantages of lacking interpretability,
missing reproducibility, missing adaptability, and difficult debugging [66, 67].
End-to-end learning is not part of this thesis.

A common approach to motion planning and control in autonomous driving is
a hierarchy of modules with specific responsibilities. Each module has specific
inputs, outputs, and usually different sampling frequencies. The communication
between the modules may be organized by a middleware like ROS [174]. The
set of modules that work together to support the execution of the autonomous
driving control is the software stack. The whole software stack can be separated
into sensing, i.e., components for sensing the environment such as computer
vision related modules or state estimation, planning, i.e., components that plan
the ego motion according to the perceived environment, and acting, which refers
to low-level actuation. Many approaches and open-source autonomous driving
software stacks propose a similar structure, e.g., [27, 67, 138, 215, 176, 183, 199,
247, 256, 329]. In this thesis, given inputs from the sensing module are assumed.
The focus is on the planning and acting modules, as shown in the overview
in Fig. 1.1. The controlled system is also referred to as “system”, “plant” or
“environment”.

The requirements on the planning stack vary based on its application. Typical
applications are driving on well-marked structured highways, urban driving
in densely populated areas, rural roads without markings, autonomous racing
events, and unstructured environments such as parking lots [41, 165, 197]. The
different scenarios differ in the safety requirements, the available data, and
the performance requirements that could be measured in terms of general
driving costs. Highway driving usually has lower requirements on the perception
system due to well-marked roads and precise localization, such as in [108].
Challenges are relatively high velocities, increased controller requirements, and
the navigation on multiple lanes and merging lanes [213]. Urban driving is

4 INTRODUCTION

route, roads, waypoints

destination,
road network

Route Planning

lane, goal states

perceived agents
and obstacles

Behavior Planning / Decision Making

reference path / trajectory

reference path / trajectory

Path / Trajectory Planning

controls

vehicle states

Control

High-Level Planning

Low-Level Control

Figure 1.1: Modules of the autonomous driving stack. The blue blocks are
considered within this thesis. The block of “high-level planning” is often used
interchangeably with “motion planning” [67, 256].

usually less complex for vehicle control but poses considerable difficulties to the
perception system and partly to the decision maker due to the abundance of
different traffic participants and rare events. In urban driving, extremely precise
and manually annotated maps are available [197]. Similarly, rural roads require
a superior perception system and external positioning systems. Autonomous
racing is a special case due to the complete absence of humans and rather
arbitrary rules defined by an event organizer. The organizers may focus on
competitive vehicle and obstacle interaction [233] or push the speed towards the
vehicle limits [6]. Vehicles that operate in unstructured environments such as
parking lots or on open land drive with lower speeds. The environments demand
simpler control algorithms and has fewer requirements on the online planning
time. The complexity may instead emerge from the potentially combinatorial
obstacle avoidance and route-finding problem, interactions with other agents,
or poor mapping. In unstructured environments, the concept of ordinary traffic
rules and roads may not be applicable. This thesis focuses on algorithms for
autonomous racing and highway driving.

The classical software stack for motion planning and control comprises a route
planner, a behavior planner, also referred to as a decision maker, a path or

MOTION PLANNING AND CONTROL IN AUTONOMOUS DRIVING 5

trajectory planner, and a controller, see Fig. 1.1.

Route planning. At the highest level, the path through an environment is
computed by the route planner. Typically, maps are available except for
unstructured planning. These maps are usually given in a vast graph, requiring
graph-search algorithms [25, 199]. A well-known fundamental algorithm for
graph search is Dijkstra’s algorithm [81], which has a high query time but low
preprocessing time and a low memory requirement. In fact, the application to
road networks was an essential driving force to improve Dijkstra’s algorithm [25].
The exhaustive survey in [25] compares different algorithms with respect to their
query time, memory footprint, and preprocessing time. Oppositely to Dijkstra’s
algorithm, an algorithm utilizing a lookup table [76] has a low query time but
an enormous preprocessing time and memory footprint. A large number of
algorithms trade off these properties in addition to further requirements such
as the robustness to map or input changes.

Behavior planning and decision making. Once a route is computed, it is
passed to a behavior planner, also referred to as a decision maker. This layer
decides among options given a certain set of rules that apply to the current
scenario. It aims to fulfill the task at hand with a low specified cost. In racing
scenarios, this could be the decision of when to overtake another vehicle, when to
start racing, or when to leave the track. In highway scenarios, this includes the
decision to change lanes, and in urban traffic, this may be stopping in front of a
red traffic light. The time horizon for the decision maker is up to ∼ 1 min [67].
A simple implementation of such a layer in early papers is rule-based state
machines, e.g., team “AnnieWay” [134] at the DARPA Urban Challenge [1].

However, state machines may ignore certain aspects of the planning problem.
Most importantly, the behavior planner requires the perception of the current
scene and a potential prediction of other agents. Predicting other agents is a core
element of behavior planning and can, in general, not be performed separately,
as one’s own decisions influence the decisions of other traffic participants. A
simple example of such an interaction would be a succeeding vehicle that
will most likely brake if the preceding one brakes. When assuming constant
policies, these interactions could be treated by stochastic, interactive vehicle
models, such as in [224, 326]. A more general consideration of interactions
among agents requires a game theoretic or, likewise, a multi-agent framework,
e.g., [56, 57, 68, 160, 251, 252]. In dynamic games, agents can change their
policies in order to maximize a combination of a selfish reward and a reward
given to others [56]. Given the high computational burden of solving general
dynamic games, the behavior planner may use a coarse approximation of the
ego vehicle model, e.g., [168] for autonomous racing, and assume hierarchically
lower levels to be able to track the proposed plans safely. In case a lower-level

6 INTRODUCTION

planner is unable to track a reference plan, some feedback needs to be given to
the behavior planner, cf. Fig. 1.1.

Path and trajectory planning. Given a behavior specification, e.g., a goal
lane and speed limits or a reference trajectory, a path/trajectory planner
is used to provide a feasible path or trajectory (w.r.t. a certain vehicle
model and constraints) to a vehicle controller. Note that path planning is
commonly associated with geometric or kinematic planning, and trajectory
planning involves the time information in addition to the position [199].
Path planners may also provide a reference velocity that implicitly defines
a trajectory again when integrated. However, a consecutive low-level controller
may react differently to a velocity error than to a position error. One
could view the position trajectory tracking problem as a path and velocity
tracking problem where the plant integrates velocity to position. Tracking
the position with time information may be inevitable to avoid dynamic
obstacles. Given the dependency of the behavior planner and the path/trajectory
planner, some papers formulate both in a single formulation, e.g., in a mixed-
integer optimization framework [213, 227]. This thesis refers to behavior and
path/trajectory planning as “high-level planning”.

Remarkably, a separation between the behavior planning and path/trajectory
planning layers can be motivated by separating the overall problem based on
optimization problem classes. An outstanding division line in mathematical
optimization is between combinatorial and continuous optimization. While
polynomial-time algorithms can solve some combinatorial optimization problems,
the problems occurring in autonomous driving are often NP-hard [159].
Combinatorial problem aspects include on which side to overtake an obstacle
or choosing among multiple highway lanes. The combinatorial complexity, in
addition to real-time requirements, motivated many publications to find trade-
offs between optimality, safety, and computation time [67]. Approaches consider
mixed-integer programming [181, 213], learning-based [51] or graph-search
techniques [8, 241], among many others [67]. While simple interactive behavior
can be included as part of a classical combinatorial optimization problem
formulation, e.g., as in [227], considering general multi-agent settings requires
additional game-theoretic concepts [70]. Combinatorial complexity may be
hidden in the nonconvexity of optimization problem formulations. For example,
obstacle avoidance can be formulated as a nonlinear, nonconvex optimization
problem without combinatorial integer variables. However, solving such a
problem assumes an initial guess “close” to a local or global optimum, requiring
combinatorial optimization algorithms. Given an approximate solution of the
combinatorial part, the trajectory or path planner can be initialized efficiently
and often instead corrects a given coarse trajectory to be kinematically feasible
and safe; see, for example, [229] for such an architecture. The high-dimensional
state space of higher fidelity vehicle models challenges graph-search algorithms,

MOTION PLANNING AND CONTROL IN AUTONOMOUS DRIVING 7

and the trajectory or path planner may use numerical optimization-based
algorithms [293].

Control. The longitudinal and the lateral dynamics of vehicles have different
time constants. Therefore, the low-level controller may be split into a
longitudinal and lateral control. However, this ignores coupling effects,
particularly for highly dynamic maneuvers. In this thesis, the lowest level
controller is assumed to output a steering angle or steering angle rate and an
acceleration or braking torque. In fact, further low-level controllers are required
to provide the actual actuator signals. However, these lowest-level controllers
are usually not modifiable on many vehicle platforms, e.g., in the Roborace
competition [233].

This thesis considers behavior planning, path/trajectory planning, and low-level
control. Due to the intertwined formulations of the behavior and path or
trajectory planner, those are referred to as “high-level planners”. Accordingly,
the controller is referred to as a “low-level controller”, cf., Fig. 1.1. Both problems
are formulated as optimal control problems (OCPs) that approximate the
inherently stochastic real-world problem, cf., Chapter. 2. Treating stochasticity
explicitly in numerical algorithms is challenging and not part of this thesis.
Stochasticity is instead considered by closed-loop control with feedback on
the current environment state and consecutively adapting the prediction of
surrounding vehicles (SVs) and the ego-motion plan. The aim is to optimize an
ego trajectory x(t) ∈ X in the state space X ⊆ Rnx by modifying controls u(t) ∈
U in the control space U ⊆ Rnu depending on the time t ∈ R. The start of the
trajectory is equal to an estimated state x0 ∈ Rnx at the current time t0 ∈ R.
The trajectory of the deterministic vehicle dynamics is constrained to the infinite-
dimensional manifold described by the ordinary differential equation ẋ(t) =
f(x(t), u(t)). Additionally, the states are constrained by physical limitations
using the set X ⊆ X , and the controls are limited by u(t) ∈ U ⊆ U . The states
are further constrained by a simplified obstacle-free space Xfree(t), which may be
more sophisticated, than stated in this deterministic non-interactive form. For
example, it can depend on the previously driven ego trajectory {x(τ) | 0 ≤ τ ≤ t}
or involve uncertainty about SV predictions. A discussion about collision
avoidance constraints is given in Sect. 3.8. The OCP includes a cost J

(
x(·), u(·)

)
for the planned trajectories of controls and states and can be written in a general
continuous-time form as

min
x(·),u(·)

J
(
x(·), u(·)

)
s.t.

x(t0)= x0,

ẋ= f(x(t), u(t)), t ∈ [t0,∞),
x(t)∈ Xfree(t) ∩ X(t), t ∈ [t0,∞),
u(t)∈ U(t), t ∈ [t0,∞).

(1.1)

The overall paradigm of this thesis pivots on solving a simplified form of the

8 INTRODUCTION

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.2: A generic architecture of optimization-based planners and controllers.
This architecture is used as a template to categorize each individual contribution.
In this thesis, the descriptions environment, system, and plant are used
interchangeably.

OCP (1.1) as part of the high-level planner and, possibly, the low-level controller
repeatedly. The time it takes to solve the optimization problem online is crucial
to the overall performance. Therefore, a central goal of the proposed novel
techniques is lowering the online computation time to integrate more detail
into the approximation of OCP (1.1), thus increasing the performance. For the
high-level planner, slightly longer computation times are accepted than for the
lower-level controller.

Generic Optimization-Based Architecture. At the beginning of Sect. 1.1, the
main scope of this thesis was introduced. The focus of the autonomous driving
stack, as shown in Fig. 1.1, was set on high-level planning and low-level control.
From the viewpoint of optimization-based algorithms, those two layers can be
drawn in more detail, as shown in Fig. 1.2. This sketch illustrates the necessary
modules and dependencies of the algorithms. Moreover, this sketch is used to
point out the contributions proposed in this thesis. Each contribution focuses on
different subsets of these modules. In order to evaluate the proposed algorithms,
additional modules were part of an integrated software stack.

The optimization-based planner and controller are similarly structured, cf.,
Fig. 1.2. Both contain a particular type of objective, a vehicle model, model
constraints, collision constraints to avoid SVs, and a prediction of these SVs.
In a simplified case, the prediction of SVs may be performed by an external
module. However, the separation of ego planning and prediction does not

CONTRIBUTIONS AND OUTLINE 9

allow for interactive planning, i.e., respecting the influence of the planned
ego trajectory on the prediction of the SV. It may also be integrated into
the optimization problem and, therefore, be part of the planner or controller
module. The high-level planner passes a reference trajectory to the low-level
controller and is usually executed at a frequency of 1 to 10 Hz. The objective
of the high-level planner is usually to minimize an economic cost. The low-level
controller is executed at 10 to 100 Hz and outputs the control signals. The
controller’s objective is usually to track the reference. The environment could
either be a high-fidelity simulation of the ego vehicle or an embedded hardware
with possibly simulated SVs. The performance of the closed-loop system is
evaluated in various randomized test scenarios.

1.2 Contributions and Outline

This thesis presents its main contributions in the form of nearly unchanged
peer-reviewed publications in Chapters 5 to 7 after a detailed introduction of
relevant mathematical and technological concepts, cf., Fig. 1.3.

Within the introduction Chapters 2 to 4, basic concepts are explained that
appear as a common theme throughout this work. Mathematical background
is given in Chapter 2. Chapter 3 introduces the main concepts for automotive
vehicle modeling for optimization-based motion planning and control. Important
low to medium-fidelity vehicle models are introduced in Sect. 3.1 to Sect. 3.6.
These vehicle models are used either in simulation, as part of an optimization-
based planner, or as an optimization-based controller. Sect. 3.7 introduces
the concept of a projection of the vehicle dynamics onto a reference path.
Again, this projection is considered as part of an optimization problem. In
Sect. 3.8, different aspects of collision avoidance within numerical optimization
algorithms are reviewed. In Chapter 4, the last chapter of the introductory part,
the different software and hardware stacks used for evaluating the presented
contributions are summarized.

The following summarizes the contribution of each published paper. The
components involved within each publication are shown with respect to the
general motion planning and control architecture in Fig. 1.2. The blue boxes
indicate in which modules the contributions were made, and the green boxes
show the overall components involved in the related software and hardware stack.
Sect. 5.1 and 5.2 are aiming to improve the model and the constraint formulations
inside the optimization problem that is solved as part of model predictive
control (MPC). Sect. 6.1 to 6.3 are related to the nonconvex combinatorial
planning problems due to multiple obstacles. Sect. 7.1 and 7.2 consider the
prediction and interaction with SVs in competitive racing scenarios.

10 INTRODUCTION

Chapter 1:
Introduction

Chapter 2:
Optimal Control (OC)

Sect. 2.1:
Mathematical
Background

Sect. 2.2:
OC Problem Statement

Sect. 2.3:
OC Algorithms

Chapter 3:
Vehicle Models for
Motion Planning

Sect. 3.1-3.6:
Various Models and

Comparison

Sect. 3.7:
Coordinate Frames

Sect. 3.8:
Collision Avoidance

Chapter 4:
Software and Hardware

Environments

Chapter 5:
Model Formulations for

Optimization-Based
Motion Planning

Sect. 5.1:
Reference Curve
Parameterization

Conference Paper [222]

Sect. 5.2:
Frenet-Cartesian Model

Journal Paper [228]

Chapter 6:
Mixed-Integer

Optimization for
Collision Avoidance

Sect. 6.1:
Static Obstacles and

Rewards
Conference Paper [225]

Sect. 6.2:
Long Short Term

Formulation
Journal Paper [227]

Sect. 6.3:
Integer Variable

Prediction
Journal Paper [229]

Chapter 7:
Collision Avoidance for

Autonomous Racing

Sect. 7.1:
Trajectory Prediction

Conference Paper [226]

Sect. 7.2:
RL-MPC Interactive

Driving
Conference Paper [224]

Chapter 8:
Conclusion

Sect. 4.1:
ARG Stack

Sect. 4.2:
CommonRoad

Interactive Stack

Sect. 4.3:
VehicleGym

Figure 1.3: Overview of the chapters and sections of this thesis. Chapters 5 to 7
comprise the main contribution in the form of nearly unchanged publications.
The original paper titles are abbreviated by a short description.

CONTRIBUTIONS AND OUTLINE 11

Section 5.1: Parameterization Approach of the Frenet Transformation for
Model Predictive Control of Autonomous Vehicles. The contribution of this
section related to the publication [222] pivots around an efficient numerical
formulation of a vehicle model formulated in projected Frenet coordinates as
part of an optimization-based low-level controller. The proposed algorithms
solve a prior optimization problem in order to parameterize the projection curve
in a numerically favorable way. The improved performance is evaluated on
randomized tracks. Fig. 1.4 shows the involved components within the control
and planning framework.

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.4: Contributions of Sect. 5.1: Parameterization Approach of the Frenet
Transformation for Model Predictive Control of Autonomous Vehicles. In this
work, no obstacles or SVs were simulated. The contributions are made within
the blue modules. The green boxes were used as part of the overall framework
in this specific setting.

Section 5.2: Frenet-Cartesian Model Representations for Automotive
Obstacle Avoidance within Nonlinear Model Predictive Control. This
section and the related publication [228] improve the MPC problem formulation.
The vehicle model used within MPC is enhanced by expanding its state space to
include multiple coordinate frames, applying constraints and costs in the most
suitable frame. The results demonstrate improved overall performance in various
deterministic obstacle avoidance simulations attributed to the representation
of obstacle shapes in either frame. Remarkably, the computation time can be
reduced compared to a Frenet coordinate frame (FCF) representation despite
the increased state dimensions. Furthermore, references can be set in either
coordinate frame, enabling flexible integration with planning modules utilizing
a specific frame.

12 INTRODUCTION

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.5: Modules related to Sect. 5.2: Frenet-Cartesian Model
Representations for Automotive Obstacle Avoidance within Nonlinear MPC.
Blue boxes indicate contributions; green boxes indicate involved components.

Section 6.1: Mixed-integer optimization-based planning for autonomous rac-
ing with obstacles and rewards. This section related to the publication [225]
introduces a planning procedure for avoiding obstacles and collecting rewards
through a combination of offline and online steps. Initially, an optimal racing
line is computed based on the track geometry without obstacles, similar to
the approach presented in Sect. 5.1. The online phase comprises two steps:
first, a mixed-integer linear program (MILP) formulation selects a homotopy
class to determine reward collection and obstacle avoidance, represented
by deformed track boundaries. Second, a continuous optimization problem
minimizes deviations from the racing line while considering these modified
boundaries. Homotopy iterations are used to enhance the solver convergence.
This novel motion planning approach effectively solves time-optimal motion
planning problems with a combinatorial structure, avoiding the full state-space
discretization required by graph-based algorithms.

CONTRIBUTIONS AND OUTLINE 13

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.6: Modules related to Sect. 6.1: Mixed-integer optimization-based
planning for autonomous racing with obstacles and rewards. Blue boxes indicate
contributions; green boxes indicate involved components.

Section 6.2: A Long-Short-Term Mixed-Integer Formulation for Highway
Lane Change Planning. This section related to [227] presents a novel
algorithm for optimal lane-changing maneuvers on highways. Unlike other
highway motion planning algorithms, the presented lane change motion planner
effectively approximates long-term dependencies in the spatiotemporal domain
with a computational burden that remains independent of the lane change
position and timing. By addressing the short-term and long-term approximations
as a unified problem, inconsistent decoupling is avoided. The method improves
closed-loop performance by 15% compared to [213] and [8] and significantly
reduces average computation time in randomized interactive simulations.
Additionally, compared to [213], the algorithm reduces the number of integer
variables in the optimization problem.

14 INTRODUCTION

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.7: Modules related to Sect. 6.2: A Long-Short-Term Mixed-
Integer Formulation for Highway Lane Change Planning. Blue boxes indicate
contributions; green boxes indicate involved components.

Section 6.3: Equivariant Deep Learning of Mixed-Integer Optimal Control
Solutions for Vehicle Decision Making and Motion Planning. The main
contribution of this Chapter, which is related to [229], is a recurrent equivariant
deep set architecture for predicting integer variables in mixed-integer quadratic
programs, optimized for time series and obstacle-related binary variables in
motion planning. This architecture ensures consistent collision avoidance
predictions regardless of the obstacle order and supports a variable number
of obstacles. The framework combines an ensemble of neural networks with a
feasibility projector to enhance safe trajectory computation. Compared to state-
of-the-art methods, it improves prediction accuracy, introduces permutation
equivariance, and generalizes unseen data. A novel integrated planning system
is presented for real-time vehicle decision-making and motion planning and
validated in closed-loop simulations with interactive agents.

CONTRIBUTIONS AND OUTLINE 15

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.8: Modules related to Sect. 6.3: Equivariant Deep Learning of Mixed-
Integer Optimal Control Solutions for Vehicle Decision Making and Motion
Planning. Blue boxes indicate contributions; green boxes indicate involved
components.

Section 7.1: An Inverse Optimal Control Approach for Trajectory Prediction
of Autonomous Race Cars. In the domain of autonomous racing, this section
and the related paper [226] are, to the best of the author’s knowledge, among the
first to employ bi-level optimization for trajectory prediction. Given the difficulty
of solving bi-level problems, this work utilized the relaxation of complementarity
constraints to find a stationary point of the lower-level problem. The algorithm
exhibits a stronger initial performance without prior training, compared to other
learning-based algorithms, and adapts quickly online to observed trajectories of
other drivers.

16 INTRODUCTION

High-Level Planner Low-Level Controller

Reference

Costs

Ego Model

Model Constraints

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

SV Constraints

SV Predictions

SV Predictor

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Figure 1.9: Modules related to Sect. 7.1: An Inverse Optimal Control Approach
for Trajectory Prediction of Autonomous Race Cars. Blue boxes indicate
contributions; green boxes indicate involved components.

Section 7.2: A Hierarchical Approach for Strategic Motion Planning
in Autonomous Racing. The contribution of Sect. 7.2 and the related
publication [224] involves developing and assessing an efficient and safe motion
planning algorithm tailored for interactive behavior occurring in autonomous
racing. The presented algorithm features a novel cost function formulation
that integrates MPC and reinforcement learning (RL), providing strong prior
performance, real-time feasibility, and clear interpretability.

CONTRIBUTIONS AND OUTLINE 17

High-Level Planner Low-Level Controller

Reference

Environment

Road

Ego Model

SV

Real Cost
Evaluation

Environment State

Control

Costs

Ego Model

Model Constraints

SV Constraints

SV Predictions

SV Predictor

Neural Network

Figure 1.10: Modules related to Sect. 7.2: A Hierarchical Approach for Strategic
Motion Planning in Autonomous Racing. Blue boxes indicate contributions;
green boxes indicate involved components.

Chapter 2

Optimal Control

This chapter introduces the mathematical framework and the relevant numerical
algorithms that serve as a basis for contributions within this thesis to solve
motion planning and control problems as formulated in (1.1). First, some basic
concepts of numerical optimization are repeated in Sect. 2.1. The next Sect. 2.2
introduces optimal control problems (OCPs) as means to formalize the goal
of motion planning and control algorithms for autonomous driving. Finally,
Sect. 2.3 introduces algorithms for solving OCPs in a closed-loop environment.
The OCPs are often approximated and solved online in a feedback control
system. A crucial approximation involves finding a reasonable model for the
real-world environment.

Algorithms for solving the OCP online are separated into derivative-based
online optimization, cf., Sect. 2.3.3, or sampling-based online optimization, cf.,
Sect. 2.3.4. The potentially computationally expensive online optimization may
be circumvented by utilizing an offline optimization algorithm to solve a large
number of problems with the distribution of parameters encountered in the
real-world setting. After storing the samples of the solution map from the OCP
parameters to the optimal decision variables, this mapping function can be
learned, referred to as imitation learning (IL).

The rather different approach of reinforcement learning (RL) is capable of
avoiding a model of the environment. It focuses on learning a policy that
achieves optimal closed-loop behavior by interacting with the environment and
evaluating obtained rewards after applying specific actions in particular states.
Environment models may still be used in an initial learning phase to generate
interactions more efficiently. Relevant concepts of IL and RL, including dynamic
programming (DP), are provided in Sect. 2.3.5 and Sect. 2.3.6, respectively.

19

20 OPTIMAL CONTROL

2.1 Mathematical Background

The following section introduces essential concepts of continuous and mixed-
integer optimization concepts. Sect. 2.1.1 states the different classes of
optimization problems. In Sect. 2.1.2, algorithms for solving the class of
nonlinear programs (NLPs) are sketched on a high level along the lines
of [217], and in Sect. 2.1.3 algorithms for solving mixed-integer nonlinear
programmings (MINLPs) are surveyed based on [29] and [244].

2.1.1 Optimization Problem Classes

The following repeats the definition of relevant complexity classes and, thereafter,
defines optimization problem classes most relevant for the developed algorithms.

Computational Complexity. Computational complexity describes how difficult
it is to solve problem instances of a specific class when scaling the problem
dimensions. In the following, the main concepts are illustrated along the lines
of [159]. Typically, the big-O notation is used to upper-bound the computation
time depending on the problem size in the limit [190]. As a further refinement,
lower and upper bounds on the computational complexity are used. An upper
bound can be found, for example, by any algorithm that solves the problem
and whose computational complexity is known. A lower bound can be found by
intricate mathematical analysis.

Optimization problem classes can be related to complexity classes which provides
an insight of how difficult the problems are to solve in general. Relevant
complexity classes for this thesis are explained in the following. For problems
belonging to the polynomial complexity class P, algorithms can be found that
solve the problem in polynomial time, i.e., the solution time scales with O(nk),
where k ∈ N and n is the problem size. For problems in the complexity class NP ,
algorithms can be found that verify in polynomial time if any given solution
solves the problem. An efficient algorithm solves a problem in polynomial
time. For an intractable problem, no efficient algorithm can be found. Problems
in PSPACE= NPSPACE can be solved with a polynomial amount of storage
space. Finally, the class of EXPTIME is used for problems that can be solved
in O

(
2nk
)
, with k ∈ N. Notably, boundaries of the problem classes PSPACE

and NP are not yet found. It is known that P ⊂ EXPTIME. However, some
mathematicians only assume that P ⊂ NP ⊂ PSPACE ⊂ EXPTIME. It could
also be true that P = NP = PSPACE or NP = PSPACE = EXPTIME.
Therefore, for a problem in NP , finding a polynomial time algorithm may still
be possible.

MATHEMATICAL BACKGROUND 21

In the following, the concepts of “hardness” and “completeness” are repeated.
Let X be one of the problem classes P,NP,PSPACE or EXPTIME. If
problem A is in the class X-hard, any other problem in X can be reduced to
problem A in polynomial time. Remarkably, a problem that is X-hard is not
required to be within the class X. However, if the problem is in class X and
X-hard, it is named X-complete.

In complexity theory,“intractable” refers to problems that are extremely difficult
or impossible to solve efficiently, usually because they require an impractical
amount of computational time or space resources as the size of the input grows.
Due to the unknown bound of NP and PSPACE, it cannot be argued that
a problem in NP is intractable. Nonetheless, problems in EXPTIME are
intractable. Lower bounds of algorithms are particularly useful, because they
provide insight of how much an existing algorithm could be improved.

Optimization problem classes are used to define the input format of optimization
solvers since the underlying algorithms are specifically designed for certain
structures. The optimization classes allow problem formulations that exhibit a
particular computational complexity, which provides a complexity lower bound
for any algorithms or solvers that are used to solve these problems. The most
important optimization problem classes are as follows.

Linear Programs. Linear programs (LPs) are defined as

min
z∈Rnz

c>z s.t.
{
Az − b = 0,
Cz − d ≤ 0,

(2.1)

where c ∈ Rnz , A ∈ Rng×nz , C ∈ Rnh×nz , b ∈ Rng and d ∈ Rnh . The number of
equality constraints are ng and the number of inequality constraints are nh. LPs
can be solved efficiently in finite time and at most exponential in the number of
variables by, for example, the Simplex algorithm [72] or even in polynomial time
by the interior point (IP) algorithms [15] or by the ellipsoid method [143, 24].
Therefore, LPs are in the problem class P.

Quadratic Programs. Quadratic programs (QPs) are defined by

min
z∈Rnz

c>z + 1
2z
>Bz s.t.

{
Az − b = 0,
Cz − d ≤ 0,

(2.2)

where B ∈ Rnz×nz . QPs are further classified into convex QPs, where the
matrix B is positive semi-definite, or even strictly convex QPs, where B is
positive definite. Convex QPs can be solved efficiently in finite polynomial
time by, e.g., the IP algorithm [154]. Nonconvex QPs are hard to solve, and
in the problem class NP-hard [200]. Established solvers for usually convex

22 OPTIMAL CONTROL

QPs are, for instance, the commercial solvers of MOSEK [184] and Gurobi [114]
or the open-source solvers OSQP [268], qpOASES [94] and QPALM [121]. Some
solvers are explicitly designed to exploit the structure of the model predictive
control (MPC) optimization problem, such as the open-source solver HPIPM [97].

Convex Programs. A convex optimization program is written as

min
z∈Rnz

fc(z) s.t.
{
Az − b = 0,
hc,i(z) ≤ 0, i = 1, . . . , nh,

(2.3)

where fc : Rnz → R and hc,i : Rnz → R for i = 1, . . . , nh, are convex functions,
such as defined in [46]. Many convex problems can be solved efficiently in
polynomial time by solvers such as ECOS [82] and tools for formulating convex
problems such as CVX [106] and CVXPY [79]. However, it is not trivial to check
whether a problem is convex. Moreover, convex problems exist that are NP-
hard [73]. Within this thesis, the functions fc and hc,i, for i = 1, . . . , nh are
assumed to be continuously differentiable. In general, convex problems may
involve nonsmooth functions and may still be solved efficiently [46].

Nonlinear Programs. An NLP is written in the general form

min
z∈Rnz

fnlp(z) s.t.
{
gnlp,i(z) = 0, i = 1, . . . , ng,
hnlp,i(z) ≤ 0, i = 1, . . . , nh,

(2.4)

where fnlp : Rnz → R, hnlp,i : Rnz → R for i = 1, . . . , nh and gnlp,i : Rnz → R
for i = 1, . . . , ng are continuously differentiable functions. NLPs are generally
nonconvex and in the problem class NP-hard [186] and, therefore, difficult
to solve. However, many problem instances can be solved efficiently to local
optimality in practice by exploiting derivatives with general-purpose solvers such
as IPOPT [307]. Solvers that exploit the MPC problem structure are available as
open-source software, e.g., acados [291], or commercially, e.g., FORCESPro [83].

Mixed-Integer Programs. Mixed-integer programs (MIPs) are optimization
problems that contain integer variables y ∈ Zny and continuous variables z ∈
Rnz . Noteworthy, MIPs can formally be reformulated into NLPs. However,
the structure given by the integer variables can be exploited by solvers like
Gurobi [114] or MOSEK [184] to usually achieve a much higher performance than,
for example, using a general-purpose NLP solver. An MIP problem can be
written as

min
z∈Rnz ,y∈Zny

fmi(z, y) s.t.

gmi,i(z, y) = 0, i = 1, . . . , ng,
hmi,i(z, y) ≤ 0, i = 1, . . . , nh,
[z>, y>] ∈W,

(2.5)

MATHEMATICAL BACKGROUND 23

with fmi : Rnz × Zny → R, hmi,i : Rnz × Zny → R for i = 1, . . . , nh and
gmi,i : Rnz × Zny → R for i = 1, . . . , ng. All variables are in a convex bounded
polyhedral set W ⊂ Rny+nz . A further refinement of MIPs may specify the
structure of the continuous functions of problem (2.5) related to the problem
classes above. For example, if the functions fmi, gmi,i for i = 1, . . . , ng and
hmi,i for i = 1, . . . , nh are continuously differentiable, the problem is referred to
as MINLP. Similarly, mixed-integer linear programs (MILPs), mixed-integer
quadratic programs (MIQPs), or mixed-integer convex programs (MICPs) can
be defined. All MIP problems are hard to solve. Even MILPs or pure integer
programs are NP-hard [99]. Nonetheless, some MILPs with a certain structure,
such as integer knapsack problems, can in practice be solved faster, their worst-
case complexity is still NP-hard [190]. MINLPs with unbounded decision
variables are even UNDECIDABLE [130], i.e., simplified, a computer that
follows step-by-step instructions cannot solve these problems in finite time,
cf. [261] for more details.

Remark 2.1.1. The term combinatorial optimization is not consistently defined
in the literature. The authors in [191] state the following: “While there is no
generally agreed-upon definition of a combinatorial optimization problem, most
problems so named are 0-1 IPs that deal with finite sets and collections of
subsets.” The class of “0-1 IPs” are pure integer problems without a continuous
part and where the integer variables can only take values of zero or one. Pure
integer problems are not considered within this thesis. The term “combinatorial”
is instead used to highlight nonconvexities that are modeled by integer variables
in the optimization problem and desired to be considered in the optimization
algorithm.

2.1.2 Continuous Optimization

In the following, Newton’s method, sequential quadratic programming (SQP)
and the interior point (IP) methods are described on a high level. Both SQP,
IP methods, and mixed-integer programming are extensively used throughout
this thesis to solve OCPs.

Newton’s Method for Unconstrained Optimization

As a basis for further considerations of constrained optimization, first, Newton’s
method is explained briefly for unconstrained convex problems

min
z∈Rnz

fnlp(z), (2.6)

24 OPTIMAL CONTROL

where fnlp : Rnz → R is twice differentiable and convex. Consider the Taylor
approximation

fnlp(z) ≈f̃nlp(z; z0) =

fnlp(z0) +∇zfnlp(z0)>(z − z0) + 1
2(z − z0)>∇2

zfnlp(z0)(z − z0)

around an initial guess z0. For convex problems, a first-order necessary
condition (FONC) and sufficient condition for optimality is ∇f̃nlp(z?; z0) = 0.
Applying the optimality condition to the Taylor series and given that the
Hessian ∇2

zfnlp(z0) is invertible, the optimizer for the approximated problem is

z?0 = z0 −
(
∇2
zfnlp(z0)

)−1∇zfnlp(z0),

which is set as the new initial guess z1 := z?0 . This procedure is repeated until
convergence. In fact, the convergence of Newton’s method is extremely fast once
the initial guess is close enough to the optimizer of the original problem [46].
For convex problems, the FONC ∇f̃nlp(z?; z0) = 0 is also a sufficient condition
for a global minimizer. For nonconvex problems, the second-order sufficient
condition (SOSC) ∇2f̃nlp(z?; z0) � 0 may verify a local minimizer z? [194].

Constrained Optimization

Adding constraints to the optimization problem (2.6) requires additional
concepts. Since equality constraints can also be formulated as inequality
constraints, the following NLP omits equality constraints and reads as

min
z∈Rnz

fnlp(z) s.t. hnlp,i(z) ≤ 0, i = 1, . . . , nh, (2.7)

where fnlp : Rnz → R and hnlp,i : Rnz → R for i = 1, . . . , nh are twice
continuously differentiable functions. Recall the Lagrangian function of the
inequality-constrained NLP (2.7)

L(z, µ) = fnlp(z) +
nh∑
i=1

µihnlp,i(z),

with the dual variables µi ∈ R and µ> = [µ1, . . . , µnh]. The Lagrangian function
can be used to define FONCs for optimality of the primal variables z? by utilizing
the dual variables µ?, known as the Karush-Kuhn-Tucker (KKT) conditions

∇zL(z?, µ?) = 0 (2.8a)

µ?i hnlp,i(z?) = 0, i = 1, . . . , nh, (2.8b)

µ?i ≥ 0, i = 1, . . . , nh, (2.8c)

hnlp,i(z?) ≤ 0, i = 1, . . . , nh. (2.8d)

MATHEMATICAL BACKGROUND 25

Many optimization algorithms aim to find points that fulfill the FONCs for the
Lagrangian function. The two widely used methods SQP and IP are explained
below.

Sequential Quadratic Programming (SQP)

The basic idea of SQP is to iteratively approximate the NLP (2.7) by a series
of QPs, similar to the standard Newton iterations. An initial guess z0 for the
primal decision variables is chosen as the first linearization point. In order to
compute an update of the primary and dual variables as a result of an SQP
iteration, the Hessian matrix needs to be computed and inverted, which is
computationally expensive. Moreover, if the exact Hessian ∇2

zL(z0, µ0) is used,
the QP subproblems may be nonconvex and hard to solve.

In order to derive convex Hessians and to speed up the computation of the
Hessian and its inverse matrix, various approximations exist, known as Newton-
type methods. A popular method is the Gauss-Newton Hessian approximation,
which is, however, only applicable to NLPs with a nonlinear least-squares
objective [217]. The Gauss-Newton Hessian can be computed fast and is always
convex. Other computationally favorable Hessian approximations can also be
obtained by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [53, 95],
which can directly approximate the inverse Hessian if desired. For general
NLPs, methods described in [290] can be used to get convex Hessian matrices.
Hessian approximations may be based on the dual variables µ, requiring also
their initialization by µ0.

After constructing the QP at the linearization point z0 with the Hessian
approximation B0 obtained from z0 and, possibly µ0, the approximating QP is
solved to get primal optimizers z?0 and dual variables µ?0. After that, the new
initial guess or linearization point is set to the previous optimizers with z1 ← z?0
and µ1 ← µ?0, and another QP is constructed to approximate the NLP at z1
with a new Hessian approximation B1. This procedure is repeated for M steps
or until convergence with an acceptance criterion to find the final optimizer
z? := z?M for the NLP.

The QP optimization subproblem for the k-th linearization point depends on
the primal variables zk and the dual variables µk. The dual variables may
only influence the Hessian approximation Bk, but Hessian approximations
independent of dual variables exist as mentioned above. The QP subproblem
can be written as

min
z∈Rnz

∇fnlp(zk)>(z − zk) + 1
2(z − zk)>Bk(z − zk)

s.t. hnlp,i(zk) + ∂hnlp

∂z
(zk)(z − zk) ≤ 0, i = 1, . . . , nh.

(2.9)

26 OPTIMAL CONTROL

The QP subproblems may be solved by various different algorithms, including
active-set solvers such as qpOASES [94] or QP interior point solvers such as
HPIPM [97] for MPC structured problems. Within the SQP algorithm, the
individual QP subproblems may have different sets of active constraints that
need to be figured out by the QP solver at each iteration if active set QP
solvers are used. When the linearization point zk is close to a strongly regular
solution [217], it can be shown that the set of active constraints of the QP
subproblem is identical to the set of active constraints of the original NLP [232].

The Hessian approximation is a major design choice since it can provide
computationally less expensive iterations. An important question is how the
convergence rate of SQP methods is influenced. Consider a sequence zk that
converges to z?. If there exists a positive integer k, a positive real number c,
and a sequence ck ≤ c < 1, a sequence zk converges “q-linear” if it holds for
some k ≥ k that

|zk+1 − z?| ≤ ck|zk − z?|.

If also ck converges to zero, the convergence is “q-superlinear”, and named
“q-quadratic”, if ck = O (|zk − z?|). While the convergence when using exact
Hessian matrices is q-quadratic, given a sufficiently close starting point, methods
with other Hessian approximations usually converge slower. For instance, the
Gauss-Newton method converges q-linearly, and Hessian update algorithms like
the BFGS converge q-superlinearly [217].

Nonlinear Interior Point Method

As introduced above, constraints can conceptually be seen as a mathematical
formulation to strictly prevent variables from obtaining specific values. In the
context of OCPs, this could be related to conceptually infinite costs or physically
impossible values. Infinite values could be approximated by large numbers on a
computer. Cost functions that approach infinity for constrained values exhibit
a discontinuity at the border of the constraints.

Nonlinear IP methods formulate the constraints within the cost function by a
smooth approximation. More precisely, a barrier function is used that also goes
towards infinity where the constraints are active but smoothly approximates
the transition from the feasible domain. The choice of smoothness alters the
original NLP since it assigns wrong costs in the feasible domain. Thus, lowering
the smoothness is desired as long as the numerical algorithm is able to solve
the problem. In most algorithms, a homotopy is used in consecutive iterations,
where the smoothness is varied from initially smooth costs to increasingly
nonsmooth costs that approximate the original NLP better.

Regarding the inequality constrained NLP (2.7), the IP method first reformulates
the constraints by additional slack variables σ> = [σ1, . . . , σnh] ∈ Rnh into the

MATHEMATICAL BACKGROUND 27

equivalent formulation

min
z∈Rnz ,σ∈Rnh

fnlp(z) s.t. hnlp,i(z) + σi = 0, σi ≥ 0 i = 1, . . . , nh. (2.10)

Next, the inequalities for the slack variables are replaced by the logarithmic
barrier function within the cost function. By utilizing a smoothness
parameter τ > 0, the equality constrained IP problem is

min
z∈Rnz ,σ∈Rnh

fnlp(z)− τ
nh∑
i=1

log(σi) s.t. hnlp,i(z) + σi = 0, i = 1, . . . , nh.

(2.11)

The parameter τ defines the smoothness, where the smoothness is increased by
larger values of τ . Therefore, a homotopy varies the smoothness starting from
large values and iteratively decreases τ towards zero. The equality-constrained
IP problem can be solved by formulating the KKT conditions and solving
the related root-finding problem. Notably, the root-finding problem does not
contain the more sophisticated complementarity conditions for the inequalities
anymore and, thus, can be solved more efficiently [217].

Both the SQP and IP algorithms start from an initial guess of the solution,
which determines to which local minimum the algorithm converges if several
minima exist. For nonconvex problems, even finding a feasible initial guess or
initial guesses that result in acceptable local minima may be challenging.

One mitigation strategy is to reformulate nonconvex problems into MIQPs, as
proposed in our contributions [225, 227, 229] and Chapter 6 in this thesis. With
this method, the integer variables model the combinatorial problem part related
to the nonconvexity and allow the solver to determine globally optimal solutions.
The concept of mixed-integer programming is introduced in the next section.

2.1.3 Mixed-Integer Programming

In the following, basic concepts and algorithms for the class of MINLPs are
introduced along the lines of [29] and [156]. For the remainder of this section,
equality constraints of MINLP (2.5) are formulated as part of the inequality
constraints, by

min
z∈Rnz ,y∈Zny

fmi(z, y) s.t.
{

[z>, y>] ∈W,

hmi,i(z, y) ≤ 0, i = 1, . . . , nh.
(2.12)

28 OPTIMAL CONTROL

Moreover, it is assumed that fmi(z, y) and all hmi,i(z, y) for i = 1, . . . , nh are
twice differentiable, but not necessarily convex. The feasible set is

Ω :=
{

(z, y) ∈ Rnz × Rny
∣∣[z>, y>] ∈W,

hmi,i(z, y) ≤ 0, i = 1, . . . , nh,

y ∈ Zny
}
,

and its canonical relaxation is

Ωrel :=
{

(z, y) ∈ Rnz × Rny
∣∣[z>, y>] ∈W,

hmi,i(z, y) ≤ 0, i = 1, . . . , nh
}
.

A convex MINLP is an MINLP of the form (2.12) where the NLP resulting
from the canonical relaxation of the feasible set to Ωrel is convex, which is the
case if the functions fmi(z, y) and hmi,i(z, y) for i = 1, . . . , nh are all convex.
For the remainder of this section, Problem (2.12) is assumed to be a convex
MINLP. It can be stated more concisely as

min
(z,y)∈Ω

fmi(z, y). (2.13)

General Concepts

To give a general high-level overview of how integer problems are solved, the
basic concepts of branching, relaxations, cutting planes, bounding, heuristics
and parallelism are explained in the following.

Branching. Let the feasible set Ω be decomposed into subsets Ω1, . . . ,ΩP .
The optimization problem (2.13) can equally be solved by

min
(z,y)∈Ω

fmi(z, y) = min
i∈[1,...,P]

min
(z,y)∈Ωi

fmi(z, y), (2.14)

where the objective is minimized over each individual partition, and thereafter,
the minimum is taken over all individual optimizers. Branching summarizes
different methods that decompose the feasible set, mainly related to the integer
variable assignments, and solve the individual subproblems. A naive way of
solving MINLPs would be to enumerate all integer assignments, exhaustively
solve all subproblems with fixed integer variables by NLP solvers, and, finally,
take the lowest value of all enumerated subproblems. This scales poorly for an
increasing number of integer variables. Even in the case of binary variables, i.e.,
integer variables in {0, 1}, the number of enumerations nenum is exponential in
the number of binary variables with nenum = 2ny .

MATHEMATICAL BACKGROUND 29

Therefore, strategies exist to exclude as many integer assignments as possible
beforehand for a particular problem instance. These strategies are known as
presolve techniques. For example, consider the problem constraints

y1 ≤ 1, y2 ≤ 1, y1 + y2 ≥ 2,

with y1 ∈ {0, 1} and y2 ∈ {0, 1}. Clearly, only the assignment of y1 = 1 and
y2 = 1 is feasible. If a solver is able to detect these logical assignment constraints
beforehand, the number of possible binary variable assignments can be reduced
vastly, leading to faster computations.

Relaxations. Relaxations of the MINLP (2.13) are problems that expand the
feasible set to the superset Ω̂, with Ω ⊆ Ω̂ and value functions f̂(z, y) that are
upper bounded by the original value function, with f̂(z, y) ≤ f(z, y) for all
(z, y) ∈ Ω. The relaxed NLP is written as

min
(z,y)∈Ω̂

f̂mi(z, y). (2.15)

Examples of possible relaxations include the relaxation of integer variables
to continuous variables, outer approximations of the feasible set by, e.g.,
linearizations, dropping some constraints, utilizing duality, the Lagrangian
relaxation, and an under-estimation of the objective function, e.g., by
linearization. The optimal values of relaxed problems are always lower bounds
of the original optimization problem.

Cutting Planes. Consider a solution (ẑ, ŷ) that is feasible for the relaxed
problem but infeasible for the original problem. The idea of cutting planes is
to exclude this solution from the relaxation Ω̂ by adding constraints without
excluding feasible solutions of the original problem. This procedure is also
referred to as relaxation refinement [29]. Tightening the relaxation Ω̂ can only
improve the lower bound, i.e., the lower bound in a consecutive iteration will
be equal to or larger than the previous bound.

Bounding. Many algorithms that solve convex MINLPs utilize lower and upper
bounds of the objective function to quickly prune integer variable assignments
and make arguments about the quality of the intermediate updated solution.
For example, suppose the solver finds a feasible assignment of integer variables
and a solution of the remaining convex program, i.e., “it cannot get worse”. In
that case, the objective value of this particular solution yields an upper bound
on the optimal cost. Given such an upper bound, any relaxed solution with
a higher optimal objective value can be excluded from further refinements as
part of an algorithm. A lower bound can be found, for instance, by solving the
relaxed problem (2.15). The lower bound can be used to estimate how close

30 OPTIMAL CONTROL

the objective of the currently best feasible solution is to the global optimum of
the original problem.

Heuristics. Heuristics play an essential role in solving mixed-integer problems.
They aim to find feasible assignments of binary variables quickly. This is
beneficial for several reasons. First, upper bounds are helpful to solve the
problem, as detailed in the following subsection. Second, if the solver’s time is
limited, it is often helpful to return a feasible solution, which may not necessarily
be the optimal solution.

Parallelism. An essential property of many mixed-integer algorithms is their
ability to parallelize large parts of the algorithm. For example, the naive
enumeration can be parallelized. If fully parallelized, the overall solution
time would only be bounded by the slowest computation time of individual
subproblems.

Algorithms for solving mixed-integer programs include some form of tree search
on the integer variables. The (nonlinear) branch and bound algorithm was
among the first algorithms that were used for various classes of MIPs. The
basics are described in the following in order to provide the reader with some
intuitive understanding.

Branch and Bound.

The branch and bound algorithm [71] starts by solving the canonically relaxed
problem

min
(z,y)∈Ωrel

fmi(z, y). (2.16)

Two possible outcomes of this problem would directly terminate the algorithm.
First, if the solution of the relaxed problem lies in the set Ω, i.e., the relaxed
integer variables y obtain integer values, the optimizers of (2.16) are also
optimizers of the original problem. Second, if the relaxed problem is infeasible,
the original MINLP is infeasible since, trivially, adding constraints to an
infeasible problem could not make it feasible.

If none of the above scenarios apply, a graph tree is constructed with nodes
that correspond to subproblems P(y, y), defined as

min
(z,y)∈Ωrel

fmi(z, y), s.t. y ≤ y ≤ y, (2.17)

where y ∈ Rny and y ∈ Rny are bounds on the relaxed integer variables. The
root problem does not have additional bounds; thus, it is denoted as P(−∞,∞).

MATHEMATICAL BACKGROUND 31

Branching corresponds now to creating two new subproblems P(ya, ya)
and P(yb, yb) from a root NLP P(y, y). Therefore, for any of the integer
variables, denoted by yi, whose solution ŷi in the relaxed problem is not integer,
bounds are added in both of the new subproblems. Particularly, first, the
bounds are initialized to be equal to the root node, with (ya, ya) := (y, y) and
(yb, yb) := (y, y). Thereafter, bounds for the i-th branching variable are set to
the lowest larger integer as a lower bound for one problem, e.g., P(ya, ya), and
to the largest lower bound as an upper bound for the other problem P(yb, yb),
i.e., ya,i := dŷie and yb,i := bŷic.

Every problem P(y, y) that is solved, and where the solution is integer, is a feasi-
ble solution to the original problem and the value of the subproblem val

(
P(y, y)

)
is an upper bound U on the optimal value of the original problem. The lowest
upper bound, in addition to the particular optimal variables, is stored as the
algorithm iterates. As soon as any feasible solution is found, the algorithm can
return a feasible suboptimal solution.

Two basic pruning rules are a core part of the branch and bound algorithm.
(i) If a problem P(y, y) is infeasible, any problem in the subtree is infeasible.
Therefore, the whole tree can be pruned. (ii) If the value of a problem is larger
than the currently lowest upper bound, i.e., val

(
P(y, y)

)
≥ U , all subtrees and

the node can be pruned.

A vital component of the algorithm is the decision on which exact variable
the algorithm branches to new subproblems. This choice vastly influences
the performance of the algorithm. Usually, the first goal is to quickly find a
feasible solution to the original problem since it generates an upper bound to
allow related pruning. Furthermore, a feasible solution could be returned if
the algorithm was terminated early. The second goal is to decrease the upper
bound as much as possible. Many varieties exist for both stages, and details
can be found in [29].

Modeling Paradigms

Integer variables can be typically used for three different purposes: (i) discrete
quantities, (ii) discrete decision variables that may be related by logical formula,
and (iii) indicator variables that get activated if other continuous variables are
within a certain value range [304].

Based on the basic principles of the mixed-integer algorithms provided above, a
couple of design rules are provided when formulating a mixed integer problem,
along the lines of [16, 304].

In this thesis, binary variables, i.e., integer variables that are in {0, 1}, are
extensively used as indicator variables to formulate logical constraints. Some
key concepts are presented below. A binary variable β ∈ {0, 1} can be used to

32 OPTIMAL CONTROL

activate a constraint on a non-negative variable x ∈ R≥0, with bounds x ≤ x ≤ x,
which is expressed by the implication

[β = 1] =⇒ [x ≥ m] ,

where m ∈ R is a constant, with the constraint

x−mβ ≥ 0.

and the notation [f(x) < 0] denoting the proposition of a formula f(x) < 0
which can either be “true” or “false”. The other direction of the implication

[x > m] =⇒ [β = 1] ,

can be formulated by
x−Mβ ≤ m,

where M +m is an upper bound for x, with x ≤ m+M . Suppose variables β1
and β2 are binary variables that are used as indicator variables or logical
decisions. Logical formulas can now be formulated in terms of constraints on
the binary variables. For example, a logical “or” between propositions related
to β1 and β2, i.e., [β1 = 1] ∨ [β2 = 1], is formulated utilizing constraints by

β1 + β2 ≥ 1.

A logical “and”, i.e., [β1 = 1] ∧ [β2 = 1], is formulated by

β1 = 1, β2 = 1.

By using similar equations for disjunctions or negations, logical dependencies
can be formulated as part of MIPs. For instance, some nonconvex compact sets
of continuous variables can be decomposed into convex sets that imply and are
implied by binary variables if and only if the continuous variables are within
decomposed convex sets. A disjunctive constraint between the binary variables
can be formulated that requires the continuous variable to be within one set.
Using this expression to reformulate an NLP with a convex objective function
but a nonconvex feasible set into a convex MINLP, this convex MINLP can be
solved to global optimality despite the nonconvex feasible set for continuous
variables. This formulation was used in our work [225, 227] and [229].

Constraints. When formulating NLPs, an usual heuristic is to reduce the
number of constraints since they are a major challenge for the solver.
Nevertheless, when formulating MINLPs, adding constraints may often help
the solver in the presolve phase and during algorithm iterations to prune larger
parts of the search tree.

OPTIMAL CONTROL PROBLEM 33

Number of integer variables. Since, in the worst case, for every node in the
branch and bound tree, an NLP needs to be solved, another appealing modeling
paradigm when formulating MINLPs may be to reduce the number of integer
variables. This is true for most problems. However, a major computational
speedup can be achieved if large parts of the branch and bound tree are pruned.
Additional integer variables may enable more efficient pruning in some cases. For
example, consider properties A,B,C, and D and four disjunctive logic choices
that lead to the property combinations AC,BC,AD, and BD. A disjunction
among the four logic choices can be modeled by four binary variables β1, . . . , β4
and

β1 ⇐⇒ AC, β2 ⇐⇒ BC, β3 ⇐⇒ AD, β4 ⇐⇒ BD,

β1 + β2 + β3 + β4 = 1.

It would not be possible to distinguish between property A and B using the
branch and bound algorithm for this formulation. However, it may be useful to
branch between property A and B as it could have large implications on the
overall cost. Therefore, an additional variable β and the constraints

β1 + β3 − β = 0, β2 + β4 + β = 1,

would allow branching on the variable β. The additional branching would allow
pruning related to properties A and B. Remarkably, numerous counter-examples
exist where reducing the integer variables speeds up the computation [304].
This could be due to symmetries in the model or unnecessarily complicated
formulations. For instance, an optimization problem over a convex set could be
reformulated by splitting the set into convex partitions and adding disjunctive
logic constraints among the partitions with integer variables. Clearly, these
reformulations would introduce unnecessary constraints and integer variables.

Further strategies for formulating MIPs, such as different disjunctive formula-
tions, tightening of constraints, or exploiting symmetries, can be found in [304].

2.2 Optimal Control Problem

Optimal control is a branch of applied mathematics that deals with finding
a control law for a dynamical system. The aim is to minimize a certain cost
and respect constraints related to the system state and the control inputs. The
dynamical system model can be stated stochastically or deterministically within
the OCP. Note that the concept of Markov decision processes (MDPs) is equal
to stochastic discrete-time OCPs and used usually in the field of RL, described
in Sect. 2.3.6.

In this thesis, discrete-time OCPs are solved which are approximations of
continuous-time OCPs such as the motion planning problem (1.1). Some basic

34 OPTIMAL CONTROL

concepts of how to derive discrete-time OCPs from continuous-time OCPs are
provided. For a detailed overview of stochastic continuous-time OCPs the reader
is referred to [204] and for stochastic discrete-time OCPs, see [35, 37]. The time
discretization is illuminated briefly in the following.

A discretization of time is often relevant for real-world systems, where the
electronic actuator and sensor systems operate in real-time embedded systems
at sampling frequencies. During a sampling period t∆, the computations of
evaluating sensor inputs and performing operations to provide the subsequent
actuator output are performed. The most straightforward control during
the embedded system computations is the zero-order-hold setting, where the
control u(t) is kept constant with u(t) = uk between two sampling times kt∆
and (k + 1)t∆. The index k ∈ N is used to enumerate the sampling intervals.
During a sampling interval, the environment state follows the system dynamics.
The state is usually not directly accessible. Instead, the state is measured at
the discrete times kt∆. In simulations, numerical integrators are used to obtain
the next discrete state at (k + 1)t∆ [211]. The discrete-time system inputs,
which are the controller outputs, are denoted by the vector uk ∈ U ⊆ Rm. The
discrete-time system states are xk ∈ X ⊆ Rnx . The state and control spaces
are described by the sets X and U , respectively.

The fact that real-world electronic systems operate in discrete time and the
more tractable direct formulation often leads to the description of the model in
a discrete-time version for the stochastic case as

xk+1 = F (xk, uk, wk), with wk ∼ PW(·|xk, uk) (2.18)

with F : X × U × W → Rnx , the sampling space W ⊆ Rnp , and
where PW(·|xk, uk) is a probability distribution that may depend on the states
and controls, but not directly on the previous disturbances wk−1. Note that
the term stochastic optimal control often emphasizes stochasticity, whereas
deterministic optimal control does not involve random variables. In the following,
only Markov systems are considered where the state xk is assumed to be
measured and fully describes the system at a particular time kt∆.

The goal is to find a deterministic policy π : X → U , π ∈ Π, with Π the space of
admissible functions. The policy determines the control u = π(x) and optimizes
a performance criterion concerning a running cost l : X ×U → R∪ [−∞,∞] with
the extended real numbers to allow for infinite costs. A typical performance
criterion may be a discounted cost

Jπγ (x) := Ewk∼PW
[∞∑
k=0

γkl
(
xk, π

(
xk
)) ∣∣∣∣

x0 = x, xk+1 = F
(
xk, π(xk), wk

)]
,

(2.19)

OPTIMAL CONTROL ALGORITHMS 35

with the discount factor γ ∈ (0, 1) that exponentially discounts costs appearing
at an increasing time horizon. Another typical performance criterion is the
average cost

Jπ(x) := lim sup
T→∞

1
T

Ewk∼PW
[T∑
k=0

l
(
xk, π

(
xk
)) ∣∣∣∣

x0 = x, xk+1 = F
(
xk, π

(
xk
)
, wk

)] (2.20)

that conceptually is similar to the discount factor γ = 1. The function Jπγ (x)
defines the accumulated cost for a policy π when starting at state x, i.e., it
defines the cost-related value of a state x under a given policy. Therefore, it
is also referred to as a value function. Remarkably, the value function results
from the system dynamics F (·), the defined running costs l(·), and the chosen
policy π(·). It may be emphasized that the system dynamics, the running cost,
and the discount factor are defined by the application. The engineering goal
is to find a policy that lowers the value function at every point of the state
space x ∈ X . A policy that optimizes the value function to the lowest possible
values for all x ∈ X is the optimal policy and is defined by

J?γ (x) = Jπ
?

γ (x) ≤ Jπγ (x), ∀x ∈ X , ∀π ∈ Π. (2.21)

2.3 Optimal Control Algorithms

The ultimate goal of optimal control algorithms is to find a policy that
minimizes the performance criterion when applied to the real-world environment.
Unfortunately, finding the optimal policy π?(x) as defined in (2.21) is, in general,
extremely difficult or intractable.

One strategy is to simplify and approximate the environment. For the
approximated environment, the optimal policies are applied to the inherently
unknown stochastic and nonlinear real-world environment, hoping to achieve
an acceptable, usually sub-optimal, performance. A discussion on environment
models is given in the next Sect. 2.3.1, followed by a discussion of, what is called
“implicit” and “explicit” approaches in Sect. 2.3.2. Model-based approaches
relevant to this thesis are further illustrated in Sect. 2.3.3, utilizing derivative-
based optimization, and Sect. 2.3.4, relying on sampling-based optimization.

Two further algorithm classes are elaborated. First, imitation learning (IL)
is described in Sect. 2.3.5. In fact, the IL problem setting is different since
a further component of the problem setting is assumed, which is an expert
policy π̃∗(x). The expert could be a human demonstrator or a sophisticated
control algorithm that is burdened by its computational complexity and is aimed

36 OPTIMAL CONTROL

to be replaced by a more efficient policy. Second, reinforcement learning (RL)
is described in Sect. 2.3.6 as an algorithm that starts with policy π(x; θ) that is
parameterized by some random vector θ ∈ Rnθ . By interacting online with the
environment and evaluating the obtained costs along the state transitions, the
parameters are updated to achieve a lower expected value function.

2.3.1 Environment Models

The mathematically modeled environment allows for a theoretical analysis of
essential properties related to the performance criteria, such as stability and
safety. Nevertheless, as stressed before, the analysis never applies to the real-
world system, as this can not be modeled precisely. However, the hope is that
the real-world environment behaves similarly enough in that the policy behavior
in the real world is similar to the simplified environment. As an example for an
approximation, consider the environment to be modeled linearly, i.e.,

xk+1 = Axk +Buk + wk

with A ∈ Rnx×nx , B ∈ Rnx×nu and where wk ∼ N (0,Σ) follows a multivariate
normal distribution N (0,Σ) with zero mean and covariance Σ ∈ Rnx×nx .
Moreover, let the running cost be quadratic with the positive semi-definite
matrices Q ∈ Rnx×nx and R ∈ Rnu×nu and

l(xk, uk) = x>k Qxk + u>k Ruk.

For this case, it can be shown that the optimal policy is linear, i.e.,
π(xk) = −Kxk, cf. [217]. The feedback gain matrix K can be computed by

K = (R+B>PB)−1(B>PA),

where P is derived by solving the algebraic Riccati equation

P = Q+A>PA−A>PB(R+B>PB)−1B>PA

Such an analysis of simplified environments allows one to argue about properties
for real-world systems that usually approximately fulfill the assumptions.

It ought to be stressed that there are various ways how models can be used in
order to ultimately find a policy π for the real-world system, cf., Fig. (2.1). First,
a simulation model of the real world can be used for faster and safer interactions.
Simulation models also provide insights into hidden states. Secondly, an analysis
model can be used to reason about the theoretical properties of a closed-loop
system where a controller is assumed to interact with this particular model.
Thirdly, a controller model can be used as part of an algorithm that is executed
repeatedly online to find the policy output whenever a new state is encountered.
For example, controller models are used to plan future trajectories, such as in

OPTIMAL CONTROL ALGORITHMS 37

Real-World
Environment

action/control

Policy/Controller

Simulation Model
Controller

Model

Analysis Model

state

Figure 2.1: Different models are used as approximations of the real-world
environment. Simulation models should accurately reproduce relevant real-world
behavior. Analysis models are used to understand the theoretical properties
of the environment. Often, their complexity is limited due to mathematical
challenges in nonlinear and stochastic system analysis. A controller or policy
model is used to compute the current control online in a specific time step.

model predictive control (MPC) or other model-based control techniques, such
as internal model control [234].

A simulation model is always a simplification of the real-world environment
and is based on approximating assumptions. Simplifications in the simulation
environment always imply the same simplifications to the policy requirements
if the policy performance is evaluated only in simulation. However, within the
policy, an even simpler model is usually used to compute actions that achieve a
good performance. The controller model trades off the accuracy of modeling
the real-world environment with the requirements of the control algorithm. For
example, derivative-based MPC requires smooth functions. Similarly, internal
model control [234] requires linear models.

An analysis model may be used to theoretically derive specific properties for a
control system where the model used in the control algorithm differs from the
analysis model. For instance, the effect of using a deterministic approximation of
a stochastic model in the controller may be analyzed with a stochastic analysis
model. The analysis model usually trades off the complexity of mathematical
objects with the actual accuracy of modeling the environment, which makes it
also different from the simulation model. The primary purpose of the simulation
model is to approximate the environment as accurately as possible.

In the following, general simplifications that are used within this thesis are
illuminated. Particular details for simplifications within the policy categories

38 OPTIMAL CONTROL

are given in the corresponding sections.

Deterministic models. For the analysis of many problems, it is sufficient to
narrow down the environment model to deterministic models

ẋ(t) = f(x(t), u(t)).

Deterministic models often improve the reproducibility [270] and make the
optimal control problem (OCP) easier to solve.

Linear models. As indicated in the linear quadratic example above, linear
models

ẋ(t) = Ax(t) +Bu(t) + w(t)

are appealing since they simplify solving the OCP, i.e., finding an optimal policy
for the linear system.

Approximate costs. The cost l(x, u) can be arbitrary, in general. However,
approximations of the cost may be favorable for control algorithms that use an
approximation of the OCP as part of the policy algorithm. Essential desired
properties are smoothness, convexity, convex quadratic shape, linear shape, or
a value of zero at a targeted steady state.

Discrete time. The time-discretization of the inherently infinite-dimensional
controls u(t) in time to finitely many controls uk makes the problem much
more tractable. Related deterministic optimal control methods are called direct
approaches [123].

Discrete states and controls. Besides a discretization of time, the state and
control space may also be discretized. Consequently, the system model is then
described by a graph, where the vertices are discrete states and the finite directed
edges are transitions related to discrete controls. The discretization of the state
and control space exhibits several advantages but also significant limitations. An
advantage is the applicability of discrete planning algorithms such as Dijkstra’s
graph search [159] or dynamic programming variants [38]. These algorithms
typically are guaranteed to find the global optimum in the discretized search
space. However, in the continuous space, they may be suboptimal. Additionally,
graph search algorithms scale poorly with the dimension of the state space,
which is known as Bellman’s “curse of dimensionality” [28].

OPTIMAL CONTROL ALGORITHMS 39

2.3.2 Implicit and Explicit Policies

In the following, two categories of algorithms are described to obtain acceptable
closed-loop behavior. First, the category of implicit policies is introduced, which
contains an approximate form of a problem formulation within the policy which
is solved implicitly. Secondly, the explicit policy class is described. Here, explicit
algorithms refer to policies that are described through explicit parameterized
functions. The parameters are typically learned through an interaction with
the real-world environment. Above all, explicit functions, such as a linear
control law π(x) = −Kx with K ∈ Rnu×nx , are standard and widespread in
control systems engineering, but the parameters are typically not “learned” while
interacting with the system. In this thesis, explicit policies are parameterized
functions, such as neural networks (NNs), that are learned by interactions with
the real-world environment or a simulator.

Implicit Policies

The primary control approach of this thesis is MPC [217], which defines the
policy π(x) implicitly by approximating the “real-world” OCP by a numerically
tractable formulation. The optimal policy is not computed offline in advance for
the whole state space X , but instead a computationally tractable approximation
of the OCP is solved online only for the current state. Several significant
simplifications are used.

First, the optimization problem is formulated in discrete time with states xk
and controls uk. Secondly, the stochastic optimization problem is approximated
deterministically by replacing the random noise variable w by the mean value
of the noise w̄. Next, the optimization problem (2.21) is solved not over policy
functions π(·) but over particular open-loop controls ui, for i = k, k + 1, . . .
that are computed for the current state xk at time kt∆ solely. Since the
real-world system is always continuous in time, the running cost l(xk, uk)
should approximate the states and controls between two sampling times kt∆
and (k + 1)t∆. The continuous-time running cost l̃

(
x(t), u(t)

)
is usually the

actual cost desired to be evaluated when designing a system. If the continuous-
time running cost is given by the problem definition, the time discretization
demands a reformulation to the discrete-time running cost.

The dynamics F (·) are reformulated by a suitable numerical approximation

xk+1 = Fmpc(xk, uk).

In fact, the numerical approximation should approximate the underlying
continuous-time dynamics, which are expressed in the continuous deterministic
case as an ordinary differential equation (ODE)

ẋ = f
(
x(t), u(t)

)

40 OPTIMAL CONTROL

with starting conditions x(t = 0) = x̂ and f : X × U → Rnx . For example,
the simple explicit Euler formulation can be used to discretize the continuous
system by

Fmpc
euler(xk, uk) = xk + t∆f(xk, uk).

In this case, also the approximated cost can be written as

lmpc
euler(x, u) := t∆ l̃(x, u).

In the final approximation, the infinite horizon of the OCP is truncated to
only N discrete time steps. The remaining part of the costs after N time steps is
replaced by an approximation Jmpc(x) of the value function J?(x). To achieve
optimality, this cost would be required to be identical to the actual optimal
value function. However, since the first part of the OCP is solved implicitly for
the current state x, the approximation error at the end of the horizon Nt∆ is
less relevant for the closed-loop behavior, cf., [35]. The final MPC optimization
problem that approximates the OCP with discounted costs (2.19) at a state x is

(u?0, . . . , u?N−1) ∈ arg min
u0,...,uN−1

N−1∑
k=0

γklmpc(xk, uk)+γNJmpc(xN),

with x0 = x, xk+1 = Fmpc(xk, uk),

(2.22)

with the control decision variables u0, . . . , uN−1. After solving the optimization
problem (2.22) at state x, the first derived optimal control u?0 is applied to
the environment as the policy output. After the sampling time t∆, the MPC
optimization problem (2.22) is solved again for the next measured system state.

MPC algorithms do not require offline pre-computations other than identifying
an optimization-friendly model. Some information may be passed from one
iteration to the next to speed up the computations, cf., Sect 2.3.3. Notably,
this procedure is an iterative, local, and implicit control policy.

The overall controller performance is significantly linked to the optimizer’s
performance. Therefore, dedicated optimization solvers have been developed
for MPC problems, e.g., the open-source solver acados [291] or the commercial
solver FORCESPro [83].

Explicit Policies

In the context of this thesis, explicit policies πθ(x) are referred to as expressive
parameterized functions with the parameter θ ∈ Rnθ , where the number
of parameters nθ is usually very high, and the function may be defined
through some neural network (NN) architecture. For example, the authors
in [306] used more than 107 parameters for their policy. Remarkably, the
function space is limited through the particular parameterization, which may

OPTIMAL CONTROL ALGORITHMS 41

prohibit the policy πθ(x) from being parameterized such that it is equal to the
optimal policy π?(x). However, the hope is that the parameterization is rich
enough to get a reasonable closed-loop performance and a close approximation
of π?(x) [274].

The determination of the parameters θ is challenging and may follow various
algorithms. Here, two approaches are considered. The imitation learning (IL)
approach collects data from an expert policy, and while or after collecting data,
the parameters are adjusted to approximate the expert behavior. The basics of IL
are illuminated in Sect. 2.3.5. Within the reinforcement learning (RL) approach,
the policy πθ(x) interacts with the environment to determine which action leads
to low costs in each state. By principles of dynamic programming (DP) and
Monte Carlo sampling, the parameters θ are modified to acquire a policy that
yields a value function for all states x [37, 38, 274]. A model is usually identified
first before the implicit MPC policy is applied. Within vanilla RL algorithms,
the parameters θ of an explicit policy πθ(x) are continuously updated. The
offline learning phase of RL algorithms is the main bottleneck to obtaining a
policy that achieves good closed-loop performance. RL has become a significant
research field within artificial intelligence, and some core concepts are eluded in
Sect. 2.3.6.

The distinction between explicit and implicit policies and their associations
to RL is rather conceptual and blurry. For example, within RL, an implicit
parameterized optimization layer may be used that resembles an MPC, see,
e.g., [110]. Similarly, an MPC layer may be used as a post-processing module to
a learned policy in order to guarantee safety, such as the so-called “safety filter”
in [280] or used as a fixed part of the environment to transform an auxiliary
input to the environment to an actual input with particular guarantees. For
example, the auxiliary input could be a desired position or trajectory, which is
then used as a reference within MPC, cf. [48, 224].

2.3.3 Derivative-Based Online Optimization

Various algorithms exist to solve the implicit MPC optimization problem locally
as defined in (2.22). In the following, the focus is set on derivative-based
optimization algorithms, which utilize differentiable models and algorithmic
differentiation to iteratively update the decision variables in order to lower the
objective of the MPC problem (2.22). The algorithm’s performance is limited
by finite computational resources and measured by, for instance, the mean and
worst-case computation time and the suboptimality of the solution. As pointed
out, the main objective is minimizing the closed-loop performance criterion.
Therefore, the algorithm’s performance in solving the numerical optimization
problem affects the expected closed-loop performance considerably. Highly
suboptimal solutions may perform poorly in the real-world environment. Large

42 OPTIMAL CONTROL

computation times imply large sampling intervals, which again imply poor
disturbance rejection.

It is pivotal that defining the structure of the optimization problem (2.22)
has two contrary effects. First, by assuming a perfect oracle optimization
solver that outputs the global optimum of (2.22) in zero time, the driving
motivation would be to find the most sophisticated model for the real-world
environment in order to achieve the best possible closed-loop performance.
However, the expected performance of optimization solvers is highly dependent
on the optimization problem structure (2.22), where simpler models allow, in
general, the applicability of solvers with better performance and even guarantees.

Depending on the problem simplifications and approximations, problem (2.22)
falls into one of the above problem classes. Notably, equivalent formulations
in different problem classes usually exist for the same problem. For instance,
MIQPs as formulated in (2.5) can be formulated as nonconvex NLPs with
disconnected feasible sets by

min
z∈Rnz ,ȳ∈Rny

fmi(z, ȳ) s.t.

gmi,i(z, ȳ) = 0, i = 1, . . . , ng,
hmi,i(z, ȳ) ≥ 0, i = 1, . . . , nh,
sin(πȳi) = 0, i = 1, . . . , ny,

(2.23)

but this formulation would not be useful. It is often an engineer’s task to
find problem formulations that are aligned with specific optimization problem
classes. After finding an appropriate formulation, a particular set of optimization
algorithms can be applied. For each category, the different optimization solvers
have particular properties that vary among the solvers within one optimization
class. Such properties are the average and worst-case online computation time
or the ability to return global minima, local minima, or stationary points.
Another essential property is the anytime property. It defines whether an
algorithm can return a sub-optimal decision variables at any time while solving
the problem [330].

From an engineering perspective, all that matters is the finally achieved
closed-loop performance, which is indirectly affected by the optimization
problem properties and hard to determine a priori. For example, it is hard
to determine if a sophisticated solver based on a detailed real-world model
that requires a long computation time performs better than a high-sampling-
frequency linear controller. Moreover, a sophisticated solver may have an
unbounded computation time and, thus, may rely on a safety backup controller.
However, a linear control, in contrast, may not approximate the problem
complexity of the environment acceptably well. It is sometimes argued that
only convex optimization problem structures allow the applicability of solvers
that can guarantee a bounded computation time and reliably converge to global
minimizers of the convex problem approximation [46]. Nevertheless, it can be
argued that strongly nonconvex problems can not be approximated by convex
problems well enough to achieve a reasonable closed-loop performance.

OPTIMAL CONTROL ALGORITHMS 43

Given an approximation of the OCP as in the MPC problem (2.22), further
reformulations are often made to make the problem easier to solve for continuous
optimization algorithms. Several fundamental reformulations are listed below.

Constraints. First, parts S∞ ⊂ X×U of the state-space X and control-space U
may have conceptually infinite costs with lmpc(x∞, u∞)→∞ for (x∞, u∞) ∈
S∞ related to safety critical or infeasibility constraints. While it is impossible
to guarantee safety in a real-world environment, it may at least be guaranteed
for a simplified simulation model that approximates the real-world system well
enough. In continuous optimization algorithms, costs lmpc(x, u) with potentially
infinite values are usually separated into a cost function l̃mpc : X × U → R with
finite values and constraints h(x, u) ≤ 0, where the sublevel set of h(x, u) at
zero defines the feasible set X ×U \S∞ and the cost lmpc(x, u) has finite values.
Therefore, it holds that h(x, u) > 0 ⇔ (x, y) ∈ S∞. Similarly, there may exit
states x∞ ∈ Xt ⊂ X with infinite costs Jmpc(x∞)→∞ of the terminal value
function Jmpc(x). The infinite costs in the terminal value function may result
from infinite values in the cost that can not be avoided in the future trajectory.
For example, consider a car that drives too fast into a curve. At some point, a
crash is inevitable despite the collision, i.e., the infinite cost, being several time
steps ahead. Therefore, also the terminal value function is separated into a finite
valued terminal value function J̃mpc : X → R and terminal constraints ht(x) ≤ 0
that imply x ∈ X \ Xt.

Single and Multiple Shooting. It is possible to use an optimization solver
for the problem as defined in (2.22). This formulation is called direct single
shooting, where direct refers to the transcription of the infinite-dimensional
OCP to a finite one by discretizing the controls u(t) and states x(t) and single
shooting refers to the forward simulation of the system along the whole horizon.
In this setting, a state xk depends on a simulation of the dynamics influenced
by all controls ui, where 0 ≤ i < k. This single shooting formulation only
exhibits (N − 1)nu decision variables. However, the resulting optimization
problems may be highly nonlinear, and often may be challenging to solve.
Better numerical properties can be achieved by reformulating the problem (2.22)
into the so-called direct multiple shooting formulation [45]. In this formulation,
nxN additional decision variables sk ∈ X for k = 0, . . . , N are introduced as
variable states that are allowed to violate the model dynamics during solver
iterations. Intuitively, the solver acquires more flexibility to provide the optimal
solution, and the hope is to improve the numerical properties by increasing the
previously low number of decision variables. In fact, the additionally introduced
decision variables appear in a favorable structure that optimization problem
solvers can exploit. The MPC optimization problem (2.22) is reformulated in

44 OPTIMAL CONTROL

the direct multiple shooting formulation as

min
u0,...,uN−1
s0,...,sN

N−1∑
k=0

γklmpc(sk, uk)+γNJmpc(sN),

s.t. s0 = x, sk+1 = Fmpc(sk, uk), k = 0, . . . , N − 1.

(2.24)

Numerical Integration. So far, the dynamics function was introduced as
an explicit computation of a consecutive state xk+1 by the function xk+1 =
Fmpc(xk, uk). More precisely, in this thesis, linear single-step explicit and
implicit Runge-Kutta methods are used as defined in [211]. The underlying aim
is to numerically solve the initial value problem (IVP) posed by the original
ODE to get xk+1 when starting from xk and using constant controls u(t) = uk
for t ∈ [kt∆, (k + 1)t∆). Single-step methods only utilize the single current
state xk to compute the next state xk+1, as opposed to multi-step methods
that utilize M previous steps xk−M+1, . . . , xk to compute the next state. In
addition to explicit integration schemes, implicit schemes are used for stiff
systems. Stiff systems exhibit both fast and slow dynamics. Runge-Kutta
integration schemes can be used to vary the integration order for implicit and
explicit schemes. Accounting also for implicit integration schemes, the dynamics
can be denoted by the implicit equation 0 = Ψ(xk+1, xk, uk, zk) which involves
algebraic states zk ∈ Rnz as intermediate collocation variables or integration
steps. The implicit equation may be solved as part of the MPC optimization
problem.

After including the numerically favorable concepts of potential implicit
integration functions, constraints, and multiple shooting, the final MPC
optimization problem template used within this thesis is

min
u0,...,uN−1
s0,...,sN
z0,...,zN−1

N−1∑
k=0

γk l̃mpc(sk, uk)+γN J̃mpc(sN),

s.t. s0 = x, 0 ≥ ht(sN),

0 = Ψ(sk+1, sk, uk, zk),

0 ≥ h(sk, uk), k = 0, . . . , N − 1.

(2.25)

Different specialized optimization solvers are used depending on the classification
of the MPC optimization problem (2.25) and the solution’s requirements. If
the structure of (2.25) corresponds to a quadratic program (QP), quadratic
optimization solvers are used. A classification of QP solvers is beyond the
scope of this work. It is assumed that convex QPs can be solved efficiently.
If the structure of (2.25) corresponds to an nonlinear program (NLP), the

OPTIMAL CONTROL ALGORITHMS 45

sequential quadratic programming (SQP) algorithm iteratively solves a series
of QPs that locally approximate the NLP. In some cases, it may be beneficial
to reformulate certain nonconvexities of NLPs or nonconvex QPs to mixed-
integer nonlinear programmings (MINLPs) or mixed-integer quadratic programs
(MIQPs), respectively, by shifting major nonconvexities to integer variables as
for example in [213] or our related papers [225, 227]. The reformulation allows
mixed-integer optimization solvers to converge to reasonable or even global
optimal solutions.

2.3.4 Sampling-Based Online Optimization

This section introduces a class of algorithms that aims at solving the MPC
optimization problem (2.22) without the computation of derivatives. This thesis
does not apply sampling-based algorithms, yet, for completeness, the basic
idea and algorithmic directions are illuminated. The underlying paradigm is
to sample, evaluate and rank multiple control trajectories U i = (ui0, . . . , uiN−1),
with i = 1, . . . , Nsamp. Thereafter, the first control u?0 of the lowest-cost
trajectory U? is chosen as the policy output. Remarkably, only simulations, cost-
and constraint evaluations of the model F smpc(xk, uk, wk) that may also include
randomly sampled variable wk ∼ PW(·|xk, uk) are required, which enables more
complicated model formulations than in derivative-based algorithms. For
example, discontinuous functions, random variables, or logical statements can
be used as part of the forward simulation. However, sampling-based algorithms
usually suffer from a particularly severe curse of dimensionality.

The straight-forward approach of random shooting [187, 205] independently
samples full trajectories U1, . . . , UNsamp from a distribution Drs to obtain the
lowest-cost trajectory U? by

U? ∈ arg min
U∈{U1,...,UNsamp}

N−1∑
k=0

γklmpc(xk, uk)+γNJmpc(xN),

with

x0 = x,

xk+1 = Fmpc(xk, uk, wk),
wk ∼ PW(·|xk, uk).

(2.26)

While simple to implement and parallelize, this method is only applied to
systems with a low number of inputs and short horizons.

The cross-entropy method samples trajectories similar to random shooting.
However, the distribution from which the samples are drawn is refined in each
iteration [152] based on the costs computed by the previous iteration. Often,
Gaussian distributions or Gaussian mixture models are used as parameterized
distributions.

46 OPTIMAL CONTROL

A third sampling-based method is model predictive path integral (MPPI)
control [136, 281, 282, 303] that considers systems that can be written in
the continuous form as the nw dimensional Wiener process

dx =
(
fmppi
x (x) + fmppi

u (x)u
)
dt+ fmppi

w (x)dw,

with fmppi
x : X → Rnx , fmppi

u : X → Rnx × Rnu and fmppi
w : X → Rnx ×

Rnw . The dynamics are nonlinear only in the states and separated into a
nonlinearity related to controls fmppi

u and the noise fmppi
w . Similar to the

cross-entropy method, MPPI updates the probability distribution from which
actions are sampled for the specific model structure above. Despite an involved
derivation of the exact sampling strategy [136, 281, 282], the resulting algorithm
is straightforward to implement which did not promote the development of
dedicated software, such as in derivative-based optimization. MPPI uses a
weighted average to update the mean of this distribution where the weights are
based on the associated costs.

2.3.5 Imitation Learning

The IL problem setting involves an expert policy π̃∗(x), which could be a
human demonstrator or a sophisticated control algorithm that is burdened by
its computational complexity. The objective now is to acquire a policy πθ(x)
that approximates the expert policy.

Behavior Cloning

A simple algorithm is behavior cloning where, first, a data set of i = 1, . . . , Nexp
expert actions ui = π̃∗(xi) are evaluated by the expert policy for random
states xi that are sampled from a distribution xi ∼ S with the a finite support
over the feasible states, i.e., supp(S) = X . The samples are used to train a NN,
which is formulated as the supervised learning problem

min
θ

Nexp∑
i=1

∣∣∣∣∣∣πθ(xi)− ui∣∣∣∣∣∣2
2
.

Although behavior cloning is straightforward to implement, the performance
is often rather low, e.g., see the comparison in [172]. One possible reason is
that the distribution S is often chosen uniformly over the state space. When
the number of states rises, the sampling becomes inefficient, as the probability
of sampling the actual relevant states that are encountered during closed-loop
control becomes exponentially small.

OPTIMAL CONTROL ALGORITHMS 47

Let Sπk be the distribution of states at step k when following policy π for k
steps and let

Sπ = 1
N

N∑
k=1
Sπk

be the average distribution if policy π is followed for N steps. One way to
mitigate the problem of inefficient sampling would be to obtain the samples
from a distribution S π̃? that is induced by following the expert policy to obtain
states. However, a small approximation error of πθ would accumulate and shift
the distribution Sπθk away from the training distribution S π̃? [44, 240], also
known as covariate shift [239].

Dataset Aggregation

A straightforward algorithm that mitigates the distribution shift is dataset
aggregation (DAgger) [240]. The DAgger algorithm alternates between sampling
from the distribution S π̃? induced by the expert and a distribution Sπθi induced
by the currently learned imitation policy πθi , where θi are the current parameters
at iteration i. A disadvantage of DAgger is the required online querying of the
expert and policy updates in each iteration, which may be ineffective for large
NNs. Moreover, a new data set needs to be created in each overall iteration.

Inverse Reinforcement Learning

In real-world settings, it may be the case that the expert policy π̃? is suboptimal.
For example, humans may introduce errors due to various reasons. An alternative
strategy is to learn the expert’s objective under a known environment model.
Thereafter, the aim is to imitate the expert by solving an optimization or
RL problem based on the learned objective function. Whether methods from
numerical optimal control or RL are used determines the wording of inverse RL
or inverse optimal control.

A challenge with inverse RL is the ambiguity of the optimal cost function,
i.e., equal behavior can be achieved by multiple cost functions [192]. Another
challenge is the inner loop of solving an RL or numerical optimization problem.
In fact, the structure of inverse reinforcement learning (IRL) often resembles
a bi-level programming structure, where the decision variables in the higher-
level optimization problem are constrained to be the solution of a lower-level
optimization problem. In this thesis, an inverse optimal control algorithm
is proposed in Sect. 7.1 and the related work [226] to estimate trajectories
assuming a known model.

Another inverse RL algorithm that does not utilize a model is generative
adversarial inverse reinforcement learning (GAIL). GAIL borrows ideas from

48 OPTIMAL CONTROL

generative adversarial networks (GANs) [103], where trained generative NNs aim
to generate data that is similar to a target distribution, i.e., the expert policy
distribution, and a trained discriminator NN tries to separate samples from the
generative non-expert distribution from samples of the expert distribution.

Recent Advances of Imitation Learning

A state-of-the-art method [44] targets the distribution shift by assuming a
certain controlled imitation policy that stabilizes the policy around expert
demonstrations. Therefore, the authors in [44] show how supervised learning
can be used again to outperform other interactive approaches. Furthermore,
multivariate distributions are treated by a generative diffusion model [264, 43].

2.3.6 Reinforcement Learning and Dynamic Programming

RL summarizes a class of methods that aim to iteratively learn a policy π
by interacting with the environment. The usually unknown system model is
formulated by

xk+1 ∼ PX (·|xk, uk),
which is a reformulation of (2.18) but aligned with the common RL
literature [274]. Additionally, in the RL literature a stochastic OCP is referred
to as Markov decision process (MDP), summarizing the problem by the
tuple

(
X ,U , PX , l, γ

)
.

Within RL algorithms, the optimization over the action and state space is
required in multiple algorithms. For MDPs with finite action and state
dimensions, the optimization over variables can be performed by enumerating
the decision variables and evaluating the respective cost to find the lowest value,
such as in tabular Q-learning [274]. For continuous state and action spaces, RL
is more involved. This thesis focuses on continuous infinite action and state
spaces U and X , respectively. The basic concept for continuous action and
state spaces is to use parameterized function approximators such as NNs that
generalize to unseen data.

The following concepts are first introduced superficially without discussing the
problematic continuous state and action space. These concepts directly apply to
discrete state and action spaces. To scale RL to high dimensional or continuous
state and action spaces, function approximations are used. A discussion on
function approximations is added, along with popular algorithms used within
this thesis, i.e., proximal policy optimization (PPO) and soft actor critic (SAC).

Note that for every MDP, a deterministic optimal policy exists under barely
restrictive assumptions [274]. So far, the policy π : X → U was deterministic,
mapping from states x to actions u. However, in many RL algorithms the

OPTIMAL CONTROL ALGORITHMS 49

policy is defined stochastic as a parameterized distribution π : X → P(U),
where P(U) is a set of probability measures on the control space U . The
conditional probability density for the policy in state x is π(u|x). The following
uses deterministic and stochastic policies depending on the context.

As a performance criterion, typically the discounted cost for the discrete-
time case similar to (2.20) is chosen, which defines the value function for the
deterministic policy π as

Jπ(x) := E

[∞∑
k=0

γkl
(
xk, π(xk)

) ∣∣∣∣∣x0 = x, xk+1 ∼ PX (·|xk, π(xk))
]
, (2.27)

where the notation E [g(x, u, x+) | x+ ∼ PX (·|x, u)] denotes the expectation of
a function g(x, u, x+) over the conditional distribution of the environment
model PX (·|x, u) for consecutive states x+. Such as most online optimal
control approaches, RL aims to find policies to achieve low values of the value
function Jπ(x) for all states x ∈ X . Usually, the policy is learned by interacting
with the environment and observing costs l(x, u) obtained when applying a
deterministic control u = π(x) or, possibly, sampled control u ∼ π(· | x) at
state x.

A particular form of the value function (2.27) is often used in RL, where the first
control u0 is set to a specific value u and all other controls uk>0 follow a particular
policy π. This function is referred to as action-value function Qπ : X × U → R
and can be written as

Qπ(x, u) :=

E

[∞∑
k=0

γkl(xk, uk)
∣∣∣∣∣ x0 = x, u0 = u, uk>0 = π(xk), xk+1 ∼ PX (·|xk, uk)

]
.

(2.28)

Let Π be the function space of all possible policies. Then, the optimal value
function is

J?(x) := Jπ
?

(x) = min
π∈Π

Jπ(x),

which holds for all states x, cf., [35]. The optimal action-value function Q?(x, u)
and the optimal value function are related by

J?(x) = min
u∈U

Q?(x, u),

and
Q?(x, u) = l(x, u) + γ E

[
J?(x+)

∣∣x+ ∼ PX (·|x, u)
]
.

A policy minimizing Qπ(x, u) w.r.t. u in a given state x is called greedy, and,
for Q?(x, u) it is optimal [277]. Therefore, it is sufficient to know Q?(x, u)
to derive an optimal policy. Likewise, when knowing the optimal value

50 OPTIMAL CONTROL

function J?(x), the cost l(x, u) and the model PX (·|x, u), the optimal policy
can be found by

π?(x) ∈ arg min
u∈U

E
[
l(x, u) + J?(x+)

∣∣∣∣x+ ∼ PX (·|x, u)
]
. (2.29)

Dynamic Programming for Finite Horizon Problems

A fundamental algorithm for finding the optimal policy and value function is
dynamic programming (DP) [28, 37], which was adapted to various variants
across computer science, mathematics, and engineering. The basic principle of
DP is to break down a complex problem into simpler overlapping subproblems,
which are solved iteratively. In general, DP can be applied to many different
problems. Sequential decision-making problems such as the considered MDP
are an important subclass of problems where DP can be applied [69]. In the
following, the DP algorithm is stated first for a finite horizon problem, where
the MDP terminates after T steps, and a value function Jk(x) is associated with
each time step k. At the final step k = T , the value function JT (x) is usually
given as part of the problem objective. For example, a certain state x̄ should be
reached at step k = T which could be expressed by a penalty JT (x) = ||x−x̄||2W,2
weighted by the matrix W ∈ Rnx×nx . No discount factor is usually considered
for finite horizon MDPs, i.e., γ = 1. As stated above, DP now breaks down
the MDP over the full horizon T into simpler subproblems. Particularly, the
Bellman equation states that

J?k (xk) = min
uk∈U

E
[
l(xk, uk) + J?k+1(xk+1)

∣∣∣∣xk+1 ∼ PX (·|xk, uk)
]
. (2.30)

This equation relates the value functions J?k , the transition function PX , and the
running cost l between two consecutive steps k and k + 1. It provides a means
to recursively solve the MDP by starting at the final given value function JT (x)
and solving the equation recursively backwards from k = T − 1, . . . , 0 to get
optimal controls uT−1, . . . , u0 and value functions J?T−1, . . . , J

?
0 .

Dynamic Programming for Infinite Horizon Problems

For infinite horizon problem, the Bellman equation (2.30) applies as a fixed
point equation

J?(x) = min
u∈U

E
[
l(x, u) + γJ?(x+)

∣∣∣∣x+ ∼ PX (·|x, u)
]
.

The fixed point equation can not be applied recursively since no terminal
state and value function are given. Furthermore, there is no sequence of value

OPTIMAL CONTROL ALGORITHMS 51

functions. To find such a value function, the Equation (2.30) can be iteratively
applied to the value function by solving

Ji+1(x) = min
u∈U

E
[
l(x, u) + γJi(x+)

∣∣∣∣x+ ∼ PX (·|x, u)
]

in order to generate a series of value function J0(x), J1(x), . . . that converge
to the optimal solution J?(x), starting from an arbitrary initial value
function J0(x) [277]. This method is called value-iteration. From the optimal
value function, the optimal policy can be obtained by (2.29).

Another method to derive the optimal policy and value function is named policy
iteration [35]. Policy iteration iteratively switches between a policy evaluation
and a policy improvement step. Consider any given policy π0 = π. Similar to
value iteration, the policy evaluation

Jπ(x) = E
[
l(x, u) + γJπ(x+)

∣∣∣∣x+ ∼ PX (·|x, u)
]

computes the expectation of bootstrapped costs to obtain a value functions Jπ
under a policy π. In the policy improvement step, the current policy πi is
improved based on the current value function Jπi(x) by Bellman’s equation

πi+1(x) ∈ arg min
u∈U

E
[
l(x, u) + γJπi(x+)

∣∣∣∣x+ ∼ PX (·|x, u)
]
.

It can be shown that the final policy converges to the optimal policy π?(x)
by iterating the policy evaluation and improvement. Policy iteration can be
seen as Newton’s method for solving Bellman’s equation and converges in less
iterations than the value iteration [35]. However, each value iteration is usually
much faster per iteration. The authors in [208] provided a modified policy
iteration algorithm that trades off the value function improvement per iteration
and the iteration time. Many related algorithms exist that aim for a speedup
of the presented DP algorithms, e.g., state aggregation [36] or multi-grid
methods [243].

Value Function Prediction

In the following, two concepts for estimating the value function at a particular
state x are introduced. To estimate the value Jπ(x) of a state x under policy π
of an MDP, Monte Carlo sampling applies a policy π repeatedly, always starting
from the same first state x0, in order to accumulate the received costs lk =
l
(
xk, π(xk)

)
in each state xk ∼ PX

(
· |xk−1, π(xk−1)

)
to obtain sampled returns

G(x) = l0+γl1+γ2l2+. . .
∣∣∣xk ∼ PX (·|xk−1, π(xk−1)

)
, x0 = x, lk = l

(
xk, π(xk)

)
.

52 OPTIMAL CONTROL

By averaging all received returns Gj for each state, where the index j enumerates
the so-called roll-outs, Monte Carlo methods approximate the empirical mean
of the value function in (2.27). These roll-outs terminate only for finite MDPs.
Nevertheless, the sum over exponentially discounted rewards converges quickly
for infinite horizon MDPs. Similar to value iteration, Monte Carlo methods
update a value function estimation Jπj iteratively with iteration j = 0, 1, By
utilizing a parameter α ∈ (0, 1), which can be determined by methods described
in [274], the empirical mean can be incrementally updated by

Jπj+1(x) = Jπj (x) + α
(
G(x)− Jπj (x)

)
. (2.31)

Monte Carlo methods do not require a model, which makes them appealing.
However, samples generated by Monte Carlo sampling exhibit a high variance
and resetting a real system to a certain state may be impossible. Additionally,
it is often hard and expensive to run experiments multiple times. A detailed
overview of Monte Carlo methods that can also be used for off-policy, i.e.,
following one policy but estimating the value of another, can be found in [274].

An additional concept is temporal differences [273], where the empirical
mean G(x) of (2.31) is replaced by the bootstrapped current estimate of the
value function. Bootstrapping refers to updating the value of a state based
on the estimated values of subsequent states instead of waiting for the final
outcome. Thereby, bootstrapping blends real experience with current estimates.
Different variants of temporal difference learning exist. For the basic TD(0)
variant, which predicts one step ahead, the update is defined as

Jπj+1(x) = Jπj (x) + α
(
l
(
x, π(x)

)
+ γJπj (x+)− Jπj (x)

)
,

where x+ ∼ PX (·|x, u). Note that the policy is often stochastic, which requires
sampling from the policy distribution by u ∼ π(·|x). Compared to Monte Carlo
sampling, the temporal difference method has a lower variance but a higher
bias. Temporal differences combine ideas from Monte Carlo sampling with
DP. Like Monte Carlo sampling, it does not assume a known distribution
of the environment model PX . It rather samples the transitions. Similar to
DP, temporal differences use an iteratively updated estimate of the true value
function.

Q-learning

Along the paradigms of DP, the temporal difference prediction could also be
used to iteratively improve the action value function by

Qj+1(x, u) = Qj(x, u) + α

(
l(x, u) + γ min

u+∈U
Qj(x+, u+)−Qj(x, u)

)
,

OPTIMAL CONTROL ALGORITHMS 53

where the control u can, but is not required to, be taken from the minimum of the
previous action-value function Qj(x, u) over controls u and the next state x+

drawn from the environment. Since the action u can be taken arbitrarily
from U , the method is also referred to as the off-policy method. Under some
assumptions [274], it can be shown that Qj(x, u) converge to Q?(x, u) for j →∞.

Function Approximation

As introduced at the beginning of this section, continuous action and control
spaces U and X , respectively, make it impossible to apply the introduced
concepts for each of the uncountable states and controls. A possibility to mitigate
the problem uses parameterized functions, such as NNs, for the policies π̂(x; θ)
and value functions Ĵ(x; θ) and Q̂(x, u; θ), with parameters θ ∈ Rnθ . The hope
is that the functions can be obtained from a finite number of transition samples
but generalize to all relevant unseen states.

Remark 2.3.1. To denote the dependence of a function f(x, y) of a variable x
and a variable y, where y serves as a parameter, the notation f(x; y) and,
likewise, fy(x) are used.

To measure the accuracy of how well a parameterized function Ĵ(x; θ)
approximates the “true” value function Jπ(x; θ), a loss

LJ(θ) =
∫
x∈X

µ(x)
(
Jπ(x)− Ĵπ(x; θ)

)2
dx

can be formulated using the state visitation probability density µ : X → R.
When the policy is optimized during interactions with the environment, the state
visitation distribution can be assumed to correspond to µ(x) [274]. Therefore,
the loss LJ can be minimized by stochastic gradient descent on the samples
occurring during interactions by the weight update

θj+1 = θj + α
(
Jπ(xj)− Ĵπ(xj ; θj)

)
∇θĴπ(xj ; θj)

for closed-loop iterations j = 1, 2, The true value function Jπ(xj) is usually
not available. However, it can be shown that an unbiased estimator of Jπ(xj),
such as the Monte Carlo estimateG(x), converges to the true value function [274].
A bootstrapped value function estimator, such as TD(0), cannot obtain such
guarantees since the bootstrapping introduces an error. However, it is still used
within the so-called semi-gradient method with the parameter update

θj+1 = θj + α
(

l(xj , π(xj)) + γĴπ(xj+1; θj)︸ ︷︷ ︸
bootstrapped approximation of Jπ(xj)

−Ĵπ(xj ; θj)
)
∇θĴπ(xj ; θj),

which ignore the gradient of the bootstrapped value function approximation.

54 OPTIMAL CONTROL

The above approaches use stochastic gradient descent to estimate a value
function. Stochastic gradient descent could be combined straightforwardly with
on-policy Q-learning to derive an approximation Q̂(x, u; θ) of optimal action-
value function. Moreover, off-policy variants require a particular consideration of
the distribution shift induced by the policy used to interact with the environment.
Notably, the combination of off-policy learning, function approximation, and
bootstrapping is known to cause convergence difficulties, cf., “the deadly
triad” [274].

Policy Gradient Methods

Policy gradient methods directly optimize a stochastic policy π(u|x;ψ) or
deterministic policy u = π(x;ψ), parameterized by ψ ∈ Rnψ . For stochastic
policies, the goal is to minimize the objective

min
ψ
Jπψ (ψ), (2.32)

where the value function can be expressed in terms of probability distributions
for the policy and the environment as

Jπψ (ψ) =
∫
x∈X

µπ(x)
∫
u∈U

π(u, x;ψ)l(x, u)dudx = Eu∼π(·|x;ψ),
x∼µπ

[l(x, u)] .

The expectation is computed over µπ(x), which is the discounted state
distribution under π [258]. Particularly, the discounted state distribution
is

µπ(x) =
∫
ξ∈X

∞∑
k=1

γk−1PX ,1(x)PX (ξ → x, k, π)dx,

with the distribution PX ,1(x) for the initial state and the probability
density PX (ξ → x, k, π) at state x after transitions for k steps from state ξ ∈ X .
Remarkably, this state distribution violates some basic properties of probability
distributions. The optimization problem in (2.32) is a complicated formulation
since it involves the influence of the parameters ψ on the stochastic policy, which,
again, influences the next state obtained from the stochastic environment.

The policy gradient theorem [275] is utilized to get an expression for the
stochastic gradient

∇ψJπψ (ψ) = −Eu∼π(·|x;ψ),
x∼µπ

[Qπψ (x, u)∇ψ log π(u | x;ψ)] . (2.33)

This expression of the policy gradient allows one to directly use control
samples uj ∼ π(·|x;ψ) and transition samples xj ∼ µπ, that are obtained
when applying the policy π(u|x;ψ) to the environment, to get a parameter
update

ψj+1 = ψj − αQπψ (xj , uj)∇ψ log π(uj | xj ;ψ).

OPTIMAL CONTROL ALGORITHMS 55

The action value function Qπψ(xj , uj) is usually approximated. For example,
a Monte Carlo roll-out can be used, resulting in the particular REINFORCE
algorithm [305]. Monte Carlo roll-outs do not require additional parameters.
However, also parameterized action value functions Qθ(x, u) are used to
approximate Qπψ (x, u), which result in the so-called actor-critic algorithms.

The policy gradients can also be computed for deterministic policies, which is,
in fact, more sample efficient but requires a particular exploration strategy [258].
A wide variety of algorithms builds on the main principles described above. The
main distinctions are whether they use a stochastic policy, sample online or
offline, and how the critic is approximated. Often additional, less fundamental,
modifications make them powerful in practice, e.g., experience replay [274],
smoothing of value function [98] or using two action value functions [119] to
overcome the so-called overestimation bias. Two particular variants used in this
thesis are explained briefly, i.e., SAC and PPO.

Soft Actor Critic

The soft actor critic (SAC) algorithm [117] is an off-policy algorithm that utilizes
a stochastic policy. A core feature of SAC is a modified cost function l′(x, u; θ)
that is based on the maximum entropy framework for RL, cf. [129, 327].
Particularly the cost

l′(x, u; θ) = l(x, u) + ωH (π(·|x; θ))

with weight ω ∈ R≥0 is used instead of the running cost l(x, u). The entropy

H
(
π(·|x; θ)

)
= E [log π(·|x; θ)]

is a measure of the information or the randomness of a probability distribution,
and therefore, promoting a high entropy favors the exploration. Although the
cost function was changed in SAC, it can be shown that by specific algorithm
extensions, the optimal value function can be recovered [116]. SAC improves
the sample efficiency and leads to a more robust training, i.e., it is less brittle
concerning hyper-parameter tuning [117].

Proximal Policy Optimization

The proximal policy optimization (PPO) algorithm [250] is an on-policy RL
algorithm to improve a stochastic policy. A key feature of PPO is its ability to
update the weights of a parameterized stochastic policy and a parameterized
value function by a batch of sampled trajectories. Therefore, PPO can
utilize multiple parallel environment simulations and speed up the training.
PPO extends on ideas of the trust region method [249], where a surrogate
loss regularizes the parameter update of the policy by constraining it with

56 OPTIMAL CONTROL

the parameters of the previous policy. Like SAC, PPO is less sensitive to
hyperparameter tuning than trust region methods.

Chapter 3

Vehicle Models for Motion
Planning

This chapter introduces relevant vehicle models for motion planning and
simulation as ordinary differential equations (ODEs) in continuous time.
Moreover, several obstacle avoidance formulations are introduced.

The remainder of this chapter is outlined as follows. First, in Sect. 3.1, the
double-track model is stated as the highest-fidelity model used for simulation
within this thesis. Consecutively, the model fidelity is reduced via single-track
models in Sect. 3.2 and 3.3 towards a point-mass model in Sect. 3.4. Next, in
Sect. 3.5, general vehicle components such as tire modeling, steering models, and
powertrain concepts are introduced on a high level. The models are compared
in Sect. 3.6. In Sect. 3.7, the projection of the Cartesian vehicle model on a
reference curve is elaborated in detail. The final Sect. 3.8 of this chapter focuses
on collision avoidance formulations.

The illustrated models differ in fidelity, i.e., how accurately they describe the
actual physical motion, and play a pivotal role in accurately representing real-
world dynamics. Similarly to [13, 318], four distinct vehicle model categories –
a point-mass, kinematic single-track, dynamic single-track, and double-track
model – are compared, highlighting their respective advantages, limitations,
and applications in optimization-based motion planning.

Above all, the classification of vehicle models to these proposed categories is
common but does not precisely define the models. Instead, a conceptual group of
models is considered for each classification. For example, this classification does
not specify which tire force model is used or how the steering dynamics are chosen.
Hence, additional classifiers may be added to the model description, such as
in [318]. In general, vehicle dynamics modeling can become arbitrarily complex

57

58 VEHICLE MODELS FOR MOTION PLANNING

and is not the main topic of this thesis. Therefore, the classification relates to
the main characteristics relevant to this work, and simplifying assumptions are
made on the categorization.

Using higher fidelity vehicle models as dynamic functions within optimization
problems comes at the cost of more states and usually increases nonlinearity.
The point-mass model, higher-order linear models, e.g., [104], or a linearization
around a set point allows for a linear formulation of the dynamics and, therefore,
to stay in the realm of quadratic programs (QPs). Solving highly nonlinear
optimization problems with a large number of states comes with an increased
computational burden and requirements for the optimization problem solver.
Suppose the online computation time of the controller or planner is the limiting
factor of the sampling frequency on the embedded platform. In that case, the
resulting lower sampling frequency may yield worse closed-loop performance, as
shown, e.g., in [153].

Moreover, higher fidelity models require more parameters. Obtaining some
of these model parameters may be highly nontrivial and subject to expensive
system identification procedures.

The following introduction of vehicle models uses location index identi-
fiers ∗ ∈ {r, f} to refer to either the rear or front location of a vehicle and,
likewise, • ∈ {rl, rr,fl, fr} to refer to the rear left, rear right, front left or front
right location-related variable. For instance, the tire velocities are referred to
as ωt,• to reference each of the possible velocities in the text for the four wheels.

3.1 Double-Track Model

As the double-track model is only used for simulation in this thesis and not within
any of the contributed planners or controllers, it is only described conceptually.
The authors in [13] provide a comprehensive overview of the double-track model
formulation used in this thesis.

The double-track model is the lowest-fidelity model that uses all four wheels to
describe the physical vehicle motion. The modeling of all four wheels allows for
considering different load distributions during dynamic maneuvers, significantly
affecting the transmitted force between the tires and the road. For example,
the load on the outer wheels is higher in curves due to the centrifugal force.
Additionally, all four wheels’ torques and steering angles may be actuated
individually to achieve high performance in critical driving scenarios [319]. Even
if the wheels can not be controlled individually, most vehicles have different
steering angles on the wheels to achieve specific handling properties. For
example, the Ackermann steering uses different front steering wheel angles in
order to have no longitudinal slip caused by cornering [113, p. 88]. In a more
straightforward planar form, the double-track model assumes a rigid chassis, as

DYNAMIC SINGLE-TRACK MODEL 59

in [96] or [319]. More modeling details can be added by including the spring
and dampers of each wheel.

3.2 Dynamic Single-Track Model

The dynamic single-track vehicle model is a medium-fidelity vehicle model that
captures a vehicle’s dynamic motion, such as drifting and tire force relations,
but neglects lateral load transfer and spring-damper dynamics. Nevertheless,
it offers a compromise for control systems due to its fewer states, moderate
nonlinearities, and often sufficient modeling of important physical aspects such
as tire forces.

Three different coordinate frames are used to describe individual parts of the
vehicle, i.e., the Cartesian “earth” global frame (C) with unit vectors (xe ∈
R2, ye ∈ R2), the vehicle frame (V) with unit vectors (xv ∈ R2, yv ∈ R2) and
the tire frame (T) with unit vectors (xt ∈ R2, yt ∈ R2). An overview of different
symbols is given in Fig. 3.1. In fact, the velocity in the longitudinal direction
in the vehicle coordinate frame at the center of gravity (CG) is vx ∈ R and
vy ∈ R, respectively, for the lateral vehicle frame direction. The vehicle velocity
vector in the Cartesian coordinate frame at the CG is denoted as v ∈ R2, at
the front tire as vf ∈ R2, and at the rear tire as vr ∈ R2. The heading angle of
the vehicle in the Cartesian frame is denoted as ϕ and the related yaw rate as
ω. The deviation of the vehicle body frame heading angle to the angle of the
actual velocity vector is denoted by the slip angles for the respective position,
with β at the CG and β{f,r} at the two tires.

The vehicle model comprises a minimum of six states, with three states

xp =
[
px py ϕ

]> ∈ R3

that describe Cartesian position (px, py) and yaw or heading angle ϕ and three
states related to their velocities

xṗ =
[
vx vy ω

]> ∈ R3,

with the vehicle frame velocity components (vx, vy) and the yaw rate ϕ. The
state vector is

x =
[
x>p x>ṗ

]>
. (3.1)

In automotive systems, a cascade of low-level controllers for the subsystems
involved in the overall vehicle actuation is often used, and therefore, the
particular choice of controls varies. Here, it is assumed that the revolution
speed ωt,∗ of the wheels are control inputs. Alternatively, the drive and brake
torque acting on the two modeled wheels may be used as four independent
controls. In this case, the tires are modeled as subsystems that introduce

60 VEHICLE MODELS FOR MOTION PLANNING

new states for the revolution speed. Another common alternative would be to
directly take the longitudinal acceleration force acting on the vehicle frame as
an input, e.g., the vehicle model in [293]. This ignores the tire-road interaction
in the longitudinal direction. In addition to the tire revolution speeds ωt,∗, the
steering angle δ is used as control. Therefore, the input vector reads as

u =
[
ωt,f ωt,r δ

]>
. (3.2)

The vehicle parameters include its mass m, its inertia Iz at the CG, the wheel
base l, the front and rear wheelbases lr, lf relative to the CG, with l = lr + lf , and
tire parameters which are described in Sect 3.5. Figure 3.1 shows the velocity
and force vectors related to the vehicle model. The tire forces within the
tire coordinate frame are denoted as Fl,f(vx, vy, ω, ωt,f , δ) and Fl,r(vx, vy, ω, ωt,r)
for the longitudinal tire forces in the yt direction, and Fc,f(vx, vy, ω, δ) and
Fc,r(vx, vy, ω) for the lateral cornering tire forces in the xt direction and are
functions of several vehicle states and the controls.

The tire forces for the front wheel are projected onto the vehicle coordinate
frame related to the steering angle δ by

Fx,f(vx, vy, ω, ωt,f , δ) = Fl,f(vx, vy, ω, ωt,f , δ) cos(δ) + Fc,f(vx, vy, ω, δ) sin(δ),

Fy,f(vx, vy, ω, ωt,f , δ) = Fl,f(vx, vy, ω, ωt,f , δ) sin(δ)− Fc,f(vx, vy, ω, δ) cos(δ),

and for rear wheels without active steering, the tire forces act directly on the
vehicle frame by

Fx,r(vx, vy, ω, ωt,r) = Fl,r(vx, vy, ω, ωt,r),

Fy,r(vx, vy, ω) = Fc,r(vx, vy, ω).

From Newton’s laws of motion the dynamics ẋ = f(x, u) can be obtained as

ṗx = vx cosϕ− vy sinϕ,

ṗy = vx sinϕ+ vy cosϕ,

ϕ̇ = ω,

mv̇x = 2Fx,f(·) + 2Fx,r(·) +mωvy + Fres(vx),

mv̇y = 2Fy,f(·) + 2Fy,r(·)−mωvx,

Izω̇ = 2Fy,f(·)lf − 2Fy,r(·)lr.

DYNAMIC SINGLE-TRACK MODEL 61

lr

lf

αr = −βr

αf

βf
δ

ϕ

ϕ xe

yeyv
xv

xt

yt

v β

ω

vf

vx
vy

Fres

α∗

δ

Fc,∗

Fl,∗

Fy,r

Fx,r

Fy,f

Fx,f

vx,∗

vy,∗

vr

v∗

CG

β∗

Figure 3.1: Dynamic single-track vehicle model in the Cartesian coordinate
frame and a tire view in the tire coordinate frame.

62 VEHICLE MODELS FOR MOTION PLANNING

The velocity states are expressed in the vehicle body frame (V), and the
corresponding tire, friction, and drive forces are explained in Sect. 3.5. Since the
single-track model only uses one tire per axle, the tire forces must be multiplied
by 2. Particularly, this has to be considered within the tire and drive train
models to relate the force to single tires. The forces from the tires F{x,y},∗ act on
the vehicle body frame. As a simplification, all driving resistance forces Fres(vx)
act on the CG and only into longitudinal vehicle coordinate direction.

3.3 Kinematic Single-Track Model

The kinematic single-track model and the dynamic counterpart use the same
geometric model, i.e., the model uses two instead of four tires at the wheelbase
distance l, see Fig. 3.2. However, the fundamental difference is the negligence
of tire slips. Therefore, the longitudinal tire force can instantly and directly
transmit to the road surface without considering the road friction parameters
or tire characteristics. Moreover, irrespective of the lateral acceleration, the
tires move kinematically in their heading direction with zero lateral slip. This
clearly is a significant simplification, but, according to [206], the motion is
described sufficiently well for lateral accelerations alat below a certain threshold
of alat ≤ 0.5µg, where g is the gravitational constant and µ is the road friction
parameter. This limitation can be used in model-based planners and controllers
as a constraint to obtain a reasonable performance, even at higher speeds. The
authors in [151] used the kinematic single-track model even for a racing low-level
controller in a miniature race track at the performance limits of the vehicle.

The kinematic single-track model uses a minimum of four states

x> =
[
px py ϕ v

]
.

A common choice of the reference point (px, py) is the rear axle since it simplifies
the dynamic equations to

ṗx = v cos(ϕ), ṗy = v sin(ϕ), ϕ̇ = v

l
tan(δ), mv̇ = Fd + Fres.

Due to the assumption of a direct force transfer without losses between the tires
and the road, the acceleration or braking force is not related to one specific tire
and lumped to the force Fd. In addition, a resistance force Fres is modeled as a
longitudinal force, similarly to the dynamic single-track model.

3.4 Point-Mass Model

The point-mass model can only describe the actual vehicle motion with stark
limitations. It is usually used to plan a trajectory in the two-dimensional

POINT-MASS MODEL 63

lr

lf
δ

ϕ

φ

CG
vxv

vf

−Fresev xe

yeyv

Fdev

xv

Figure 3.2: Kinematic vehicle model.

coordinate frame by a chain of integrators in both coordinates. A lower-level
controller then tracks the trajectory. When deploying an integrator chain,
the smoothness of the trajectory is expressed by its derivatives and can be
constrained or weighted in the objective of an optimization-based planner.
Usually, a chain of one to four integrators is used, with the inputs resembling
the snap, the jerk [209], the acceleration [227] or the speed [213]. Here,
the acceleration (ax, ay) is used as input and defines the following governing
equations in the Cartesian coordinate frame

ṗx = vx, ṗy = vy, mv̇x = ax, mv̇y = ay.

For optimization-based vehicle motion planning, the point-mass model is often
used to provide a linear model formulation and, subsequently, a convex or
quadratic optimization problem. A convex formulation of boundary constraints
further requires a transformation into curvilinear coordinates, which are
discussed in Sect. 3.7. Unfortunately, the projection into curvilinear coordinates
makes the point-mass model highly nonlinear again. Mitigation strategies for
a convexification are proposed rigorously in [86], or simplified in [213]. For
highway motion planning, the curvature can be assumed to be close to zero for
motion planning not at the handling limits [213].

64 VEHICLE MODELS FOR MOTION PLANNING

3.5 Tires and Longitudinal Dynamics

In the following, the specifics of tires and longitudinal dynamics, i.e., steering,
braking, powertrain modeling, and resistance forces, are summarized into a
small but necessary discussion for this thesis. These components are typically
separable parts of the general vehicle model.

3.5.1 Tire Models

Tires are typically modeled using a vertical load force Fz and a road friction
coefficient µ, with µ ≥ 0. The vertical load may depend on vehicle states
since the load transfer may distribute the load force unequally during dynamic
maneuvers. However, often, the vertical force is assumed to be constant and
computed by equally distributing the vehicle mass m among the tires to obtain
for each tire Fz = 1

4mg, where g is the gravitational acceleration. The external
road friction parameter depends on the road condition and is close to µ = 1 for
dry roads and positive but closer to 0 for icy road conditions.

Tire models now aim to describe the forces transmitted from the road to the
vehicle body as functions of the vehicle state and the road parameters. Omitting
transient tire behavior leads to static functions of the states [113] that are usually
split into a lateral (cornering) tire force component Fc,• and a longitudinal tire
force component Fl,• in the tire coordinate system. This force can be computed
for all four tires individually or approximated for the two tires on an axle in
single-track models.

Many different tire models emerged, each with distinct advantages. Among
the most popular models are the Pacejka model [198], the Dugoff model [84]
or the Burckhart model [220]. While the Dugoff and Burckhart model focus
on computational efficiency by reducing complexity, the Pacejka model is more
flexible and capable of fitting a broad range of data. In this thesis, only the
Pacejka model is used. The model is briefly explained in the following.

The Pacejka model describes the tire forces using parameterized functions
designed to fit measured data. The tire model uses longitudinal slip variables

σ• = vt,• − ωt,•rt,•

vt,•
,

for each tire, with the vehicle body velocity vt,∗ at a specific tire, the tire angular
speed ωt,∗ and the effective tire radius rt,∗. Moreover, lateral slip angles αt,∗ are
used that can be approximated as functions of the general vehicle state x [113]

TIRES AND LONGITUDINAL DYNAMICS 65

with ∗ ∈ {l, r} by

α∗f = δ∗f − βf = δ − arctan
(
vy + lfω

vx

)
,

α∗r = −βr = − arctan
(
vy − lrω
vx

)
,

and define the angle between the tire heading and the speed vector at a specific
tire. Here, it is assumed that the Pacejka model can provide a sufficient model
for the tire forces with Fl,∗ = fpac,l,∗(σ∗, Fz, µ) and Fc,∗ = fpac,c,∗(α∗, Fz, µ),
with more details given in the original paper [198] and an exhaustive tire
modeling description in [113].

The tire force functions fpac,l,∗(σ∗, ·) and fpac,l,∗(α∗, ·) are nearly linear for
values close to σ∗ = 0 and α∗ = 0, respectively. At certain threshold values,
these forces saturate, and the tires start drifting. However, the maximum
transmitted force is achieved under usual conditions in the transition from the
linear to the drifting phase. Due to the linearity around the origin that coincides
with the usual operating range, these force functions are often linearized. When
used within an optimization problem, the slip variables are constrained to the
linear region, preventing the tire from drifting.

3.5.2 Longitudinal Forces

Longitudinal forces refer to separate sources that influence the longitudinal
motion of a vehicle [317], which include the powertrain, resistance forces such
as air drag, and the braking force.

The vehicle’s powertrain comprises the motor and the transmission system,
which allocates torque to the wheels. As these dynamics are highly complex, they
are often considered a controlled subsystem with specific attributes provided
by the manufacturer. It is usually assumed that the torque at the wheels can
be provided instantaneously. However, it is limited to a particular nonconvex
set in the space that is spanned by the rotational tire speeds ωt, or, similarly,
the vehicle speed v, and the torque [169, 64, 317]. The set constraining the
possible torques describes an inverse dependency on vehicle speed, where at high
velocities, less torque can be provided [169]. The engine type has implications
for the transmission system. Most prominently, either electric, combustion
or hybrid engines are used. It may also be necessary to control the gear in
manual transmission systems, where each gear has its own characteristic torque
allocation set. Besides feasibility, the vehicle speed and the allocated torque
vastly determine the engine’s efficiency, which may be used to optimize energy
consumption.

66 VEHICLE MODELS FOR MOTION PLANNING

The braking system has a much lower time constant than the allocation of a
driving force. Therefore, the braking force is modeled as an instantaneous force.
When no tire models are used, the braking force is modeled as a deceleration
force on the vehicle frame.

External longitudinal forces Fres(v) include friction forces, which are the rolling
resistance and the air drag, modeled as a function of the vehicle velocity v by

Fres(v) = −crollsign(v)− cdragv
2, (3.6)

with friction coefficients croll and cdrag. Moreover, a term −mg sin(αroad) may
be added to model the gravitational force on inclined or declined roads.

3.6 Comparison of Models

The introduced models, i.e., the double-track, dynamic single-track, kinematic
single-track and point-mass model were compared in several works [113, 321, 311,
153, 206, 317]. While [113] compares the models mainly from the perspective
of simulation, the others compare the models primarily when used as part of a
planning and control algorithm. The author in [113] argues that the double-
track model is preferable to single-track models besides academic purposes and,
presumably, for simulation. The author motivates it by the inability of single-
track models to account for different steering angles, among other inaccurate
approximations.

The proposed models have different “degrees of freedom”, which are the number
of configuration states that define the configuration, i.e., the position and
orientation, of the model completely. Velocities describe the rate of change of
the configuration states over time but do not determine the configuration of
the system. In general, a mechanical system with n degrees of freedom can be
described by n second order differential equations in time, with 2n constraints
for positions and velocities [101].

From the planning perspective, the double-track model may be necessary and
proper if the particular influence of each tire is vital, e.g., in over-actuated
electric vehicles at the handling limits [319]. Of course, this requires high
computational resources.

For many applications, the dynamic single-track model may be sufficient even
for higher speeds within a planner or controller [293, 167, 317]. It still allows
for different loads, brake, and torque forces on the axles, as well as a yaw
angle that is defined through dynamic relations rather than rigid kinematic
relations. Depending on the particular tire model, the dynamics may still
be highly nonlinear and, thus, pose challenges to optimization-based control
techniques. Moreover, the parameters of the tire may be hard to identify.

COORDINATE FRAMES FOR MOTION PLANNING 67

The kinematic single-track model does not allow the distribution of the torques.
Neither the braking forces between wheels nor tire slips are considered. However,
the lateral acceleration may be constrained so that the resulting slips can
be omitted [151]. Additionally, tire models are not applicable since only
kinematic relations are considered. An advantage of this model is the few
required parameters, few states, and the rather mild nonlinearities, which
make it appealing for optimization-based planning and control. Optimization
problems based on computationally simpler models may achieve higher sampling
frequencies. This model may be particularly favorable for long-horizon planning
at a higher hierarchical level that assumes a lower-level tracking and stabilizing
controller.

Comparing the dynamic and kinematic single-track models for model predictive
control (MPC) was repeatedly performed in the literature, e.g., [318, 311, 153,
206]. Most authors conclude that the dynamic single-track model is necessary
when high lateral accelerations and low friction coefficients µ are encountered.
The authors in [206] specifically name a decision criterion alat ≥ 0.5µg for the
lateral force alat. The authors in [153] compare the two models by including
the sampling times and find that the kinematic model with a higher sampling
time may outperform the dynamic model. Notably, the authors use an Euler
integration scheme with relatively large sampling times.

Obviously, the point-mass model is quite different from an actual vehicle in the
real world, and the control inputs do not even match. However, the computed
trajectory can provide a smooth trajectory with a constrained acceleration,
which may be sufficient for higher-level planners [213, 181]. In autonomous
driving (AD), finding a collision-free, feasible trajectory to a point-mass model
may already be challenging. A considerable advantage of the point-mass model
is its linear dynamical model, allowing linear MPC formulations or, as part
of a combinatorial problem, for mixed-integer quadratic program (MIQP)
formulations [213, 227]. A disadvantage for particularly low speeds is the
missing kinematics and the heading angle.

Tab. 3.1 compares features and their applicability to different vehicle models
relevant to this thesis.

3.7 Coordinate Frames for Motion Planning

The vehicle models introduced so far are formulated in the Cartesian coordinate
frame (CCF). In the following, a coordinate frame is proposed that is specifically
suited for vehicle motion planning and control on roads. An optimal control
problem (OCP) for vehicle motion planning and control is considered, such as
formulated in (1.1). Moreover, a structured environment is assumed, i.e., a
detailed road map is available, and the task related to OCP (1.1) is restricted

68 VEHICLE MODELS FOR MOTION PLANNING

PM KST DST DT

degrees of freedom 2 3 ≥ 3 ≥ 3

Mechanical Influence
steering kinematic, yaw motion 7 3 3 3

air drag 3 3 3 3

rolling resistance 7 3 3 3

powertrain model 7 (3) 3 3

lateral forces 3 7 3 3

longitudinal tire models 7 (3) 3 3

lateral tire models 7 7 3 3

different steering angles on axles 7 7 7 3

chamber angles 7 7 7 3

axle differential 7 7 7 3

chassis roll 7 7 7 3

chassis pitch 7 7 (3) 3

suspension 7 7 7 3

Application
path planning 3 3 7 7

trajectory planning 3 3 3 7

vehicle control 7 (3) 3 3

simulation 7 (3) 3 3

Table 3.1: Comparison of vehicle models: point-mass model (PM), kinematic
single-track model (KST), dynamic single-track model (DST), double-track
model (DT). The following symbols are used: 3. . . common/possible, (3). . .
uncommon/possible, 7. . . impossible.

COORDINATE FRAMES FOR MOTION PLANNING 69

Ñ (σ1)

N (σ1)

N (σ2) = Ñ (σ2)T (σ1)

T (σ2)

r(σ1) = 1
κ̃(σ1)

γ(σ)

xe

ye

Figure 3.3: Tangent, normal and signed normal vector along a curve γ(σ).

to an environment with a road. This road could potentially be a race track for
autonomous racing or a highway consisting of several lanes.

In order to include the road alignment specifications in the OCP formulation,
the road geometry is taken into account. Therefore, let the road center curve

Γ := {γ(σ)|σ ∈ [0,∞)}

be specified by a function γ>(σ) =
[
px(σ) py(σ)

]
with γ : R≥0 → R2,

parameterized by its path length σ ∈ R≥0.

Remark 3.7.1. The spatial derivative ∂f(σ)
∂σ of a function f : R≥0 → R,

where σ is the path length, is denoted in the following by f ′(σ) := ∂f(σ)
∂σ .

Consider the tangent vector

T (σ) := γ′(σ)

of a curve which points in the direction of the curve γ(σ) that progresses with σ,
cf., Fig. 3.3. Due to the parameterization by its path length, the tangent vector
is a unit vector, where ||T (σ)||2 = 1 holds. The change of the tangent vector
along the reference path T ′(σ) is the curvature vector. It is perpendicular to
the tangent vector, with T >(σ)T ′(σ) = 0 and points “inside” the curve. The
magnitude of the curvature vector is the curvature κ̃(σ) with

κ̃(σ) := ||T ′(σ)||2 = ||γ′′(σ)||2 =
√
p′′x(σ)2 + p′′y(σ)2

and the normalized curvature vector is the normal unit vector Ñ (σ), with

Ñ (σ) := T
′(σ)
κ̃(σ) .

70 VEHICLE MODELS FOR MOTION PLANNING

The vectors T and Ñ define an orthonormal basis that moves along the reference
curve with σ. They are also referred to as the Frenet-Serret coordinate system in
two dimensions. The kinematic progression of the coordinate frame is described
by the Frenet-Serret formulas

T ′(σ) = κ̃(σ)Ñ (σ),

Ñ ′(σ) = −κ̃(σ)T (σ).

In order to avoid the flipping of the normal unit vector Ñ (σ) emerging from
a change of the “turning” direction of a curve, the normal unit vector can
be formulated as a 90 degree perpendicular counter-clockwise rotation of the
tangent vector with the rotation matrix R90. This yields the slightly modified,
signed normal unit vector N (σ) = R90T (σ), cf. [207] for details. By using the
signed curvature κ(σ), which is positive if the curve turns left in the direction of
motion and negative otherwise, the Frenet-Serret formulas can also be stated as

T ′(σ) = κ(σ)N (σ),

N ′(σ) = −κ(σ)T (σ).
The curvature can be obtained from the signed curvature by

κ̃(σ) = |κ(σ)|
and, vice versa, by

κ(σ) = κ̃(σ)N>(σ)Ñ (σ).
Notably, the curvature can also be related to the turning angle ϕγ(σ), which
is the angle of the tangent vector T (σ), with T (σ) =

[
cosϕγ(σ) sinϕγ(σ)

]>.
By taking the derivative of the tangent vector, it follows that

T ′(σ) = ϕγ′(σ)
[
− sinϕγ(σ) cosϕγ(σ)

]> = ϕγ′N (σ). (3.7)
Relating (3.7) to the Frenet-Serret formulas, the signed curvature can be
expressed by the change of the turning angle by

κ(σ) = ϕγ′(σ).
An interpretation of the curvature can be given by considering the concept
of the osculating circle, cf., Fig. 3.4. At any point σ of the curve where the
curvature is nonzero, i.e., κ(σ) 6= 0, a circle with the center

c(σ) = γ(σ) + 1
κ(σ)N (σ)

and radius
r(σ) = 1

|κ(σ)|
can be found that has the same tangent and normal vector and has the same
curvature as the reference path Γ at γ(σ) and locally approximates Γ at σ. The
curve defined by c(σ) is called the evolute of Γ.

COORDINATE FRAMES FOR MOTION PLANNING 71

γ(σ)

osculating circle

evolute c(σ)
c(σ1)

r(σ1)
r(σ2)

T (σ1)

T (σ2)

Figure 3.4: Conceptual drawing of an evolute and osculating circle.

3.7.1 Projection of Configuration States

At this point, several important concepts related to a planar curve Γ have been
introduced. In the context of AD, this curve may be the center line of a road.
This curve can be used as part of an OCP that is used to formulate the motion
planning problem. The position states of a planned trajectory in OCP (1.1)
are typically closely aligned with the road. In other words, the trajectory and,
potentially, boundary constraints are curvilinear to the road’s center line. This
alignment is also manifested in the cost specifications. For example, a typical
cost in autonomous racing would involve driving as far as possible within a
given time interval within the road boundaries. In highway driving scenarios,
part of the cost may be driving close to the current lane center. Altogether,
four objectives in autonomous driving may be related to the road geometry: (i)
the road-aligned progress, (ii) the road-aligned velocity, (iii) the road-aligned
tracking costs, and (iv) road-aligned boundary constraints. The following shows
how these objectives can be formulated numerically efficiently in an OCP.

Assume the two-dimensional Cartesian position state p(t) =
[
px(t) py(t)

]> ∈
R2 as part of the Cartesian state vector x(t) ∈ Rnx . For the Cartesian position
state p(t), a distance d(σ, t) = p(t) − γ(σ) is formulated between the vehicle
position and the curve at some position σ, see Fig. 3.5. The closest point γ(s(t))
on the path γ(σ) can be found by solving the unconstrained optimization
problem

s(t) = arg min
σ
‖d(σ, t)‖2 . (3.8)

The longitudinal path progression s(t) describes the projected position along

72 VEHICLE MODELS FOR MOTION PLANNING

d(s, t)

d(σ, t)

p(t)

γ(s)

γ(σ)

Figure 3.5: Distance of a point p(t) to a curve γ(σ) parameterized by its path
length σ.

the path γ(σ) and can be used along with its derivative ṡ(t) to specify the
costs related to (i) and (ii). For example, a linear cost -wss could be used to
formulate a maximization of progression, as, for instance, in [236].

The closest distance to the path d(t) = d(s(t), t) can be used to formulate a center
line tracking cost (iii) and boundary constraints (iv). In many applications, the
distance to the path is also referred to as contouring cost, and its minimization
is a primary objective in the considered problem, e.g., in [157] for biaxial
contouring machines, in [167] for autonomous vehicle racing and in [236] for
drone racing. It can be stated as a multiple of the signed normal vector N (t)
by d(t) = n(t)N (t), where n ∈ R is the signed distance which is positive if the
point p(t) is left of the curve in the direction of progress. In the following, time
dependency is dropped for a more concise notation.

Most vehicle states of Chapter 3 comprise a heading angle ϕ. The heading angle
can be related to the turning angle of the curve γ(σ) by defining the heading
angle mismatch α as

α := ϕ− ϕγ(s).

In the following, two variants of a state vector are defined. The symbol • =
{F,C} is used to refer to the Frenet coordinate frame (FCF) or the CCF. One
state vector is defined in the CCF, while the other state vector is defined by
substituting the Cartesian states with road-aligned states. Let the position p> =[
px py

]
and the heading angle ϕ be part of a CCF configuration state vector

xc,C =
[
px py ϕ

]>. The configuration space usually has the same dimension
as the degrees-of-freedom of a vehicle or, in general, a robot, cf., [159]. Simplified,

COORDINATE FRAMES FOR MOTION PLANNING 73

it comprises all possible position and orientation states of a vehicle. Usually,
the three states of the position and the heading angle are formulated in the
Cartesian or Frenet space. Similar to the Cartesian states, let the projected
position s on the reference curve Γ, the lateral distance n and the heading angle
mismatch α be part of an FCF configuration state vector xc,F =

[
s n α

]>.
Either the CCF state xc,C or the FCF state xc,F along with the reference curve Γ
fully define the vehicle configuration. Therefore, the full state vector can be
composed either with FCF or CCF configuration states and coordinate frame
independent states x¬c ∈ Rnx−3, with

x• =
[
xc,•

x¬c

]
.

The full CCF state vector xC corresponds to the usual vehicle state x in
Cartesian coordinates and comprises also the coordinate independent states x¬c.
Including the controls u ∈ Rnu , the ODE ẋ = f(x, u) in the CCF describes
the vehicle motion, as in Chapter 3. For example, in the kinematic model of
Sect. 3.3, the state x¬c would comprise the velocity v and the steering angle δ
and the controls would be acceleration force Fx and the steering angle rate r.

Note that the FCF states together with Γ define the configuration uniquely
almost everywhere, excluding the state space covered by the evolute c(σ), as
detailed in the course of this chapter. The FCF configuration state can be
obtained from the CCF configuration state by what is called here the Frenet
transformation

xc,F = F(xc,C) = F(P cx) =

 s(
p− γ(s)

)>N (s)
ϕ− ϕγ(s)

for (

p− γ(s)
)>N (s)κ(s) 6= 1

and
s = arg min

σ
||d(σ)||2.

The matrix P c ∈ R3×nx selects the position and heading angle states of x, or
likewise, of the FCF state xF. Similarly, the longitudinal state s is selected
by P s ∈ R1×nx and the lateral state n is selected by P n ∈ R1×nx from the FCF
states. The inverse Frenet transformation is easier and given as

xc,C = F−1(xc,F) =
[
γ(s) + nN (s)
ϕγ(s) + α

]
.

74 VEHICLE MODELS FOR MOTION PLANNING

OCP (1.1) can now be reformulated to a general form that includes the Frenet
transformation as the projection on the reference path by

min
x(·), u(·)

J¬c(x¬c(·)
)

+ Jc,F(F(P cx(·))
)

+ Ju
(
u(·)

)
(3.9a)

s.t.

x(t0) = x0, (3.9b)

ẋ(t) = f(x(t), u(t)), t ∈ [t0,∞), (3.9c)

P cx(t) ∈ Xfree(t), t ∈ [t0,∞), (3.9d)

P nF
(
P cx(t)

)
∈ Xrd

(
P sF(P cx(t))

)
, t ∈ [t0,∞), (3.9e)

x¬c(t) ∈ X¬c, t ∈ [t0,∞), (3.9f)

u(t) ∈ U, t ∈ [t0,∞), (3.9g)

and represents many vehicle motion planning problems on roads. The
objective (3.9a) contains a cost J¬c

(
x¬c(·)

)
for states that are coordinate frame

independent. For example, the yaw rate or the difference between the vehicle
and reference velocities are typically penalized. The CCF states xc,C = P cx are
rarely directly part of the cost in a structured road environment, besides in a
trajectory tracking formulation. If the cost involves trajectory tracking, it can be
likewise formulated in the FCF. Trajectory and, more common, path tracking
costs related to the FCF states xc,F = F(P cx) are often considered as main
objective, e.g., [167, 85, 151]. For instance, the path progression state s is often
used in autonomous racing to maximize progress as an approximation of time-
optimal driving [167, 41]. The lateral distance to the reference lane Γ, which may
be the lane center, is accounted for with a cost on the lateral state n [181, 213].
Collision avoidance constraints are usually defined on Cartesian earth frame
states xc,C = P cx and denoted by the nonconvex set Xfree ⊆ R3 in (3.9d) but can
also be defined using road aligned states xc,F using over-approximations [228]
of the obstacles in the FCF. In the constraints (3.9e) road-aligned boundary
constraints are formulated by means of the compact set or tube Xrd(s) ⊂ R,
defining constraints on the lateral state n. The constraints on the lateral state
depend on the projected longitudinal position s along the path Γ. Equation (3.9f)
comprises coordinate frame independent state constrains X¬c ⊆ Rnx−3, e.g.,
constraints on the maximum velocity.

Notably, the projected states xc,F appear in the cost (3.9a) and road boundary
constraints (3.9e), whereas the CCF states appear in the dynamics and the
collision avoidance constraints (3.9d).

Besides the potential nonlinearity and nonconvexity, several structures of
OCP (3.9) make it hard to solve and require both simplifications and efficient

COORDINATE FRAMES FOR MOTION PLANNING 75

numerical solvers. The collision avoidance constraints (3.9d) are nonconvex,
and the planning space is nonhomeomorphic. Therefore, the problem comprises
a combinatorial subproblem [159] and requires techniques from discrete
optimization. Finding appropriate formulations that include the subtask of
solving the combinatorial subproblem and solving them efficiently is a major
part of this thesis. It is considered in our related works [225, 227, 229] and
Sect. 6.1, 6.2 and 6.3 and the introduction Sect. 3.8.

Secondly, obtaining road aligned states xc,F = F(P cx) from CCF states x
provided by most measurement systems involves solving the optimization
problem (3.8). Different approaches of simplifying or avoiding this projection
inside of optimization problem (3.9) were proposed in related literature. Two
major variants involve either an additional path progression state [157, 85],
referred to as contouring control formulation or a projection of the vehicle
dynamics onto the reference path [292, 151, 22], referred to as projected
formulation. The two major variants are explained in the following. A third
variant that builds on the projection of vehicle dynamics utilizes a formulation
of the dynamics in the road-aligned FCF and, additionally, in the CCF. The
third variant is a major contribution of this thesis and subject of Chapter 5.2
and our related paper [228].

3.7.2 Contouring Control Formulation

One approach to include the projection of the CCF state onto the reference
path γ(σ) in OCP (3.9) involves adding the projected position s̃ as an auxiliary
decision variable to optimization problem (3.9) and including the distance to the
path γ(s̃) at the auxiliary state s̃ to the objective (3.9a), see [85, 157, 167, 236].
This results in a formulation that trades off the original objective (3.9a) with
the projection onto the path (3.8). The possibly conflicting objectives result in
a multi-objective optimization problem. The distance p(t)− γ(s̃) is split into a
lateral component

(p(t)− γ(s̃))>N (s̃),
i.e., a contouring error [157, 236], and a longitudinal component

(p(t)− γ(s̃))>T (s̃),

i.e., a lag error, by utilizing the tangent and normal unit vectors T (s̃) and N (s̃),
respectively. The lag error corresponds to “tracking” the auxiliary state, while
the contouring error approximates minimizing the distance to the path Γ. This
formulation can also be interpreted as a specific approximation of the Frenet
transformation at s̃, written as

F̃(xc,C, s̃) =

 s̃
(p− γ(s̃))>N (s̃)

ϕ− ϕγ(s̃)

 . (3.10)

76 VEHICLE MODELS FOR MOTION PLANNING

The projection within the optimization problem (3.9) may be wrong if
constraints or costs were defined on any other functions dependent on the
projected position s̃, such as in constraints (3.9e) or the costs Jc,F(xc,F).
Unfortunately, these constraints are essential to the overall motion planning
problem formulation. Therefore, a small mismatch between s̃ and the actual
projected state s is accepted in related algorithms. The safety-relevant constraint
for the road boundaries (3.9e) can be safely approximated by defining a set

B(s̃) ⊆ R3

along the path Γ for which the following implication holds

P cx ∈ B(s̃) =⇒ P nF
(
P cx

)
∈ Xrd

(
P sF(P cx)

)
. (3.11)

For example, the set B(s̃) can be a 2-norm ball around the Cartesian path
position γ(s̃) and the heading angle mismatch ϕ− ϕγ . This ball can be chosen
such that all configuration states P cx are within the road boundaries. The
state s̃ can be seen as a tracking state [236] which may even have its own
dynamics by an additional velocity state ṽs. Finally, problem (3.9) can be
reformulated for this particular approximation as

min
x(·), u(·), s̃(·)

J¬c(x¬c)+ Jc,F(F̃(P cx), s̃
)

+ Ju
(
u
)

(3.12a)

+ J lag
((
P px− γ(s̃)

)>T (s̃)
)

(3.12b)

s.t.

x(t0) = x0, (3.12c)

ẋ(t) = f(x(t), u(t)), t ∈ [t0,∞), (3.12d)

P cx(t) ∈ Xfree(t), t ∈ [t0,∞), (3.12e)

P cx(t) ∈ B(s̃(t)), t ∈ [t0,∞), (3.12f)

x¬c(t) ∈ X¬c, t ∈ [t0,∞), (3.12g)

u(t) ∈ U, t ∈ [t0,∞). (3.12h)

The formulation (3.12) involves an additional cost J lag(·) for the lag error in
the longitudinal path direction T (s̃).

3.7.3 Projected Formulation

Another approach of reformulating (3.9) in order to be able to efficiently solve
the related OCP involves formulating the dynamics solely in terms of projected

COORDINATE FRAMES FOR MOTION PLANNING 77

states xc,F and coordinate frame independent states x¬c, with the Frenet
state xF> =

[
xc,F> x¬c>]. In problem formulation (3.9), only the collision

avoidance constraints (3.9d) are formulated using CCF states. Fortunately,
for common obstacle dimensions of passenger vehicles, the vehicle shape can
be over-approximated by a convex shape. Therefore, the collision avoidance
constraints can be under-approximated by an obstacle-free set XF

free(t). However,
the over-approximation of the obstacles (or under-approximation of the obstacle-
free set) requires some conservativeness. A discussion is given in Chapter 5.2
and our related paper [228].

As shown in the following, the dynamics can be projected onto the reference
by formulating the first-order necessary condition (FONC) of (3.8), solving
them at the initial time and finding a condition to establish them for all future
times [287]. The objective of (3.8) can be squared and multiplied by 1

2 without
changing the optimal solution. The FONC for (3.8) defines a necessary condition
on the path progression σ such that the point γ(σ) is closest to p(t), with the
distance d(σ, t) = p(t)− γ(σ) and

∇σ
1
2
∣∣∣∣d(σ, t)

∣∣∣∣2
2 = d(s, t)>T (s) = 0. (3.13)

Assuming that s(t = 0) = arg minσ ||d(σ, t = 0)||22, the condition (3.13) can be
enforced for all times by setting the first derivative of the FONC to zero, i.e.,

d

dt
d(s, t)>T (s) = 0. (3.14)

Computing the derivative as defined in (3.14) yields

ṡ(t) =
(
ṗ(t)

)>T (s(t))
1− κ(s)d(s, t)>N (s) . (3.15)

The term
(
ṗ(t)

)>T (s(t)) can be identified as the velocity in the direction of
the path. It can be expressed by the coordinate independent velocity v(t) and
heading angle mismatch α(t) as(

ṗ(t)
)>T (s(t)) = v(t) cos

(
ϕ(t)− ϕγ(s(t))

)
= v(t) cos

(
α(t)

)
. (3.16)

Additionally, the term d(s, t)>N (s(t)) was defined previously as the signed
lateral distance to the path Γ by

n(t) := d(s, t)>N (s(t)), (3.17)

which yields the ODE of the longitudinal path state

ṡ =
v cos

(
α
)

1− κ(s)n, (3.18)

78 VEHICLE MODELS FOR MOTION PLANNING

expressed by Frenet states and omitting the dependency on time t. Taking
the time derivative of n(t) in (3.17) and simplifying the equations yields the
following ODE for n(t):

ṅ =
(
ṗ− ∂γ(s)

∂s
ṡ
)>N (s) +

(
p− γ(s)

)> ∂N (s)
∂s

ṡ (3.19a)

=
(
ṗ− T (s)ṡ

)>N (s) + nN (s)>
(
− κ(s)T (s)

)
ṡ (3.19b)

= ṗ>N (s) (3.19c)

= v sin(α). (3.19d)

The time derivative of the heading angle mismatch α, expressed by Frenet
states xF is

α̇ = ϕ̇− ϕ̇γ(s) (3.20a)

= ϕ̇− ∂ϕγ(s)
∂s

ṡ (3.20b)

= ϕ̇− κ(s)
v cos

(
α
)

1− κ(s)n. (3.20c)

The dynamics ẋF of the Frenet states xF can now be expressed by utilizing
the results from (3.18), (3.19a) and (3.20a) to obtain ẋF = fF(xF, u). Notably,
the curvature κ(s) becomes part of the dynamics function fF(xF, u) in this
formulation, making the dynamics function potentially more nonlinear. The
OCP (3.9) can be stated in terms of FCF states in the projected formulation as

min
xF(·), u(·)

J¬c(x¬c)+ Jc,F(P cxF) + Ju
(
u
)

(3.21a)

s.t.

xF(t0) = xF
0 , (3.21b)

ẋF(t) = fF(xF(t), u(t)), t ∈ [t0,∞), (3.21c)

P cxF(t) ∈ XF
free(t), t ∈ [t0,∞), (3.21d)

P nxF(t) ∈ Xrd
(
P sxF(t)

)
, t ∈ [t0,∞), (3.21e)

x¬c(t) ∈ X¬c, t ∈ [t0,∞), (3.21f)

u(t) ∈ U, t ∈ [t0,∞). (3.21g)

This formulation requires 1 − nκ(s) 6= 0 in order to be well defined. The
subproblems as part of numerical algorithms for solving (3.21) may even get

COORDINATE FRAMES FOR MOTION PLANNING 79

ill-conditioned in the vicinity of the subset defined by{
(s, n)|1− nκ(s) = 0

}
.

A mitigation strategy is presented in our related paper [222] and Chapter 5.1.
Since the states obtained by measurement systems are typically in the CCF, the
initial state xF

0 requires the projection on the path by solving (3.8) in advance.
This can be typically solved efficiently. Notably, this is not done as part of the
optimization problem (3.21) and just for a single state.

Vehicle models and coordinate frames used in this thesis. In Tab 3.2, an
overview of the vehicle models used within the main contributions of this thesis
is given. Remarkably, the kinematic single-track model was mostly used within
the controllers due to its sufficient modeling depth for less dynamic maneuvers.
The planner used even simpler models, like the point-mass model or model-free
methods, i.e., reinforcement learning.

Sect., Ref. Vehicle Models

Higher-Level Plan-
ner

Low-Level
Controller

Environment

5.1, [222] N/A KST-FCF KST
5.2, [228] N/A KST-FCF KST
6.1, [225] spatial model FCF KST-FCF real-world vehicle

DevBot [233], DST
6.2, [227] PM-FCF KST-FCF DST
6.3, [229] PM-FCF KST-FCF DT
7.1, [226] KST-FCF split longitudinal /

lateral
real-world vehicle
DevBot [233], DST

7.2, [224] model-free KST-FCF KST

Table 3.2: Comparison of vehicle models used within the main contributions of
this thesis. Models are related to the optimization problems of the planner, the
controller, and the possibly simulated environment. The following abbreviations
are used: PM (point-mass model), KST (kinematic single-track model), DST
(dynamic single-track model), DT (double-track model), FCF (Frenet coordinate
frame).

Remark 3.7.2. A transformation of the vehicle dynamics was presented for
the planar, two-dimensional case. The general Frenet-Serret transformation is
defined in the three-dimensional space [42]. Therefore, three-dimensional motion
planning problems occurring for drones or robotic manipulators can also be

80 VEHICLE MODELS FOR MOTION PLANNING

formulated similarly [20]. However, the third dimension requires an additional
curve property called torsion, and the transformation is more sophisticated. The
Frenet-Serret coordinate frame shows several disadvantages in three dimensions,
such as singularities and the twist over the tangent component. Consequently,
alternative coordinate frames are also considered, such as the Euler Rodrigues
frame [19, 21].

3.8 Collision Avoidance

In the following section, the collision avoidance constraint (3.9d), given so far
in the deterministic and non-interactive form

P cx(t) ∈ Xfree(t),

is discussed in more detail. The collision avoidance constraint is significant
for providing safety and is always considered as part of planning problems. In
control problems related to (1.1), collision avoidance constraints are occasionally
considered since the major task is usually the stabilization of the vehicle and
tracking of a reference.

In the following, collision avoidance is introduced step-by-step by increasing
the complexity of the underlying optimization problem (1.1). First, the general
objective is introduced for deterministic predictions or static obstacles. Next, a
distinction is drawn between interactive and non-interactive collision avoidance.
Thereafter, more elaborate formulations involving stochastic and game-theoretic
reasoning are introduced. Finally, some well-known behavior models for highway
driving are provided and used within the simulation frameworks. In this thesis,
collision avoidance is related mainly to surrounding vehicles (SVs). However,
the concepts apply similarly to general obstacles, as, for example, the obstacles
considered in Chapter 6.1 and our related work [225]. Chapter 6.1 considers
the additional concept of rewards, where a rectangular region reduces the cost
if traversed by the ego vehicle.

3.8.1 Obstacle Shapes and Deterministic Formulation

Consider the three configuration states xc =
[
px py ϕ

]> in Cartesian
coordinates. A rectangular shape that defines the occupied set of the ego
vehicle O is centered at the geometric vehicle center (px, py) and rotated by
the heading angle ϕ. The rectangular shape is assumed to overapproximate
the true vehicle shape tightly, cf., Fig. 3.6. The vehicle chassis specifications
determine the size with the chassis length lch and width wch. Likewise, the
occupied set for an SV is defined by the equivalent configuration states psv

x , p
sv
y

COLLISION AVOIDANCE 81

[px, py]>

ϕ

ϕsv

O
Osv

[psv
x , p

sv
y]>

Figure 3.6: Vehicle configurations with rectangular approximated shapes.

and ϕsv. The occupied set of a rectangular obstacle can be defined in terms of
vehicle configuration states xc by

O(xc) :=
{[

x
y

]
∈ R2

∣∣∣∣∣
∥∥∥∥∥
(

1
2

[
lch 0
0 wch

])91
R9ϕ

([
x
y

]
−
[
px
py

])∥∥∥∥∥
∞

≤ 1
}
,

(3.22)
where Rβ is the rotation matrix for a rotation by angle β. This rectangular
obstacle shape related to vehicles is also referred to as Ov(t) := O (xc(t)).

Other time-varying geometric shapes may also represent obstacles unrelated
to vehicle shapes. The time-dependent occupied area of arbitrary obstacle
shapes is O?(t) ⊂ R2. For example, the infinity norm in(3.22) can be modified
to a smooth function using the sublevel set of any scaled high-order norm
with αp(t) ≥ 2 by

On(t) :=
{
p ∈ R2

∣∣∣∣∥∥∥(p− p0(t))Rϕ(t)diag
(
[sx(t), sy(t)]>

)∥∥∥
αp(t)

≤ 1
}
.

The parameters may be time varying and comprise the offset p0(t), the rotation
angle ϕ(t), the scaling sx(t), sy(t) or the norm parameter αp(t), e.g., as in [221].

Commonly, these shapes are convex. This it allows for a safe over-approximation
within sequential quadratic programming (SQP) iterations [221]. However,
nonconvex shapes were also proposed, such as a union of convex shapes.
Particularly, a union of circles is a well-known approximation of planar shapes,
e.g., see [297, 328]. Another common representation of obstacle shapes is the
intersection of hyperplanes

Ohp(t) :=
{
p ∈ R2|A(t)p ≤ b(t)

}
,

with possibly time dependent hyper-plane parameters A ∈ Rnp×2 and b ∈ Rnp .

82 VEHICLE MODELS FOR MOTION PLANNING

Given a time-varying obstacle shape O?(t), the task of deterministic collision
avoidance involves planning a trajectory τ = {xc(t)|t ≥ 0} with configuration
states xc(t) that satisfy

O(xc(t)) ∩ O?(t) = ∅ (3.23)
for all t ≥ 0. If collision avoidance between the ego vehicle and an SV, given its
configuration states xc,sv, is considered, the obstacle avoidance can be stated as

O(xc(t)) ∩ O(xc,sv(t)) = ∅. (3.24)

Note that the prediction of non-interactive SVs may involve a physical
model f sv(xsv(t), usv(t)) of the SV, which describes the motion by the ODE

ẋsv(t) = f sv(xsv(t), usv(t)), (3.25)

with an input usv(t). By assuming a model of the driver that decides on the
inputs usv(t) and the current state xsv

0 = xsv(0) the SV states can be obtained
by forward simulation.

Static obstacle avoidance refers to avoiding obstacles without time dependency
of the obstacle shape or configuration, thus O?(t) = O?.

Simplifications and Formulations

It is nontrivial to represent the constraint O
(
xc(t)

)
∩ O?(t) = ∅ in the

OCP (3.9), cf., [248]. One possibility involves adding a constraint on the
signed distance between the sets O(xc(t)) and O?(t). The signed distance is
negative if the obstacles overlap and is nonnegative otherwise. However, the
computation of the signed distance is still computationally demanding [248]
and requires reformulations by, for example, exploiting the strong duality of
convex optimization and additional decision variables [320].

A major simplification of the collision avoidance constraint can be achieved by
over-approximating the obstacle shape O?(t) by a shape Õ?(t), with O?(t) ⊆
Õ?(t), such that the implication[

px(t)
py(t)

]
/∈ Õ?(t) =⇒ O

(
xc(t)

)
∩ O?(t) = ∅ (3.26)

holds. This over-approximation is often named shape inflation and allows one to
plan a trajectory without considering the particular ego vehicle orientation. For
example, if two rectangular shapes for the SV and ego vehicle are considered as
in Fig. 3.6, the over-approximated shape Õ?(t) can be chosen to be a circle with

Õ?(t) =
{
p ∈ R2∣∣||p− psv(t)||2 ≤ r̃

}
,

and radius

r̃ =
√

(lch/2)2 + (wch/2)2 +
√

(lsvch/2)2 + (wsv
ch/2)2,

COLLISION AVOIDANCE 83

centered at the SV position (psv
x , p

sv
y). For numerical optimization algorithms,

it is favorable if the shape Õ?(t) is convex and smooth, cf. [221].

The typically convex definition of obstacles leads to nonconvex optimization
problems when considering the obstacle-free space [159]. In fact, avoiding
multiple obstacles imposes an NP-hard problem [159] and requires techniques
from discrete optimization. Many popular algorithms simplify the problem by
discretizing the state-space and transforming the motion planning problem to a
graph-search problem [159, 199]. However, this inevitably suffers from the curse
of dimensionality and imposes the reduction of the number of states and controls
in the vehicle model, e.g., as in [8]. Clearly, this may increase the suboptimality.
Alternatively, the combinatorial part of the problem, i.e., the nonconvexity, can
be reformulated by using discrete optimization variables, leading to a mixed-
integer program (MIP) problem structure. Since the problem at hand is in
the challenging NP-hard complexity class, it may not be surprising that MIPs
are equally hard to solve. Particularly, real-time environments are challenging.
However, the subclass of MIQPs, which requires convex quadratic costs and
linear constraints, can be solved more efficiently thanks to powerful commercial
solvers that automatically exploit problem structures and utilize heuristics.
MIQP planning formulations and the corresponding solvers are on the brink
of being real-time feasible in practice. For example, the authors in [213] have
proposed a decision-making and planning framework based on MIQPs with
evaluations on embedded hardware. Since MIQPs require linear models, the
constraints in OCP (3.9d) need to be linearized. An MIQP problem formulation
requires a linear model, which could be a point-mass model in Frenet coordinates
such as in Sect. 3.4, or linearizing higher fidelity models at a set point.

The linearization of the model and other constraints limit the use of these
formulations to specific scenarios where the linearization captures the dynamics
well enough. Notably, the computation time can still be too high for specific
scenarios. Two strategies to sufficiently decrease the computation time in
highway scenarios are proposed in Chapter 6.2 and 6.3 and our related
works [227] and [229], respectively. In Chapter 6.2, the fundamental idea
is to decrease the discrete variables by an efficient MIQP formulation. In
Chapter 6.3, a speedup is obtained by utilizing machine learning methods to
predict the discrete variables of the problem through extensive simulations and
tailored neural network (NN) architectures.

Interactive Vehicles

In this thesis, collision avoidance for interactive vehicles in the deterministic
case considers a dependency of the SV configuration state xc,sv on the ego
vehicle configuration state xc, such as used, e.g., in [93]. What is here referred
to as “interactive vehicles” may also be referred to as “planning by forward

84 VEHICLE MODELS FOR MOTION PLANNING

simulation”, cf. [59]. It can be modeled by a time-varying ODE

ẋc,sv(t) = f sv(xc,sv(t), xc(t), t
)
.

This model is referred to as the deterministic interactive behavior model.
Regarding the consideration of an interactive SV in the planning problem (3.9),
the OCP needs to be augmented by the SV dynamics. However, besides the
requirement of such a behavior model and the additional states, the complexity
for solving the OCP does not increase fundamentally. Notably, if the SV is
assumed to optimize its own cost and can change its policy, the problem is
considered a game-theoretic problem or multi-agent problem. Game-theoretic
or multi-agent problems are considerably harder to solve and described in
Sect. 3.8.3. For example, the “intelligent driver model (IDM)” [286] or the
“minimizing overall braking induced by lane change (MOBIL)” model [142] are
considered interactive vehicle models.

3.8.2 Stochastic Collision Avoidance

So far, the predictions of SVs were assumed to be known deterministically.
However, the uncertainty of the prediction may also be accounted for by a
stochastic prediction. In the following, the discrete-time notation is used because
stochasticity is rarely expressed in continuous-time in the related literature.
Similar to [326], a probability distribution ∆(·|xc,sv

k , xk) describes an interactive
consecutive SV configuration state xc,sv

k+1 at time (k + 1)t∆, with

xc,sv
k+1 ∼ ∆(·|xc,sv

k , xk).

The distribution may also be modeled non-interactively by ∆(·|xc,sv
k), only

depending on the SV state xcv
k , cf. [26, 102, 263, 323]. Stochastic collision

avoidance now requires that the constraints are satisfied by a certain
probability η ∈ [0, 1], also referred to as confidence level. The so-called chance-
constrained collision avoidance constraint may then be formulated by

prob
(
O(xc

k) ∩ O(xc,sv
k) = ∅

)
≤ 1− η

when the SV state follows the distribution xc,sv
k ∼ ∆(·|xcv

k−1, xk−1). If the
distribution ∆ has finite support, the confidence level η may be equal to one,
corresponding to the so-called robust formulation, cf., [263, 26]. The robust
formulation accounts for the worst case of all configuration states following the
distribution ∆.

SVs can be modeled hierarchically by a driver model, expressed by a probability
distribution πsv(·|xc,sv, xc) that determines the SV controls usv

k ∼ πsv(·|xc,sv, xc)
of the vehicle model, cf., [323]. The distribution πsv(·|xc,sv, xc) is assumed to
model the behavior of the SV, therefore, referred to as behavior model.

COLLISION AVOIDANCE 85

Commonly, Gaussian processes are used to model the distribution ∆, e.g., [102]
with a non-interactive prediction model and [326], using an interactive prediction
model based on a Gaussian process.

3.8.3 Game-Theoretic Collision Avoidance

In real-world scenarios, other drivers’ behavior may change arbitrarily at each
time step by strategic long-term reasoning [59, 161]. Game theory provides
a framework to describe the behavior of multiple vehicles or, more generally,
multiple agents. Each agent is assumed to optimize its own objective, given
possibly limited information about the overall scenario, i.e., the dynamic game.
Depending on the assumptions, the game-theoretic framework can have many
particularities and mathematical challenges. Note that the aim here is to give
a relatively high-level introduction. Game-theoretic methods pose significant
challenges to the online optimization framework.

In general, the individual costs of the agents can be arbitrary, leading to so-
called general sum games of multiple agents, which are hard to solve. Solving a
game usually relates to finding the lowest-cost Nash equilibria. Nash equilibria
occur if, for chosen agent policies or player strategies, none of the players can
improve their cost by changing solely their own policy. For example, consider
two vehicles passing through a narrow gap where only one fits at a time.
Furthermore, consider that there is a small negative cost for traversing quickly
through the gap and a high cost for a collision. The two vehicles’ policies allow
either waiting and letting the other driver pass or proceeding with driving. The
two Nash equilibria are the two combinations of policies where one vehicle waits
and the other passes. This example clearly shows that some problems may arise
in this context. First, it is assumed that all agents know the game’s structure
and act rationally. Secondly, if there are several, there needs to be an agreement
on which Nash equilibria is played.

For competitive scenarios, the agents’ objective may be simplified from a general
sum game to a zero-sum type corresponding to a zero-sum over all individual
costs of the agents. This type of game is often used in race car scenarios, e.g.,
in [299, 168].

Another simplification may be applied in driving scenarios, where one may
assume that all agents cooperate as opposed to acting against each other. More
realistic than pure cooperation would be a semi-cooperative modeling using a
Social Value Orientation [57], which originated from social psychology.

If the game is modeled as a Stackelberg game, a leader and follower structure is
assumed, and the arising equilibria are named Stackelberg equilibria, c.f, [58,
316, 90]. In this setting, the power of the ego agent is overestimated in the

86 VEHICLE MODELS FOR MOTION PLANNING

Chapter Obstacle or SV Type

Planner Controller Environment

Ch. 5.1, [222] N/A N/A N/A
Ch. 5.2, [228] N/A non-interactive,

deterministic,
moving

non-interactive, de-
terministic, moving

Ch. 6.1, [225] non-interactive,
deterministic,
static, maze-like
shapes

non-interactive,
deterministic,
static, tunnel

non-interactive, de-
terministic, static,
maze-like shapes

Ch. 6.2, [227] interactive, deter-
ministic, moving

non-interactive de-
terministic moving

interactive, stochas-
tic, moving

Ch. 6.3, [229] interactive, deter-
ministic, moving

non-interactive de-
terministic moving

interactive, stochas-
tic, moving

Ch. 7.1, [226] non-interactive,
deterministic,
moving, adaptive

N/A non-interactive, de-
terministic, moving,
adaptive

Ch. 7.2, [224] interactive,
stochastic, moving

interactive, deter-
ministic, moving

interactive, stochas-
tic, moving

Table 3.3: Comparison of the types of SV and obstacles.

context of games related to autonomous driving but still yields a reasonable
approximation, as, for instance, in [90].

Obstacle and surrounding vehicle types used in this thesis. In Tab 3.3, a
comparison of the obstacle types used within the main contributions of this thesis
is given. Mostly, deterministic obstacles were used, possibly with interaction
models. Stochastic obstacle models often have the disadvantage of a higher
computational burden, which increases the required sampling time.

Chapter 4

Software and Hardware
Environments

This thesis comprises contributions that are specific to optimization-based
motion planning and collision avoidance on highways, in racing scenarios, or
generic for general motion planning and control problems on roads. Therefore,
also the testing environments differ. For highway scenarios, the testing
environment CommonRoad [13] was used that utilizes the traffic simulator
SUMO [155] as a backend. Algorithms that targeted problems in racing
environments were tested on an embedded autonomous driving (AD) software
stack of the Autonomous Racing Graz (ARG) in the real-world racing series
Roborace [233] and on a custom simulation environment. The racing series
organizer Roborace [233] stopped operating in 2022.

The following introduces and summarizes the different environments in the
overview Table 4.1.

4.1 Autonomous Racing Graz Stack

In the years 2020 and 2021, the race car series Roborace [233] conducted
two racing series for autonomous vehicles on real race tracks where seven
international teams competed with their software solutions. The event organizers
provided the teams with real-sized vehicles named Devbot 2.0, including the
electrical and mechanical framework, cf, Fig. 4.1. Moreover, an onboard
computing platform was provided with basic functionality. The teams had
to develop their compatible software stack. The two works of Sect. 6.1 and 7.1,
corresponding to the papers [225] and [226], emerged from these racing series

87

88 SOFTWARE AND HARDWARE ENVIRONMENTS

Chapter, Ref. Testing Environment Type

Sect. 5.1, [222] custom Python-based generic
Sect. 5.2, [228] custom Python-based generic
Sect. 6.1, [225] Nvidia Drive PX2, Autoware-ARG ROS [247] racing
Sect. 6.2, [227] CommonRoad [13], SUMO [155] traffic
Sect. 6.3, [229] CommonRoad [13], SUMO [155] traffic
Sect. 7.1, [226] Nvidia Drive PX2, Autoware-ARG ROS [247] racing
Sect. 7.2, [224] custom Python-based racing

Table 4.1: Comparison of simulation environment is given for each Chapter and
contribution. The following abbreviations are used: ARG (Autonomous Racing
Graz). The testing environments and Chapters target different objectives of AD
and are clustered into three types: generic, i.e., independent of the environment,
racing, and traffic scenarios.

Figure 4.1: The Roborace vehicle Devbot 2.0 used in real-world races in the
years of 2020 and 2021.

AUTONOMOUS RACING GRAZ STACK 89

within the ARG team and were tested in real-world events. In the following,
the software stack of the ARG team is introduced along the lines of a more
detailed overview in [247].

Hardware. The Devbot 2.0 vehicle was equipped with sensors and actuators
that were controlled by electrical control units (ECUs) and provided by the
organizers of Roborace. The data was transmitted via Ethernet and the control
area network (CAN) bus. Two distinct platforms were used. First, a real-time
platform with a Speedgoat Unit Real-Time Target Machine was established that
meets the desired real-time requirements for the low-level control and estimation
algorithms. Secondly, the central ARG computing platform comprises an
NVIDIA Drive PX2 hardware. The NVIDIA hardware is based on an ARM64
controller architecture.

Software. The functional components of the software are split into sensing,
perception, planning, and control. The control is part of the real-time software
for the Speedgoat Unit Real-Time Target Machine and was developed in
Matlab/Simulink utilizing the Matlab code generation tools. The sensing,
perception, and planning modules are part of the ARG software stack [247]. The
sensing module comprises the interaction with the sensor interfaces, including
GPS and V2X communication. The V2X communication was used to broadcast
information about virtual obstacles. The received data was processed via an
object detection module. The perception module involves processing sensor data
to obtain a state estimation of the ego vehicle and surrounding vehicles (SVs).
Additionally, the perception module involves object prediction, which is the
central part of Sect. 7.1 and the publication [226]. The planner modules comprise
the trajectory planner based on the solver acados [291] for optimal control
problem (OCP)-structured nonlinear programs (NLPs). For combinatorial
challenging obstacle avoidance problems, an additional mixed-integer linear
programming planner was used to determine the homotopies relevant for the
lower-level planner, cf., Sect. 6.1. In addition to the functional modules
introduced above, a substantial system diagnosis module was employed to
monitor and diagnose the software framework. The ARG software stack operates
on an Ubuntu 22.04 operating system, utilizing ROS 2 [174] Humble Hawksbill
and CycloneDDS [4] and Iceoryx [5] for shared memory communication.

Autonomous driving stack configurations. Software development requires
various settings for rapid development, as real-world experiments are expensive
and labor-intensive. Therefore, the AD stack was developed in four different
phases that differ mainly in the simulated vehicle and the computing platform.
First, a ROS-based version of the stack using a custom simple kinematic single-
track model was utilized. The vehicle model was simulated by integrating the
dynamics with an RK4 integration step. This framework was utilized on the local

90 SOFTWARE AND HARDWARE ENVIRONMENTS

machines of the developers in a Docker container for rapid development. In the
second step, the simple kinematic single-track model was replaced by the Hive
Simulator, a higher-fidelity simulator that the Roborace organizers provided.
In the next step, the hardware was aligned with the real-world environment.
Therefore, the ARG stack was executed on the destination hardware NVIDIA
Drive PX2, and the low-level control was executed on the Speedgoat platform.
The final and most expensive stage involved testing the software on the real
vehicle. This testing was usually performed remotely with local support from
the Roborace development team.

4.2 CommonRoad Interactive Simulation Environ-
ment

Interactive traffic was simulated using the higher-level software framework
CommonRoad [13], which provides a Python-based interface to the traffic simulator
SUMO and a library of planning problem scenarios. The CommonRoad environment
comprises several modules for motion planning tasks. Its main objective is
to provide composable benchmarks for researchers to evaluate their motion
planners. The main modules involve motion planning utilities, scenario creation,
implemented motion planners, driving stack interfaces, simulator interfaces,
and a reinforcement learning environment. In this thesis, mainly the simulator
interface [150] to SUMO [170], the provided benchmarks and utility functions for
the evaluation and animation of those scenarios were used. The finite number
of benchmarks of CommonRoad are typically composed of fixed motion planning
problems that involve deterministic traffic, a start, and a goal region or task.
The problem setup requires a strong alignment of the user software with the
CommonRoad workflow. This allows to compare ego motion planning results with
other motion planners from the community.

For most motion planning problems relevant to this work, no previous benchmark
results were available. The rigorous evaluation of the proposed planners required
testing on a large number of randomized scenarios to detect potential crashes
and evaluate the average closed-loop performance. Consequently, the interactive
simulations were adapted to randomize the traffic and the initial state. Moreover,
a custom goal formulation according to the specific problem of lane-changing
in [227] or maintaining traffic rules and a target speed at multi-lane highway
scenarios [229] was implemented.

CUSTOM PYTHON-BASED ENVIRONMENT VEHICLEGYM 91

4.3 Custom Python-Based Environment Vehicle-
gym

As part of this thesis, a custom Python-based development environment was
developed that features a modular approach to rapidly test and evaluate motion
planning and control algorithms. The environment is open-source available at
github.com/RudolfReiter/vehicle_gym.

The environment consists of a core library with dedicated object-oriented
modules that maintain certain targets of the framework, cf., Fig. 4.2 and a
reinforcement learning (RL) module that targets interfaces to machine learning
libraries and learning-based decision-making algorithms.

Core vehiclegym environment. The core vehiclegym environment is used to
test numerical algorithms related to motion planning without utilizing learning-
based interaction. In this thesis, the core environment is used in Sect. 5.1 and 5.2.
Two types of input data files are used. One file defines the road geometry by
waypoints, and another set of files defines vehicle parameters, such as their
geometry, weight, and friction coefficients. The road definition files comprise
real-world race tracks obtained from the Roborace [233] ecosystem. Vehicle
parameters are either obtained from Roborace for their custom vehicle Devbot
2.0 or from the CommonRoad framework [13]. At the framework’s core, a simulator
can simulate an arbitrary number of interacting vehicles. The simulator requires
several objects, i.e., a road object, MPC modules for each simulated vehicle,
and a simulation model which can either be a symbolic CasADi [14] expression
or a CommonRoad vehicle module. The simulator simulates one time step of each
vehicle model and subsequently broadcasts all vehicle states to the corresponding
MPC modules.

The MPC modules then perform a prediction of each other vehicle and compute
their subsequent controls. If a symbolic model is used, the model is simulated
by an RK4 step with the specified sampling time. In case a CommonRoad model
was used, the CommonRoad simulator is utilized. Each MPC module requires
a symbolic CasADi expression in order to construct an NLP-MPC solver with
acados [291] which is compiled into a c-code encapsulation. The MPC module,
the simulator, and, possibly, the vehicle model in Frenet coordinates require
to be instantiated with the road object. The road object contains splines that
represent the road center line and the left and right road boundaries.

Moreover, the road object provides convenience functions. For example,
a random road can be generated by randomizing the curvature and the
road boundaries in a specific interval. The road randomization, along with
the randomization of initial vehicle positions is essential to evaluate the
corresponding algorithms in this thesis in various random settings. Evaluation

https://github.com/RudolfReiter/vehicle_gym

92 SOFTWARE AND HARDWARE ENVIRONMENTS

Evaluation

Simulation

Scenario Definition

MPC
MPC

Simulator

Road Definition
File

Vehicle Parameter
Vehicle Parameter
Vehicle Parameter

Road

Custom Symbolic
Vehicle Model

CommonRoad
Vehicle Model

Low-Level
Controller

MPC

Simulation
Output

Evaluator Animator

Figure 4.2: Modules involved in the vehiclegym environment. Data files are
shown as round ellipses, and classes within the modules are rectangular. The
RL environment arranges modules from the core vehiclegym environment in a
classical RL composition.

is performed by two modules, an animator for qualitative comparison and
quantitative evaluations of different performance indicators such as the CPU
computation time of the MPC optimizer, the final progress and potential
collisions.

Vehiclegym reinforcement learning environment. The vehiclegym-rl envi-
ronment uses the modules from the vehiclegym to compose an OpenAI gym
environment [50], cf., Fig. 4.3. The vehiclegym-rl environment comprises
various different agents that are simulated simultaneously. Two agent types,
i.e., a conventional MPC agent as described above and a lane-keeping agent
with a decoupled speed and lateral lane-keeping control, are simulated as
part of the environment without trainable parameters. Two further agent

CUSTOM PYTHON-BASED ENVIRONMENT VEHICLEGYM 93

types contain learnable parameters θ, implemented as PyTorch [202] neural
networks (NNs). First, a hierarchical agent type along Chapter 7.2 and the
related work [224] is provided, comprising a model predictive control (MPC)
lower-level and an RL higher-level planner. Secondly, a pure NN-based RL agent
is provided. The vehiclegym-rl framework is derived from the OpenAI gym
environment [50] and, thus, provides the basic RL functions to interact with
the environment. Therefore, a reward function and an observation function are
deployed within the vehiclegym-rl framework. Both functions are crucial for
the training performance of the learnable agents. The RL interaction is further
wrapped in a hydra decorator to manage the RL training, which involves an
abundance of hyper-parameters. The RL algorithms are obtained from the
StableBaselines-3 library [214].

94 SOFTWARE AND HARDWARE ENVIRONMENTS

vehiclegym-rl
Agents

Lane-Keeping
Agent

Road Definition
File

Vehicle Parameter
Vehicle Parameter
Vehicle Parameter

Road

Custom Symbolic
Vehicle Model

Evaluator

Animator

RL-MPC
Agent

MPC
Agent

RL
Agent

Low-Level
Controller

MPC

Low-Level
Controller

MPC

Simulator

Reward
Function

Observation
Function

Parameter Update

Reinforcement Learning Framework

Parameter
Organization

Hydra

RL toolbox
Stable

Baselines-3

Deep Learning
Library
PyTorch

Figure 4.3: Modules involved in the core vehiclegym-rl environment. Data
files are shown as round ellipses, and classes within the modules are rectangular.
The modules are clustered into scenario definition modules, simulation modules,
and evaluation modules.

Chapter 5

Model Formulations for
Optimization-Based Motion
Planning

Using derivative-based numerical optimization for solving motion planning
and control problems requires appropriate model formulations. Linear models
would be favorable since they pose a necessary condition to formulate convex
programs, which usually can be solved efficiently [46]. However, linear models
do not sufficiently approximate the real-world model to achieve the required
closed-loop performance. Smooth nonlinear models can be used as part of
a nonlinear program (NLP). The performance of NLP solvers significantly
depends on the particular nonlinearities imposed by the chosen model. In
Sect. 5.1, an approach to parameterizing a curvilinear model is presented, which
improves the convergence properties of the NLP solver and, therefore, the
closed-loop performance of a model predictive control (MPC) that requires
the solution of the NLP in each iteration. Furthermore, the feasible state-
space related to obstacle avoidance constraints is often formulated nonconvex
to allow for a larger feasible planning space. However, when the infeasible
set covering the obstacle is formulated convex, the nonconvex formulation of
the feasible set can yield favorable numerical properties for NLP solvers. In
Sect. 5.2, a novel model formulation is proposed that includes convex obstacle
sets, along with a curvilinear projection on the Frenet coordinate frame (FCF).
This curvilinear projection enables a straightforward formulation of typical
autonomous driving (AD) objectives. The model extends the state-space to two
coordinate frames.

95

96 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

5.1 Parameterization Approach of the Frenet Trans-
formation for Model Predictive Control of
Autonomous Vehicles

In this section, the paper published in [222] is reprinted with permission of Moritz
Diehl. Note that the formatting of some formulas, terms, and numbers has been slightly
adjusted for consistency without changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: idea, programming, design of the experiments, writing of
the document

Moritz Diehl: mathematical corrections, stylistic corrections, linguistic
improvements

©2021 European Control Association. DOI: 10.23919/ECC54610.2021.9655053

Abstract. Model predictive control (MPC) and nonlinear optimization-
based planning for autonomous vehicles are often formulated in a transformed
coordinate frame, namely the curvilinear Frenet frame. Mostly, the center
line of the road is used as a transformation curve, but the choice of the
transformation curve might have properties that make the optimization problem
hard or even infeasible to solve in the whole search space. This paper
proposes an optimization-based parameterization approach to establish an
alternative transformation curve that yields favorable numerical properties for
the consecutive use of numerical optimization approaches such as MPC. The
optimization objective minimizes the change of curvature and pushes the evolute
(i.e., singular region) of the transformation curve outside the feasible region. The
convergence improvement of the proposed parameterization approach in terms
of integrator precision, optimization time, and iteration counts is compared in
simulation examples using a time-optimal nonlinear optimization formulation.

5.1.1 Introduction

In the last decade, nonlinear optimization-based approaches for both trajectory
planning and control of autonomous vehicles have been investigated actively
in scientific research and real-world applications ([100, 199, 167]). Nonlinear
optimization helps to either perform control tasks which respect nonlinearities

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 97

Figure 5.1: Center line transformation.

and constraints or plan optimal trajectories or paths for motion control systems.
Many of the existing approaches use a particular state transformation, which
maps the Cartesian states to a road-aligned path formulated as a curve in
the Cartesian frame. The transformed frame is referred to as “Frenet frame”
and used for example in [151, 195, 65, 293, 292]. This leads to favorable
properties of the resulting system model regarding optimization objectives and
the structure of the resulting NLP. The formulation of maximum path progress
with a constant time horizon, which corresponds to time-optimal planning,
is straightforward by maximizing the system state of path progress, and the
tracking of the transformation curve can be achieved easily by minimizing the
lateral distance state. Also, the motion of other traffic participants is typically
aligned with the road, which can be integrated easily into the constraints. The
choice of the road center line as a transformation curve comes naturally since
the reference curve and the road boundaries are often parallel to the center line.
Other traffic participants also often move along center-lane-aligned trajectories.
This usual choice of the transformation curve is shown in Fig. 5.1. Due to

98 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

these advantages, the center line is widely taken as the transformation to the
road geometry, and restrictions are put on the road geometry itself to make
this transformation unique and free of singularities [151, 292]. In contrast to
academic cases, real-world scenarios come with several differences, which make
the choice of the transformation curve a design parameter or even require a
necessary adaption so that the whole road space is feasible for the system states.
So far, no work has considered this transformation as a design parameter; it
was rather taken as given input. Given a point on a curve, an osculating circle
describes a circle that has the same tangent as the curve in this point and which
has the same curvature (Fig. 5.7 shows the osculating circle in point pi). The
curve, describing the evolution of the center of the osculating circles, is referred
to as evolute. As a hard constraint for the choice of the transformation curve, the
road boundary perpendicular to the transformation curve must be closer than
its oriented radius of all osculating circles of the planar transformation curve.
Since an NLP is an approximation of the optimal control problem (OCP) and
approximated with a discretization in time, the distance of the road boundary
to the evolute must even be raised by a certain factor to achieve numerical
robustness. By transforming the vehicle model into the Frenet coordinates, the
curvature becomes part of the dynamic system. Consequently, the nonlinearity
of the curvature also becomes part of the vehicle model. Besides of the hard
constraint regarding the singularity emerging from the curvature, this work
also addresses further favorable properties of the transformation choice. The
dynamic state equations (including the curvature) enter the NLP by equality
constraints and at least one derivative is used by the solver. Good convergence
properties are achieved if higher-order derivatives of the NLP constraints can
be lowered, and this is performed by the presented parameterization of the
transformation curve. An example of the parameterized curve is shown in
Fig. 5.2. For known tracks (e.g., race tracks, known road networks), the
transformation can be computed offline in advance.

5.1.2 System Model

Single Track Model

A kinematic model in a curvilinear reference frame is used, which was presented
first in [302] and leads to a slip-free tire model. The direction of the movement of
the center of gravity (CG) with the vehicle mass m is given by the angle ψ + β,
where ψ is the vehicle orientation. The side-slip angle β is defined as depicted in
Fig. 5.3 and gives the relative angle of motion related to the vehicle coordinate
system. The side-slip angle is given by

β = arctan
(

lr
lr + lf

tan δ
)
. (5.1)

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 99

Figure 5.2: Suggested transformation with objective as in (5.13).

The system model can then be described by the following Equations (5.2) in the
Cartesian coordinate frame. The velocity vector v denotes the velocity related
to the CG.

ṗX = v cos(ψ + β) (5.2a)

ṗY = v sin(ψ + β) (5.2b)

ψ̇ = v

lr
sin β (5.2c)

v̇ = F d
x
m

cosβ (5.2d)

The geometry of the vehicle is simply described by the longitudinal position of
the CG with the front distance lf and the rear distance lr. The input force F d

x
only acts on the rear wheel, whereas the steering angle δ only deflects the

100 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Figure 5.3: Kinematic single-track model.

front wheel, which is an arbitrary choice and does not influence the proposed
algorithm.

Curvilinear Transformation

So far the system model is independent of any road geometry, but as pointed out,
a useful transformation leads to the vehicle system equations in the Frenet frame.
It leads to the dynamic system (5.3) with the states x =

[
s, n, α, v

]T and
controls u =

[
F d

x , δ
]>, which now depend on the curvature. Here, path-

aligned states are used, which describe the progress on the transformation
path s(t), the normal distance to the transformation path n(t), and the heading
angle mismatch α(s, t) = ψ(t) − ψc(s). In many works, e.g., [292, 151], this
transformation is performed along the center line, which is generally not the
case here.

ṡ = v cos(α+ β)
1− nκ(s) =: fs(x) (5.3a)

ṅ = v sin(α+ β) (5.3b)

α̇ = ψ̇ − κ(s)ṡ =: fα(x) (5.3c)

v̇ = F d
x
m

cos(β) (5.3d)

The equations can be summarized by the nonlinear dynamic system equations
of first order.

ẋ = f(x, u) (5.4)

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 101

Figure 5.4: Path-parametric model as in [151].

Note that the curvature κ(s) together with bounds on the normal distance
state n now fully describe the road geometry. Fig. 5.4 shows the transformation
of a point to the curve γ(s), normal distance n, the error angle α and the
heading angle of the reference ψr.

5.1.3 Newton-Type Optimization

As described in [151], the time-optimal racing problem can be described very
generally by the following multiple shooting NLP and allows the usage of a
Gauß-Newton Hessian approximation but might also be solved with an exact
Hessian [217]. It is important to emphasize that the presented approach shifts
the reference line, which might not be desired for certain applications. For
those applications, a reference offset could be used, but it is out of the scope of
this work. The time dependence of the states x and controls u is discretized
with fixed time intervals ∆t and an integration scheme F (xk, uk,∆t). Equation
(5.5e) puts constraints on the states, which can depend on the path variable s as
well as on the time index k, to account for time-varying constraints like moving
obstacles.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0
‖xk − xk,ref‖2Q + ‖uk‖2R + ‖xN − xN,ref‖2QN

(5.5a)

s.t. x0 = xc, (5.5b)

xk+1 = F (xk, uk,∆t), k = 0, . . . , N − 1, (5.5c)

u ≤ uk ≤ u, k = 0, . . . , N − 1, (5.5d)

xk(sk) ≤ xk ≤ xk(sk), k = 0, . . . , N − 1, (5.5e)

102 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Newton-type algorithms use first-order (Gauß-Newton Hessian) or second-
order derivatives (exact Hessian) of the constraints, which are particularly
interesting for (5.5c) and (5.5e), since both equations are influenced by the
chosen representation of the road geometry κ(s). Since (5.5e) is, in general,
driving scenarios not exactly known a priori, it can just be assumed that
obstacles move and their geometry is aligned along the center line. Nevertheless,
the model integration (5.5c) is of fixed structure, which can be exploited in order
to parameterize the transformation of the road geometry, resulting in κ(s). By
taking a closer look at the system dynamics 5.3a, the function value is heading
towards infinity if the normal distance of the transformation line n is close to
the reciprocal value of κ(s), which corresponds to the radius of curvature. The
curvature ratio ρ(s, n) can be defined as the ratio of the lateral distance n to the
radius of the osculating circle R(s) = 1

κ(s) , which yields ρ(s, n) = n
R(s) = nκ(s).

5.1.4 Singularity and Smoothness Problem

By symbolically computing the first (5.6) and second (5.7) partial derivatives
of the state s, it is further obvious that the denominators have quadratic
dependence on the nonlinearity described above, which make the resulting
Jacobian of the constraints arbitrarily ill-conditioned if the curvature ratio ρ(s, n)
is sufficiently close to 1. Equation (5.6) shows that higher order derivatives for
the differential equations of the integrator in (5.5c) can be lowered by reducing
the maximum possible value for the denominator, which is the main subject of
the presented parameterization approach. According to [194], it can generally be
assumed that lowering higher order derivatives increases convergence properties
of usually applied numerical solvers.

∂fs(x)
∂s

= v cos(α+ β)nκ(s)′
(1− nκ(s))2 (5.6a)

∂fα(x)
∂s

= −(κ(s)′fs(x) + κ(s)∂fs(x)
∂s

) (5.6b)

∂2fs(x)
∂s2 = v cos(α+ β)n((1− nκ(s))κ(s)′′ + 2n(κ(s)′)2)

(1− nκ(s))3 (5.7a)

∂2fα(x)
∂s2 = −κ(s)′′fs(x)− 2κ(s)′ ∂fs(x)

∂s
− κ(s)∂

2fs(x)
∂s2 (5.7b)

Also the partial derivative κ(s)′ should stay small to reduce higher order
derivatives.

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 103

Figure 5.5: Geometry of waypoint borders.

5.1.5 Optimal Curvilinear Parameterization

Using the previously defined weaknesses of the center line transformation
approach (i.e. mainly the singularities close or inside the feasible region) as
costs, a novel parameterization approach is presented, which is formulated as an
NLP. By means of discrete geometric considerations, the singularity is pushed
outside the feasible region, and the curvature along the path length variable is
smoothed while the distance to the center line is kept as close as possible. The
solution transformation not only guarantees that no singularities are located
inside the feasible region but also pushes these very nonlinear regions outside the
feasible region as far as possible. Here, the waypoints oi ∈ R2 describeN discrete
points of a given piece-wise linear reference curve Γo(s) in the Cartesian frame,
depending on the path length s. The vector vi ∈ R2 represents the tangent norm
vector, with ‖vi‖ = 1 pointing “left” facing the positive road direction, as shown
in Fig. 5.5. The scalar value ti ∈ R is used as the i-th element of the optimization
variables t = [t0, ..., tN]T ∈ RN and shifts the reference point towards the road
boundaries, resulting in the shifted point pi (Fig. 5.6). The road borders
are given as maximum or minimum deflection ti of point pi into direction vi,
which are denoted by tmax

i or tmin
i . At the discrete total path length si of the

piece-wise linear reference path, it holds that Γ(si) = pi. The distance vector
between point pi and pi+1 is given by hi, where ∆si = si+1 − si = ‖hi‖.

104 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Figure 5.6: Geometry of waypoint displacement.

pi =
[
px,i
py,i

]
= oi + tivi (5.8)

hi =
[
hx,i
hy,i

]
= pi+1 − pi (5.9)

As shown in [259], the discrete curvature κi for unequally spaced points can be
computed by means of the first central and second finite differences, with the
notation of D1

i for first, D2
i for second discrete derivatives and the composition

of Dn
i =

[
Dn
x,i, Dn

y,i

]T . Another method to compute the discrete curvature
would be the method of osculating circles as shown in [124].

D1
i :=− ∆si

∆si−1(∆si + ∆si−1)pi−1−

∆si + ∆si−1

∆si∆si−1
pi + ∆si−1

∆si(∆si + ∆si−1)pi+1 (5.10a)

D2
i :=2∆sipi−1 − (∆si + ∆si−1)pi + si+1pi+1

∆si−1∆si(∆si + ∆si−1) (5.10b)

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 105

Figure 5.7: Geometry of osculating circle.

κi(ti−1, ti, ti+1) =
D1

x,iD
2
y,i −D1

y,iD
2
x,i

((D1
x,i)2 + (D1

y,i)2) 3
2

(5.11)

The discrete curvature is now used to formulate an overall objective, which is the
sum of several objectives. First, the maximum value of the ratio of the “inner”
(the side where the curve bends) boundary distance tmin

i −ti if κi < 0 or tmax
i −ti,

if κi > 0, to the signed radius of curvature Ri = 1/κi is minimized by means of
the slack variable ρ̄. The osculating circle to point pi is sketched in Fig. 5.7,
which also shows the maximum deflection tmin

i − ti of the reference curve Γ(s) at
point s = si. Note that the vector to the center of the osculating circle, which
is a multiple of the new tangent vector v̄i to Γ(si) generally does not need to
be parallel to the tangent vector vi of the initial curve Γ0(si). Nevertheless, it
is assumed that the vectors vi and v̄i are equal since the mismatch is generally
small if the curve Γ0 is initialized properly, i.e. close to the center line. The slack
variable ρ̄ bounds the maximum allowed value of the curvature ratio ρ = nκ
and is also bounded by a value ρ̄max, which should be between 0.5 and 0.95
and penalized by a cost Tρ(ρ̄). The optimization figuratively pushes the evolute
shown in Fig. 5.2 off the boundaries and guarantees that they do not intersect
by the constraint on ρ̄. The parameter wρ contributes to the shape of the
penalty function for relevant values 0 < ρ̄i < ρ̄max and might also be set to
zero, if ρ̄max is used conservatively, i.e., low values. It is noteworthy that this
objective alone would lead to a flat minimum, which would result in nonsingular
solutions. Secondly, the discrete derivative of the curvature is minimized and
weighted by wdκ in objective Tdκ. Thirdly, a term Tdc(t) is added, which can
be used to force the resulting transformation line towards the road center. This

106 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

might be useful if obstacles parallel to the center line are added.

Tdκ(t) =
N−2∑
i=1

(
κi+1(ti, ti+1, ti+2)− κi(ti−1, ti, ti+1)

‖hi(ti, ti+1)‖

)2
(5.12a)

Tdc(t) =
N∑
i=0

(
tmin
i + tmax

i

2 − ti
)2

(5.12b)

Tρ(ρ̄) =
N−1∑
i=1

ρ̄i
1− ρ̄i

(5.12c)

min
ρ̄ ∈ RN−1, t ∈ RN

wρTρ(ρ̄) + wdκTdκ(t) + wdcTdc(t)

s.t. tmin
i ≤ ti ≤ tmax

i i = 0, . . . , N,

(tmin
i − ti)κi ≤ ρ̄i i = 1, . . . , N − 1,

(tmax
i − ti)κi ≤ ρ̄i i = 1, . . . , N − 1,

ρ̄i ≤ ρ̄max i = 1, . . . , N − 1

(5.13)

5.1.6 Simulation Results

Integration Error

Since the integration scheme which is used in order to obtain an NLP out of
the OCP by direct multiple shooting is one of the most important contributors
to the overall accuracy of the OCP solution, the improvement of the integration
performance is shown in a simplified setting (Fig. 5.8). The vehicle model
(lr = 2 m and lf = 1 m) in the Cartesian frame (5.3) as well as the vehicle
model in the Frenet frame (5.3a) are forward simulated with a constant speed
of 1m

s and a constant steering angle of δ = −0.15 rad. The “Frenet model” is
transformed into the Frenet frame with respect to a transformation curve, given
as a circle. This circular transformation curve leads to a constant curvature,
and the center point of the circle represents the whole singularity. In subsequent
experiments, this circle is displaced along a line that crosses the motion path
of the vehicle. The displacement is characterized by the maximum curvature
ratio ρmax, which is the maximum value of the curvature ratio ρ(s, n) along the
exactly simulated trajectory. This value would be equal to zero if the integrated

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 107

Figure 5.8: Integration setting.

trajectory lies exactly on the transformation curve (circle perimeter) and equal
to one if the trajectory crosses the radius center (singularity). Two different
integration schemes are used (Euler and Runge-Kutta-4 (RK4)) in order to
demonstrate the superior integration result in terms of the end-point error to
simulate a quarter-circle path exactly. Additionally, each integration scheme
is performed with different step lengths. As a step size ∆t0 = 2.6 s is used. In
Fig. 5.9, the integration schemes are compared, dependent on the curvature
ratio ρ for a certain step size. The Euler integration was performed with four
times the number of steps than the RK4 integration to compare them related
to their number of function evaluations. It can easily be verified that at some
value of the curvature ratio ρ, each integration scheme shows high errors, and
at some ratio ρ, the end-point simulation error is rather randomly close to the
exact solution. Based on these observations, for a given integration scheme, it
is obvious to set an upper border for the curvature ratio ρ in order to define
the transformation curve.

The integration performs best if the simulated path is located exactly at the

108 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Figure 5.9: Integration errors.

transformation curve (curvature ratio ρ = 0) and performs poorly if the path is
located close to the singularity (curvature ratio ρ = 1). For negative curvature
ratios ρ, Euler integration always performs better with the Frenet model.
Although, if the Runge-Kutta-4 integration scheme is used, the Cartesian model
is superior, despite a curvature ratio of ρ = 0.

Model Predictive Control

To point out the superior properties of the presented approach for parameterizing
the transformation curve, an exemplary task for time-optimal MPC is solved.
The time-optimal trajectory for the curve in Fig.5.2 is obtained by solving an
NLP of the form (5.5). Two different transformation curves are compared as
shown in Fig. 5.1 for the center line and Fig. 5.2 for the numerically better
behaving parameterized optimal transformation curve, which was obtained
by solving (5.13) (wdc = 10, wρ = 10, ρ̄max = 0.7 and wdκ = 108). The

PARAMETERIZATION APPROACH OF THE FRENET TRANSFORMATION FOR MPC 109

Table 5.1: Comparison of transformation curves for MPC.
Statistical NLP value center line optimal transformation curve

solution time (mean) 611.1ms 470.9ms
SQP iterations (mean) 11.0 8.2
QP iterations (mean) 22.3 11.1
QP solver fails 40% 0%

parameters of the vehicle model were taken from a real race car model with wheel
bases lr = 1.4m, lf = 1.6m, a maximum lateral and longitudinal acceleration
of 5 m

s2 for both. The OCP was discretized with a horizon T = 9s and a
discretization time of ∆T = 0.05 s. Other values are equivalent to [151]. For
solving the NLP, acados [291] was used with an RK4 integrator performing one
step per multiple shooting interval. The problem was solved with 40 different
starting positions as marked in Fig. 5.1, and the resulting numerical differences
are shown in Table 5.1. The presented parameterization results in superior
numerical properties for all relevant performance measures. Note that the
so-called “center curve” was also re-parameterized slightly in order to obtain
smooth system differential equations (wdc = 103, wρ = 10, ρ̄max = 0.9 and
wdκ = 106). Without the presented parameterization, the solver failed in a
significant number of simulation runs, which is another indicator that some
form of parameterization, like the presented approach, is even necessary for
most applications of the Frenet model MPC.

5.1.7 Conclusions

The paper presents a parameterization approach that is suggested for the use
with Frenet transformations related to numerical optimization approaches for
autonomous driving. It formalizes the problem of finding the transformation
curve, which must not have singularities in the feasible driving region. A
parameterization stated as an optimization problem, is presented, which ensures
feasibility as well as superior numerical properties for Newton-type optimization.
The performance increase is shown by means of a plain integration and a small
but relevant test example. Further considerations and future work might focus
on the related nonconvexity of the constraints, the implementation as a real-time
capable NLP, or the consecutively needed transformation of the borders.

110 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

5.2 Frenet-Cartesian Model Representations for
Automotive Obstacle Avoidance within NMPC

In this section, the paper published in [228] is reprinted with permission of Armin
Nurkanović, Jonathan Frey and Moritz Diehl. Note that the formatting of some
formulas, terms, and numbers has been slightly adjusted for consistency without
changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: idea, programming, development of the mathematical
foundations, design of the algorithm, design and
evaluation of the experiments, writing of the document

Armin Nurkanović: mathematical corrections, stylistic corrections, linguistic
improvements

Jonathan Frey: mathematical corrections, stylistic corrections, linguistic
improvements, support with programming using the
“acados” software tool

Moritz Diehl: corrections to content, mathematical corrections, stylistic
corrections, linguistic improvements

©2023 European Control Association. Published by Elsevir Ltd. All rights reserved.
DOI: https://doi.org/10.1016/j.ejcon.2023.100847

Abstract. In recent years, nonlinear model predictive control has been
extensively used for solving automotive motion control and planning tasks.
In order to formulate the nonlinear model predictive control problem, different
coordinate systems can be used with different advantages. We propose and
compare formulations for the nonlinear MPC related optimization problem,
involving a Cartesian and a Frenet coordinate frame in a single nonlinear
program. We specify costs and collision avoidance constraints in the more
advantageous coordinate frame, derive appropriate formulations, and compare
different obstacle constraints. With this approach, we exploit the simpler
formulation of opponent vehicle constraints in the Cartesian coordinate frame,
as well as road-aligned costs and constraints related to the Frenet coordinate
frame. Comparisons to other approaches in a simulation framework highlight
the advantages of the proposed methods.

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 111

5.2.1 Introduction

Trajectory optimization with obstacle avoidance is a major challenge of motion
planning and control in autonomous driving. Trajectories need to be feasible
to kinodynamic equations and avoid collisions with objects that are often
hard to predict. Collision avoidance and the related generation of a reference
trajectory or collision avoidance as part of the controller, e.g., nonlinear model
predictive control (NMPC), is often formulated as a nonlinear optimal control
problem [151, 215, 167, 49]. Through a carefully chosen NLP formulation and
by using dedicated real-time optimization solvers [291, 245], the problem can
be solved efficiently. The transformation of the dynamics into a road-aligned
coordinate frame (CF), namely the FCF, has shown many advantages, such as
the simplification of references and road boundaries [151, 225, 302]. Nevertheless,
the transformed coordinates also come with the disadvantage of transformed
geometric obstacle shapes [310], cf. Sec. 5.2.2. Typical convex geometric shapes,
such as boxes, ellipses, or circles, are easier to describe in the Cartesian reference
CF and become nonconvex after transformation into the FCF. The shapes of
objects in both frames are shown in Fig. 5.10. In nonlinear optimization, “lifting”
is a technique where the optimization problem is formulated and solved in a
higher dimensional space, which offers advantages regarding convergence rates
and the region of attraction [10]. We contribute by an approach to extend and
lift the state space of the vehicle model by including both CFs and formulate
constraints and costs in the more appropriate CF. We show an increase in the
overall performance due to the improved description of the obstacle shapes with
various deterministic obstacle avoidance formulations in simulation. Despite the
increased state dimensions, even the computation time can be lowered compared
to a pure FCF representation. Additionally, references can be set in any of the
two CFs, which allows for flexible combinations with planning modules that use
either CF, e.g., [293].

Related Work

The effectiveness of NMPC using the FCF related to automotive tasks was shown
in numerous works [151, 215, 225, 302, 293, 297, 60, 226, 166, 238, 301]. None of
them explicitly considers the shape transformation of objects, which are rather
over-approximated with convex shapes in the FCF. Convex obstacle shapes in
the Cartesian coordinate frame (CCF) are considered in [216] with potential
fields, in [297, 328] with covering circles and Euclidean distance constraints, in
[49] with ellipses, in [52, 188] with separating hyperplanes and in [245, 92] with
a formulation related to a conjunction of convex planes covering the obstacle.
The most prominent variants are compared within this paper in the Frenet
and the lifted formulation. More importantly, the shape-fitting problem with
transformed objects in the FCF and an approach with surrogate representations
in both CFs were recently considered in a related way in [310]. However, [310]

112 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

−40 −20 0 20

x (m)

−80

−70

−60
y

(m
)

Cartesian Coordinate Frame

70 80 90 100 110 120

s (m)

−10

0

10

n
(m

)

Frenet Coordinate Frame

0

1

2

3

M
P

C
tr

a
je

ct
o
ry
x

(t
)

in
(s

)
Figure 5.10: Simulated overtaking of the same maneuver shown in the Cartesian
(top plot) and the Frenet CF (bottom plot). Planned trajectories plotted
with ∆t = 0.1s and snapshots of boundary box alignments every 0.7s.

focuses on linear MPC and does not consider dedicated obstacle formulations.
Furthermore, it integrates an approximation of the transformation itself into
the model, i.e., an approximation of a differential algebraic equation (DAE). In
contrast, in our formulation, we provide a reduced index formulation, which
constitutes an ordinary differential equation (ODE), cf. Sec. 5.2.2. Secondly,
we eliminate algebraic variables directly. Another variant of tracking along
a reference path stems from [157] and was extended to vehicles in [167]. It
uses a method called contouring control, which uses a state on a path-length
parameterized reference curve and an additional state for its path position.
Similarly to [310], it considers the transformation implicitly, which involves
approximating a bi-level optimization problem for finding the closest point on
the reference curve.

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 113

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Figure 5.11: Kinematic vehicle model including wind drag in wind
direction ewind.

Contribution

We propose novel NMPC formulations that extend the state space to two CFs
and allow for more efficient consideration of the occurring costs and constraints.
Thereby, the usually convex and simple obstacle shapes in the CCF can be
directly used in the NMPC formulation. We show in simulation that we
outperform the conventional approach of over-approximation [166, 238, 215, 301]
in terms of computation time and performance. Furthermore, the obstacle shapes
are independent of the states and the road (up to Euclidean transformations),
which is not valid in a conventional Frenet representation. Additionally, we
contribute by making an extensive comparison of common obstacle avoidance
formulations in the proposed formulations.

5.2.2 Vehicle Models

In order to formulate the NMPC problem, we use a rear axis referenced kinematic
vehicle model of [151, 222], shown in Fig. 5.11. Given a high enough sampling
time and excluding highly dynamic maneuvers (e.g., emergency turns), kinematic
vehicle models perform similarly to dynamic models for many automotive motion
planning problems [153]. The model comprises three states xc related to the
CF. Particularly, we use xc,C = [x y ϕ]> ∈ R3 for the Cartesian states
and xc,F = [s n α]> ∈ R3 for the Frenet states. We use the Cartesian (earth)
position states xe, ye and the heading angle ϕ. Similarly, in the FCF, we use
longitudinal and lateral position states s and n, together with the difference
angle α (cf. Sec. 5.2.2 and Fig. 5.10). The FCF position states are curvilinear

114 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

coordinates along the reference road. Further states x¬c = [v δ]> ∈ R2 are used
for both, CCF and FCF, where v is the absolute value of the velocity at the rear
axis and δ is the steering angle. For the full CCF model we use the state xC =
[xc,C> x¬c>]> and for the FCF model we use the state xF = [xc,F> x¬c>]>.
We assume a rear wheel drive force F d as input, including the acceleration
and braking force, which is a valid approximation for small steering angles,
cf. [151, 222]. The most prominent resistance forces for wind Fwind(v, ϕ) =
cairvrel(v, ϕ)2 and the rolling resistance F roll(v) = crollsign(v) are included, with
the total resistance force F res(v, ϕ) = Fwind(v, ϕ) + crollsign(v). The air drag
depends on the vehicle speed v in relation to the wind speed vwind with the air
friction parameter cair. The rolling resistance is proportional to sign(v) by the
constant croll. We drop the sign function since we only consider strictly positive
speeds. We model the relative speed related to the air drag, which we assume
constant and known by vrel(v, ϕ) = v − vwind cos(ϕ − ϕwind), where ϕwind is
the angle of the direction ewind in which the wind asserts force and ϕ is the
heading of the vehicle in the CCF. The wind speed was included in recent works
[179, 180], particularly when it comes to energy-efficient trajectory planning.
Real-time wind data can be obtained by weather service providers, such as
shown in [179]. The wind speed demonstrates an influence that can be easily
modeled in the FCF but is difficult to model in the CCF.
The input of our model is given by u = [F d r]> ∈ R2, where r = dδ

dt denotes
the steering rate. The dynamics of the coordinate unrelated states are written
as

ẋ¬c = f¬c(x¬c, u, ϕ) =
[1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]
, (5.14)

where m denotes the vehicle mass. The lateral acceleration alat(x¬c) at the rear
wheel axis is given by

alat(x¬c) = v2 tan(δ)
l

, (5.15)

where l is the total wheelbase length of the vehicle. The wheelbase length can
be expressed as the sum of the distance between the center of gravity (CG) to
the rear wheel axis lr or front wheel axis lf by l = lf + lr.

Cartesian Coordinate Frame Vehicle Model

By using simple kinematic relations, the dynamics of the Cartesian states can
be written as

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

 . (5.16)

The full five-state Cartesian vehicle model is given by

ẋC =
[
f c,C(xC, u)
f¬c(x¬c, u, ϕ)

]
. (5.17)

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 115

FCF Vehicle Model

Since in usual vehicle motion control tasks, the vehicle moves mainly close to a
reference curve γ : R→ R2, i.e., the street center line, the transformation
into a curvilinear CF is a natural choice. The reference curve γ(σ) =
[γx(σ) γy(σ)]> is parameterized by its path length σ and can be fully described
by one initial transformation offset γ(σ0), an initial orientation ϕ0 and the
curvature κ(σ) = dϕγ

dσ along its path. We use ϕγ(σ) for the tangent angle in
each point of the curve. As part of the Frenet transformation, we project
the Cartesian vehicle reference point pveh ∈ R2 on the closest point along the
reference curve with

s∗(pveh) = arg min
σ

∥∥pveh − γ(σ)
∥∥2

2 . (5.18)

W.l.o.g., we always set the initial reference point of the transformation to
zero. The position s along the curve is used as a longitudinal FCF state.
The vector (pveh − γ(s∗)) is the difference of the closest point on the curve
to the vehicle. By using the 90 degree rotation matrix R90 and projection
to the normal unit vector of the curve en = R90γ′(s∗), we obtain the Frenet
state n = (pveh − γ(s∗))>en. The third Frenet state α relates the tangent
angle of the curve to the heading of the vehicle with α = ϕ − ϕγ(s∗). The
transformation relations are shown in Fig. 5.12. We write the transformation
of a Cartesian state xc,C = [x y ϕ]> to a Frenet state xc,F = [s n α]> by
means of the transformation

xc,F = Fγ̃(xc,C) =

 s∗

(pveh − γ(s∗))>en
ϕγ(s∗)− ϕ

 , (5.19)

and its inverse by

xc,C = Fγ̃−1(xc,F) =

γx(s)− n sin(ϕγ(s))
γy(s) + n cos(ϕγ(s))

ϕγ(s)− α

 . (5.20)

The existence and uniqueness of the transformation are guaranteed under mild
assumptions, which are discussed in detail in [222]. As shown in [151], we obtain
the ODE for the kinematic motion in the FCF as

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)
v sin(α)

v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

 . (5.21)

The Cartesian state ϕ is needed in order to formulate the wind disturbance. It is
not available in the FCF. Consequently, it needs to be computed by evaluating
the tangent angle ϕγ(s) of the current position s on the reference curve γ(σ).

116 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

ϕ

ϕnen

pveh

α

pref=γ(s)

γ(σ)

ϕγ(s)

xe

ye

Figure 5.12: State relations between the CFC and FCF

This can be approximated by a spline function ϕ̂γ(s) that is computed for the
road layout and yields an approximation ϕ̂(s, α) = ϕ̂γ(s) + α of the heading
angle. The full FCF vehicle model is consequently given by the five-state model

ẋF =
[
f c,F(xF, u)
f¬c(x¬c, u, ϕ̂)

]
. (5.22)

Model Comparison

As indicated in Sec. 5.2.1 and Tab. 5.2, the CF models have different advantages
when used in a NMPC formulation. The definition of road boundaries and the
reference curve, which are often lane-aligned curves, are straightforward to define
in the FCF but hard to define in the CCF. However, the definition of an obstacle
in the FCF is cumbersome for several reasons. Despite nonconvex obstacle
shapes in the FCF, safety cannot be guaranteed when using sequential quadratic
programming (SQP) to solve the NMPC problem with the Frenet model. Convex
obstacle shapes cannot be guaranteed to be convex if transformed into the FCF.
This fact can be seen from the following counterexample. Consider a straight
line, which is a convex set, and a circular road. Let the line intersect the road
at coordinates γ(σ1) = [x1 y1]> and γ(σ2) = [x1 y1]>. The transformed
Frenet states n1, n2 are zero in either point. At σ3 ∈ (σ1, σ2), the transformed
state n3 6= 0, thus the transformed set is not convex. Considering Lemma 5.2.1,
it can be shown that convex obstacles are guaranteed to be a subset of the
linearized constraints within an SQP iteration, thus safely over-approximated.

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 117

Feature CCF FCF

reference definition 7 3

boundary constraints 7 3

obstacle specification 3 7

disturbance specification 3 7

Table 5.2: Comparison of the two model representations

Lemma 5.2.1. Regard the set C = {x ∈ Rn | g(x) ≥ 0} and Clin(x∗) = {x ∈
Rn | g(x∗) +∇g(x∗)>(x− x∗) ≥ 0}. Suppose that the function g : Rn → R is
convex, then C ⊆ Clin(x∗) for any x∗.

Proof. Due to convexity, g(x∗) + ∇g(x∗)>(x − x∗) ≤ g(x) and therefore, it
follows that C ⊆ Clin.

Nonconvex obstacles, which result from the transformation of convex shapes
into the FCF, are not safely over-approximated within SQP algorithms.

Another problem that arises with objects in the FCF is the dependence of
the shape on the state. Consequently, if the obstacle constraints are defined
along a discretized time horizon, at each time step i = 0, . . . , N , the shape has
to be transformed separately, cf. Fig.5.10. In typical applications, this could
lead to N transformations for each obstacle in every NMPC iteration, followed
by a convexification (e.g., bounding boxes, convex polygons, covering circles)
to guarantee safety. Alternatively, an over-approximation could be used to
capture all possible transformed shapes. However, this would lead to a striking
conservatism, especially for long vehicles and small curve radii.

Overview of CF Lifting Formulations

As outlined in Sec. 5.2.2, having states of both CFs in the NLP formulation is
beneficial to simplify the constraints. Several different ways of including both
CFs are possible, and a summary is given in Tab. 5.3.

First, one can choose the primary CF ODE and introduce the states related to
the other CF as algebraic variables that are determined by the primary CF and
obtain a DAE of index 1. One could either have a CCF based DAE

ẋC = fC(xC, u), 0 = xc,F −Fγ̃(xc,C), (5.23)

or an FCF-based DAE

ẋF = fF(xF, xc,C, u), 0 = xc,C −Fγ̃−1(xc,F). (5.24)

118 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Form
ulation

O
D
E

C
F

O
bstacle

C
F

C
ost

C
F

n
x

n
z

Practical
R
elevance

Issues

C
onventional

Frenet
Frenet

Frenet
Frenet

5
0

yes
nonconvex

state-
dependent

obstacle
shapes
usually

over-
approxim

ated
[166,238,215,301]

D
irect

E
lim

ination
Frenet

Frenet
C
artesian

Frenet
5

0
yes

additionalnonlinearities
(objective,constraints)

L
ifted

O
D
E
Frenet

Frenet
C
artesian

Frenet
8

0
yes

redundant
states

D
A
E

Frenet
Frenet

C
artesian

Frenet
5

3
no

bad
convergence

in
our

experim
ents

C
onventionalC

artesian
C
artesian

C
artesian

C
artesian

5
0

no
nonconvex

boundary
con-

straints
[167]

C
artesian

w
ith

Frenet
States

C
artesian

C
artesian

Frenet
{5,8}

{0,3}
yes

D
iffi

cult
bi-level

prob-
lem

.A
pproxim

ations,e.g.
[167]

Table
5.3:Com

parison
ofCF

Form
ulationsin

N
M
PC.Form

ulationsare
com

pared
am

ong
theirCF

specifications,the
required

num
ber

ofdifferential/algebraic
states

n
x /n

z ,and
their

relevance.
Bold-typed

form
ulations

are
com

pared
w
ithin

this
paper.

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 119

The inverse transformation Fγ̃−1 is computationally cheap since it just needs
explicit function evaluations, whereas the forward transformation Fγ̃ requires
solving an NLP as in (5.18), resulting in a computationally expensive bi-level
problem in the final NMPC formulation. Therefore, we choose the FCF of
(5.24) as a basis and exclude CCF formulations (5.23) from further comparisons.
The DAE of index 1 (Lifted DAE Frenet) is one possible way to formulate the
problem and was similarly used in [310] for a linearized model. Another possible
formulation (Direct Elimination Frenet) is to directly eliminate the algebraic
variables in (5.24) by using the inverse Frenet transformation in the nonlinear
constraint formulation. If the objective includes Cartesian states with quadratic
costs and lifted constraints, the direct elimination would lead to a nonlinear
objective and constraints. Alternatively, we can perform an index reduction of
(5.24), which is obtained by differentiation of the algebraic constraint, leading
to

ẋc,F = f c,F(xc,F, u) (5.25a)

0 = ẋc,C − ∂Fγ̃−1(xc,F)
∂xc,F f c,F(xc,F, u), (5.25b)

and xc,C(0) := Fγ̃−1(xc,F). (5.25c)

Detailed computation (not presented here) shows the equivalence of (5.25b) to

ẋc,C = f c,C(xc,C, u) (5.26)

The approach in (5.25) or (5.26) (Lifted ODE Frenet) results in redundant
states in both CFs, which are coupled through the inputs and the initial state.

5.2.3 Obstacle Avoidance Formulations

Different formulations for obstacle avoidance constraints are used in NMPC and
visualized in Fig. 5.13. We assume that rectangles represent real vehicle shapes.
Often, simple geometric covering shapes (circles [145] or ellipses [49]) and related
distance functions are used. Alternatively, covering polygons and restrictions on
edges or vertices (hyperplanes) are formulated in [245, 52, 92]. Furthermore, the
road boundaries can be deflected in order to cover the obstacle by the boundary
constraints [151]. The latter approach is not within the scope of this work due
to the generally different formulations that, for instance, include a combinatorial
planner for choosing the passing side [225]. We compare the formulation of
obstacle avoidance constraints with an ellipse [49], covering circles [297, 145]
and separating hyperplanes [52]. We also implemented a formulation introduced
in [245], which we refer to as set-vertices-exclusion, but which poorly converged
in our experiments. We assume a rectangular shape of the vehicles with the
rear/front chassis length lch = lr,ch + lf,ch related to the vehicle CG and chassis

120 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

a) b) c)

d) e) f) hθncirc = 3

Figure 5.13: Schematic drawing of obstacle constraints. (a: ellipse CCF, b:
covering circles CCF, c: separating hyperplanes CCF, d: ellipse FCF, e: covering
circles FCF, f: separating hyperplanes FCF)

width wch. The separating hyperplane formulation does not require increased
obstacle sizes beyond their actual rectangular shape, whereas circle and ellipse
formulations require over-approximations.

Obstacle Approximation by an Ellipse

Constraining the distance between a circle and an ellipse is less complex than
constraining the distance between two ellipses. This can be easily argued by
the rotational invariance of a circle which allows for a simple shape inflation
of the ellipse by the radius of the circle, followed by a level set constraint.
The distance between two ellipses depends on the orientation of both, thus
shape inflation of the one ellipse and a point reduction of the other one is
inhibited. Thus, we cover the ego car with a circle. The main axes a, b of an
ellipse covering a rectangle are computed by a = 1√

2 (lf,ch + lr,ch) and b = 1√
2wch.

Increased by the ego radius rego, this leads to the extended ellipse matrix D =
diag([a+ rego, b+ rego]). With the rotation matrix R(xc,opp) ∈ R2×2 and a
translation vector t(xc,opp) ∈ R2 related to the orientation and position of the
obstacle vehicle, we can formulate the collision avoidance constraint with the
matrix Σ(xc,opp) = R(xc,opp)DR(xc,opp)> via the feasible set

Pell(xc,opp) =
{
xc ∈ R3

∣∣∣ ‖xc − t(xc,opp)‖2Σ−1(xc,opp) ≥ 1
}
.

Obstacle Approximation by Covering Circles

We use the union of a set of circles to cover the vehicle shape as shown in
[297, 328, 145]. For lch ≥ wch, the number of covering circles ncirc must be larger
than d lch

wch
e and have a radius r{ego,opp} of wch

1√
2 . For each combination of

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 121

the ncirc,ego and ncirc,opp circles a distance constraint must be satisfied, leading
to ncirc,egoncirc,opp inequality constraints. The covering circle center points
are computed according to [328], which gives us a function pi : R3 → R2 for
the circle center i that computes the center positions pi = pi(xc,C) from the
states xc,C. With ∆r = rego + ropp and x := xc,C, we can denote the free set as

Pcirc(xopp) =
{
x ∈ R3∣∣ ∥∥pi(x)− pj(xopp)

∥∥
2 ≥ ∆r,

for 1 ≤ i ≤ ncirc,ego, 1 ≤ j ≤ ncirc,opp

} (5.27)

Obstacle Approximation by Separating Hyperplanes

When formulating collision avoidance with separating hyperplanes, we optimize
for a feasible solution of the parameters θ ∈ R3 of a hyperplane hθ(p). The pa-
rameterized hyperplane needs to separate all four vertices p{ego,opp}

i (xc{ego,opp})
of either vehicle’s bounding box. We write the feasible region using the related
hyperplane existence problem with points p̄{.}> = [p{.}> 1] as

Php(xopp) =
{
x ∈ R3, θ ∈ R3

∣∣∣ θ2
1 + θ2

2 = 1,

θ>p̄ego
i (x) ≤ 0, θ>p̄opp

i (xopp) ≥ 0, ∀i = 0, . . . , 3
}
.

(5.28)

We avoid a degenerate solution with the constraint θ2
1 +θ2

2 = 1 for the hyperplane
parameters.

5.2.4 NMPC Formulation

The NMPC aims to plan a feasible trajectory for a vehicle to drive on a road
with bounded curvature on a reference lane parallel to the center line and
with a desired reference speed. Furthermore, the NMPC must avoid static
and dynamic obstacles. As motivated in Sec. 5.2.2, we use two variants of an
FCF-based ODE to obtain Cartesian states, i.e., the direct elimination and
lifted ODE formulation and compare it to the conventional formulation with
over-approximation, such as shown in [238, 215]. First, we define the costs and
constraints.

General Costs & Constraints

Some constraints are unrelated to the CF, such as the lower and upper bounds
for states x¬c and inputs u. For control costs u>Ru, we use the positive
semi-definite weight matrix R ∈ R2×2.

122 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

FCF Related Costs & Constraints

State costs are related to FCF states since there is no practical advantage of
including CCF state costs. A cost related to a desired reference path parallel
to the road center line is accounted for by a square penalty of the deviation of
the Frenet lateral coordinate n to its reference nref . For a reference speed vref ,
a square penalty with positive weight ws, as well as a penalty on precomputed
longitudinal reference positions sref,i = ŝ0 + i∆tvref is used, with the measured
state ŝ0 and sampling time ∆t. Since we assume a road with constant width,
boundary constraints simplify in the FCF to box constraints for an upper
bound n and a lower bound n.

Cartesian Coordinate Frame Related Costs & Constraints

We use the collision avoidance formulations, which could be one out of O =
{ell, circ,hp} in the CCF, thus have the constraint xc,C ∈ P{ell,circ,hp}. FCF
costs are defined via the positive weight matrix Q = diag(q) with the weight
vector q ∈ R5 and the reference states xF

ref . We use a terminal cost QN =
diag(qN) with the weight vector qN ∈ R5 after N discrete time steps. We can,
therefore, write the objective function as

J(xF
0 , . . . , x

F
N , u0, . . . , uN−1) =

N−1∑
k=0
‖uk‖2R +

∥∥xF
k − xF

ref,k
∥∥2
Q

+
∥∥xF

N − xF
ref,N

∥∥2
QN

.
(5.29)

Direct Elimination NMPC Formulation

With the direct formulation, we can directly use the inverse transforma-
tion xc,C = Fγ̃−1(xc,F) to eliminate the Cartesian states in the constraint
formulation. Consequently, we obtain fewer states but “more” nonlinear
constraints. We discretize the continuous trajectory with N − 1 control intervals
and use direct multiple shooting [45] with one step of an RK4 integration
function ΦF(xF, u,∆t) for the ODE in (5.22) and the NLP formulation

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 123

min
xF

0 ,...,x
F
N ,

u0,...,uN−1
θ1,...,θnopp

J(xF
0 , . . . , x

F
N , u0, . . . , uN−1) (5.30a)

s.t.

xF
0 = x̂F

0 , (5.30b)

xF
i+1 = ΦF(xF

i , ui,∆t), i = 0, . . . , N − 1, (5.30c)

u ≤ ui ≤ u, i = 0, . . . , N − 1, (5.30d)

xF ≤ xF
i ≤ xF, i = 0, . . . , N, (5.30e)

xc,C ≤ Fγ̃−1(xc,F) ≤ xc,C, i = 0, . . . , N, (5.30f)

alat ≤ aF
lat(xi) ≤ alat, i = 0, . . . , N, (5.30g)

vN ≤ vN , (5.30h)

Fγ̃−1(xc,F) ∈ P(xc,opp,j
i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp. (5.30i)

Decision variables θ1, . . . , θnopp , where θj = [θ0
j , . . . , θ

N
j] ∈ R3×N are only used

for the separating hyperplanes formulation.

Lifted ODE NMPC Formulation

In this formulation we use the extended state xd = [xF> xc,C>]> and the
extended ODE (5.26). The additional states increase the size of the state space
to eight states in our case, three of which stem from either CF and two of which
are CF-independent states. In this formulation, we use the RK4 integration
function Φd(xd, u,∆t) of dynamics (5.26). We can write the final NLP for the

124 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

lifted ODE formulation as

min
xd

0 ,...,x
d
N ,

u0,...,uN−1
θ1,...,θnopp

J(xF
0 , . . . , x

F
N , u0, . . . , uN−1) (5.31a)

s.t.

xd
0 = x̂d

0 , (5.31b)

xd
i+1 = Φd(xd

i , ui,∆t), i = 0, . . . , N − 1, (5.31c)

u ≤ ui ≤ u, i = 0, . . . , N − 1, (5.31d)

xd ≤ xd
i ≤ xd, i = 0, . . . , N, (5.31e)

alat ≤ alat(xd
i) ≤ alat, i = 0, . . . , N, (5.31f)

vN ≤ vN , (5.31g)

xc,C
i ∈ P(xc,opp,j

i θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp. (5.31h)

5.2.5 Numerical Experiments

In order to evaluate the performance of the proposed approach, we simulate
two randomized scenarios that constitute three non-ego vehicles in front of the
ego vehicle with a lower cruise speed. The scenario is simulated for 20 seconds,
where usually three overtakes are possible. In total, 500 full simulation runs are
evaluated for each scenario type. We record the solution times of the NMPC
and the final driven distance after the simulation ends, which we take as a
performance indicator. We use different types of obstacles, particularly long
ones in the dimensions of a truck (truck-sized), as well as short ones resembling
normal cars (car-sized). We make several simplifications in order to avoid
performance influences of sources unrelated to our formulation. Firstly, there
is no model-plant mismatch, i.e., the simulation framework and the NLP use
the same kinematic vehicle model and discretization. Secondly, the ego NMPC
has complete knowledge of the other vehicles’ planned trajectories to avoid the
influence of prediction errors. Finally, we model non-ego participants to be
non-interactive. They aim at driving along a reference line parallel to the center
line. The simulations were run on an Alienware m-15 Notebook with an Intel
Core i7-8550 CPU (1.8 GHz). The parameters for the environment and the
NMPC are shown in Tab. 5.2.5 and Tab. 5.2.5, respectively. We use the NLP
solver acados [291] with HPIPM [97], RTI iterations and a partial condensing

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 125

Module Name Variable Value

Road road bounds2 n, n ±10, ±8.5
curvature1 κ [90.05, 0.05]
wind speed vwind 20
wind direction ϕwind 0

Ego vehicle length wheelbase lr, lf 1.7
length chassis lr,ch, lf,ch 2
width chassis wch 1.9
mass m 1160
lateral acc. bound alat, alat ±5
input bounds u, u ±[10kN, 0.39]
velocity bound v 40
steering angle bound δ, δ ±0.3
starting position1 xc,F

0 [0, 95, 0]-
[0, 5, 0]

reference speed vref 40

Opp. vehicles length wheelbase2 lr, lf 10
length chassis2 lr,ch, lf,ch 13
width chassis2 wch 4
mass2 m 3000
input bounds2 u [30kN, 0.39]
input bounds2 u [945kN, 90.39]
starting position1 i si0 50(i+ 1)

ni0 [95, 5]
reference speed vref 15

Table 5.4: Environment parameters.1 Randomized with uniform distribution.2
Parameters only differ in long vehicle scenarios. The parameters are equal for all
vehicles if not noted explicitly. We use SI units if they are not stated explicitly.

horizon of N2 . We use obstacle constraint formulations of Sec. 5.2.3. Besides the
different obstacle dimensions, the proposed NMPC formulations conventional,
direct elimination, and lifted ODE were evaluated with the different obstacle
formulations of Sec. 5.2.3. We use the ellipse (“EL”), the n covering circles
(“Cn”), and the separating hyperplane (“HP”) formulation. In Fig. 5.2.5, the
computation times and the maximum achieved progress of the randomized
scenarios are shown for truck- and car-sized vehicles. Clearly, the final progress
after overtaking in the truck-sized scenario is significantly increased by the
proposed formulation due to the more accurate representation of the obstacle
shape. For car-sized vehicles, the extended states do not yield a prominent
advantage since, in this case, the Frenet transformation does not deform the
obstacles vastly. The maximum progress is nearly equal for both proposed

126 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Name Variable Value

nodes / disc. time N/ ∆t 40/ 0.1
terminal velocity vN 15
state weights q [1, 500, 103, 103, 104]∆t
terminal state weights qN [10, 90, 100, 10, 10]
control weights R diag([10−3, 2 · 106])∆t

Table 5.5: Parameter for NMPC in SI units.

approaches since the obstacle constraint formulations based on Cartesian states
are equal. A striking difference between the two proposed formulations can be
seen in the computation times, shown detailed in Tab. 5.6. While the lifted ODE
formulation even decreases the average computation time for nearly all obstacle
formulations, the direct elimination formulation increases the computation
time by around 30%. Remarkably, the ellipsoidal obstacle formulation in the
proposed lifted ODE formulation outperforms all other obstacle formulations in
both the computation time as well as the performance measured in the average
progress after overtaking, which highlights the advantage of the formulation.
Contrary to our expectations, the separating hyperplane formulation shows
weaker performance in computation time and average progress. In theory,
separating hyperplanes should be more accurate in capturing the obstacle
shape. Nevertheless, due to the disadvantageous linearizations within the SQP
iterations, the shape is not captured well. This might be mainly due to the
nonconvex and nonlinear constraint in (5.28). Note that the proposed lifting
approach is not limited to kinematic vehicle models. It extends to higher fidelity
models since the lifting is limited to the six coordinate-related states that appear
equally in high fidelity models [293], namely CCF positions x and y, the CCF
heading angle θ, the FCF position states s and n, as well as the FCF angle α.

5.2.6 Conclusions

We have presented two novel FCF-based formulations of NMPC for vehicles that
include states of the CCF in order to gain numerical advantages. Simulated
evaluations and the comparison of several wide-spread obstacle constraint
formulations show that the proposed approaches are capable of representing the
obstacle shapes more suitably and that with the lifted ODE formulation, even
the computation time was decreased. Furthermore, our evaluations show that an
ellipsoidal obstacle representation outperforms all other obstacle formulations
in computation time. In conclusion, the combination of the ellipsoidal obstacle
constraint formulation with the lifted ODE formulation yields superior results
in all categories.

FRENET-CARTESIAN MODEL REPRESENTATIONS FOR NMPC 127

0.00

0.02

0.04

C
o
m

p
.

T
im

e
(s

)

Conventional Direct Elimination Lifted ODE

EL C5 C7 HP

200

400

600

F
in

al
P

ro
g
re

ss
(m

)

EL C5 C7 HP EL C5 C7 HP

Truck-Sized Obstacles

0.005

0.010

0.015

C
om

p
.

T
im

e
(s

)

Conventional Direct Elimination Lifted ODE

EL C1 C3 HP

200

300

400

500

F
in

al
P

ro
gr

es
s

(m
)

EL C1 C3 HP EL C1 C3 HP

Car-Sized Obstacles

Figure 5.14: Box-plot comparison of the NMPC solution timings for each real-
time iteration and the final progress after 20 seconds for different obstacle
formulations for truck- and car-sized vehicles.

128 MODEL FORMULATIONS FOR OPTIMIZATION-BASED MOTION PLANNING

Computation Times (ms) for Truck-Sized Obstacles
Conventional Direct Elimination Lifted ODE

EL 1.5± 0.4 1.9± 0.2 28.9% 1.4± 0.3 −6.6%
C5 7.2± 1.9 7.6± 1.7 5.5% 7.2± 1.8 −0.0%
C7 14.0± 3.2 14.0± 2.8 −0.1% 13.9± 2.9 −0.4%
HP 7.5± 1.5 7.5± 1.5 −0.1% 7.4± 1.7 −1.6%

Car-Sized Obstacles

EL 1.5± 0.5 2.0± 0.4 29.6% 1.4± 0.4 −5.7%
C1 1.4± 0.4 1.9± 0.4 34.0% 1.4± 0.4 −3.5%
C3 3.6± 1.1 4.0± 1.0 12.4% 3.6± 1.1 0.6%
HP 8.0± 2.3 7.9± 1.9 −0.6% 7.7± 2.0 −4.0%

Table 5.6: Mean and standard deviation of computation times for different
scenarios, obstacle formulations, and lifting formulations. Additionally, the
difference in percent to the conventional formulation is given.

5.3 Critical Discussion

The previous two sections showed two significant contributions for Frenet frame
vehicle models used as part of an optimization problem.

In Sect. 5.1 and the related paper [222], a preprocessing algorithm is established
that guarantees a singularity-free state space and smoothens nonlinearities
for the Frenet frame-based vehicle model. Offline computations are not real-
time critical. However, online computations have strict real-time requirements.
Empirical comparisons in closed-loop simulations show that the preprocessed
model lowers the number of required online quadratic program (QP) iterations
by half, the number of sequential quadratic programming (SQP) iterations
by 25% and the online computation time by 23%. Moreover, the QP solver
failed in 40% of the simulations where the singularity was close to the feasible
state space. By pushing the singularity outside the feasible domain by utilizing
our proposed preprocessing algorithm, no QP failures were encountered.

As a disadvantage, the proposed algorithm requires knowledge of the track
in advance, such as in racing scenarios or fixed routes. Recently, the authors
in [308] proposed a modification to apply the same idea for fast online adaptions.
While the contribution of the proposed algorithm was linked to models used
within online optimization like model predictive control (MPC), the method also
provides a way to generate curves on known tracks that trade off distance and
curvature. By parameterizing the optimization problem, a smooth transition of
shortest-path curves to minimum-curvature curves can be obtained.

CRITICAL DISCUSSION 129

In Sect. 5.2 and the related paper [228], a model formulation for MPC was
introduced that guarantees safe and tight over-approximations of obstacle shapes
when using SQP algorithms. The novel formulation uses a “lifted” model for
the configuration states in the Frenet coordinate frame (FCF) and, redundantly,
configuration states in the Cartesian coordinate frame (CCF). The model states
are prevented from drifting by transforming the initial state in each iteration into
both coordinate frames and specifying a constraint on the initial state within the
nonlinear program (NLP) of the MPC. An alternative “direct” formulation was
proposed that uses the transformation of the states within the NLP constraint
definition. The empirical test involved overtaking truck-sized and car-sized
vehicles in simulations. Various obstacle avoidance formulations were compared
using the proposed formulation. MPC formulations with the ellipsoidal obstacle
avoidance constraints achieved the best performance, which was measured
in the maximum driven distance after a time interval, requiring overtaking
three other vehicles. The proposed novel “lifted” formulation achieved a 30%
increased maximum progress while reducing the computation time by 5.7% for
cars and 6.6% for trucks. Also, an alternative “direct” formulation increased
the maximum progress by 30% but also increased the online computation
time by 30%. The higher computational burden may be due to increased
nonlinearities. The proposed “lifted” and “direct” methods were deployed in
an industrial autonomous robot as part of a Master’s thesis by the student
Akash John Subash, using a slightly different vehicle model. Moreover, the
experimental work of this Master’s thesis was accepted for the IEEE/RSJ
International Conference on Intelligent Robots and Systems 2024 [271].

Chapter 6

Mixed-Integer Optimization
for Collision Avoidance

Collision avoidance involves avoiding bounded obstacle shapes such as rectangles
or ellipsoids. These shapes are convex, and therefore, the planning problem
is inherently nonconvex. By decomposing the nonconvex planning space into
convex partitions, binary variables can be added as decision variables to the
optimization problem to formulate a disjunction between convex partitions. The
disjunctive formulation allows mixed-integer solvers to find globally optimal
solutions, cf., the formulation in [213].

An exhaustive formulation uses binary variables for each of the four convex
partitions resulting from rectangular obstacles, for each obstacle and for every
discrete time step along a prediction horizon of N . The resulting number of
binary variables in the exhaustive formulation is 4NobsN , where Nobs is the
number of obstacles. Since the computational burden depends on the number
of binary variables, the number of binary variables must be kept low. The high
number of binary variables in this formulation requires reducing the planning
horizon and the number of considered obstacles [213].

In the following sections, several approaches are proposed to speed up the online
computation time. In Sect. 6.1, the number of binary variables is reduced
for problems with static obstacles to Nobs by decomposing the problem into
a coarse mixed-integer linear program (MILP) approximation that decides on
which side an obstacle is passed, and a subsequent nonlinear program (NLP)
that uses smooth nonconvex obstacle shapes, where the passing side is fixed
by the MILP solution. Additionally, rewards are modeled, which are convex
regions that lower the closed-loop cost when passed.

In Sect. 6.2, the number of binary variables is reduced to O(Nobs + N) for

131

132 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

multi-lane highways. Multi-lane highways exhibit a particular structure where
obstacles mostly follow their current lane.

Sect. 6.3 does not assume a particular environment specification other than
the general formulation in [213]. However, it reduces the computation time by
replacing the combinatorial part of the mixed-integer formulation with a neural
network (NN) predictor. The NN is trained on randomized simulated data
and predicts only the binary variables of the expert mixed-integer quadratic
program (MIQP) [213]. However, the remaining quadratic program (QP) is
solved online since its computational burden is low compared to the MIQP.
To improve the overall performance and enhance safety, an additional NLP is
solved in each iteration to project potentially unsafe trajectories to the feasible
region.

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 133

6.1 Mixed-Integer Optimization-Based Planning for
Autonomous Racing with Obstacles and Re-
wards

In this section, the paper published in [225] is reprinted with permission of Martin
Kirchengast, Daniel Watzenig and Moritz Diehl. Note that the formatting of some
formulas, terms, and numbers has been slightly adjusted for consistency without
changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: Idea, programming of the published algorithm and the
interface to the overall system, programming on the overall
system (various program modules of the “Autonomous
Driving Stack”), design of the experiments, writing of the
document

Martin Kirchengast: Programming of the overall system (embedded system,
Autonomous Racing Graz software stack), mathematical
corrections, stylistic corrections, linguistic improvements

Daniel Watzenig: Leading the “Autonomous Racing Graz” team, design
of the overall system, operational management and
organization of the competitions

Moritz Diehl: Mathematical corrections, stylistic corrections, linguistic
improvements

©2022 The Authors. Originally published in IFAC-PapersOnLine 54-6 (2021), pp.
99-106. https://doi.org/10.1016/j.ifacol.2021.08.530.

Abstract. Trajectory planning with the consideration of obstacles is a classical
task in autonomous driving and robotics applications. This paper introduces a
novel solution approach for the subclass of autonomous racing problems, which
is additionally capable of dealing with reward objects. This special type of object
represents particular regions in state space whose optional reaching is somehow
beneficial (e.g., results in bonus points during a race). First, a homotopy
class is selected, which represents the left/right and catch/ignore decisions
related to obstacle avoidance and reward collection, respectively. For this
purpose, a linear mixed-integer problem is posed such that an approximated
combinatorial problem is solved and repetitive switching decisions between
solver calls are avoided. Secondly, an optimal control problem (OCP) based
on a single-track vehicle model is solved within this homotopy class. In the
corresponding nonlinear program, homotopy iterations are performed on the

134 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

race track boundaries which correspond to the previously chosen homotopy class.
This leads to an improved convergence of the solver compared to the direct
approach. The mixed-integer method’s effectiveness is demonstrated within a
real-world test scenario during the autonomous racing competition Roborace.
Furthermore, its combination with the OCP, as well as the performance gain
resulting from the homotopy iterations, are shown in simulation.

6.1.1 Introduction

Autonomous racing poses great challenges for the development of planning
and control algorithms. As the vehicles move with high velocities close to
their physical limits, nonlinear effects on their system dynamics arise and must
already be considered during planning. Sudden obstacles or race opponents
with uncertain behavior require evasion or overtaking maneuvers planned in
real-time on hardware with typically rather limited computational power. As
part of the racing series Roborace, the participating teams develop software
for the fully autonomous operation of electric race cars and are confronted
with increasingly demanding objectives from one event to the other. This work
addresses real-time trajectory planning for lap time minimization while avoiding
obstacles and collecting rewards. Whereas the vehicle moves on a real race
track, the purely virtual obstacles and rewards, which translate into lap time
penalties and bonuses, respectively, are provided to the car’s software about 200
m in advance. The planning algorithm not only has to compute a trajectory
that eludes obstacles and is feasible regarding vehicle kinematics and dynamics
as well as race track geometry. It also must decide whether rewards are worth
gathering, distinguishing the considered task from related problems in literature.
The proposed algorithm was successfully used in the Roborace competition
at the Bedford race circuit in December 2020. Figure 6.1 shows the race car
collecting a virtual reward object, which was live-streamed as augmented-reality
animation during the race.

Related Work

Trajectory planning with obstacle avoidance occurs in many domains, and
consequently, different approaches exist. Typically, in a certain situation, there
are infinitely many trajectories that fulfill the feasibility conditions. Therefore,
cost functions are used to choose an optimal one, depending on the application.
Graph-based methods perform a global search on the time- and space-discretized
configuration space to find the best trajectory. However, their ability to find
the global optimum strongly depends on the chosen discretization, and if that is
fixed, even finding a feasible solution may fail, e.g., in narrow passages. Common
graph search techniques include Dijkstra’s algorithm, A*, and D* with their
variants [199]. Exemplary, [231] describes the graph construction for racing

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 135

Figure 6.1: Race car hitting an augmented reality reward at the competition in
Bedford, England.

applications and uses a Dijkstra-like search algorithm. Depending on the vehicle
model fidelity and the discretization grid size, the computation times of graph
search quickly rise. Techniques based on nonlinear continuous optimization
(aka variational methods) tend to perform better in these cases, although they
only provide locally optimal solutions unless the initial guess is sufficiently
close to the global optimum [199]. An application within the racing domain is
shown in [120], where first, a minimum curvature path is computed via solving
a quadratic program (QP). Afterwards, the velocity profile is generated so
that the acceleration limits are not violated. Many variational methods have
strong similarities to nonlinear model predictive control (NMPC), e.g., [132],
but instead of directly applying their predicted model inputs to the plant,
their computed trajectories serve as references for underlying controllers. [11]
demonstrate how to express an NMPC formulation of the trajectory planning
problem in a linear parameter varying form. In [167], a formulation as model
predictive contouring control problem leads to a progress maximization on the
race track’s center line. [31] introduce a homotopy strategy to account for the
strong nonlinearity of the obstacles. In both papers, obstacles are considered
via variations of the track boundaries. Thereby, the decision on which side an
obstacle should be bypassed is delegated to a higher-level planner. [33] and
[32] consider the combinatorial problem by combining optimal control with
lattice-based path planning. Their work addresses the same underlying problem
but focuses on unstructured environments like parking lots. [246] and [230]
illustrate how to integrate these binary decisions into a single MILP and show
its application to solve obstacle avoidance for vehicles and spacecraft. In the

136 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

context of controller design [128] use similar ideas in an MPC based on MIQP
for avoiding obstacles. [201] first decompose the collision-free space into convex
cells, which are connected to distinct homotopy classes, and subsequently solve
MIQPs for each of them. Thereby, the globally optimal solution is selected from
the local optima of each homotopy class.

Contribution

This paper proposes a planning procedure that considers obstacles and rewards
and consists of both offline and online steps. Prior to the actual race, an optimal
racing line for the given track geometry is computed, assuming that there are
no obstacles. This is done with an approach similar to [120]. However, since it
is not the focus of this paper, further details are omitted. The online part is
twofold: First, a MILP is formulated whose solution selects a homotopy class,
i.e., which rewards are collected and on which side obstacles are eluded. This
homotopy class is represented by deformed boundaries of the original track.
Secondly, a continuous optimization problem is stated where deflections from the
racing line are minimized, considering the modified boundaries from the MILP
and vehicle constraints. The NMPC-like optimization problem is not directly
solved. Instead, homotopy iterations are performed, which gradually put more
weight on the modified boundary constraints and improve the convergence of
the solver. The paper contributes with a motion planning approach that is
capable of solving time-optimal motion planning problems with a combinatorial
structure without fully discretizing the state-space, as opposed to graph-based
state-of-the-art algorithms.

6.1.2 Vehicle and Object Models

Separating the trajectory optimization from the combinatorial homotopy class
selection facilitates using different models. An utterly simplified geometric model
is utilized to solve the combinatorial obstacle and reward problem, representing a
deviation from the racing line with limited maximum steepness. The continuous
optimization problem is stated on the basis of a single-track model.

Single-Track Model for Continuous Optimization

The utilized kinematic model is given, for instance, in [151] and does not consider
tire slip. In order to reduce the computation time of the optimizer later on,
drifting motion is not considered during planning. Instead, the subsequent
trajectory-following controller is assumed to consider lateral and longitudinal
tire slip. The movement direction of the center of gravity (CG) with the vehicle
mass m is given by the angle ψ + β, where ψ is the vehicle orientation. The

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 137

Figure 6.2: Kinematic single-track model.

side slip angle

β = arctan
(

lr
lr + lf

tan δ
)

is defined as depicted in Fig. 6.2 and gives the relative angle of motion related
to the vehicle coordinate system [151]. The vehicle motion is governed by

ṗX = v cos(ψ + β), (6.1a)

ṗY = v sin(ψ + β), (6.1b)

ψ̇ = v

lr
sin β, (6.1c)

v̇ = F d
x
m

cosβ, (6.1d)

in the Cartesian coordinate frame, where v is the longitudinal velocity in the
movement direction of the CG. The vehicle’s geometry is described by the
longitudinal position of the CG with front distance lf and rear distance lr. The
input force F d

x only acts on the rear wheel, whereas the steering angle δ only
deflects the front wheel. As a second input, the steering rate r = δ̇ is utilized
to avoid discontinuities in the steering angle δ, which would arise with directly
choosing δ as an input.

Frenet Transformation

System (6.1) is transformed into Frenet coordinates as described in [151] with
the difference that this transformation is performed along the racing line instead

138 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure 6.3: Path-parametric model as in [151].

of the center path. The resulting nonlinear dynamic system ẋ = f(x, u) now
depends on the curvature κ(s) and reads as

ṡ = v cos(α+ β)
1− nκ(s) , (6.2a)

ṅ = v sin(α+ β), (6.2b)

α̇ = ψ̇ − κ(s)ṡ, (6.2c)

v̇ = F d
x
m

cos(β), (6.2d)

δ̇ = r, (6.2e)

with states x =
[
s, n, α, v, δ

]>, and controls u =
[
F d

x , r
]>. Path-

aligned states are used which describe the progress on the transformation
path s(t), the normal distance to the transformation path n(t) and the heading
angle mismatch α(s, t) = ψ(t)− ψr(s). Note that κ(s) together with bounds on
the normal distance state n fully describe the road geometry. Fig. 6.3 shows
the transformation of a point p with respect to the curve γ(s), normal distance
n, the error angle α and the heading angle ψr of γ(s). The path parameter s∗
corresponds to the parameter of the closest point γ(s∗) to the given position p
of the vehicle model. The lateral acceleration of this model can be stated as

alat = 1
lf + lr

v2δ + F d
x
m

sin
(

δlr
lf + lr

)
. (6.3)

Linear Model for Mixed-Integer Programming

For the integer problem, an utterly simplified model is used, which basically
accounts for a geometric offset from the Frenet transformation line and is

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 139

formulated in the Frenet frame as well. The model lacks time dependency. It
rather depends on the path progress s, which is discretized on a grid related to
the obstacles and written as sk. The discretization is performed to represent the
obstacle shape related to the racing line. The lateral distance nk is limited based
on the road constraints nk,left and nk,right. The continuous control variable u
relates the only state variables nk to each other and is split into a negative and
positive part due to the integer formulation of the optimization objective. The
control variable u expresses the steepness of the path deviation from the racing
line between two nodes and is limited by umax. The model can be written as

nk+1 = fk(upos
k , uneg

k) = nk + (upos
k − uneg

k)(sk+1 − sk) (6.4a)

0 ≤ upos
k ≤ umax (6.4b)

0 ≤ uneg
k ≤ umax (6.4c)

nl,right ≤ nl ≤ nl,left (6.4d)

for k = 0...Nd − 1 and l = 0...Nd, where Nd is the number of discretizations of
the longitudinal path variable s. This model describes a piece-wise linear path
in Frenet coordinates.

Object Representation

Objects are modeled in the two-dimensional Frenet frame by means of polygons
as shown in Fig. 6.4. A particular obstacle i of totally NO obstacles is
represented by a polygon with NOi

p points and a reward d of NR rewards with
NRd

p points respectively. The object’s vertices are aligned with the discretization
of the longitudinal coordinate, which is chosen such that it resembles the shape
of the object “well enough”. Therefore, a vertex always has an opposite side
point with the same longitudinal coordinate. Right or left sides are noted with
{r, l}. The coordinate points in the Frenet frame of the polygon characterizing
each reward or obstacle are written as

p
Rd,{r,l}
k =

[
sRd
k

n
Rd,{r,l}
k

]
, p

Oi,{r,l}
k =

[
sOi
k

n
Oi,{r,l}
k

]
with k as the global spatial index of the longitudinal Frenet axis.

6.1.3 Combinatorial Optimization

Binary Object-Boundary Relation

In order to find an optimal path through the obstacle setting in the Frenet frame
with the reduced model (6.4), binary integer variables are used to construct

140 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure 6.4: Object configuration in Frenet frame.

a linear mixed-integer problem. For each obstacle i, one binary variable ωi
indicates the passing side (left/right). Rewards are treated differently because
they could be catched on different positions. For “short” rewards (where “short”
is related to the longitudinal extension of the reward), one binary variable
βd sufficiently specifies whether this reward should be caught or ignored. For
long rewards, “gates” with several binary variables βdk are used. For each
long reward d, totally NRd

p /2 binary variables are used, which are indexed by
l = 0 . . . (NRd

p /2− 1). Each binary variable βdl indicates if boundaries are set
to gate the corresponding lateral state variable at the particular longitudinal
position of the reward. A logical OR connective of the binary gate variables

β̄d =βdk ∨ · · · ∨ βdk+NRd
p −1 (6.5)

indicates the final binary state for reward d, which is then used to specify
the associated cost. That means if at least one gate is “closed” (meaning the
binary variable sets the boundaries active), the final path crosses the reward
polygon at some point. This formulation leads to a high number of decision
variables, which is necessary if a reward can be caught at multiple positions.
For example, a very long “reward zone” aligned with the road might be entered
in very different positions. With known shapes of the rewards, particularly
where the longitudinal length in the Frenet frame is small (e.g., smaller than 5
meters in the setting used for the competition) (6.5) can be simplified by taking
the left-most and the right-most polygon points to define a “gate” that is either
switched active or inactive by just one integer variable βd.

The binary variables are subsequently used to adjust boundaries, forming a
homotopy class for the gradient-based optimization. Detailed considerations
about homotopy classes in this context are shown in [31]. Obstacle boundary
values nOi,{r,l}

k and its binary variables ωi are related to state constraint on nk

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 141

Figure 6.5: Road bounds aligned to object integer variables.

with the inequalities

nk ≥ ωinOi,r
k + (1− ωi)nk,right = Hlow(k, ω),

nk ≤ (1− ωi)nOi,l
k + ωink,left = Hupp(k, ω),

for k = 0...Nd where a binary state equal zero is defined as “passing left”. For
relating the borders to the reward polygon, the equations

nk ≥ βdkn
Rd,r
k − (1− βdk)nk,right = Ilow(k, β),

nk ≤ βdkn
Rd,l
k − (1− βdk)nk,left = Iupp(k, β),

are used, where the binary variable equal to one is defined as “catch”. Fig. 6.5
shows the changed bounds due to the integer variables.

Decision-Flickering Avoidance

During real-world conditions on vehicle hardware, the perception system receives
slightly shifted versions of the same problem, where new objects appear
infrequently. Very often, two solutions nearly have the same cost (e.g., an
obstacle in the middle of the road), which could lead to jumping binary variables.
For that reason, a penalty for changes to previous decisions is introduced that
increases with the number of decisions computed previously by the algorithm
and decreases with the distance of the object to the vehicle. In other words,
binary re-decisions for objects far from the vehicle that have just appeared are
“cheaper” than re-decisions for objects that are closer and longer present. To
account for re-decisions, the binary values of cRi and cOi are used to form a logic
XOR connective between the binary decision variables βi or ωi and the previous

142 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

decisions β̂i or ω̂i, where

cRi = βi(1− β̂i) + (1− βi)β̂i (6.6)

cOi = ωi(1− ω̂i) + (1− ωi)ω̂i (6.7)

A parameter pi accounts for the weight that this decision should be kept. The
weight is updated iteratively and related to the mentioned criteria of distance
and decision account by

pi =w0,bin max
(

1− ∆si
d0

, 0
)

exp(a0ci)
1 + exp(a0ci)

, (6.8)

with w0,bin, d0 and a0 as scaling constants, ci as the counter of decision
repetitions for each binary variable, and ∆si as the longitudinal distance of
an obstacle corresponding to the binary variable i to the vehicle position. In
(6.16), the related cost function for re-decisions is stated.

Cost Functions

The final cost function consists of several parts. First, the L1-norm of the
deviation from the Frenet-transformation line (i.e., the optimal racing line) is
stated. It is proportional by a weight wn to the area of absolute lateral error in
the Frenet frame and computed as

Cn = wn

Nd∑
k=0
|nk|. (6.9)

The L1-norm cannot be directly formulated as a linear function. Therefore
(6.4) is used, with the splitting of u into a positive and negative part according
to a reformulation shown in [46]. With ∆sk := sk+1 − sk, the variable nk =
npos
k − nneg

k and the cost Cn can also be written as

Cn = wn

Nd∑
k=0

npos
k + nneg

k , (6.10)

with, npos
k ≥ 0, nneg

k ≥ 0. (6.11)

The positive and negative parts of nk can be directly obtained by summing up
the associated controls uk. The inequalities (6.11) are therefore fulfilled with
(6.4). The initial value n0 is a constant and can also be split into a positive
npos

0 and a negative nneg
0 with n0 = npos

0 − nneg
0 . Consequently, nk+1 can be

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 143

decomposed according to the following steps.

nk+1 = nk + ∆skuk (6.12a)

nk+1 = n0 +
k∑
i=0

∆siui (6.12b)

nk+1 = n0 +
k∑
i=0

∆si(upos
i − uneg

i) (6.12c)

nk+1 = npos
k+1 − n

neg
k+1 (6.12d)

The result (6.12d) is used to state (6.10) and therefore the cost in (6.9).

Secondly, the steepness of the deviation from the racing line defines the cost
term C∆n with its associated cost w∆n in a similar way by using the approach
of [46] for the “basis pursuit problem”. Since the controls uk represent the
steepness of deviation, the decomposed parts of (6.4) can be added as costs for
the steepness by

C∆n = w∆n

Nd∑
k=0

(upos
k + uneg

k).

Thirdly, negative costs are added for catching a reward by

Crew =
{
Cext

rew, if lR ≥ l̄R
Cshort

rew , otherwise.

These reward costs with their associated negative weight wrew are split into
extended costs Cext

rew for long rewards (with long referring to the longitudinal
dimension lR in the Frenet frame) and simplified ones Cshort

rew for short rewards.
A threshold l̄R is used for their classification. The simpler version of the problem
for longitudinally short rewards reads as

Cshort
rew = wrew

NR−1∑
i=0

βi. (6.13)

In the extended reward formulation (6.15) the logic OR connective is needed.
Auxiliary continuous optimization variables xRi for the cost reduction of reward
i are introduced. These auxiliary variables realize the OR connective between
the l reward gates associated with their binary gating variable βil when being
minimized in the overall optimization problem. The set Krew restricts the
auxiliary cost variable to the (negative) weight value wrew as a general lower
bound or to 0 if all gates are open. Thus, their binary values are zero. This set
reads as

144 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Krew(β) =
{
xR ∈ RNR

∣∣∣∣ xRi ≥ wrew, x
Ri ≥ wrew

NRi/2−1∑
l=0

βil , i = 0...NR − 1
}

(6.14)

with variables summarized by

β =
[
β0, . . . , β(NR−1)] , ω =

[
ω0 . . . , ω(NO−1)] .

The extended reward costs

Cext
rew =

NR−1∑
i=0

xRi, with xR ∈ Krew(β), (6.15)

are simply the sum of auxiliary variables realizing the OR connective under
their minimization.

Finally, the “re-decision costs” Cbin penalize the toggling of binary variables.
Here, the weights pi are different for every binary variable, as described in (6.8).
The variable cO,Ri for obstacles and rewards indicates if the binary variable for
the object has changed, which is equal to an XOR logic connective in (6.6) and
(6.7). Please note that there might be several binary variables for each reward.
Therefore, N̄R is used to account for all binary variables related to rewards.

Cbin =
N̄R−1∑
i=0

pic
R
i +

NO−1∑
i=0

pic
O
i (6.16)

Final Problem Formulation

For the ease of notation, the continuous optimization variables are combined in

u =
[
uneg

0 . . . uneg
Nd−1

upos
0 . . . upos

Nd−1

]
. (6.17)

With the set of binary numbers B = {0, 1}, the final mixed-integer problem
(6.18) is stated by combining the model (6.4) with the cost model function

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 145

(6.10) by using the result of (6.12c) splitting the race path deviation nk.

min
u∈R2×Nd ,β∈BNβ ,
ω∈BNω ,xR∈RNR

Cn(u) + C∆n(u) + Crew(xR) + Cbin(β, ω) (6.18a)

s.t. nk+1 = fk(upos
k , uneg

k), (6.18b)

0 ≤ upos
k ≤ umax, (6.18c)

0 ≤ uneg
k ≤ umax k = 0, . . . , Nd − 1, (6.18d)

Ilow(k, β) ≤ nk ≤ Iupp(k, β), (6.18e)

Hlow(k, ω) ≤ nk ≤ Hupp(k, ω) k = 0, . . . , Nd, (6.18f)

xR ∈ Krew(β) (6.18g)

Also, the reduced costs for reward catching (6.13) as well as the costs for keeping
binary variables in (6.16) are included. Nβ and Nω denote the total count of
all binary decision variables for rewards and obstacles.

6.1.4 Trajectory Optimization

After solving (6.18), a homotopy class is computed from the object polygons
and their associated binary states. The road bounds are described by n(s)
and n(s), which linearly interpolate the original road boundary points or the
associated object boundaries (see Fig. 6.5) according to the homotopy class. As
described in [151], the optimal control problem (OCP) of time-optimal racing
can be described very generally by the following multiple shooting nonlinear

146 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

program (NLP)

min
x0,...,xN ,
u0,...,uN−1
ζ0,...,ζN

N−1∑
k=0
‖xk − xk,ref‖2Q + ‖uk‖2R + (6.19a)

µi ‖ζk‖2 + νi ‖ζk‖1 + ‖xN − xN,ref‖2QN

s.t. x0 = x̄0, (6.19b)

xk+1 = F (xk, uk, t∆), (6.19c)

u ≤ uk ≤ u k = 0, . . . , N − 1, (6.19d)

x ≤ xk ≤ x, (6.19e)

n(sk)− ζk ≤ nk ≤ n(sk) + ζk, (6.19f)

−alat ≤ alat(xk) ≤ alat, (6.19g)

ζk ≥ 0 k = 0, . . . , N. (6.19h)

It represents a tracking problem of a vehicle model, where the final reference
point xN,ref is set “out-of-reach” to obtain approximate time-optimal trajectories.
Here, the 1.2-fold maximum achievable distance was chosen for the final reference
point, where the maximum distance would correspond to the distance obtained
by the maximum speed driven for the given time interval (N+1)t∆. Its structure
of a tracking problem and the associated quadratic cost function allows the
usage of a fast Gauss-Newton Hessian approximation. As opposed to [151],
the reference in (6.19) is set as a previously approximated optimal racing path
rather than the center line of the road. The final values for the cost function
weightings were tuned by experiments and are shown in Table 6.2. The vehicle
model (6.2) is discretized with an integration scheme F (xk, uk, t∆) with fixed
time intervals t∆ and incorporated as (6.19c) into the NLP. Inequality (6.19e)
puts box constraints on the states, which include maximum velocity and steering
angle. The lateral state constraints (6.19f) represent the road boundary and are
dependent on the longitudinal state variable s. Slack variables ζk for violating
(6.19f) are used. An iterative procedure increases their penalty weighting in
consecutive optimization iterations, which we call homotopy iterations. The
lateral acceleration (6.3) is limited via (6.19g).

After nSQP sequential quadratic programming (SQP) iterations of the solver, the
weighting parameters µi and νi are increased as shown in Algorithm (1). Strictly
increasing scheduling functions αµ(i) and αν(i) govern the weighting of the
boundary slack variables. This lets the weights for the boundary slack variables
“grow”, which leads to a smooth transition of the boundary nonlinearity. With
this procedure, the convergence time is reduced, which is shown in the results

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 147

Section 6.1.5. As a drawback, the re-weighting might be unnecessary for smooth
obstacle boundaries and takes additional time.

Algorithm 1: Homotopy iterations for the NLP.
1 i = 0;
2 while i ≤ imax do
3 µ← αµ(i);
4 ν ← αν(i);
5 solve NLP with nSQP iterations;
6 i← i+ 1;
7 end

6.1.5 Real-World and Simulation Results

The presented strategies for combinatorial optimization by mixed-integer
programming (COMIP) and the trajectory optimization of Section 6.1.4 (TO)
are two independent algorithms which were tested in two settings. Both COMIP
and TO were tested in simulations together. The COMIP algorithm was further
used on embedded hardware in the third Roborace competition in its so-called
“season beta” (second series of competitions in 2020), where the presented
TO was replaced by a simpler decoupled trajectory planning algorithm. The
competition took place on the Bedford race circuit (England) in December 2020.

Field Test on the Bedford Race Circuit (COMIP only)

The proposed COMIP algorithm was tested on the NVIDIA DRIVE PX2, with
Ubuntu 16.04. This electronic control unit (ECU) provides two CPUs (4x ARM
Denver, 8x ARM Cortex A57) and two GPUs (2x Tegra X2, 2x Pascal GPU).
The open-source Coin-OR CBC solver was used in a mixed Python/C++ ROS
framework for solving the problem (6.18) with a nominal rate of 0.5 Hz. A
varying amount between 0 and 50 virtual objects was received in generally
random sizes but rectangular shapes in Cartesian coordinates. The race car
“devbot” is described in [233]. This algorithm was also tested in simulations
with the second setup, namely an HP Elitebook with an Intel Core i7-8550
CPU (1.8 GHz), which turned out to be faster by a factor of 4-20. In this setup,
the output of the COMIP was used together with a subsequent algorithm for
curvature minimization (which is a simplified and decoupled approach compared
to the one described in Section 6.1.5). It obtained a minimum curvature
path approximation as well as a final analytical speed maximization based
on this minimum curvature path and road friction parameters as shown in
[272] and [135]. According to [47] and [120], the minimum curvature path is a

148 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure 6.6: Visualization of recorded data of an evasion maneuver on the Bedford
race circuit. The track boundaries are shown in blue, and the racing line (Frenet
transformation line) in red. The car follows the computed trajectory, which is
shown in green.

ECU Simulation

av. (max.) comp. time 1.9s (6.0s) 0.2s (0.4s)

Table 6.1: Maximum computation times of the overall optimization algorithm

good approximation for the optimal race path. The curvature approximation
was computed with the algorithm described in [120], but with only first-order
differences for race line deviations. Fig. 6.6 illustrates planning results from
this event. Table 6.1 shows the maximum computation times for the combined
algorithm (due to logging limitations by the embedded system), where the
COMIP part accounts for 70% of the computation time on average.

Simulation in Virtual Environments (COMIP + TO)

The COMIP algorithm was also tested extensively on different race tracks
with different object settings, including up to 40 differently shaped objects
simultaneously within a prediction horizon of 300 meters. The measured times
for the simulated algorithm on the Bedford race circuit are shown in Table 6.1.

The proposed subsequent TO was tested using the same simulation setup. After
COMIP, the boundaries in (6.19f) were approximated by linear splines with a
spatial discretization interval of the longitudinal coordinate s of 1 meter. For

MIXED-INTEGER OPTIMIZATION-BASED PLANNING 149

Figure 6.7: Trajectory obtained by the presented algorithms in a ROS simulation
framework with obstacles (red) and rewards (green).

solving the NLP in (6.19), the kinematic vehicle model of Section 6.1.2 was used
with a center of gravity at lengths lr = 1.4m and lf = 1.6m and parameters
according to Table 6.2.

The NLP was solved with acados [291], where a Gauss-Newton Hessian
approximation was used together with a two-stage implicit Runge-Kutta
integration scheme. For solving the quadratic program (QP), the interior point
solver HPIPM [97] was used. Altogether, with Algorithm (1) 8 SQP iterations
are performed, with different weights for the slack variables, accounting for the
homotopy iterations. The algorithm was compared to a standard setting with 8
SQP iterations on the final slack weights according to i = 3 in Table 6.2. With
the constant slack weight setting, the NLP solver acados [291] could not find
solutions for several obstacle configurations, where either QP iterations failed
or the solution trajectory got stuck in front of obstacles. With the presented

150 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Parameter Name Value

Q
[
10−6 10−3 1 10−4 10−1]>

QN
[
10−2 10−1 10−2 10−4 2 · 10−3]>

R
[
10−3 10−2]>

αµ(i), αν(i) 10i, 0.1 · 100.7i

imax, nSQP 3, 2
alat 5 m

s
N , t∆ 100, 0.05 s

Table 6.2: Parameters for Algorithm 1

Name Value

QP comp. time (min/mean/max) 6/9/20 ms
QP iterations (min/mean/max) 6/8/10

Total SQP iterations 8
Total NLP solution time (mean) 72 ms

Table 6.3: Results for Algorithm 1

homotopy iterations, both problems were mitigated. The results are summarized
in Table 6.1.5.

6.1.6 Conclusion

This work presents two contributions to the sophisticated subproblems of
trajectory planning for autonomous racing. First, a novel approximation of the
combinatorial problem as a Frenet-frame-based linear mixed-integer problem is
derived, which allows a fast and robust computation of a distinct homotopy class.
Secondly, a homotopy strategy is presented to obtain robust convergence of a
consecutive NLP. Using these approaches on a real embedded setup has been
verified to achieve high performance in novel autonomous race car competitions
and provide an alternative to the full state-space discretization of graph-search
methods. Further considerations may include the combination of homotopy
iterations with the integer problem and the extension to time-varying objects.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 151

6.2 A Long-Short-Term Mixed-Integer Formulation
for Highway Lane Change Planning

In this section, the paper published in [227] is reprinted verbatim. Note that the
formatting of some formulas, terms, and numbers has been slightly adjusted for
consistency without changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: idea (long term formulation starting from Chebeychev
centering, short term formulation and combination), pro-
gramming, simulation, experiment design and validation,
proposing mathematical formulations, algorithm design,
creation of the document

Armin Nurkanović: mathematical corrections, grammar corrections, spelling
style improvements, coherence review and improvement,
simplification suggestions, rebuttal proof reading

Daniele Bernardini: discussions in initial algorithm design phase, proof reading,
grammar corrections, mathematical corrections

Moritz Diehl: mathematical corrections, grammar corrections, spelling
style improvements, coherence review and improvement,
simplification suggestions

Alberto Bemporad: idea (Chebeychev centering for long term formulation,
prediction of surrounding vehicles), algorithm design,
mathematical corrections, grammar corrections, spelling
style improvements, coherence review and improvement,
simplification suggestions, rebuttal proof reading

Copyright ©2024 IEEE. Reprinted, with permission from Armin Nurkanović, Daniele
Bernardini, Moritz Diehl and Alberto Bemporad. A Long-Short-Term Mixed-
Integer Formulation for Highway Lane Change Planning. May/2024. DOI:
10.1109/TIV.2024.3398805.

Abstract. This work considers the problem of optimal lane changing in a
structured multi-agent road environment. A novel motion planning algorithm
that can capture long-horizon dependencies as well as short-horizon dynamics
is presented. Pivotal to our approach is a geometric approximation of the long-
horizon combinatorial transition problem, which we formulate in the continuous
time-space domain. Moreover, a discrete-time formulation of a short-horizon
optimal motion planning problem is formulated and combined with the long-
horizon planner. Both individual problems, as well as their combination, are

152 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

formulated as MIQPs and solved in real-time by using state-of-the-art solvers.
We show how the presented algorithm outperforms two other state-of-the-art
motion planning algorithms in closed-loop performance and computation time in
lane-changing problems. Evaluations are performed using the traffic simulator
SUMO, a custom low-level tracking model predictive controller, and high-fidelity
vehicle models and scenarios provided by the CommonRoad environment.

6.2.1 Introduction

In recent years many approaches have been proposed for vehicle motion
planning in structured multi-lane road environments. However, considering
combinatorial long-term dependencies and providing optimal trajectories subject
to dynamic constraints in real-time remains a challenging problem. In fact,
even deterministic two-dimensional motion planning problems with rectangular
obstacles are NP-hard [219, 159].

This work proposes a novel iterative planning algorithm, referred to as long
short term motion planner (LSTMP) that reduces the combinatorial complexity
by splitting the problem into a short-term motion planning formulation (STF)
and a long-term motion planning formulation (LTF), both solved by one
MIQP, cf. Fig. 6.8. The STF aims at optimizing a four-state discrete-time
trajectory of a point-mass model, including obstacle constraints, similar to
the formulations of [213, 181]. The STF trajectory is computed for a shorter
horizon to approximate a maximum of one lane change. In contrast, the LTF
aims at obtaining optimal lane transitions, defined by the transition times and
longitudinal transition positions, which are both continuous variables. These
lane transitions are used for long-term planning, i.e., the choice of gaps between
vehicles on several consecutive lanes. Reachability and the choice of transition
gaps on consecutive lanes are modeled by disjunctive programming.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 153

(τ0, σ0)

Long-Term Planner (LTF)

Sect. V

Long-Short-Term Motion Planner (LSTMP) as MIQP
Sect. VI

(τ1, σ1)

(τ2, σ2)

X

Short-Term Planner (STF)

Sect. IV

coupling constraints (33)

STF trajectory Xenvironment state

(τ0, σ0)

Figure 6.8: Overview of the proposed MIQP formulation for motion planning,
referred to as LSTMP. The MIQP consists of long-term and short-term planning
formulations where the decision variables of both are coupled through consistency
constraints. The short-term decision variables include a continuous point-mass
model trajectory to approximate a single lane change. The long-term decision
variables account for selecting gaps between SVs on each lane.

The planned trajectory of the STF and the transitions of the LTF are formulated
consistently, i.e., a transition point constrains the point-mass model trajectory
to the corresponding lane. Contrary to strict hierarchical decomposition, the
coarser approximation of the high-level plan cannot be infeasible for the low-level
planner.

A challenge of state-of-the-art motion planners is the scaling of computational
complexity with the horizon length [213], which makes long-horizon planning
most often intractable. Within the formulation of the LTF, the locations
of transitions in time and position are continuous. The proposed modeling
uses integer variables only related to the gaps between vehicles on each lane.
Therefore, the number of integer variables does not scale with the horizon
length within the LTF. Consequently, the constant small number of integer
variables, even for long-term predictions, allows for fast computation times of
the algorithm.

Evaluations of the proposed approach are performed with both deterministic
and interactive closed-loop simulations that involve a CommonRoad [13] vehicle
model, a low-level NMPC, and interactive traffic that is simulated with SUMO.

154 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Related Work

An abundance of fundamentally different techniques address highway motion
planning and were reviewed by [199] and, more recently, by [67, 218] and
particularly for deep learning in [17, 148]. The authors in [199] identified
geometric, variational, graph-search, and incremental search methods as
fundamental planning categories, whereas the more recent and exhaustive
survey [67] adds a major part on artificial intelligence (AI), among further
refinements.

Historically, geometric and rule-based approaches were more dominant.
Parametric curves are used in highly structured environments, such as
highways, due to their simplicity and ease of alignment with the road
geometry [185, 257, 149]. However, the motion plans are usually conservative
and unable to cope with complex environments [67].

In several works, the state space is discretized, and some sort of graph search is
performed [199, 218]. Probabilistic road maps [139, 137], Djikstra graph search
and similar, rapidly exploring random trees [23, 300, 296] are common in highway
motion planning. Nonetheless, they suffer from the curse of dimensionality, the
inability to handle dynamics, a poor connectivity graph, and a poor repeatability
of results [67]. By using heuristics, hybrid A∗ [183, 8, 146] aims to avoid
the problem of high-dimensional discretization in graph-search. Choosing an
admissible heuristic is challenging, and a time-consuming graph generation
is performed in each iteration. Moreover, authors try to improve graph- or
sampling-based algorithms by combining them with learning-based methods [295,
237].

Optimization-based methods can successfully solve motion planning problems
in high-dimensional state spaces in real-time [80]. They are appealing due to nu-
merous advantages, e.g., consideration of dynamics and constraints, adaptability
to new scenarios, finding and keeping solutions despite environmental changes,
and taking into account complex scenarios. Pure derivative-based methods are
often restricted to convex problem structures or sufficiently good initial guesses.
Highway motion planning is highly non-convex. Nonetheless, by introducing
integer variables, the problem can be formulated as an MIQP [209, 181, 164, 213]
and solved by dedicated high-performance solvers, such as Gurobi [114]. Yet,
the planning horizon of MIQP with a fixed discrete-time trajectory is still limited
due to the increasing number of integer variables for increased horizon lengths.
Therefore, keeping the computation time limited remains a challenge, [67].

One successful structure exploitation for solving the highway motion planning
problem faster is the decomposition of the state space into spatio-temporal
driving corridors [133, 30, 181, 173, 164, 77] with simple obstacle predictions.
Still highly non-convex, the region can be decomposed into convex cells [173, 77]
or used in a sampling-based planner [164].

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 155

To leverage the computational burden further, without sacrificing significantly
the overall performance, the presented approach uses a short-horizon planning
similar to [213] and [181], adding a long-horizon coarse geometric approximation
in the spatio-temporal domain (see Fig. 6.8). The proposed STF differs
from [181] by using only one binary variable per time step for the first lane change
and more accurately modeling occupied regions that also consider braking due
to preceding obstacles. Moreover, the consecutive gap is not fixed as in [181]
but determined by the LTF. The idea of combining two horizons was presented
in [158], yet not related to combinatorial motion planning and hierarchically
decomposed in [146] using a graph-based planner.

AI-based methods often use exhaustive simulations to train NNs by reinforcement
learning (RL) [148] or use expert data, such as data collected from human divers,
to perform imitation learning [295, 51]. They often struggle to consider safety
critical constraints and adapt to environment changes [67, 17, 51]. Furthermore,
sim-to-real challenges apply [276] since these methods are mainly trained within
simulations. An advantage includes the capability of using raw sensor inputs,
such as camera images, and the low computational requirements of trained
NNs [17].

The performance of the LSTMP is compared to a state-of-the-art hybrid A∗
method [8], which can be classified as both a deterministic planning AI and graph-
search method [241], and to the mixed-integer programming-based decision
maker (MIP-DM) [213] which is a comparable state-of-the-art optimization-
based method.

Contribution

This paper contributes a novel algorithm for optimal lane-changing highway
maneuvers. Compared to other highway motion planning algorithms, the
proposed lane change motion planner approximates long-term dependencies in
the spatio-temporal (ST)-space, where the computational burden is independent
of the position and the time a lane change occurs. Moreover, we solve the
problem involving the long-term approximation as a consistent single problem
and, therefore, avoid a problematic decoupling. The closed-loop performance is
improved by 15% compared to [213] and [8], and the average computation time
is lowered in randomized interactive simulations by two orders of magnitude.
Compared to [213], the number of integer variables used within the underlying
optimization problem reduces from O(NvehN) to O(Nveh + N) for a number
of Nveh SVs and N discrete-time prediction steps, with a comparable closed-loop
performance on the evaluated scenarios.

156 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Outline

In Sect. 6.2.2, important background concepts are defined that are used
throughout the paper. In Sect. 6.2.3, the general problem definition, related
assumptions, and simplifications are introduced. Next, the planning approach
is described in Sect. 6.2.4 to 6.2.6 and evaluated in Sect. 6.2.7. The approach is
discussed, and conclusions are drawn in Sect. 6.2.8.

6.2.2 Preliminaries and Notation

The set of non-negative real numbers is denoted by R≥0 = {x ∈ R | x ≥ 0}
and non-negative integers by N0 = {x ∈ Z | x ≥ 0}. Integer sets are written
as N[m:n] = {z ∈ N0 | m ≤ z ≤ n} with m < n. By using the notation f(x; y) in
the context of optimization problems, we denote the dependency of function f on
variables x and parameters y. The convex hull C ⊆ Rn of two polygons A ⊆ Rn
and B ⊆ Rn is C = conv(A,B). We use the floor function bxc for rounding
a number x ∈ R to the largest smaller integer and the ceil function dxe for
rounding to the smallest larger integer.

Propositional logic and mixed-integer notation

For a given compact set X ⊂ R and continuous function f : X → R, let M ≥
maxx∈X f(x) and M ≤ minx∈X f(x) denote an upper and lower bound of
f(x) on X , respectively. The following properties hold for a given f : X →
R [283, 304].

Property 6.2.1. For a product y = βf(x), with y ∈ R, the following equivalence
holds for all x ∈ X and β ∈ N[0:1]:

y = βf(x)⇔

y ≤Mβ,

y ≥Mβ,

y ≤ f(x)−M(1− β),
y ≥ f(x)−M(1− β).

(6.20)

Property 6.2.2. The implication [β = 1] =⇒ [f(x) ≥ 0] of a binary variable
β ∈ N[0:1] that activates constraint f(x) ≥ 0, is formulated as

f(x) ≥M(1− β). (6.21)

Property 6.2.3. The implication [f(x) > 0] =⇒ [β = 1] of a binary
variable β ∈ N[0:1] that gets activated if constraint f(x) > 0 is valid, is formulated
as

f(x) ≤Mβ. (6.22)

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 157

Property 6.2.4. The disjunction
∨N
i=1[fi(x) ≥ 0] is formulated by adding N

binary variables βi ∈ N[0:1] with i ∈ N[1:N], and the conditions

[βi = 1] =⇒ [fi(x) ≥ 0],∀i ∈ N[1:N]

N∑
i=1

βi ≥ 1
(6.23)

Chebychev Center

The Chebychev center (CC) of a polyhedron P = {x | Ax ≤ b}, with A ∈ Rm×n
and b ∈ Rm, is the center x? ∈ Rn of the largest ball B(x?, r?) = {x | ‖x? − x‖ ≤
r?} contained in P [46]. The radius r? is called the Chebychev radius. With
Ai and bi being the i-th row of A and b, respectively, the CC and Chebychev
radius can be computed by solving the linear program

min
r, x

− r (6.24a)

s.t. Aix+ r‖Ai‖2 ≤ bi i ∈ N[1:m], (6.24b)

r ≥ 0 (6.24c)

6.2.3 General Lane Changing Problem

The general problem for lane changing is stated as an optimal control problem
(OCP), similar to [325]. For a multi-lane environment, a total of L lanes are
defined by curvilinear center curves and a lane width dlane. Moreover, we assume
the existence of a parametric function γ : R≥0 → R2 for the rightmost reference
lane that maps a longitudinal path coordinate s to a Cartesian point. The
reference lane is parameterized by a vector θγ which is included in the road
geometry parameters θ :=

(
θγ , dlane

)
. We consider a vehicle model in the Frenet

coordinate frame [328, 302, 228] with states x(t) ∈ Rnx and inputs u(t) ∈ Rnu ,
whose trajectories are governed by the nonlinear ordinary differential equation
(ODE) ẋ = ξ(x(t), u(t)) with the initial condition x(t0) = x0. Using Frenet
coordinates poses mild assumptions on the maximum value of the curvature,
cf. [86]. Among others, the state of the Frenet model includes a longitudinal
position state s, a lateral position state n, a velocity v, and a heading angle
mismatch α [228].

States and controls are constrained by physical limitations depending on θ,
which are expressed by admissible sets X(t; θ) and U(t).

ForM vehicles on each lane, we consider Nveh = LM SVs with states xsv
i (x(t), t)

for i ∈ N[1:Nveh] that depend on the planned ego trajectory x(t). Note that the

158 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

dependency of the states xsv
i (x(t), t) on the ego state x(t) is due to the interaction

of the ego vehicle with SVs and is a major source of complexity [298, 161]. We
assume that the obstacle-free set can be approximated by Xfree(x(t), t). In the
latter sections 6.2.4 and 6.2.5, we explain how to define the set Xfree(x(t), t) in
an MIQP model.

In compliance with [77], multiple general objectives are proposed in the Frenet
coordinate frame in order to define the desired behavior. A goal lane index l̃ ∈
N[1:L] and a reference velocity ṽ ∈ R≥0, define the goal parameters

Θ := (l̃, ṽ).

Curvilinear reference paths are expressed as constant lateral references ñi for
i ∈ N[1:L]. One desired behavior is to track the lateral lane reference the vehicle
is currently driving on. The current reference lane index l(n) w.r.t. the current
lateral state n is uniquely determined by

l(n) =
⌈

n

dlane
+ 1

2

⌉
. (6.25)

Note that determining the lane as in (6.25) within an optimization problem is
not trivial and requires, for instance, the use of additional integer variables, as
shown in Sect 6.2.4. By using the weights wn and wv, the cost of tracking the
reference lane index l(n(t)) and longitudinal reference speed ṽ is

gref
(
x(t), u(t); θ,Θ

)
=wn

(
n(t)−

(
l(n(t))− 1

)
dlane

)2
+

wv

(
v(t)− ṽ

)2
+ u>(t)Ru(t),

(6.26)

which includes a quadratic penalty on the input u, with the positive definite
weighing matrix R ∈ Rnu×nu .

Next, a cost for the distance to the goal lane l̃ ∈ N[1:L] with a weight wg ∈ R≥0
is added, which is the main objective of the presented planner and written as

glane(x(t); Θ) = wg
∣∣l(n(t))− l̃

∣∣. (6.27)

In the proposed approach, only lane changes towards the goal lane l̃ are
considered.

Finally, the objective functional is

J
(
x(·), u(·); θ,Θ

)
:=
∫ ∞
t=t0

(
gref(x(t), u(t); θ) + glane(x(t); Θ)

)
dt, (6.28)

and the considered general optimal control problem that is approximately solved
by the proposed approach is

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 159

min
x(·), u(·)

J
(
x(·), u(·); θ,Θ

)
(6.29a)

s.t.

x(t0) = x0, (6.29b)

ẋ = ξ(x(t), u(t)), t ∈ [t0,∞), (6.29c)

x(t) ∈ Xfree(x(t), t; θ) ∩ X(t; θ), t ∈ [t0,∞), (6.29d)

u(t) ∈ U(t), t ∈ [t0,∞). (6.29e)

Assumptions and Simplifications

Several assumptions and simplifications are made for the proposed planning
approach in order to approximate (6.29) by an MIQP. As a major simplification,
the vehicle dynamics are formulated by a point-mass model with mass m in
a Frenet coordinate frame [86], including the longitudinal and lateral position
states s and n, as well as associated velocities vs and vn, with x = [s, n, vs, vn]>,
and acceleration inputs as and an, with u = [as, an]>. The dynamics are
modeled by

ẋ = [vs, vn,
1
m
as,

1
m
an]>. (6.30)

We assume the absolute value of the curvature κ(s) and its derivative κ′(s)
to be small for highway roads and, therefore, the acceleration in the Frenet
coordinate frame is approximately equal to the acceleration in Cartesian
coordinate frame [86]. This model was empirically shown to be valid for
the cases where vehicles are not driving at their dynamical limits [181] and
motivated in several other works, e.g., [213, 158, 58, 122, 255]. Critical evasion
maneuvers are passed to a NMPC within the presented structure.
Assumption 6.2.1. Lane changes of SVs can be detected.

Ass. 6.2.1 can be satisfied by perception techniques described in [112, 199] or
by vehicle-to-vehicle communication.

Assumption 6.2.2. Considering two vehicles in the same lane, the rear vehicle
is responsible for avoiding collisions. The leading vehicle must maintain general
deceleration limits. Vehicles that change lanes must give way to vehicles on the
lane they are changing to.

Taking into account interactions among traffic participants within Xfree(x(t), t; θ)
is essential for certain maneuvers in order to avoid prohibitive conservatism [285].

160 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

... surrounding vehicles (SV)

lane l + 1

l = lgap(i) = lveh(i)

lane l

lane l− 1

s

n

gap i

vehicle i

... ego vehicle

vehicle prediction bounded by sets

ego position (s, n)

Nl

vehicle i vehicle i+ 1

... vehicles not considered for set

S+
i

vehicle i

... vehicle considered for set

S−
i

Figure 6.9: The first figure shows the enumeration of lanes and gaps, and
the three rightmost figures show the sets related to free spaces. Surrounding
vehicles (SVs) are uniquely enumerated. Gaps are the free spaces on a lane
w.r.t. SVs and are enumerated according to the leading vehicles. An additional
index is used for each frontmost gap. The sets Nl,S+

i and S−i define half-spaces
in the SLT-space and are plotted in green for the position dimensions. The
sets are tightened to include all configurations of the SVs and ego vehicle to
allow collision-free planning with a point-mass model. All leading vehicles on
the same lane are considered to construct the set S+

i since any slower vehicle
requires all following vehicles to brake. For the following vehicle set S−i , only
the closest vehicle to gap i is considered since preceding ones are assumed not
to influence leading vehicles.

However, the interdependence of plans among interactive agents leads to
computationally demanding game-theoretic problems [160, 56]. Similar to [181],
the leader-follower interaction is simplified by ignoring collision constraints of
followers on the same lane at the current state, leaving the responsibility for
collision avoidance to the follower. Other SVs that are not following on the
current lane are considered obstacles independent of the ego plan as long as
these SVs are on adjacent lanes or in front of the ego vehicle.

The following assumptions consider constraints in the three-dimensional SLT-
space [77], i.e., the space of the longitudinal and the lateral Frenet position
states s and n and time t.

On each lane, a maximum of M vehicles are considered. We use indices i ∈
N[1:LM] for the enumeration of the resulting maximum LM vehicles on the lanes

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 161

in ascending order, starting from lane l = 1 from rear to front. The free space
on the back of each vehicle along the lane is referred to as gap and enumerated
according to the leading vehicle index, cf., Fig. 6.9. A number of L indices are
added for the gaps in front of the first vehicle on each of the L lanes. Therefore,
the number of gap indices is L(M + 1). The function lveh(i) returns the lane
index of vehicle i. The function lgap(i) returns the lane index of gap i. The
function Mlane(i) returns the total number of vehicles on lane l = lveh(i) for a
vehicle with index i.

In the following, we assume that Xfree(x(t), t) can be partitioned into
sets XIfree(x(t), t) related to SVs x̂sv

i within indices in the set i ∈ I ⊆ N[1:LM],
with Xfree(x(t), t) ⊆ XIfree(x(t), t) and Xfree(x(t), t) = XN[1:LM]

free (x(t), t).

By inflating the obstacle shapes and lane boundaries by a safe distance according
to all allowed configurations of the ego and the SVs, the planning problem
can be formulated by a point-wise set exclusion of the curvilinear ego position
states s(t) and n(t) [159].
Assumption 6.2.3. For all SVs not driving at the current ego lane l, defined
by the index set I(l) = {k ∈ N[1:LM] | l 6= lveh(k)}, an obstacle-free set Nl =
{n ∈ R | nl ≤ n ≤ nl} w.r.t. the ego lateral state n can be found such that

n ∈ Nl =⇒ x(t) ∈ XI(l)
free (x(t), t).

Ass. (6.2.3) is used to define collision avoidance constraints to vehicles on
adjacent lanes by formulating constraints on the lateral state n. Without
further details, it is assumed that the bounds in Ass. 6.2.3 are tight enough to
contain most of the adjacent lanes as free space, i.e., Nl 6= ∅.
Assumption 6.2.4. Given an SV with index i, upper position bounds ssv

i and
velocity bounds vsv

i can be found that define the collision-free set

S−i =
{

(s, t) ∈ (R≥0 × R≥0)
∣∣ s ≥ ssv

i + tvsv
i

}
. (6.31)

such that it holds that

(t, s(t)) ∈ S−i =⇒ x(t) ∈ X{i}free(x(t), t).

Assumption 6.2.5. For all SVs on lane l, with indices i ∈ N[1:M], lower
position bounds ssv

i , velocity bounds vsv
i and leading vehicle distances ∆si can

be found that define the set

S+
i =

{
(s, t) ∈ (R≥0 × R≥0)

∣∣∣∣s ≤ ssv
i + tvsv

i +
Mlane(i)∑
k=i+1

ssv
k + tvsv

k −∆sk−1

}
.

(6.32)

such that for 0 ≤ t ≤ t it holds that

(t, s(t)) ∈ S+
i =⇒ x(t) ∈ X{i,...,M}free (x(t), t).

162 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Oi

Oi+1

Oi+2

ŝsvi+2(t0)

ŝsvi+1(t0)

ŝsvi (t0)

s
(m

)

t (s)

∆si+1

SV sample trajectories

constrained by leading vehicles

S+
i

∆si+2

t0
s

(m
)

t (s)

Figure 6.10: Construction of longitudinal ostacle-free space S+
i for an SV with

index i and two leading vehicles. The left plot shows the nominal prediction
sets Oi. The right plot shows the blocking lower-bound set enforced on the
following vehicles. Red trajectories correspond to samples of actually driven
trajectories.

Similar assumptions are made in related work, e.g., [133, 181], and with a
more accurate lateral shape in [213]. The bounds in Ass. 6.2.5 approximate
a distribution that is generated by the intelligent driver model [286], where
a vehicle either drives or approaches a range around a reference velocity ṽsv

i ,
with vsv

i ≤ ṽsv
i ≤ vsv

i , or drives within a certain distance ∆si to a slower leading
vehicle [133, 181], cf., Fig. 6.10. The set

Oi =
{

(s, t) ∈ (R≥0 × R≥0)
∣∣ ssv

i + tvsv
i ≤ s ≤ ssv

i + tvsv
i

}
is referred to the nominal SV prediction set in the absence of leading vehicles.
In each planning step, the bounds of Oi are updated based on the current SV
state x̂sv

i , where for the velocity bounds it additionally holds that vsv
i ≤ v̂sv

i ≤ vsv
i

and for the position bounds ssv
i ≤ ŝsv

i ≤ ssv
i holds.

Assumption 6.2.6. The duration of a lane-change tlc is upper-bounded by tlc ≤
tlc.

For a concise notation, no offsets are assumed, i.e., the current lane and gap
index are 1, the current planning time is assumed at zero seconds and the initial
lateral reference and longitudinal estimated state are set to 0, therefore ñ0 = 0
and ŝ = 0.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 163

Obstacle-Free Set Approximations

In the following, convex obstacle-free sets in the SLT-space are defined as
intersections of the sets S+

i ,S
−
i and Nl, which serve as a basis for the proposed

LSTMP.

Two convex three-dimensional sets in the SLT-space are used to formulate a
lane change from lane l and gap index g on the same lane, i.e., l = lgap(g), to
gap index g+ on the next lane l+1, i.e., l+1 = lgap(g+). First, for lane-keeping,
obstacle avoidance reduces to the problem of staying within the current lane
boundaries (Ass. 6.2.3), ignoring following SVs on the same lane (Ass. 6.2.2)
and consider leading SVs, with an upper-bound related to (6.32), stated as the
convex obstacle-free set over the longitudinal and lateral position and time

F+
g =

{
(t, s, n) | (t, s) ∈ S+

g , n ∈ Nlgap(g)
}
. (6.33)

Next, the free set for a lane change is defined in the two-dimensional ST-space,
which is a subspace of the SLT-space, as

S lc
g,g+ =

{
(t, s) ∈ S+

g ∩ S+
g+ ∩ S−g+

}
. (6.34)

Finally, as shown in Fig. 6.11, the free space related to a lane change from lane l
and the related gap index g to lane l + 1 and the related gap index g+ is

F lcg,g+ =
{

(t, s, n) ∈ S lc
g,g+ × R

∣∣n ∈ conv(Nlgap(g) ∪Nlgap(g+))
}
. (6.35)

For a lane change, both lanes are required to be free of SVs, and for the next
lane l + 1, also rear vehicles need to be considered for the duration of the lane
change, cf. Ass. 6.2.2. Only the closest rear vehicle on the next lane needs to
be considered since more distant vehicles are constrained by preceding ones, cf.
Fig. 6.11.

The convexity of (6.33), (6.34) and (6.35) stems from the fact that each set is an
intersection of hyperplanes, which implies convexity [46]. In case of a detected
lane change of an obstacle, which we assume to be detectable (Ass. 6.2.1),
both lanes are considered to be blocked for the whole prediction horizon, cf.
Ass. 6.2.1.

6.2.4 Short-Horizon Approximations

The short-term motion planning formulation (STF) approximates the vehicle
dynamics for a prediction horizon tf and a maximum of one lane change towards
the goal lane l̃, similar to [181, 213]. The selection of the particular gap index g+

on the next lane is part of the long-term motion planning formulation (LTF),
which is vice versa constrained by the trajectory of the STF in the final LSTMP
formulation.

164 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

lane l + 1

t = t0

F lc
g1,g4

gap g4

g1g3

g2

F lc
g1,g3

F lc
g1,g2

lane l

s
(m

)

n (m)

F lc
g1,g4

F lc
g1,g3

F lc
g,g2

s
(m

)
n (m)

Figure 6.11: Sketch of obstacle-free sets F lc (green) for lane changing related to
three SVs on the two lanes l and l+ 1. The left plot shows the curvilinear space
with coordinates s and n. The right plot shows the ST-space. Three possible
gaps with indices g2, g3, and g4 on the consecutive lane l+ 1 are available for a
transition from gap index g1 and lane l.

Discretizing the model (6.30) with a discretization time td yields the linear
discrete-time model

xk+1 = Axk +Buk. (6.36)

A prediction horizon tf = Ntd with N steps is used to approximate the infinite
horizon in (6.29).

We define the acceleration bounds on the Frenet coordinate frame accelerations
by the admissible control set

U =
{
u ∈ Rnu

∣∣ u ≤ uk ≤ u}, (6.37)

where u = [alon,−alat]> and u = [alon, alat]>. Nonetheless, higher curvatures
and its derivatives can be inner-approximated by convex sets according to [86].
Moreover, the constraint

αlvs ≤ vn ≤ αrvs (6.38)

limits the lateral velocity in order to approximate the nonholonomic motion of
a kinematic vehicle model.

The reference tracking cost (6.26) is approximated for the STF, whereas the
remaining costs of the objective (6.28) are approximated as part of the LTF.
Binary variables λk ∈ N[0:1], with Λ = [λ0, . . . , λN], are used to indicate whether
the planned position is on the current lane, λk = 0, or on the next lane, λk = 1.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 165

The lane indices are always updated w.r.t. the current state such that λk = 0
corresponds to the current lane. A lateral reference can, therefore be expressed
by

ñk = dlaneλk, k ∈ N[0:N], (6.39a)

λk+1 ≥ λk, k ∈ N[0:N−1]. (6.39b)

Constraint (6.39b) is used to cut off binary assignments to ease the solution of
the MIQP problem. The constraint

ñk −
dlane

2 ≤ nk ≤ ñk + dlane

2

is added to guarantee that from ñk > 0 the planned ego vehicle state is located
on the next lane. Cost (6.26) can consequently be approximated with Frenet
states as

gst
ref(xk, uk, λk) = wn(dlaneλk − nk)2 + wv(ṽ − vs,k)2 + u>k Ruk. (6.40)

Cost (6.40) includes the term (dlaneλk − nk)2 = (dlaneλk)2 − 2dlaneλknk + n2
k

with the bilinear term −2dlaneλknk which cannot directly be handled by MIQP
solvers [114]. Thus, this bilinear term is reformulated by introducing continuous
auxiliary variables qbin,k ∈ R≥0, the additional constraint qbin,k = λknk and
further related constraints according to Property 6.2.1.

Finally, safety constraints approximating the set Xfree(x(t), t) for the current
and the next lane are formulated by considering M vehicles on the current
lane, which is always set to l = 1 and the next lane l+ = 2 and a chosen gap
index g+ ∈ N on the next lane, with 2 = lgap(g+).

Changing lane at time τ1 follows three stages (cf. also [181]) where, in each
stage, the constraints can be formulated as convex sets, cf., Fig. 6.12. First, at
time t ≤ τ1 − 1

2 tlc, the ego lane is tracked, second the lane is changed until the
time limit τ1 + 1

2 tlc, and thirdly constraints for driving on the next lane hold for
t ≥ τ1 + 1

2 tlc. The lane change time on either lane is approximated by the upper-
bound related to the time indices, nlc = d tlc2td e. Consequently, the lane change
phases can be formulated in terms of index shifts of λk, with [(1− λk+nlc) = 1]
indicating the first stage, [(λk+nlc −λk−nlc) = 1] indicating the transition phase
and [λk−nlc = 1] indicating the last stage on the next lane, cf. Fig. 6.12. For
out-of-range indices, i.e., k < 0 or k > N , the first value λ0 or the last value λN
are padded. For each position and time tuples (tk, sk, nk) with k ∈ N[0:N] and

166 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

s (m)

0
5

10
15

20
25

30
35

40

n
(m

)

−4
−2

0
2

4
6

8
10

12
t

(s
)

0

5

10

15

20

25

30

x0

O{1,2,3}

s (m)

0
5

10
15

20
25

30
35

40

n
(m

)

−4
−2

0
2

4
6

8
10

12

t
(s

)

0

5

10

15

20

25

30

F+
1 ∩ T lc− F lc

1,2 ∩ T lc F+
2 ∩ T lc+

s (m)

0
5

10
15

20
25

30
35

40

n
(m

)

−4
−2

0
2

4
6

8
10

12

t
(s

)

0

5

10

15

20

25

30

τ1

tlc
2

tlc
2

O{1,2,3} F̂+
0,0 F̂ lc

0,0,g F̂+
1,g

Figure 6.12: Visualization of SVs sets O{1,2,3} in the SLT-space and consecutive
convex free regions between gap index 1 and gap index 2. The time sub-
spaces T lc− = {(t, s, n)|t ≤ τ1−tlc/2}, T lc = {(t, s, n)|τ1−tlc/2 ≤ t ≤ τ1+tlc/2}
and T lc+ = {(t, s, n)|t ≤ τ1 + tlc/2} define the consecutive time-related spaces
on the planning horizon. The set F+

1 ∩ T lc− is the obstacle-free space on the
first lane before the lane change, F lc

1,2 ∩ T lc is the free space during the lane
change and F+

2 ∩ T lc+ is the obstacle-free space on the next lane after the lane
change. Rear vehicles in the same lane are ignored, i.e., a vehicle is always
allowed to brake. The binary variables λk determine which set constraints are
active for each xk.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 167

the current gap index g = 1, we require

[1− λk+nlc = 1] =⇒ (tk, sk, nk) ∈ F+
1 , (6.41a)

[λk−nlc − λk+nlc = 1] =⇒ (tk, sk, nk) ∈ F lc
1,g+ , (6.41b)

[λk−nlc = 1] =⇒ (tk, sk, nk) ∈ F+
g+ , (6.41c)

where the implications are reformulated according to Property 6.2.2.

Recursive feasibility requires disjunctive terminal velocity constraints depending
on the final lane, which is either the current lane implying [λN = 0] or the next
lane, implying [λN = 1]. Therefore, the terminal set is expressed by

[λN = 1] =⇒ vs,N ≤ ssv
g+ + tdNv

sv
g+ , (6.42a)

[1− λN = 1] =⇒ vs,N ≤ ssv
1 + tdNv

sv
1 , (6.42b)

vn,N = 0. (6.42c)

Note that this terminal set is restrictive since it upper-bounds the final velocity
with the velocity of the preceding vehicle on the respective lane. An increased
terminal safe set could be formulated by piece-wise linear approximations of
deceleration constraints, which requires further binary variables, cf. [181].

So far, constraints and costs have been introduced that are used as part of
the STF to plan a collision-free discrete-time trajectory from the current lane
to a certain gap at the next lane. Noteworthy, this trajectory is constrained
such that it is always safe w.r.t. the obstacle constraints. The selection of
the possible gap indices and also all further gaps towards the goal lane are
formulated in the LTF and explained in the next section. The STF and the
LTF are formulated in the final MIQP with mutual constraints, such that the
rather approximate LTF cannot plan transitions that are infeasible w.r.t. the
STF.

6.2.5 Long-Horizon Approximations

Within the LTF, costs and constraints are formulated that select collision-
free transition gaps between two adjacent lanes. For long horizons, a fixed
discretization in time is prohibitive since the number of variables increases
with the horizon length and would make the optimization problem hard to
solve [213]. To circumvent the computational scaling with the prediction time,
we propose a formulation in the two-dimensional continuous ST-space, where we
exclusively model the transitions as points in time and longitudinal position for
each lane change, with the transition times T = [τ1, . . . , τL−1]> and longitudinal
transition positions Σ = [σ1 . . . , σL−1]>.

168 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

In the following, three synergetic concepts are formulated to approximate the
transitions, i.e., constraints that approximate reachability, a formulation for
guaranteeing and maximizing the distance to SVs and a disjunctive formulation
for choosing among gaps between vehicles for each lane. Binary variables are
used to indicate whether transitions are invalid, resulting in the tuples of valid
transitions for L̄ ≤ L lanes.

Approximate Reachability

Reachability between transitions is approximated by the set R(τl, σl) using
constraints defined by operating velocity bounds vop and vop and an
approximation t̃lc of the time required to traverse a lane. The operating
velocity bounds are artificially added to approximate the true reachable set
around the expected velocity range of the vehicle.

The approximated set is used to define constraints for the next transi-
tion (τl+1, σl+1), cf. Fig. 6.13. Each reachable set depends on the last
transition (σl, τl) by the shifted cone

R(τl, σl) =
{

(τl+1, σl+1)
∣∣∣∣σl+1 ≤ σl + vop(τl+1 − τl − t̃lc)
σl+1 ≥ σl + vop(τl+1 − τl + t̃lc)

}
. (6.43)

The convex reachable set (6.43) is an approximation using the velocity
bounds vop and vop. Using bounds on the acceleration would result in nonconvex
quadratic constraints, which could still be approximated by the problem-specific
parameters t̃lc, vop and vop.

Chebychev Centering for Transitions

Next, criteria for determining the locations of continuous transition points are
defined. Transitions require an obstacle-free area for a minimum of the duration
of the lane-change tlc, as defined for the STF. Beyond the minimum required
time, an approach based on the Chebychev center (CC) is proposed that centers
the transition in the ST-space related to obstacle constraints, i.e., the transition
should be planned at a maximum weighted distance to constraints.

The CC formulation of (6.24) is used as a basis for further considerations.
Centering constrains for the polytope defined by [τ, σ] ∈ S+

g are written as
h+
g (τ, σ, r) ≤ 0 according to (6.24), which includes the centering radius r. For

the polytope defined by [τ, σ] ∈ S+
g ∩S−g , the centering constraints are denoted

by hg(τ, σ, r) ≤ 0.

Notice that the ST-space has different units, namely longitudinal distance and
time. To achieve a meaningful distance measure, the time coordinate is scaled

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 169

ttr

R(τl, σl)

(τl+1, σl+1)

(τl, σl)

R(τl+1, σl+1)

s
(m

)

t (s)

Oi2

l = lveh(i1)
l + 1 = lveh(i2) = lveh(i3)

rl+1

Oi3

Oi1

s
(m

)
t (s)

Figure 6.13: The left plot shows the reachable sets after the transition to lane l
and after the transition to lane l + 1. The reachable set has an offset related to
the estimated traversal time t̃lc. The right plot shows the Chebychev center (CC)
of the transition to lane l + 1 from gap index i1 to gap index i3 with two SVs
on the next lane l + 1 (yellow) and one SV on the current lane l (grey). The
time axis is scaled by the reference velocity ṽ, which is here assumed to be 1.

by the reference velocity ṽ. Therefore, the unit of the radius is measured in
meters.

The constraint (6.24c) is tightened to r ≥ r to guarantee the minimum distance
to obstacle constraints in the ST-space, i.e., the centering is only feasible
for a centering radius higher than a threshold r. Using the sequence of
gap indices [g1, . . . , gL−1], with l = lgap(gl), for each lane transition and the
accumulated cost

Gsafe(R) = −wsafe

L−1∑
l=1

rl,

with transition radii R = [r1, . . . , rL−1]> and a weight wsafe to promote a further
safety distance beyond the hard constraints, all transitions can be formulated

170 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

in the shared linear program

min
R,Σ, T

Gsafe(R) (6.44a)

s.t. h+
gl

(τl, σl, rl) ≤ 0, l ∈ N[1:L−2], (6.44b)

hgl+1(τl, σl, rl) ≤ 0, l ∈ N[1:L−2], (6.44c)

r ≤ rl, l ∈ N[1:L−1]. (6.44d)

Fig. 6.13 shows the centering of a transition (τl+1, σl+1, rl+1) from lane l to
lane l + 1 in the presence of a leading SV i1 on lane l with l = lveh(i1) and two
SVs i2, i3 on the next lane l + 1 with l + 1 = lveh(i2) = lveh(i3). Besides the
SVs constraints, the center of the transition (τl+1, σl+1) is constrained by the
approximated reachable set.
The linear program (6.44a) is not directly solved, but its cost and constraints
are included in the final LSTMP MIQP. Notice that, therefore, the centering
is solved as a weighted trade-off to other constraints, such as the duration
of the lane change. The sequence of gap indices is determined by the
disjunctive formulation including the constraints within a “big-M” formulation,
cf. Property 6.2.4, and explained in the next Section 6.2.5. Notice that
computing the transitions purely by maximizing the distance to SVs, without
including a measure along the time axis, would ignore the safety distance related
to the relative velocity of vehicles.

Disjunctions Among Gaps

A fundamental combinatorial aspect of lane change planning is the choice
of gap indices on each lane. In Sect. 6.2.5, it was shown how to constrain
transitions to an approximate reachable set, and in Sect. 6.2.5, a formulation
to center a transition in the ST-space was introduced, given a sequence
of gap indices. As an essential final component of the LTF, a disjunctive
formulation of choosing a single gap on each lane is proposed according to
Property 6.2.4. To activate constraints related to a certain gap, on each
transition (τl, σl) binary variables βi ∈ N[0:1] are used and summarized in
the vector B ∈ (N[0:1])(L−1)(M+2). The activation of gaps starts on the
second lane since the current lane gap is trivially fixed. In each lane, one
additional binary variable is added to account for the option of no transition
or lane-keeping. Therefore, this particular binary variable with index ĝ
implies the variables (τl, σl) to be unconstrained by defining hĝ(τl, σl, rl) ≤M ,
where M is a large number. For the following definitions, we define the
set Gl := {g | l = lgap(g)}, i.e., the set of all ´gap indices on a particular
lane, including the additional virtual unconstrained one and the set Ĝ that

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 171

contains all indices of unconstrained added gaps. The disjunctions∨
g+∈Gl+1

[
βg+

hg+(τl, σl, rl) ≤ 0

]
, ∀l ∈ N[1:L−1], (6.45)

constrain the transition (τl, σl) onto lane l + 1 by the leading and following
vehicles of a selected gap index g+, where βg+ = 1 and the disjunctions

∨
g∈Gl

[
βg

h+
g (τl, σl, rl) ≤ 0

]
, ∀l ∈ N[2:L−1], (6.46)

constrains the transition (τl, σl) from lane l to the next lane only by the leading
vehicles. In the case of no transition, i.e., the additional binary variables βĝ is
activated, where ĝ the index of the virtual added unconstrained gap, a high
cost Glane(Σ, T, B) is added that approximates (6.27) for not changing the lane.

Note that the binary variables B are related to the gaps on each lane,
starting with the second lane l = 2. The transitions (τl, σl) are related to
two adjacent lanes l and l + 1, starting with the transition from the first
lane l = 1. This distinction is crucial to the disjunctive constraints for each
transition. For a transition l related to the departing lane l, only leading vehicle
constraints h+

g (τl, σl, rl) ≤ 0 related to gap index g are considered according to
Ass. 6.2.2. For the next lane gap index g+ both, the preceding constraints and
the leading vehicle constraints in hg+(τl, σl, rl) ≤ 0 are used. This formulation
models interactive behavior by allowing to slow down SVs on the current lane
to reach a certain gap on the next lane.

The following further constraint on the binary variables∑
g∈Gl

βg = 1, ∀l ∈ N[2:L], (6.47)

reduces the search space for the mixed-integer (MI) solver. For each pair of
consecutive virtual gaps ĝ and ĝ+, with lgap(ĝ+) = lgap(ĝ) + 1, the physical
constraint

βĝ+ ≥ βĝ, (6.48)

sets all further lane-changes l > l1 to lane-keeping, if a lane is blocked.

Cost Approximations

In the following, a lane changing cost Glane(Σ, T, B) that approximates (6.27)
and a reference velocity cost glh

ref(Σ, T) that approximates (6.26) and penalizes
transitions with deviations of the reference velocity ṽ are formulated.

172 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Cost (6.27) linearly penalizes the number of lanes distant from the goal lane and
is integrated over time in the final objective. This integral can be approximated
over a horizon tf by the following sum∫ tf

t=t0
glane(x(t); Θ)dt ≈ Glane(Σ, T, B) := wg

∑
ĝ∈Ĝ

τl(1− βĝ) + tfβĝ, (6.49)

which penalizes the duration τl on each lane l, if there was a valid transition, i.e.,
βĝ = 0. If no transition was computed for lane l, i.e., βĝ = 1, the cost for the
full horizon staying on the lane is summed in (6.49). Note that (6.49) contains
bilinear terms of binary variables βĝ and σl, both decision variables. The terms
are treated by introducing an additional variable qbi,l for each bilinear term, cf.,
Property 6.2.1. All auxiliary variables related to bilinear terms are summarized
by Qbi = [qbi,1, . . . , qbi,L, qbin,1, . . . , qbin,N−1]

Finally, the difference of the reference speed according to (6.26) is penalized for
two consecutive transitions by

Gref(T,Σ) =wvtf
lg

(
lg∑
l=2

(
(σl − σl−1) + (τl − τl−1)ṽ

)2)
. (6.50)

Cost (6.50) approximates the duration between lane transitions with the constant
value tf

lg
, starting from the second transition as the reference cost approximation

of (6.26) for the first transition is included in the STF cost (6.40).

Notably, this cost approximation for the reference velocity neglects the planned
time driving on each lane.

6.2.6 Long-Short-Horizon Motion Planner

In the following, we complete the final motion planning MIQP problem with
necessary additional formulations for combining the STF of Sect. 6.2.4 and the
LTF of Sect. 6.2.5.

First, the formulations of the STF and the LTF are combined consistently
according to the following definition for the first transition (τ1, σ1).

Definition 6.2.1. A transition (τ, σ) is consistent with the longitudinal states sk
and the lateral states nk of a trajectory, with k ∈ N[0:N], if and only if the

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 173

following inequalities hold

nk ≤
dlane

2 ,∀k ∈ {i ∈ N[0:N] | it∆ ≤ τ}, (6.51a)

nk >
dlane

2 ,∀k ∈ {i ∈ N[0:N] | it∆ > τ}, (6.51b)

sk ≤ σ, ∀k ∈ {i ∈ N[0:N] | it∆ ≤ τ}, (6.51c)

sk > σ,∀k ∈ {i ∈ N[0:N] | it∆ > τ}. (6.51d)

Def. 6.2.1 states that the position states of the STF trajectory must be located
on the current lane, closer than the longitudinal position σ and before the
transition time τ and on the consecutive lane and position, thereafter.

In the following, the consistency formulation for the first transition (τ1, σ1) of
a feasible solution of the LSTMP is shown. Therefore, constraints among the
discrete decision variables λk, the transition (τ1, σ1) and positions sk of the STF
are defined by the pair-wise exclusive disjunctions according to Property 6.2.4,[λk = 1]

ktd ≥ τ1
sk ≥ σ1

 ∨
[λk = 0]
ktd < τ1
sk < σk

 , ∀k ∈ N[1:N], (6.52)

For each pair k, the disjunctions (6.52) use the same binary variable λk, yet,
with the opposite indication, i.e., either [λk = 0] or [λk = 1], which makes it
exclusively choosing the related constraints.

Moreover, a terminal set formulation for the STF is required to reach a
transition (τ1, σ1) with τ1 ≥ Ntd, i.e., the transition time τ1 is further distant
than the final STF prediction time Ntd. It holds that τ1 ≥ Ntd ⇔ [λN = 0], so
the reachable set can be conditioned on λN by

[λN = 0] =⇒ (τ1, σ1) ∈ R(Ntd, sN). (6.53)

The final LSTMP, formulated as an MIQP, can be stated by decisions variables,
costs, and constraints of the STF, the LTF, and with the additional coupling
constraints (6.52) and (6.53).

The STF decision variables are Xs = (X,U,Λ) ∈ Vs, where

Vs = RN×nx × RN−1×nu × (N[0:1])N ,

and the LTF decision variables are Xl := (Σ, T,R,Qbi, B) ∈ Vl, where

Vl := RL−1 × RL−1 × RL−1 × RL−1+N × (N[0:1])L−1×M+2.

174 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

O
C

P
(1

0)
LS

TM
P

(3
4)

Figure 6.14: Overview of the approximations of the general OCP objective
function (6.29) by the LTF cost Ĵl(·) and the STF cost Ĵs(·). The reference
cost gref(·) is approximated for the first two lanes within the STF and, thereafter,
by the LTF.

In total, 3(L− 1) continuous and (L− 1)(M + 2) binary variables are used to
model the transitions for LM SVs. Another (N − 1)(nx + nu) + nx continuous
and N binary variables model the first lane change for a horizon of tdN . A
total of L+N − 1 variables are used as auxiliary variables.

Remarkably, the total number of binary variables is Nbin = (L− 1)(M + 2) +N ,
which is with O(LM+N) usually a much lower number in contrast to O(LMN)
of [213].

The cost function (6.28) is approximated by the cost of the STF trajectory

Ĵs(Xs) =
N∑
k=0

gst
ref(xk, uk, λk),

and the cost of the long horizon is

Ĵl(Xl) = Glane(Σ, T, B) +Gref(T,Σ) +Gsafe(R).

The relations of the general OCP objective in (6.29) approximated by the
LSTMP, comprising the LTF cost Ĵl(·) and the STF cost Ĵs(·) are shown in
Fig. 6.14.

Including a constraint x0 = x̂ that constrains the decision variable x0 to the
current state x̂, the constraints of the STF are summarized by gs(Xs) ≤
0 and include the discrete dynamic model (6.36), the control and state
constraints (6.37) and the constraints related to the first lane-change (6.39),
(6.40), (6.41) and (6.42).

For the LTF, a constraint gl(Xl) ≤ 0 summarizes the reachability con-
straints (6.43), the CC constraints (6.44a), and the constraints used to formulate
the disjunction among gaps in (6.45), (6.46), (6.47), and (6.48).

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 175

The coupling constraints (6.52) and (6.53) between states of the LTF and STF
are concisely written as gc(Xs, Xl) ≤ 0.

Ultimately, the LSTMP approximates the solution of the OCP (6.29) by solving
the following MIQP in each iteration

min
Xs∈Vs,
Xl∈Vl

Ĵs(Xs) + Ĵl(Xl) s.t.

gs(Xs) ≤ 0,
gl(Xl) ≤ 0,
gc(Xs, Xl) ≤ 0.

(6.54)

The output X∗ = (Xs, Xl) of the LSTMP is always safe w.r.t. the obstacle
constraints (6.33) and (6.35). This follows directly from the constraint
formulations of the STF, including the terminal safe set (6.42). Approximation
errors in the LTF formulations may lead to sub-optimal behavior. However,
they do not influence safety related to the feasibility of the trajectory X∗s .

6.2.7 Evaluation

We evaluate the proposed LSTMP approach in two different setups. First,
deterministic SVs are simulated as they are modeled in the LSTMP, and
exact tracking of the provided plan is assumed. A second setup includes
more realistic scenarios, where the traffic is simulated interactively by the
traffic simulator SUMO [170], based on benchmark scenarios provided by the
CommonRoad-framework [13], cf., Fig. 6.15. Moreover, the LSTMP is integrated
into an autonomous driving (AD)-stack with a low-level NMPC tracking
controller of [228] that tracks the LSTMP trajectory X∗ by controlling a
simulated single-track BMW 320i medium-sized passenger car model provided
by CommonRoad. The SV states X̂SV and the current estimated point-mass
state x̂ are the inputs of the planner. The point-mass state x̂ is obtained from
the six-dimensional simulated single-track vehicle state ẑ.

For both setups, the LSTMP is compared against the MIP-DM of [213] and a
hybrid A∗ formulation according to [8]. Rendered simulations can be found on
the website https://rudolfreiter.github.io/lstmp_vis/

Implementation Details

We describe the setup used for evaluation in the following. Parameters are
chosen according to Tab. 6.4.

Preprocessing. The SVs states XSV are processed before either planner is
executed. First, SVs that drive closer to each other than a longitudinal threshold

https://rudolfreiter.github.io/lstmp_vis/

176 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Long Short-Term Motion
Planner

Traffic Simulation

Vehicle Simulation and
Control

Low-Level
NMPC

Ego Simulator

LTFSTF

Figure 6.15: Overview of the adopted simulation architecture. After obtaining
the ego vehicle state ẑ and the SVs states Xsv, the LSTMP solves in each
planning iteration the MIQP (6.54). The computed plan X∗ related to the
point-mass model is forwarded to the low-level NMPC for tracking. For the ego
vehicle simulation, a BMW 320i vehicle model provided by CommonRoad is used.
The position of the ego vehicle ẑ is passed to the SUMO traffic simulator.

Table 6.4: Parameter for evaluations.

General parameters
td, M 300ms, 7
wn, wv, wg, wsafe 10−2, 10−1, 200, 10−5

R diag
(
[5 · 10−4, 2 · 10−3]

)
dlane 3.75m (Germany), 12 feet (US)
[alon, alat] [−8, −3] m

s2

[alon, alat] [5, 3] m
s2

LSTMP - deterministic scenario
td, N , M 300ms, 15, 7
tf , tlc 105s , 2.7s
vsv, vsv v̂sv, v̂sv

LSTMP-V0 - interactive scenario
vsv, vsv, L v̂sv + 1m

s , v̂sv − 1m
s , 5

LSTMP-V1 - interactive scenario
vsv, vsv, L v̂sv + 1m

s , v̂sv − 1m
s , 3

LSTMP-V2 - interactive scenario
vsv, vsv, L v̂sv + 3m

s , v̂sv − 3m
s , 5

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 177

distance of 15m are merged by setting the corresponding upper and lower
velocity bounds and increasing the occupied space. Second, a maximum number
of M = 7 SVs per lane are considered, which are the 7 closest vehicles at the
current time step on each lane.

Benchmark MIP-DM. The first benchmark is based on the MIP-DM
formulation of [213]. It uses a fixed discrete-time trajectory, similar to the
STF, however, with four binary variables per obstacle and per time step to
account for the rectangular obstacle shape. One further binary variable per time
step indicates a lane change. The number of binary variables for the MIP-DM
is therefore Nbin = 4NML+N . The MIP-DM is adapted to be comparable to
the LSTMP. First, only one lane change direction is allowed, which reduces the
number of binary variables. Second, obstacle shapes are inflated to occupy the
whole lane, equally to the LSTMP. Finally, the interactive braking behavior of
succeeding SVs on the same lane is implemented by deactivating corresponding
obstacles on the current lane at the current time step. For the MIP-DM, a total
number of M = 3 vehicles are considered on L = 5 consecutive lanes, while the
horizon length N is 10, 15 or 20 steps.

Benchmark hybrid A∗. The second benchmark is based on the hybrid A∗
of [8]. This planner considers lateral motion only at the discrete lane indices,
with a search space of (t, s, l). In order to be comparable to the other planners,
we modify the search space to (s, l, vs), which includes the velocity vs instead
of time. Since the hybrid A∗ of [8] does not consider lateral states between lane
centers, we use a sampling time of 7td to allow full lane changes in one expansion,
i.e., it is guaranteed that the final planning vertex is always located on the center
of a lane. We use the same planner model (6.36) for vertex expansions. Note that
hybrid A∗ could use nonlinear models without increasing the computation time,
which, in contrast, would be challenging for the LSTMP and MIP-DM. As an
admissible heuristic, the relaxed solution of (6.54) without obstacle constraints
is computed for each lane. The longitudinal acceleration control is discretized
into 11 intervals, and the lateral acceleration is computed by using 11 lane
change primitives. The lateral states correspond to the number of lanes. The
longitudinal position is discretized with 100 intervals and the velocity with 20
intervals. The number of node expansions is varied in experiments between 5
and 500.

Low-level NMPC. The low-level NMPC is formulated as shown in [228], using
a nonlinear single-track vehicle model, a sampling time of 10ms and a horizon
of 1.5s. The controls comprise the acceleration a and the steering rate δ̇.

178 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Table 6.5: Different scenario settings for SVs used in evaluations.

Scenario Name tr.-flow tr.-density L V sv ṽ

SVs
lane·min

SVs
lane·km

m
s

m
s

Deterministic

custom 14.6 12.2 9 [15, 35] 25

Closed-loop interactive

USA_US101-22_1_I-1 11.8 14.0 6 [0, 22.2] 15
DEU_Col.-63_5_I-1 22.3 26.9 3 [11.0, 16.5] 11
DEU_Col.-63_5_I-1_s 8.9 10.5 3 [11.1, 16.5] 15

Figure 6.16: Different tracks from the CommonRoad scenario database used for
the closed-loop simulation.

Scenarios. For deterministic comparisons in Sect. 6.2.7 and interactive closed-
loop comparisons in Sect. 6.2.7, the scenarios are chosen according to Tab. 6.5.
Due to traffic congestion, the velocity can be zero. Traffic flow and density
are averaged over the simulation. The velocity range V sv corresponds to the
measured SVs velocities during all simulations. The scenarios are simulated
for 40 seconds or until the end of the road is reached. Snapshots of the
CommonRoad scenarios for interactive simulations are shown in Fig. 6.16.

Computations and Numerical Solvers. The MIQPs of the LSTMP and
the MIP-DM are solved with Gurobi [114]. The NLP, arising in the low-

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 179

level NMPC, is solved by the open-source solver acados [291]. Simulations
are executed on a LENOVO ThinkPad L15 Gen 1 Laptop with an Intel(R)
Core(TM) i7-10510U @ 1.80GHz CPU.

Evaluation for Deterministic Traffic and Exact Tracking

In order to compare the performance of the planner without interference
from the traffic prediction error, simulation modeling error, and controller
performance, the planner is simulated with deterministic SVs and exact tracking.
Deterministic SVs are simulated with constant speed if they are at a minimum
distance to a slower leading SVs and with the speed of the leading SV if they
are below the threshold distance. The planned trajectory X∗ is assumed to
be tracked exactly. This setup resembles the model of the traffic used in the
LSTMP, where tight bounds for the obstacle-free sets (6.33) and (6.35) can
easily be found. In Fig. 6.17, snapshots of a randomized simulation with
five lanes are shown, where the vehicle starts at the bottom lane and has to
reach the top lane. Red areas indicate the SVs after pre-processing. The STF
trajectory X∗ of the LSTMP is shown in black, whereas the transition gaps are
shown in blue. The evaluated closed-loop cost and computation time of 100
randomized custom scenarios according to Tab. 6.5 for the deterministic setup
are shown in Fig. 6.18 on the Pareto front.

The comparisons include evaluations for different parameter settings of the
algorithms, i.e., the number of considered consecutive lanes in the LSTMP, the
maximum node expansions in hybrid A∗, and the horizon length of the MIP-DM.

The MIP-DM with the longest horizon outperforms the LSTMP in the average
closed-loop cost over the full simulations, however, at a high computational
expense which violates the real-time requirement. In fact, the computation time
of the MIP-DM is an order of magnitude higher than the computation time of
the LSTMP.

The hybrid A∗ can be faster to execute compared to the LSTMP, but it yields
a higher closed-loop cost. In our experiments, increasing the iterations of
hybrid A∗ could not yield a better performance. This may be due to the
longer duration of motion primitives to allow lane changes and the resulting
coarser time discretization. Further relevant properties related to the lane
change multi-objective (6.28) are shown in Tab. 6.6. This includes the mean
deviation from the reference speed ∆ṽ, mean and maximum values for the
lateral and longitudinal accelerations, and the maximum reached lane lmax at
the end of the simulation. It shows that the LSTMP with a longer horizon
better keeps the reference speed and also changes lanes more often. By utilizing
large acceleration values, the MIP-DM achieves the highest number of lane
changes and the overall lowest closed-loop cost, cf., Fig. 6.18.

180 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure 6.17: Snapshots during lane-changes on a five-lane deterministic
environment with randomized SV (gray) initial speeds and lanes. Blue regions
indicate computed gaps of the LSTMP, with green points corresponding to the
expected transition position σl and the black STF trajectory X∗. Red areas
correspond to occupied sets O(tsim), where tsim is the current simulation time
of the snapshot.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 181

10−2 10−1 100 101

computation time (s)

600

800

1000

1200

cl
o
se

d
-l

o
o
p

co
st

hybrid A∗, niter={5, 50, 500}
MIP-DM, nhor={10, 15, 20}
LSTMP, Lp={2, 3, 4, 5, 6}

mean

max.

td

Figure 6.18: Pareto comparison of planners in randomized deterministic traffic
scenarios. The hybrid A∗ planner can be parameterized to have the fastest
computation time, and the MIP-DM achieves the lowest costs. However, the
novel LSTMP formulation performs best when both a low computation time as
well as low costs are required.

Notably, the number of binary variables required in the MIP-DM is much larger
than in the LSTMP, which leads to a significantly longer computation time.
For a prediction horizon of N = 10 and settings of Tab. 6.4, the MIP-DM
requires 610 binary variables and for a prediction horizon of N = 20 a total
of 1220 binary variables. The LSTMP that considers in total Lp = 2 lanes,
requires only 22 binary variables, whereas considering Lp = 5 lanes requires
only 50 binary variables.

Evaluation for Interactive Traffic and Closed-Loop Control

For different randomized scenarios according to Tab. 6.5 and Fig 6.16, the lane
changing problem is simulated with interactive SVs, using a software architecture
corresponding to Fig. 6.15. The ego vehicle starts at random free positions
and has to reach the leftmost lane, according to cost (6.28), with parameters
of Tab. 6.4. The LSTMP, hybrid A∗, and MIP-DM are compared with a low-
level tracking controller in closed-loop simulations. States are assumed to be
estimated exactly. However, the velocity range of SVs is unknown. Different

182 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure
6.19:

C
losed-loop

evaluation
ofvariants

ofthe
proposed

LST
M
P

planner
(blue)

com
pared

to
hybrid

A
∗
(red)

and
M
IP-D

M
(green).

The
totalnum

ber
ofcollisions,the

com
putation

tim
e,velocities,the

totalnum
ber

oflane
changes,and

the
closed-loop

cost
com

pared
to

the
m
ost

exact
M
IP-D

M
form

ulation
are

com
pared

for
different

random
ized

scenarios.
T
he

proposed
LST

M
P

has
the

low
est

com
putation

tim
e
below

the
planning

tim
e
tplan

and
a
high

num
ber

oflane
changes

for
allscenarios.

M
oreover,it

can
reduce

the
closed-loop

cost
significantly.

O
ccasionalcollisions

are
observed

for
allvariants,

irrespective
oftheir

param
eters.

A LONG-SHORT-TERM MIXED-INTEGER FORMULATION 183

Table 6.6: Comparison of planners in randomized deterministic traffic scenarios
for different mean (maximum) quantities.

Planner ∆ṽ alat alon lmax

Par. Val. Nbin
m
s 10-1 m

s2 10-1 m
s2

LSTMP

Lp 2 22 1.75 0.71 (4.58) 1.40 (5.30) 3.92
3 29 0.42 0.63 (3.82) 1.46 (6.35) 4.20
4 36 0.03 0.66 (3.70) 1.48 (6.45) 4.34
5 43 0.07 0.64 (3.62) 1.37 (4.96) 4.62
6 50 0.03 0.67 (3.62) 1.55 (6.15) 4.66

MIP-DM

N 10 610 2.50 0.48 (2.68) 0.69 (5.14) 3.62
15 915 2.10 0.52 (2.67) 1.06 (8.16) 4.17
20 1220 1.98 0.65 (2.67) 1.83 (8.70) 4.75

hybrid A∗

iter. 5 N/A 1.78 0.47 (2.40) 0.14 (1.00) 2.61
50 N/A 1.73 0.47 (2.40) 0.17 (1.14) 2.63
500 N/A 1.70 0.43 (2.40) 0.22 (1.43) 2.58

settings of the planners are used according to Tab. 6.4 to create the statistical
evaluation of performance measures as shown in Fig. 6.19.

The performance evaluations show rare collisions of all planners due to prediction
errors. For the conservative LSTMP-V1 configuration, no collisions were
recorded. Computation times are lowest for the LSTMP planner and well below
the planning time threshold tplan. The computation times for the hybrid A∗
are nearly constant since the planning nodes are expanded with a fixed number
of iterations. Notably, the computations for hybrid A∗ were not performed on a
runtime-optimized code. The velocity varies the most for the LSTMP, which
promotes acceleration and deceleration to reach certain gaps. This can also be
verified by the high number of lane transitions of the LSTMP. Particularly, in
the DEU_Col.-63_5_I-1_s scenario, long-term decisions significantly raised
the number of lane transitions in the LSTMP. The closed-loop cost for LSTMP
configurations are below the benchmark comparisons, particularly below the
MIP-DM-20 with the longest horizon of 20 steps, which we define as expert.

184 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Costs are relatively expressed to the cost of MIP-DM-20 and outperformed by
LSTMP-V0 and LSTMP-V1.

6.2.8 Conclusion and Discussion

Under the variety of different planning methods for AD, the proposed LSTMP
for lane change planning achieves a good trade-off between performance
and computational costs, thanks to the use of state-of-the-art MIQP solvers.
The considered problem has relevant combinatorial and continuous parts,
which makes MIQP formulations particularly suited to solve the proposed
motion planning problem. Building on previous work to minimize the
number of combinatorial variables, we introduced a novel long-horizon
approximation. Together with a discrete-time trajectory, a single MIQP, which
is computationally very efficient, was formulated consistently.

We compared our approach to the MIP-DM [213], which uses more integer
variables to model rectangular obstacle shapes that are not required to be
aligned with the lane boundaries and to model lane transitions in both directions.
This makes the MIP-DM a more versatile approach, i.e., lane changing is only
a subset of problems that can be addressed with it.

The fundamental modeling approach of the LSTMP is the decomposition into
convex cells together with a simplification due to the road alignment. The
authors assume that it is possible to add integer variables to achieve lane
transitioning in both directions for a fixed maximum number of transitions and
additional convex decompositions to resemble nonconvexities in the ST-space,
as, for instance, traffic lights.

In the future, we will evaluate whether more flexible mixed-integer nonlinear
programming can achieve better performance under real-time requirements.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 185

6.3 Equivariant Deep Learning of Mixed-Integer
Optimal Control Solutions for Vehicle Decision
Making and Motion Planning

In this section, the paper published in [229] is reprinted verbatim. Note that the
formatting of some formulas, terms, and numbers has been slightly adjusted for
consistency without changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: idea for main contribution (network architecture, feasi-
bility projector), programming and simulation validation,
proposing mathematical formulations, algorithm design,
creation of the document, creation of the rebuttal and the
revised version

Rien Quirynen: idea (preliminaries, binary variable prediction), proposing
mathematical formulations, algorithm design, mathemati-
cal corrections, supporting document creation, grammar
corrections, spelling style improvements, coherence review
and improvement, simplification suggestions, rebuttal
proof reading

Moritz Diehl: mathematical corrections, algorithmic corrections for
feasablility projection, grammar corrections, spelling
style improvements, coherence review and improvement,
simplification suggestions

Stefano Di Cairano: idea (preliminaries, binary variable prediction), algo-
rithmic corrections, mathematical corrections, grammar
corrections, spelling style improvements, coherence review
and improvement, simplification suggestions, rebuttal
proof reading and answer suggestions

Copyright ©2024 IEEE. Reprinted, with permission from Rien Quirynen, Moritz Diehl
and Stefano Di Cairano. A Long-Short-Term Mixed-Integer Formulation for Highway
Lane Change Planning. June/2024. DOI: 10.1109/TCST.2024.3400571.

Abstract. Mixed-integer quadratic programs (MIQPs) are a versatile way of
formulating vehicle decision making and motion planning problems, where the
prediction model is a hybrid dynamical system that involves both discrete
and continuous decision variables. However, even the most advanced MIQP
solvers can hardly account for the challenging requirements of automotive
embedded platforms. Thus, we use machine learning to simplify and hence

186 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

speed up optimization. Our work builds on recent ideas for solving MIQPs in
real-time by training a neural network to predict the optimal values of integer
variables and solving the remaining problem by online quadratic programming.
Specifically, we propose a recurrent permutation equivariant deep set that is
particularly suited for imitating MIQPs that involve many obstacles, which is
often the major source of computational burden in motion planning problems.
Our framework also comprises a feasibility projector that corrects infeasible
predictions of integer variables and considerably increases the likelihood of
computing a collision-free trajectory. We evaluate the performance, safety,
and real-time feasibility of decision-making for autonomous driving using the
proposed approach on realistic multi-lane traffic scenarios with interactive agents
in SUMO simulations.

6.3.1 Introduction

Decision-making and motion planning for automated driving are challenging due
to several reasons [199]. First, in general, even formulations of deterministic, two-
dimensional motion planning problems are PSPACE-hard [219, 159]. Second,
(semi-)autonomous vehicles operate in highly dynamic environments, thus
requiring a relatively high control update rate. Finally, there is always
uncertainty that stems from model mismatch, inaccurate measurements as
well as other drivers’ unknown intentions. The complexity of motion planning
and decision making (DM) for automated driving and its real-time requirements
in resource-limited automotive platforms [78] requires the implementation of a
multi-layer guidance and control architecture [199, 112].

Based on a route given by a navigation system, a decision-making module
decides what maneuvers to perform, such as lane changing, stopping, waiting,
and intersection crossing. Given the outcome of such decisions, a motion
planning system generates a trajectory to execute the maneuvers, and a vehicle
control system computes the input signals to track it. Recent work [213]
presented a MIP-DM, which simultaneously performs maneuver selection and
trajectory generation by solving a MIQP at each time instant. In this paper,
we present an algorithm to implement MIP-DM based on supervised learning
and sequential quadratic programming (SQP) to compute a collision-free and
close-to-optimal solution with a considerably reduced online computation time
compared to advanced MIQP solvers.

The presented approach consists of an offline supervised learning procedure
and an online evaluation step that includes a feasibility projector (FP). In the
offline procedure, expert data is collected by computing the exact solutions
of the MIQP for a large number of samples from a distribution of parameter
values in the MIP-DM, including, for example, states of the autonomous vehicle,
its surrounding traffic environment, and speed limits. Along the paradigm
of [63, 39], a NN is trained with the collected expert data to predict the

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 187

binary variables that occur within the MIQP, which are the main source of the
computational complexity of MIQPs. A novel NN architecture, referred to as
recurrent equivariant deep set (REDS), is proposed that exploits key structural
domain properties, such as permutation equivariance related to obstacles and
recurrence of the time series.

In the online evaluation step, the NN predicts the optimal values of the binary
variables in the MIQP. After fixing these, the resulting problem becomes a
convex QP that can be solved efficiently. To account for potentially wrong
predictions, the QP is formulated with slack variables (soft-QP). The soft-QP
solution is forwarded to a FP to correct any infeasibilities, implemented by a
NLP with smooth but concave obstacle constraints. Such convex-concave NLPs
can be solved efficiently using an SQP algorithm [291, 284]. To further increase
the likelihood of finding a feasible and possibly optimal solution, an ensemble of
NNs is trained and evaluated, and the “best” solution is selected at each time
step.

The overall performance of the proposed method is compared against the ad-
vanced MIQP solver Gurobi [114], alternative neural network architectures [62]
and evaluated in high fidelity closed-loop simulations using SUMO [170] and
CommonRoad [13].

Related Work

This work lies at the intersection of three research areas, i.e., geometric deep
learning, mixed-integer program (MIP), and motion planning for AD (cf.,
Fig. 6.20). Motion planning problems are solved by algorithms that can handle
combinatorial complexity and dynamic feasibility under real-time computation
limits [67, 218].

Motion primitives are appealing due to their simplicity and alignment with the
road geometry [257]. However, the motion plans are usually sub-optimal or
conservative.

In several works, graph search is performed on a discretized state space [199].
Probabilistic road maps [139] and rapidly exploring random trees [23] are
common in highway motion planning. Nonetheless, they suffer from the curse of
dimensionality, a poor connectivity graph, and no repeatability [67]. By using
heuristics, A∗ [8] aims to avoid the problem of high-dimensional discretization.
However, choosing an appropriate heuristic is challenging, and graph generation
in each iteration is time-consuming [199].

For some conservative simplifications related to highway driving, the state space
can be decomposed into spatio-temporal driving corridors [30, 181, 164]. Such
non-convex regions can be further decomposed into convex cells [77] or used in

188 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

(Geometric)

Deep

Learning

AD
Motion

Plannning

Mixed-

Integer

Optimization

[7],[12],
[15],[16]

[17],[18]
[6],[19]-[25]

[26]-[30]

Figure 6.20: Categorical overview of related work. The research domain of the
proposed approach is located at the intersection of three areas.

a sampling-based planner [164]. For these cases, the performance is limited due
to the required over-approximations.

Derivative-based numerical optimization methods can successfully solve
problems in high-dimensional state spaces in real-time [80]. However, these
approaches are often restricted to convex problem structures or sufficiently
good initial guesses. While highway motion planning and DM is highly non-
convex, by introducing integer variables, the problem can be formulated as an
MIQP [201, 209, 91, 140, 87, 164, 141, 213].

A common problem is the significant computation time of MIQP solvers. Authors
mitigate the problem by either scaling down the problem size [209, 225, 87, 213],
neglecting real-time requirements [91] or accepting the high computation time
for non-real-time simulations while leaving real-time feasibility open for future
work [201, 140, 141].

Several recent works use deep learning to accelerate MIQP solutions. One
strategy is to improve algorithmic components within an online MIQP
solver [175, 189, 144]. The authors in [175] use deep learning to warm-start
MIQP solvers, which, however, cannot lower the worst-case computation time.
The authors in [189, 144] propose a learning strategy to guide a branch-and-
bound (BnB) algorithm. For solving MILPs, the authors in [242] use NNs for a
custom solver to achieve similar computation times as commercial solvers, which,
however, may still be large. Another strategy is based on supervised or imitation
learning, using MIQP solutions as expert data to train function approximators
offline [40, 309, 267]. The authors in [40] show how the classification of binary
variables in MIQPs can produce high-quality solutions with a low computation

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 189

time. Recent work [62] extends supervised learning for MIQP-based motion
planning [63] using a recurrent neural network (RNN) and presolve techniques
to increase the likelihood of predicting a feasible solution. Due to the RNN, the
results in [62] scale well with the horizon length but not yet with the number of
obstacles, as shown later.

None of the works that use deep learning to accelerate MIQP-based motion
planning consider or leverage geometric deep learning, particularly permutation
equivariance or invariance, to decrease the network size and increase the
performance. As one consequence, they do not allow variable input and
variable output dimensions, e.g., corresponding to a variable number of obstacles.
However, some recent works successfully use geometric deep learning for related
tasks in AD, e.g., the prediction of other road participants [324, 131], or within
RL [126].

Other techniques for DM exclusively use NNs without solving optimization
problems online, e.g., using deep RL [276]. These approaches usually require
more data, are less interpretable, and may lack safety without additional safety
layers due to the approximate nature of the NN output [67].

Contributions

Our main contribution is a REDS for the NN predicting integer variables of
MIQPs, which is particularly suited for learning time-series and obstacle-related
binary variables in motion planning problems. In particular, the REDS enables
the NN to predict binary variables for collision avoidance concerning a varying
number of obstacles, and the predicted solution is the same regardless of the
order in which the obstacles are provided. Our proposed framework includes an
ensemble of NNs in combination with a feasibility projector (FP) that increases
the likelihood of computing a collision-free trajectory. Compared to the state-
of-the-art, we show that our method improves the prediction accuracy, adds
permutation equivariance, allows for a variable number of obstacles and horizon
length, and generalizes well to unseen data, such as several obstacles not present
in the training data. As a final contribution, we demonstrate the performance
of a novel integrated planning system, which is further referred to as REDS
planner. The REDS planner uses an ensemble of REDSs, a selection of the best
soft-QP solution, and the FP for real-time vehicle decision-making and motion
planning. We present closed-loop simulation results with reference tracking by a
NMPC for realistic traffic scenarios, using interactive agents in SUMO [170], and
a high-fidelity vehicle model and the problem setup provided by CommonRoad [13].

190 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Preliminaries and Notation

The notation I(n) = {z ∈ N|0 ≤ z ≤ n} is used for index sets and B = {0, 1}.
Throughout this paper, the attributes of equivariance (invariance) exclusively
refer to permutation equivariance (invariance) with the following definition.

Definition 6.3.1. Let f(ζus) : XM → Y be a function on a set of variables
ζus = {ζus

1 , . . . , ζus
M} ∈ XM and let G be the permutation group on {1, . . . ,M}.

The function f is permutation invariant, if f(g · ζus) = f(ζus) for all g ∈
G, ζus ∈ XM .

Definition 6.3.2. Let f(ζeq) : XN → YN be a function on a set of variables
ζeq = {ζeq

1 , . . . , ζeq
N } ∈ XN and let G be the permutation group on {1, . . . , N}.

The function f is permutation equivariant, if f(g · ζeq) = g · f(ζeq) for all
g ∈ G, ζeq ∈ XN .

Features that are modeled without structural symmetries are referred to as
unstructured features. Lower and upper bounds on decision variables x are
denoted by x and x, respectively. The all-one vector [1, . . . , 1]> of size n is 1>n .
The notation f(x; y) in the context of optimization problems indicates that
function f(·) depends on decision variables x and parameters y. Lower case
letters x ∈ Rn refer to scalars or vectors of size n and their upper case version
X ∈ Rn×N refer to the matrix associated with a sequence of those vectors along
a time horizon N . Obstacles normally refer to surrounding vehicles.

6.3.2 Problem Setup and Formulation

In this work, an autonomous vehicle shall drive safely along a multi-lane road
while obeying the traffic rules. We consider decision-making based on MIP that
determines the driving action and a reference trajectory for the vehicle control
to follow. The definition of safety can be ambiguous [55]. We use the term
safe to refer to satisfying hard collision avoidance constraints concerning known
obstacles’ trajectories. Our problem setup relies on the following assumptions.

Assumption 6.3.1. There exists a prediction time window along which the
following are known:

1. the predicted position and orientation for each of the obstacles in a
neighborhood of the ego vehicle up to a sufficient precision,

2. the high-definition map information, including center lines, road curvature,
lane widths, and speed limits.

Assumption 6.3.1 requires the vehicle to be equipped with on-board sensors
and perception systems [54], an obstacle prediction module [199, 112], the

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 191

high definition map database, either on-board or obtained through vehicle-to-
infrastructure (V2I) communication [89]. The effect of prediction inaccuracies
and uncertainty on vehicle safety is outside the scope of the present paper, but
relevant work can be found in [199, 112] and references therein.

Assumption 6.3.2. We assume a localization with cm-level accuracy at each
sampling time.

Assumption 6.3.2 is possible thanks to recent advances in GNSS that achieve
cm-level accuracy at a limited cost [34, 108].

We propose a DM that satisfies the following requirements.

Requirement 6.3.1. The DM must plan a sequence of maneuvers, possibly
including one or multiple lane changes and a corresponding collision-free
trajectory to make progress along the vehicle’s future route with a desired nominal
velocity.

Requirement 6.3.2. The DM yields kinematically feasible trajectories,
satisfying vehicle limitations and traffic rules (e.g., speed limits).

Requirement 6.3.3. The DM must be agnostic to permutations of surrounding
vehicles, i.e., the plan must be consistent, irrespective of the order in which the
vehicles are processed (cf. Def. 6.3.2).

Requirement 6.3.4. The DM must hold a worst-case computation time lower
than the real-time planning period tp, with a target value of tp ≤ 0.2s.

Requirement 6.3.5. At any time, the DM must satisfy all requirements,
regardless of the number of surrounding vehicles.

Based on Assumption 6.3.1, Req. 6.3.1-6.3.3 can be met by the MIP-DM
from [213]. However, the crucial Req. 6.3.4-6.3.5 may be difficult to meet by
the MIP-DM when executing on embedded control hardware with limited
computational resources and memory [78]. The main focus of this work
is approximating the MIP-DM with a suitable framework that satisfies all
Req. 6.3.1-6.3.5. Notably, Req. 6.3.3 is trivially true for the MIP-DM [213].
However, this is not the case for NN-based planners unless the architecture is
invariant to permutations [312].

Nominal and Learning-based Architecture

A hierarchical control architecture (cf., Fig 6.21) of a DM is proposed, followed
by a reference tracking NMPC. Within the architecture of Fig. 6.21, the expert
MIP-DM is used as a benchmark. We refer to the module aiming to imitate the
expert MIP-DM as the REDS planner. It comprises an ensemble of NNs that

192 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

predict the binary variables of the MIQP, as used in the expert MIP-DM. For
each NN, a soft-QP is solved with the binary variables fixed to the predictions
and softened obstacle avoidance constraints. This yields a set of candidate
trajectories, and a selector evaluates their costs and picks the least sub-optimal
one. Finally, the FP projects the solution guess to the feasible set to ensure
that the constraints are satisfied. The FP solves an NLP, minimizing the error
with respect to the best candidate solution and subject to ellipsoidal collision
avoidance constraints. The reference provided by the REDS planner or the
expert MIP-DM is tracked by the reference tracking NMPC at a high sampling
rate, which includes collision avoidance constraints. This adds additional safety
and leverages the requirements on the REDS planner on conservative constraints
related to uncertain predictions.

The individual modules differ in motion prediction models, their objective,
obstacle avoidance constraints, the approximate computation time tcomp, the
final horizon tf and the discretization time t∆, cf., Tab. 6.7.

6.3.3 Expert Motion Planner

We model the vehicle state in a curvilinear coordinate frame, which is defined
by the curvature κ(s) along the reference path [222]. The state vector x =
[s, n, vs, vn]> ∈ Rnx includes the position p = [s, n]> ∈ R2, with the longitudinal
position s, the lateral position n, the longitudinal velocity vs and the lateral
velocity vn, where nx = 4. The control vector u = [as, an]> ∈ Rnu comprises
the longitudinal and lateral acceleration in the curvilinear coordinate frame,
where nu = 2. The discrete-time double integrator dynamics are written as
xi+1 = Axi + Bui, using the discretization time td, where A ∈ Rnx×nx and
B ∈ Rnx×nu . By considering N prediction steps, the prediction horizon can be
computed by tf = Ntd. Constraints vn ≤ α vs and vn ≥ α vs account for limited
lateral movement of the vehicle with bounds α, α that can be computed based
on a maximum steering angle δ and the maximum absolute signed curvature
κ = κ(s∗), with s∗ = arg max0≤s≤s |κ(s)| along a lookahead distance s [213].
An acceleration limit afric of the point-mass model formulated as box constraints
||u||∞ ≤ afric inner-approximate tire friction constraints related to Kamm’s
circle [13]. Since we formulate our model in the Frenet coordinate frame,
the lateral acceleration bounds an, an are modified, based on the centrifugal
acceleration, resulting in an = afric + κv2

s,0 and an = −afric + κv2
s,0. The fixed

parameter dbnd is used as the safety distance to the road boundary, bounds
u, u for acceleration limits, and vs, vn for the maximum velocity. In order to
account for the road width, bounds n ≤ n ≤ n on the lateral position are used.
The model used within expert MIP-DM is able to approximate the dynamics in
a variety of situations [213]. However, certain maneuvers, such as sharp turns,
may require additional modeling concepts [140].

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 193

REDS planner

DNN

DNNDNN

expert MIP-DM

Z

SUMO Traffic Simulation

Vehicle Simulation
and Control

DNN

soft QP

u

low-level NMPC

x̂

x̂

Ego Simulator

Xs

FP

Selector

{
B̂1,
. . . ,

B̂ne
}

REDS

{
(Xp1, Up1),

. . . ,
(Xpne , Upne)

}

x̂

Xe

(Xp, Up)

Figure 6.21: Planning and closed-loop simulation architecture. The expert
MIP-DM is imitated by the REDS planner, which uses an ensemble of ne NNs
to predict values of the binary variables {B̂1, . . . , B̂ne}. A soft-QP solves a
formulation of the expert MIP-DM with binary variables fixed to the prediction.
The lowest cost solution Xp is chosen by a Selector and corrected by the FP. A
reference tracking NMPC with obstacle avoidance tracks the corrected solution
Xs.

194 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Property
/
M
odule

expert
M
IP-D

M
soft-Q

P
FP

tracking
N
M
PC

O
pt.

C
lass

M
IQ

P
Q
P

N
LP

N
LP

M
odel

point-m
ass

point-m
ass

point-m
ass

kinem
atic

O
bjective

globaleconom
ic

globaleconom
ic

tracking
tracking

O
bstacle

Avoidance
hyper-planes

O
out

fixed
hyper-planes

O
out

ellipsoids
O

safe
ellipsoids

O
safe

tcom
p

∼
2s

∼
3m

s
∼

10m
s

∼
2m

s
tf

10s
10s

10s
1s

t∆
0.2s

0.2s
0.2s

0
.05s

C
om

m
ent

high
com

putation
tim

e
possibly

unsafe
safe

projection

Table
6.7:

O
verview

ofoptim
ization

problem
s
solved

w
ithin

the
individualm

odules.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 195

Osafe

sbs

n

Oout

xe
xs

γb = 1

γr = 1

sf

γf = 1

γl = 1

Ocar

nr

nl

Figure 6.22: Vehicle over-approximations. All trajectories outside of Osafe

are considered free of collision. The expert MIP-DM plans with the most
conservative obstacle set Oout. The ellipsoidal smooth over-approximation Osafe

is used within the FP and the NMPC. The four colored regions are uniquely
determined by the binary variables γ, where in each region, exactly one binary
variable is equal to one.

Collision Avoidance Constraints

Collision avoidance constraints for nobs obstacles are formulated by considering
the ego vehicle as a point mass and using a selection matrix P ∈ R2×nx , with
p = Px that selects the position states p from the states x. The true occupied
obstacle space Ocar

j ⊆ R2, for j ∈ I(nobs−1), is expanded to include all possible
configurations where the ego and obstacle vehicle are in a collision in the
curvilinear coordinate frame, resulting in an ellipsoid Osafe

j , cf. Fig. 6.22. The
expert MIP-DM uses a road-frame-aligned rectangular constraint Pxi /∈ Oout

j ,
for all i ≥ 0, j ∈ I(nobs − 1), which over-approximates the ellipsoidal set Osafe

j ,
leading to additional robustness of the multi-layer control architecture, with
Ocar
j ⊆ Osafe

j ⊆ Oout
j ⊆ R2 (cf., Fig. 6.21 and Tab. 6.7). For each obstacle j,

the rectangular shape of Oout
j can be characterized by the boundaries d> =

[sf , sb, nl, nr]>. Four collision-free regions k ∈ {f,b, l, r} around an obstacle are
defined, where each region can be expressed by a convex set Ak(d) p ≤ bk(d),
with either one for k ∈ {f, b} or three half-space constraints for k ∈ {l, r},
cf., Fig. 6.22. Four binary variables γ = [γf , γb, γl, γr]> ∈ B4 are used with a
big-M formulation to ensure that the vehicle is inside one of the four regions.
Therefore, with 1 in the according dimension of either 11 for k ∈ {f, b} or 13

196 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

for k ∈ {l, r}, the collision-free set is

Fout(d, σ) =
{

(p, γ, σ) ∈ (R2,B4,R)
∣∣∣∀k ∈ {f,b, l, r} :

Ak(d) p ≤ bk(d) + 1(1− γk)M + 1(σ − 1)σk, 1>4 γ = 1
}
.

(6.55)

The values σk define additional safety margins for each of the four collision-free
regions. The slack variable σ ∈ R is bounded 0 ≤ σ ≤ 1, such that only points
in the exterior of Oout

j satisfy the condition in (6.55). A model predicts the
future positions of the obstacle boundaries dji for each obstacle j ∈ I(nobs − 1)
at time steps i ∈ I(N) along the horizon.

MIQP Cost Function

The MIQP cost comprises quadratic penalties for the state vector x ∈ Rnx

with weight Q ∈ Rnx×nx , and the control vector u ∈ Rnu with weight R ∈
Rnu×nu , for tracking of their references x̃ and ũ, respectively. The reference
x̃i = [s̃i, ñi, ṽs, 0]> at time step i is determined by the desired velocity ṽs, as
well as by the binary control vector λ = [λup, λdown]> ∈ B2. These binary
variables are used to determine lane changes at time step i, resulting in the
road-aligned lateral reference X̃n = [ñ0, . . . , ñN]> ∈ RN+1 always being the
center of the target lane. The longitudinal position s̃i follows from the velocity
ṽs. The MIQP cost function reads

N∑
i=0
‖xi − x̃i‖2Q +

N−1∑
i=0
‖ui − ũi‖2R +

wlc

N−1∑
i=0

1>2 λi + wrght

N∑
i=0

ni + wdst

nobs−1∑
j=0

N∑
i=0

(σji)2,

(6.56)

including a penalty with weight wrght > 0 to minimize deviations from the
right-most lane, a weight wlc > 0 to penalize lane changes, and a weight wdst > 0
penalizing slack variables to avoid being too close to any obstacle.

Parametric MIQP Formulation

For a horizon of N steps, the binary MIQP decision variables are Λ =
[λ0, . . . , λN−1] ∈ B2×N and Γ = [γ0

0 , γ
0
1 , . . . , γ

nobs−1
N] ∈ B4×nobs(N+1), the real-

valued states are X = [x0, . . . , xN] ∈ R4×(N+1), the control inputs are U =
[u0, . . . , uN−1] ∈ R2×N and the slack variables are Σ = [σ0

0 , σ
0
1 , . . . , σ

nobs−1
N] ∈

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 197

Rnobs(N+1). Hard linear inequality constraints are

{H(X,U) ≥ 0} ⇔

{X,U | u ≤ ui ≤ u, i ∈ I(N − 1),

x ≤ xi ≤ x, α vs,i ≤ vn,i ≤ α vs,i, i ∈ I(N)}.

The parameters Π = (x̂, ṽs, nlanes, D) include the initial ego state x̂, the desired
velocity ṽs, the number of lanes nlanes and the time-dependent obstacle bounds
D, where

D =
{
dji
∣∣ ∀j ∈ I(nobs − 1),∀i ∈ I(N)

}
.

The parametric MIQP solved within each iteration of the MIP-DM is

min
X,U, X̃n,Λ,Γ,Σ

Je(X,U, X̃n,Λ,Σ) (6.57a)

s.t.

x0 = x̂, H(X,U) ≥ 0, 0 ≤ Σ ≤ 1, , (6.57b)

ñi+1 = ñi + dlaneλ
up
i − dlaneλ

down
i , , (6.57c)

xi+1 = Axi +Bui, i ∈ I(N − 1), , (6.57d)

(Pxi, γji , σ
j
i) ∈ Fout(dji , σ

j
i), i ∈ I(N), ,

j ∈ I(nobs − 1), (6.57e)

where the cost Je(·) is defined in (6.56), and ñ0 is the lateral position of the
center of the desired lane. An MIQP solving (6.57) is used as an “expert”
to collect supervisory data, i.e., feature-label pairs (Π, B∗), where B∗ is the
optimal value of binary variables, cf., Fig. 6.21. For the closed-loop evaluation
of the expert MIP-DM, the optimizer X∗ is used as the output of the expert
MIP-DM Xe.

6.3.4 Scalable Equivariant Deep Neural Network

Because the MIQP (6.57) is computationally demanding to solve in real-time,
especially for long prediction horizons and a large number of obstacles, we
propose a novel variant of the combinatorial offline convex online (COCO)
algorithm [63] to accelerate MIQP solutions using supervised learning. We
train a NN to predict binary variables and then solve the remaining convex QP
online after fixing the binary variables. The MIQP (6.57) comprises 4nobsN
structured binary variables related to obstacles and 2N lane change variables.

198 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

We refer to the latter as unstructured binary variables because, differently from
the others, there is no specific relation besides recurrence among them.

In the following, we first describe the desired properties of the NN prediction in
Sec. 6.3.4 and review the classification of binary variables in Sec. 6.3.4. Then,
in Sec. 6.3.4, we introduce one of our main contributions, the REDS, to achieve
the desired properties. Finally, we show in Sec. 6.3.4 how to use an ensemble of
NNs to generate multiple predictions.

Desired Predictor Properties for Motion Planning

The desired properties of the predictor may be divided into performance, i.e.,
general metrics that define the NN prediction performance, and structural
properties, i.e., structure-exploiting properties related to Requirements 6.3.1-
6.3.5.

Performance. The prediction performance is quantified by the likelihood of
predicting a feasible solution µ, and a measure of optimality ρ. However,
supervised learning optimizes accuracy, i.e., cross-entropy loss, which was shown
to correlate well with feasibility [39, 63, 62]. In fact, we evaluated the Pearson
correlation coefficient (PCC) for our experiments and obtained a PCC of 0.81 for
the correlation between the training loss and the infeasibility and a PCC of 0.88
between accuracy and feasibility. In addition, the computation time tcomp to
evaluate the NN is important for real-time feasibility. We aim for tcomp to
be very small compared to the MIQP solution time, and tcomp < tp ≤ 0.2s
(see Req. 6.3.4). Finally, the memory footprint of the NN should be small for
implementation on embedded microprocessors [78].

Structural. First, the REDS planner needs to operate on a variable number
of obstacles, which is required in real traffic scenarios, see Req. 6.3.5. Second,
to comply with Req. 6.3.3, obstacle-related predictions need to be equivariant
to permutations on the input, see Def. 6.3.2. For unstructured binary variables,
the predictions should be permutation invariant, see Def. 6.3.1. Third, again,
relating to Req. 6.3.5, the NN architecture is expected to generalize to unseen
data. In particular, it should provide accurate predictions for several obstacles
that may not be present in the training data. Finally, the NN should predict
multiple guesses to increase the likelihood of feasibility and/or optimality. The
proposed REDS planner provides the desired structural properties, and it
improves the performance properties.

Since we consider a highly structured problem domain, we propose to directly
include the known structure into the NN architecture. Alternatively, one could
learn the structure for general problems by, e.g., attention mechanisms [288].

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 199

However, the related attention-based architectures usually have a high inference
time, which may clash with the desired fast online evaluation.

Prediction of Binary Variables by Classification

As the authors in [40, 62] show, solving the prediction of binary variables as
a multi-class classification problem yields superior results than solving it as a
regression problem. Since the naive enumeration of binary assignments grows
exponentially, i.e., the number of assignments is 2|B|, where |B| is the number
of binary variables, an effective strategy is to enumerate only combinations
of binary assignments that actually appear in the data set. While it cannot
guarantee to predict all combinations, this leads to a much smaller number of
possible classes, and it has been observed that the resulting classifications still
significantly outperform regression (cf., [62]).

Recurrent Equivariant Deep Set Architecture

The REDS architecture, shown in Fig. 6.23, achieves the structural properties
and improves the prediction performance. We use training data that consists
of feature-label pairs (Π, B). The features Π are split into obstacle-related
features ζeq = {ζeq

0 , . . . , ζeq
nobs−1}, where ζ

eq
i ∈ Rmeq , and unstructured features

ζus ∈ Rmus . The equivariant features ζeq = (zj , dj) are the initial obstacle
state zj and its spatial dimension dj since all states along the horizon are
predicted based on the initial state. The unstructured features contain all other
parameters of Π, i.e., ζus = (x̂, ṽs, nlanes).

The work in [312] proposes a simple but effective NN architecture that provides
either permutation equivariance or invariance. The blocks are combined in
our tailored encoder layer that maintains permutation equivariance for the
equivariant outputs and invariance for the unstructured outputs, see Fig. 6.23.
A hidden state hus ∈ Rmh is propagated for unstructured features and hidden
states heq

j ∈ Rmh , with j ∈ I(nobs − 1), for the equivariant features, where
heq = [heq

0 , . . . , h
eq
nobs−1]> ∈ Rnobs×mh . The encoder layer has four directions of

information passing between the fixed-size unstructured and the variable-size
equivariant hidden states with input dimension mh and output dimension m′h:

1. Equivariant to Equivariant: Equivariant deep sets [312] are used as layers
with ReLU activation functions σ(·) and parameters Θee,Γee ∈ Rmh×m′h :

f ee(heq) = σ(heqΘee + 11>heqΓee).

2. Equivariant to Unstructured: To achieve invariance from the set elements
heq
j to the unstructured hidden state hus, the invariant layer of [312] is

200 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

added that sums up over the set elements with parameters Θeu ∈ Rmh×m′h ,

f eu(heq) = σ

((nobs−1∑
j=0

heq
j

)
Θeu

)
.

3. Unstructured to Equivariant: To implement a dependency of the
equivariant elements on the unstructured hidden state while maintaining
equivariance, this layer equally influences each set element by

fue(hus) = σ(1nobs ⊗ husΘue),

with parameters Θue ∈ Rmh×m′h .

4. Unstructured to Unstructured: We use a standard feed-forward layer with
parameters Θuu ∈ Rmh×m′h

fuu(hus) = σ(husΘuu).

Feed forwards (FFs) act as encoders to the input features, which allows to
matching the dimensions of the equivariant and unstructured hidden states. For
each layer of the REDS in Fig. 6.23, the contributions are summed up to obtain
the new hidden states

heq′ = f ee(heq) + fue(hus),

hus′ = fuu(hus) + f eu(heq).

A long short term memory (LSTM) is used as decoder for each equivariant hidden
state, transforming the hidden state into a time series of binary predictions, see
Fig. 6.23. Another LSTM is used as a decoder for unstructured hidden states.
For the REDS, the classification problem per time step (Sec. 6.3.4) needs to
consider only four classes per obstacle (one for each collision-free region), cf.
Fig. 6.22, and three classes for lane changes (change to the left or right, stay in
lane).

Neural Network Ensembles for Multiple Predictions

As suggested in early works [118, 262], using an ensemble of ne stochastically
trained NNs is a simple approach to obtain multiple guesses and improve
classification accuracy. Producing multiple predictions, the lowest cost maneuver
among different candidate solutions can be selected, e.g., staying behind a vehicle
or overtaking. For typical classification tasks, no a-posteriori oracle exists that
identifies the best guess [118]. However, in our problem setup, the soft-QP
solution can directly evaluate the feasibility and optimality and, therefore,
identify the best guess, as discussed next.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 201

FF

FF fee(heq)

fuu(hus)

K layers

feu(heq)

fue(hus)

h
eq
k

h
eq
k

′

hus
k

′

LSTM

sum over

features
set elements

LSTM Eq.

Bin. Γ

Binary

Vars. B

Unstruct.

Bin. Λ

hus
k

hidden state

recurrent set elements

recurrent hidden state

ζeq

ζus

Features

Π

Figure 6.23: REDS network. The blue blocks show the propagation of
equivariant features, whereas the orange blocks show the propagation of
unstructured features. An invariant connection couples both hidden states.

6.3.5 Soft QP Solution and Selection Method

For each candidate solution from the ensemble of NNs, the soft-QP is constructed
based on the MIQP (6.57) with fixed binary variables and unbounded slack
variables for the obstacle constraints. Each candidate solution consists of
the binary values Λ̂ = [λ̂0, . . . , λ̂N−1] and Γ̂ = [γ̂0

0 , γ̂
0
1 , . . . , γ̂

nobs−1
N] that are

predicted by the NN. The reference X̃n in (6.57c) is also fixed when the binary
variables are fixed. The resulting soft-QP is convex, and a feasible solution
always exists due to removing the upper bound for each slack variable σji , with

202 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

j ∈ I(nobs − 1), i ∈ I(N) and

J s∗ = min
X,U,Σ

J s(X,U,Σ) (6.58a)

s.t.

x0 = x̂, H(X,U) ≥ 0, Σ ≥ 0, (6.58b)

xi+1 = Axi +Bui, i ∈ I(N − 1), (6.58c)

(Pxi, σji) ∈ Fout(dji , γ̂
j
i), i ∈ I(N),

j ∈ I(nobs − 1), (6.58d)

where the cost J s(·) is (6.56), see Tab. 6.7. We construct (6.58d) from (6.55) by
removing the safety margins σji and fixing the binary variables to the predicted
solution guess Γ̂. Therefore, the soft-QP (6.58) is a relaxation of MIQP (6.57)
with fixed integers. Problem (6.58) is solved for each prediction of the NN
ensemble, and the solution leading to the lowest cost for (6.58a) is selected as
output Xp of the module, see Fig. 6.21. The soft-QP is convex and can be
solved efficiently using a structure exploiting QP solver [291, 97]. Despite solving
multiple QPs for multiple candidate solutions, the computational burden is
much lower than solving an MIQP that typically requires solving a combinatorial
amount of convex relaxations.

6.3.6 Feasibility Projection and SQP Algorithm

The soft-QP solution (Xp, Up) may not be collision-free due to binary
classification errors from the ensemble of NNs, i.e., some of the slack variables
may be nonzero in the soft-QP solution. In order to project the soft-QP solution
to a collision-free trajectory, a smooth convex-concave NLP, referred to as FP, is
solved in each iteration. The FP solves an optimization problem that is similar
to (6.58) (see Tab. 6.7), but the reference trajectory is equal to the soft-QP
solution, i.e., X̃ := Xp and Ũ := Up. In addition, the obstacle constraints
in (6.58d) are replaced by smooth concave constraints based on the ellipsoidal
collision region, cf. Fig. 6.22, which allows the use of an efficient SQP algorithm,
e.g., [74].

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 203

Optimization Problem Formulation

With the geometry parameter d of an obstacle, the inner ellipse Osafe within Oout

is used for defining the safe-set F safe. The ellipse center and axis matrix

t(d) = 1
2
[
(sf + sb), (nl + nr)

]>
, Υ(d) = 1√

2
diag([sf − sb, nl − nr]),

are used to formulate the smooth obstacle constraint

F safe(d) =
{

(p, ξ)
∣∣∣ ‖p− t(d)‖2Υ−1(d) ≥ 1− ξ

}
, (6.59)

with slack variables ξ ≥ 0. A tracking cost

J f
tr(X,U) =

N∑
i=0
‖xi − x̃i‖2Q +

N−1∑
i=0
‖ui − ũi‖2R , (6.60)

and a slack violation cost

J f
slack(Ξ) = wh

nobs−1∑
j=0

N∑
i=0

ξji , (6.61)

are defined, where Ξ = {ξji |i ∈ I(N), j ∈ I(nobs − 1)}. The penalty wh � 0 is
sufficiently large such that a feasible solution with ξji = 0 can be found when it
exists. The resulting NLP can be written as

min
X,U,Ξ

J f
tr(X,U) + J f

slack(Ξ) (6.62a)

s.t.

x0 = x̂, H(X,U) ≥ 0, Ξ ≥ 0, (6.62b)

xi+1 = Axi +Bui, i ∈ I(N − 1), (6.62c)

(Pxi, ξji) ∈ F safe(dji), i ∈ I(N),

j ∈ I(nobs − 1), (6.62d)

using the least-squares tracking cost (6.60) and smooth obstacle avoidance
constraints (6.59). The optimal trajectory X∗ of (6.62) is the output of the
FP Xs and also of the REDS planner and tracked by the NMPC, see Fig. 6.21.
Since Fout ⊆ F safe, the NLP (6.62) is a smooth relaxation of the MIQP (6.57).

204 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Application of Sequential Quadratic Programming

NLP (6.62) has a convex-concave structure. Except for the concave
constraints (6.62d), the problem can be formulated as a convex QP. When
solving NLP (6.62) using the Gauss-Newton SQP method [111], this guarantees
a bound on the constraint violation for the solution guess at each SQP
iteration [284].

Proposition 6.3.1. Consider NLP (6.62), let Xi, Ui,Ξi be the primal variables
after an SQP iteration with Gauss-Newton Hessian approximation, and let
X0, U0,Ξ0 be an initial guess equal to the reference, i.e., X0 = X̃, U0 = Ũ .
Then, the decrease in the slack cost reads

J f
slack(Ξi) ≤ J f

slack(Ξ0)− J f
tr(Xi, Ui). (6.63)

Proof. According to Lemma 4.2 of [284], the cost of (6.62) decreases after each
iteration for our problem structure, i.e.,

J f
tr(Xi+1, Ui+1) + J f

slack(Ξi+1) ≤ J f
tr(Xi, Ui) + J f

slack(Ξi).

Consequently, Eq. (6.63) can be verified, since it holds that J f
tr(X0, U0) = 0 due

to the initialization equal to the reference and J f
tr(X,U) ≥ 0,∀X,U , such that

J f
tr(Xi, Ui) + J f

slack(Ξi) ≤ J f
slack(Ξ0).

Additionally, it can be guaranteed that the SQP iterations remain feasible, i.e.,
collision-free, once a feasible solution is found, if the slack weights wh � 0 are
chosen sufficiently large. The latter requires to select a weight value such that
the gradient of the exact L1 penalty (6.61) is larger than any gradient of the
quadratic cost (6.60) in the bounded feasible domain. This property is due to
the exact penalty formulation [194] and the inner approximations of the concave
constraints (6.62d), since a feasible linearization point in iteration j guarantees
feasibility also in the next iterate j + 1 [74]. Notably, choosing sufficiently large
weights, yet not too large to avoid ill-conditioned QPs, may be challenging
in practice. Therefore, the weights could be increased in each iteration if
convergence issues were encountered [194]. However, we used constant weights
without encountering numerical problems.

Under mild assumptions [284], the SQP method converges to a stationary point
of (6.62). The FP provides a certificate of feasibility if the slack variables are
zero, i.e., Ξj = 0. We show that the FP effectively increases the likelihood of
computing a collision-free trajectory in numerical simulations.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 205

6.3.7 Implementation Details

In this section, we list the most important details of implementation. Further
information on the structure of the NN model, training parameters, and the
FP are in the Appendix.

Numerical solvers. For solving the MIQP of the expert MIP-DM and the QP
of the soft-QP, we use Gurobi [114] and formulate both problems in cvxpy [79].
The NLPs of the FP, as well as the reference tracking NMPC, are solved by
using the open-source solver acados [291] and the algorithmic differentiation
framework CasADi [14]. We use Gauss-Newton Hessian approximations, full
steps, an explicit RK4 integrator, and non-condensed QPs that are solved by
HPIPM [97]. We use real-time iterations [80] within the reference tracking NMPC
and limit the maximum number of SQP iterations to 10 within the FP.

Training of the NN. In order to formulate and train the NNs, we use PyTorch.
We train on datasets of 105 expert trajectories that we generate by solving the
expert MIP-DM with randomized initial parameters, sampled from an uniform
distribution within the problem bounds, see Appendix 6.3.11. We use a learning
rate of 10−4 and a batch size of 1024. The performance is evaluated on a test
dataset of 2 ·103 samples using a cross-entropy loss and the adam optimizer [147].

Computations. Simulations are executed on a LENOVO ThinkPad L15 Gen
1 Laptop with an Intel(R) Core(TM) i7-10510U @ 1.80GHz CPU. The
training and GPU evaluations of the NNs are performed on an Ubuntu
workstation with two GeForce RTX 2080 Ti PCI-E 3.0 11264MB GPUs. Parts
of the REDS planner, namely the ne NN ensemble and the soft-QP, can be
parallelized, which speeds up our approach by approximately the number of
NNs used. Therefore, the serial computation time

ts =
ne∑
i=1

(tNN,i + tQP,i) + tFP,

includes each individual NN inference time tNN,i, each soft-QP evaluation
time tQP,i and the FP evaluation time tFP. The parallel computation time is

tp = max
i=1,...,ne

(tNN,i + tQP,i) + tFP.

Nonlinear Model Predictive Control. The lower-level reference tracking
NMPC is formulated as shown in [222], which is similar to (6.62), but using a
more detailed nonlinear kinematic vehicle model, a shorter sampling period and
a shorter horizon (see Tab. 6.7). The reference tracking NMPC can be solved

206 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

efficiently using the real-time iterations [80], based on a Gauss-Newton SQP
method [111] in combination with a structure exploiting QP solver [291].

6.3.8 In-Distribution Evaluations

First, we show the performance of the REDS architecture, compared to the state-
of-the-art architectures of [62], and we demonstrate its structural properties, see
Sec. 6.3.4. Next, we show how the soft-QP and the feasibility projection increase
the prediction performance and the influence on the overall computation time.
In this section, we use the same distribution over the input parameters for
training and testing of the NNs.

Evaluation of the REDS

We compare two variants of the proposed architecture. First, the REDS is
evaluated, see Fig. 6.23. Second, as an ablation study, the same architecture but
without the LSTM, referred to as equivariant deep set (EDS), is evaluated. In
the EDS, a FF is used to predict the binary variables along the full prediction
horizon (see Fig. 6.23). The performance is compared against the state-of-the-
art architectures for similar tasks [62], i.e., an LSTM and a FF network with a
comparable amount of parameters.

The evaluation metrics are the infeasibility rate, i.e., the share of infeasible
soft-QPs violating constraints (with nonzero slack variables), and the
misclassification rate, i.e., the share of wrong classifications concerning the
prediction of any binary variable. If at least one binary variable in the prediction
is wrongly classified, the whole prediction is counted as misclassified, even though
the soft-QP computes a feasible low-cost solution. Furthermore, we consider
the suboptimality ρ, i.e., the objective of the feasible soft-QP solutions J s∗

compared to the expert MIP-DM cost Je∗,

ρ = J s∗ − Je∗

Je∗ ≥ 0. (6.64)

A suboptimality of ρ = 0 means the cost of the prediction is equal to the optimal
cost of the expert MIP-DM. Fig. 6.24 shows how the performance scales with
the number of obstacles nobs and with the horizon length N , without the FP
from Sec. 6.3.6. The REDS and EDS yield superior results to the LSTM as
soon as nobs ≥ 2, and they vastly outperform the FF network for an increasing
number of obstacles and horizon length.

Besides improving the performance metrics, the REDS also provides the desired
structural properties. A REDS network can be trained and evaluated with
a variable number of obstacles and prediction horizon. In Tab. 6.8, the
generalization performance of REDS network is shown, i.e., it is evaluated

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 207

0

50

100
in

fe
as

ib
il
it

y
(%

) Variation of nobs (nhor = 28) Variation of nhor (nobs = 5)

0

50

100

m
is

cl
as

s.
(%

)

2.5 5.0
nobs

10−1

101

su
b

op
ti

m
al

it
y

20 40
nhor

FF LSTM EDS REDS

Figure 6.24: Performance evaluation for infeasibility rate, misclassification rate,
and suboptimality of different network architectures, depending on the number
of obstacles and horizon length. The REDS network outperforms the other
architectures, particularly for a larger number of obstacles and a longer horizon.
Suboptimality is shown in a logarithmic scale.

for the number of obstacles that were not present in the training data. Tab. 6.8
compares generalization for an interpolation and extrapolation of the number of
obstacles and the prediction horizon. According to Tab. 6.8, REDS generalizes
well for samples out of the training data distribution for the number of obstacles
and the horizon length.

Evaluation for Ensemble of REDS Networks

In Fig. 6.25, we show the achieved feasibility rate on the test data using an
ensemble with ne = 10 REDS networks. In total, 2·103 samples are evaluated for
each NN individually and cumulatively. The performance improves by adding
more NNs. However, also the total computation time increases. The parallel
computation time results in the maximum time over the individual networks.
Tab. 6.9 shows the memory usage and the number of parameters for the different
architectures. The sizes of the networks are feasible for embedded devices [78],
i.e., the REDS and EDS provide improved performance with a comparable or

208 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Training Testing Performance (%)
nobs N nobs N misclass. infeas. subopt.

Generalization for the number of obstacles: interpolation
No general. 1-5 28 3 28 41.7 19.7 17.4
General. 1,2,4,5 28 3 28 42.0 19.8 11.6

Generalization for the number of obstacles: extrapolation
No general. 1-5 28 5 28 30.3 24.4 3.9
General. 1-4 28 5 28 34.4 26.5 3.4

Generalization for the horizon length
No general. 1-3 16 1-3 16 20.4 8.9 38.1
General. 1-3 12 1-3 16 26.0 10.8 20.9

Table 6.8: Evaluation of the REDS network generalization performance (high-
lighted in bold).

5

10

15

in
fe

as
.

ra
te

(%
)

cumulative (serial)

cumulative (parallel)

individual

uncertainty

0 1 2 3 4 5 6 7 8 9

neural network index

0

20

40

co
m

p
.

ti
m

e
(m

s)

Figure 6.25: Individual and cumulative REDS prediction performance
(infeasibility rate) and computation time concerning the number of NNs used
in the ensemble. The computation time differs for parallel and serial evaluation.
For the parallel evaluation, the slowest network determines the computation
time.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 209

FF LSTM EDS REDS

Memory usage (MB) 2.40 0.97 0.51 1.40
Number of parameters (105) 5.98 2.41 1.26 3.43

Table 6.9: Memory usage and number of parameters in NN architectures
involving five obstacles and a horizon of 28 steps.

0 5 10 15 20 25 30

infeasibility (%)

QP (1 NN)

QP (10 NN)

s.QP+FP (1 NN)

s.QP+FP (10 NN)

0 1 2 3 4

suboptimality (%)

QP (1 NN)

QP (10 NN)

s.QP+FP (1 NN)

s.QP+FP (10 NN)

Figure 6.26: Open-loop comparison of infeasibility rate and suboptimality of the
REDS planner, using the QP without slack variables and the soft-QP followed
by the FP. Infeasible problems are not considered in the suboptimality.

even reduced memory footprint than FFs and LSTMs. This may be due to
exploiting the structure of equivariances and invariances inherently occurring in
the application. Similar observations were made in other applications where
deep sets have been applied, e.g., [126].

Evaluation of REDS Planner with Feasibility Projection

The REDS planner is validated on random samples of the test data, i.e., samples
of the same distribution as the NN training data. Fig. 6.26 shows the infeasibility
rate and suboptimality (6.64) of the REDS planner, using either the QP without
slack variables, or the soft-QP followed by the FP. For an ensemble of ten
NNs, the infeasibility rate of the QP without slack variables is below 10% and
decreased to almost 0% by using the soft-QP followed by the FP, and the

210 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

2.5 5.0 7.5 10.0 12.5 15.0

single NN

soft QP

FP

Individual Components

0 20 40 60 80 100 120 140

1-NN

10p-NN

10s-NN

Neural Network Predictors

0 200 400 600 800 1000

computation time (ms)

MIQP

Expert MIP-DM

Figure 6.27: Box plots for open-loop comparison of the computation times
of 103 samples. REDS planner with an ensemble of one (1-NN) or ten NNs is
parallelized (10p) or serial (10s).

suboptimality is also negligible. The suboptimality of the soft-QP followed by
the FP is higher than the suboptimality of the QP since also infeasible problems
are rendered feasible, yet with increased suboptimality values. Fig. 6.27 shows
box plots of the computation times related to the different components. The
main contributions to the total computation time of the REDS planner stem
from the soft-QP (median of ∼ 4.2ms) and the NNs (median of ∼ 3.0ms per
network). While the parallel architecture with ten NNs, as well as a single NN,
decrease the worst case MIQP computation time by a factor of approximately 50
and the median by a factor of 10, the serial approach decreases the maximum
by a factor of 8 and the median by a factor of 2. Besides computation time, the
REDS planner is suitable for embedded system implementation as opposed to
high-performance commercial solvers like the one used here as an expert, i.e.,
Gurobi [114].

6.3.9 Closed-loop Validations with SUMO Simulator

The following closed-loop evaluations of the REDS planner on a multi-lane
highway scenario yield a more realistic performance measure. This involves
challenges such as the distribution shift of the input parameters, wrong
predictions, and errors of the reference tracking NMPC.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 211

Figure 6.28: Obstacles considered at each planning step in the Frenet coordinate
frame. The plot shows the ego point-mass trajectory and the inflated obstacles
in proximity to the ego vehicle for seven time steps. The obstacle color indicates
whether it was considered in planning or not.

Setup for Closed-loop Simulations

Several choices need to be made for parameters in the REDS planner and in
the simulation environment.

Collision avoidance. For an environment with a large number of obstacles, we
implement the following heuristic to select up to nobs = 5 obstacles in proximity
to the ego vehicle. We consider the closest successive obstacles in each lane,
which are not the lane of the ego vehicle and the leading vehicle on the ego lane.
In Fig. 6.28, the selection of obstacles in proximity to the ego vehicle is shown
in the Frenet coordinate frame. Obstacles are plotted in consecutive planner
time steps, and the color indicates whether they are considered at each time
step. Overtaking is allowed on both sides of a leading vehicle.

Sampling frequency. The planning frequency is set to 5Hz, the control and
ego vehicle simulation rate is 50Hz, and the SUMO simulation is 10Hz. The
traffic simulator in SUMO is slower than the ego vehicle simulation frequency.
Therefore, the motion of the vehicles is linearly extrapolated between SUMO
updates. Indeed, the REDS planner is real-time capable for selected frequencies,
see Req. 6.3.4.

Vehicle models. We use parameters of a BMW 320i for the ego vehicle,
which is a medium-sized passenger vehicle whose parameters are provided in
CommonRoad [13] for models of different fidelity. An odeint integrator of scipy
simulates the 29-state multi-body model [13] with a 20ms time step. The traffic
simulator SUMO [170] simulates interactive driving behaviors with the Krauss
model [155] for car following and the LC2013 [88] model for lane changing.
From zero, up to five surrounding vehicles are selected for our comparison.

212 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Road layout. Standardized scenarios on German roads, provided by the
scenario database of CommonRoad, are fully randomized before each closed-
loop simulation, including the start configuration of the ego vehicle and all
other vehicles. This initial randomization, in addition to the interactive and
stochastic behavior simulated in SUMO, covers a wide range of traffic situations,
including traffic jams, blocked lanes, and irrational driver decisions such as
half-completed lane changes. The basis of our evaluations is the three-lane
scenario DEU_Cologne-63_5_I-1 with all (dense) or only a fourth (sparse) of
the vehicles in the database.

Distribution Shift

The generally unknown state distribution encountered during closed-loop
simulations, referred to as simulation distribution (SD), differs from the training
distribution (TD). We aim to generalize the proposed approach to a wide
range of scenarios. Hence, we use the uniform distribution given in Tab. 6.3.11
to train the NNs and in consecutive closed-loop evaluations. However, if the
encountered SD is known better, we propose to include NNs trained on an
a priori known SD and include it in the ensemble of NNs. In Fig. 6.29, the
worse performance of an ensemble of REDS, purely trained on the uniform
TD, followed by the soft-QP is shown when evaluated for samples taken from
closed-loop simulations of the DEU_Cologne-63_5_I-1 scenario using the expert
MIP-DM. Additionally, Fig. 6.29 shows NNs trained on this SD and how they
can improve the prediction performance as single networks by ∼ 10% and in an
ensemble by ∼ 3%.

Closed-loop Results with SUMO Simulator

We compare the closed-loop performance of the REDS planner with varying
numbers of NNs and of the expert MIP-DM for the dense and sparse traffic
in scenario DEU_Cologne-63_5_I-1, cf., Fig. 6.30. The closed-loop cost is
computed by evaluating the objective (6.56) for the closed-loop trajectory and
is separated into its components. The computation times are shown for the
serial and parallel evaluation of the NNs. Similar to the open-loop evaluation in
Fig. 6.25, the closed-loop results in Fig. 6.30 show a considerable performance
gain when more NNs are added to the ensemble. Evaluating 10 NNs in parallel
within the REDS planner leads to nearly the same closed-loop performance as
the expert MIP-DM. Remarkably, a parallel computation achieves a tremendous
speed-up of the worst-case computation time of approximately 100 times. A
serial evaluation of 10 NNs could still be computed around 25 times faster for the
maximum computation time compared to the expert MIP-DM. All computation
times of the REDS planner variations are below the threshold of 200ms, while
the expert MIP-DM computation time exceeds the threshold in more than 50%,

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 213

0 1 2 3 4 5

neural network index

0

5

10

15

20

25

in
fe

as
ib

il
it

y
(%

)

Training Distribution

cumulative (TD)

cumulative (TD/SD)

individual (TD)

individual (SD)

0 1 2 3 4 5

neural network index

Simulation Distribution

Figure 6.29: Individual and cumulative REDS prediction performance for
the training distribution (TD) and samples encountered by an simulation
distribution (SD). Two variants of the REDS ensemble are compared: one
purely trained on the uniform training distribution (TD) and one ensemble with
three NNs trained on the SD.

taking up to 4s for one iteration. Tab. 6.10 shows further performance metrics.
Using more NNs within an ensemble increases the average velocity and decreases
the closed-loop cost towards the expert MIP-DM performance. Using six
or ten NNs, a single situation occurred where a leading vehicle started to
change lanes but halfway decided to change back towards the original lane,
resulting in a collision, which in a real situation will be avoided by an emergency
(braking) maneuver. Fig. 6.31 shows snapshots of a randomized closed-loop
SUMO simulation of a dense and sparse traffic scenario DEU_Cologne-63_5_I-1.
The green colored ego vehicle successfully plans lane changes and overtaking
maneuvers to avoid collisions with other vehicles (blue), using the proposed
REDS planner feeding a reference tracking NMPC.

6.3.10 Conclusions and Discussion

We proposed a supervised learning approach for achieving real-time feasibility
for mixed-integer motion planning problems. Several concepts are introduced to
achieve a nearly optimal closed-loop performance when compared to an expert
MIQP planner. First, it was shown that inducing structural problem properties
such as invariance, equivariance, and recurrence into the NN architecture
improves the prediction performance among other useful properties such as
generalization to unseen data. Secondly, the soft-QP can correct wrong
predictions, inevitably linked to the NN predictions, and are able to evaluate

214 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Figure
6.30:

Perform
ance

com
parison

for
different

num
bers

ofserial(s)
and

parallel(p)
N
N
s,for

dense
and

sparse
traffi

c
in

scenario
DEU_Cologne-63_5_I-1.

T
he

closed-loop
cost

was
com

puted
by

evaluating
(6.56)

for
the

closed-loop
ego

trajectory
and

norm
alized

against
the

closed-loop
cost

ofexpert
M
IP-D

M
.
T
he

state
tracking

cost,including
the

lateralposition
and

the
desired

velocity
tracking

error,contributes
the

m
ost

to
the

chosen
weights.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 215

Figure 6.31: Snapshots of simulated traffic scenario DEU_Cologne-63_5_I-1
dense (left) and sparse (right) with SUMO and CommonRoad, showing the ego
vehicle (green) and other vehicles (blue). The REDS planner is real-time feasible
and used in combination with reference tracking NMPC, see Fig. 6.21. A red
light at the rear of the vehicle indicates braking.

DEU_Cologne-63_5_I-1-dense
Property Unit MIQP NN-1 NN-3 NN-6 NN-10

collisions 0 0 0 1 1
vel. mean m

s 13.10 12.71 12.91 13.00 13.07
vel. min m

s 0.41 1.17 0.00 0.00 0.00
lane changes 457 431 469 471 462
cost 1

s 49.48 66.89 59.68 55.02 50.22

DEU_Cologne-63_5_I-1-sparse
Property Unit MIQP NN-1 NN-3 NN-6 NN-10

collisions 0 0 0 0 0
vel. mean m

s 13.94 13.69 13.83 13.87 13.89
vel. min m

s 7.10 7.10 7.10 7.10 7.10
lane changes 354 337 337 353 353
cost 1

s 5.81 12.40 7.49 6.27 6.16

Table 6.10: Closed-loop evaluation for scenario DEU_Cologne-63_5_I-1 with
dense and sparse traffic.

216 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

an open-loop cost. This favors a parallel architecture of an ensemble of
predictions and soft-QP computations to choose the lowest-cost trajectory.
In our experiments, adding NN to the ensemble improved the performance
considerably and monotonously. This leads to the conclusion that NNs may be
added as long as the computation time is below the planning threshold and as
long as parallel resources are available. To further promote safety, an NLP, i.e.,
the FP, is used to plan a collision-free trajectory. The computational burden
of the NLP is small compared to the expert MIP-DM since it optimizes the
trajectory only locally and, therefore, omits the combinatorial variables.

Although we have evaluated the proposed approach for multi-lane traffic, the
application to other urban driving scenarios is expected to perform similarly
for a similar number of problem parameters due to the following. Many works,
e.g., [140, 141, 213], use similar MIQP formulations for a variety of AD scenarios,
including traffic lights, blocked lanes and merging. The formulations mainly
differ in the specific environment. Many scenario specifics can be modeled by
using obstacles and constraints related to the current lane [213], both considered
in the presented approach. However, with an increasing number of problem
parameters and rare events, the prediction of binary variables may become more
challenging.

6.3.11 Appendix

In the following, we define the most important parameters used in the numerical
simulations of this paper. For the closed-loop simulations in SUMO, we used
the parameter values in Tab. 6.3.11. The reference velocity was set higher
than the average nominal velocity to cause more overtaking maneuvers. For
the optimization problems, we used the parameters shown in Tab. 6.3.11, in
addition to the values presented in Tab. 6.7. In Tab. 6.3.11, neural network
hyperparameters are shown for architectures FF, LSTM, EDS and REDS. The
same LSTM layer is used for each set element (i.e., for each obstacle in our
case) to achieve equivariance in the REDS network.

LEARNING OF MIXED-INTEGER OPTIMAL CONTROL SOLUTIONS 217

Category Parameter Value

General episode length 30s
nominal road velocity 13.9 m

s
maximum number of lanes 3
lanes width dlane 3.5m
vehicle lengths 5.39m
vehicle widths 2.07m
ego desired velocity 15 m

s
maximum obstacle velocity 23 m

s
minimum obstacle velocity 0.2 m

s

Dense scenario traffic flow 0.56 vehicles
lane·s

traffic density 0.04 vehicles
lane·m

Sparse scenario traffic flow 0.13 vehicles
lane·s

traffic density 0.01 vehicles
lane·m

FP diag(Q) [1, 1, 1, 1]>

diag(R) [1, 1]>

slack weight wh 106

Table 6.11: Parameters for closed-loop simulations in SUMO.

Category Parameter Value

expert MIP-DM diag(Q) [0, 14, 10, 1]>

diag(R) [4, 0.5]>

lane change weight wlc 3 · 103

side preference weight wrght 3
safe distances [σf , σb, σl, σr]> [0.5, 12, 0.5, 0.5]>m
minimum controls u [-10, -5]>m

s
maximum controls u [3, 5]>m

s
velocity ratio constraint α 0.3

Table 6.12: Parameters in MIQP formulation (6.57) for expert MIP-DM.

Par. Range Par. Range

lat. pos. [0, nlanesdlanes] − dlanes
2 lanes [1,3]

obs. lon. pos. [-120, 200]m lon. vel. [0, 30] m
s

lat. vel. [-1, 1] m
s obstacles [1,5]

Table 6.13: Ranges of uniform training data distributions.

218 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

Category Parameter Value

General activation function ReLU
batch size 128
step size 5 · 10-5

epochs 1500
optimizer adam
loss function cross-entropy
weight decay 10−5

training samples 105

test samples 103

FF hidden layers 7
neurons per layer 128

LSTM layers 2
hidden network size 128
input network layers 2
output network layers 2

EDS layers 7
equivariant hidden size 64
unstructured hidden size 64
input network layers 2
input network hidden size 128
output network layers 2
output network hidden size 128

REDS layers 7
hidden network sizes 64
input network layers 1
output network layers 1
eq. LSTM output network layers 1
unstr. LSTM output network layers 1

Table 6.14: Hyperparameters for the NN architectures.

CRITICAL DISCUSSION 219

6.4 Critical Discussion

Motion planning with multiple obstacles is demanding due to the high number
of combinatorial choices related to the highly nonconvex planning space. Pure
nonlinear optimization requires initial guesses to converge to acceptable local
minima, which are generally unknown. Mixed-integer programming is a powerful
approach for solving such problems to global optimality. However, mixed-
integer solvers are often burdened by the computational complexity. In Sect. 6.1
and Sect. 6.2, efficient mixed-integer optimization-based problem formulations
were proposed for particular motion planning domains. Sect. 6.1 and the
related publication [225] focus on static obstacles, while Sect. 6.2 and the
related publication [227] focus on structured highway driving. In Sect. 6.3
and the related publication [229], a combined machine learning and online
optimization approach was presented that replaced the combinatorial part of
a mixed-integer solver with a predictor trained on simulated highway driving
data. The underlying objective was to achieve real-time feasibility under the
highest possible closed-loop performance, which included prioritizing safety
requirements.

The main contributions of Sect. 6.1 and Sect. 6.2 are novel formulations that
significantly reduce the number of integer variables compared to other state-of-
the-art formulations such as the formulations proposed in [181, 213]. While [213]
requires 4NNobs binary variables for collision-avoidance, where N is the discrete-
time horizon length and Nobs is the number of considered obstacles, the approach
in Sect 6.1 requires only Nobs binary variables, independent of the horizon length.
The low number of binary variables makes the approach applicable for scenarios
with static obstacles that are sophisticated to traverse. An open-source MILP
solver acquired an average online computation time of 1.9 seconds on the
NVIDIA DRIVE PX2 embedded hardware. The proposed homotopy within
SQP iterations was considerably faster than the MILP solver with 72 ms total
online computation time per iteration on the embedded hardware.

The long-horizon formulation in Sect. 6.2 requires binary variables only in the
order of Nobs. This reduction of binary variables decreases the computation
time 2 to 100 times, compared to alternative planners of [213] and [8], which
makes the approach real-time applicable with the requested planner iteration
time. A novel integrated long-horizon planner was proposed, where the
computational complexity is independent of the horizon length. This long-
term prediction decreased the closed-loop cost up to 10% in highway traffic
simulations involving the proposed planner, a low-level controller, and interactive
agents.

Sect. 6.3 instead contributes to mixed-integer-based planners following
the paradigm of replacing the combinatorial part with machine learning
predictors [39]. Moreover, the section utilizes powerful deep neural network

220 MIXED-INTEGER OPTIMIZATION FOR COLLISION AVOIDANCE

architectures [312] that capture relevant symmetries of the motion planning
domain. The novel neural network architecture increased the accuracy of binary
variable predictions compared to the LSTM architecture of [62] from 15%
to 48% for a horizon of 28 steps and seven simultaneously present obstacles.
Additionally, the feasibility of the consecutive QP resembling the expert MIQP,
where the binary variables were fixed, was increased from 50% to 76% for
the same setting. In addition to the performance increase, the novel neural
network architecture provided the equivariance to obstacle permutations, an
exceptional generalization capability to an unseen number of obstacles, and the
possibility to change the horizon length or the number of obstacles posterior
to the training. By utilizing parallel ensembles of neural networks and QP
solvers, the share of infeasible problems could be decreased from 15% to 2%.
After adding a novel feasibility projector, formulated as an NLP, the share of
infeasible solutions is nearly 0%. After adding all of the novel safety-relevant
modules, the worst-case online computation time could be reduced by up to two
orders of magnitude, i.e., from 4000 ms to 60 ms and from 3000 ms to 30 ms for
two different randomly simulated highway traffic environments. The closed-loop
cost is slightly increased compared to an expert MIQP solver by 1.5% and 6.4%,
without sacrificing safety.

The applicability of the algorithms of Sect. 6.1 and Sect. 6.2 is specific to certain
environments, i.e., static obstacles and rewards or highway driving, respectively.
While the approach of Sect. 6.3 was also applied to highway driving, this
technique is general enough to be applied to comparable urban motion planning
problems.

A primary advantage of mixed-integer-based solvers compared to graph-based
planners, such as planners surveyed in [199, 159], is their appealing way of
solving the continuous problem parts by derivative-based optimization and
the combinatorial part by graph-search techniques, cf., Sect. 2.1.3, without
discretizing the continuous variables. Using derivatives to solve continuous
optimization problems is particularly efficient for high-dimensional state
spaces, where the curse of dimensionality limits discretization-based approaches.
Nonetheless, solving mixed-integer problems has some disadvantages, which
legitimizes alternative approaches.

A major drawback of the methods in this thesis is the requirement of MIQP
formulations. MIQPs require less expressive linear models and linear or possibly
convex quadratic constraints. MIQPs can be solved efficiently by specialized
state-of-the-art solvers [114]. However, the online computation times are already
close to real-time feasibility. Thus, it is assumed that using more expressive
formulations and related solvers, e.g., mixed-integer nonlinear programmings
(MINLPs), would violate the real-time feasibility excessively. Nonetheless, no
MINLP benchmarking results for motion planning are known to the author of
this thesis, leaving the potential for future research. Notably, the combinatorial
variables learning approach of Sect 6.3 could be directly applied to learning

CRITICAL DISCUSSION 221

binary variables of MINLPs in future work. An intrinsic challenge with replacing
the MIQP formulation of Sect 6.3 with a more expressive MINLP formulation
would be the vastly increased time to create machine learning training data.

When following the paradigm of constraining the motion planning problem
formulation to MIQPs, which is motivated by the outstanding high-performance
solvers of this problem class, further modeling details could be added by
introducing additional integer variables to model nonconvexities or nonlinearities
in the model equations, such as shown in [86].

The author believes mixed-integer formulations are the most natural way of
formulating the inherently continuous but highly nonconvex planning problems
arising in automotive applications. This research provides algorithms tested
on embedded hardware or extensive simulations to illustrate their potential for
future planning systems. Presumably, on the long way to significantly advance
autonomous driving, some fundamental work is still required for the proposed
algorithms. For instance, commercial high-performance embedded MIQP solvers
are unavailable. Moreover, dedicated hardware to solve such problems could
increase the performance considerably.

Chapter 7

Collision Avoidance for
Autonomous Racing

This chapter considers two challenges for collision avoidance in autonomous
racing. The knowledge of the opponents’ racing intention is exploited to predict
their trajectory. The prediction is then used to formulate the collision avoidance
constraints in the ego optimization problem. It is reasonable to assume that
opponents maximize their progress similarly to the ego racing objective. Even
if the opponent’s vehicle model is assumed to be known, the exact weighting
and acceleration limits it will allow may vary based on the driving style. In
Sect. 7.1, a novel approach estimates the weighting and constraint parameters,
including the assumption that the opponent optimizes a particular objective. A
parameterized model predictive control (MPC) optimization problem is used to
predict the opponents’ trajectory and is referred to as a low-level program in
this context. In order to estimate its’ parameters, a moving horizon estimator
utilizing observed data is proposed, which involves the optimality conditions of
the low-level program as constraints.

Besides predicting opponents in autonomous racing, a further challenge is
formulating an optimization problem that yields strategic driving policies.
Sect. 7.2 uses the technique of reinforcement learning (RL) to develop strategic
behavior in simulations by only specifying the racing goal as the overall rank
among several competitors. Since RL requires a large number of samples and
often struggles to provide safety guarantees, the RL policy is not used directly
to specify controls but rather parameterizes the objective function of an MPC.
The MPC uses a simple model, obstacle predictions, and constraints to provide
the required safety guarantees. The optimization layer is used during offline
learning and within the online policy. The mapping from the RL parameters
via the MPC to actual actions makes the learning more sample efficient.

223

224 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

7.1 An Inverse Optimal Control Approach for Tra-
jectory Prediction of Autonomous Race Cars

In this section, the paper published in [226] is reprinted with permission of Florian
Messerer, Markus Schratter, Daniel Watzenig and Moritz Diehl. Note that the
formatting of some formulas, terms, and numbers has been slightly adjusted for
consistency without changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: Idea, programming of the published algorithm and the
interface to the overall system, programming on the overall
system (various program modules of the autonomous
driving stack), design of the experiments, writing of the
document

Florian Messerer: Mathematical corrections, stylistic corrections, linguistic
improvements

Markus Schratter: Programming of the overall system (embedded system,
Autonomous Racing Graz software stack)

Daniel Watzenig: head of the “Autonomous Racing Graz” team. Design
of the overall system. Operational management and
organization of the competitions.

Moritz Diehl: Mathematical corrections, stylistic corrections, linguistic
improvements

©2022 European Control Association. DOI: 10.23919/ECC55457.2022.9838100.

Abstract. This paper proposes an optimization-based approach to predict
trajectories of autonomous race cars. We assume that the observed trajectory
is the result of an optimization problem that trades off path progress against
acceleration and jerk smoothness and is restricted by constraints. The algorithm
predicts a trajectory by solving a parameterized nonlinear program (NLP), which
contains path progress and smoothness in cost terms. By observing the actual
motion of a vehicle, the parameters of prediction are updated by means of solving
an inverse optimal control problem that contains the parameters of the predicting
NLP as optimization variables. The algorithm, therefore, learns to predict the
observed vehicle trajectory in a least-squares relation to measurement data and
to the presumed structure of the predicting NLP. This work contributes with
an algorithm that allows for accurate and interpretable predictions with sparse
data. The algorithm is implemented on embedded hardware in an autonomous

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 225

real-world race car that is competing in the challenge Roborace and analyzed
with respect to recorded data.

7.1.1 Introduction

In real-world autonomous driving scenarios, a core challenge is the prediction
of other agents in the environment. The prediction algorithms differ in relation
to the scenario and to the availability of data. For instance, in urban driving, a
large amount of data might be available due to the massive data collection of
the vehicle industry. For autonomous racing tasks, there is a lack of extensive
data sets, thus supervised learning of data-driven predictions is not feasible.
In our research, we focus on a racing setting related to a competition called
Roborace. As part of this racing series, the participating teams develop software
for the fully autonomous operation of electric race cars and are confronted with
increasingly demanding challenges from one event to the other. Whereas the
ego vehicle moves on a real racetrack, the state observations of the (currently)
purely virtual opponent race cars are provided by the mixed-reality simulator to
the car’s software about 200 meters in advance. The up to six virtually present
opponent cars are set up by the organizers with different racing algorithms
that are supposed to race with different performance and driving styles. The
opponent cars are currently not considered as strategic decision makers, i.e., they
are not performing game theoretic actions such as blocking. Thus, the race cars
can be seen as non-interactive agents. Generally, there is no a priori knowledge
available about the opponents, except for their racing intention. Therefore, it is
impossible to use an a priori fully parameterized vehicle model as a basis for
prediction. Furthermore, extensive system identification is impossible due to the
short time it takes for the vehicle to be observed before it needs to be overtaken.
The goal of this paper is to present a method that predicts the behavior of
other race cars even with sparse data. A typical scenario is shown in Fig. 7.1,
where the ego race car and three other opponent cars are on a racetrack, and
trajectories of our presented predictor are shown with bars corresponding to
the predicted velocity.

Our work starts with framing the basic and limited knowledge about the
opponents as a sparsely parameterized predictor whose parameters can be
estimated by a limited amount of data. Since it is known that the intention
of the other opponents is time-optimal driving, the predictor is stated as a
parameterized optimization problem for progress maximization, referred to as
low-level nonlinear program (LLNLP), which is assumed to be solved by the
other agent. The estimation of the parameters is performed by solving an
inverse optimal control (IOC) problem, which enforces the optimality conditions
for the LLNLP as constraints and performs least-squares optimization on the
deviation of the resulting LLNLP-trajectory to the collected observed data of the
particular opponent vehicle. This results in a set of parameters for the LLNLP,

226 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

Figure 7.1: Presented trajectory prediction in a simulation. The height and
color of the bars correspond to the predicted speed.

which are locally optimal with respect to the chosen structure of the LLNLP
and the observed data. In fact, the chosen formulation only finds a stationary
point as opposed to an optimal point and is dependent on the initialization due
to its non-convex structure, but in practice, both were observed to not have a
significant influence on the performance. The LLNLP is solved in real-time for
each opponent, starting with an initial set of parameters, which are updated as
soon as enough data is available.

The LLNLP is used to predict the velocity along a curve, which is obtained by
blending the current motion into a previously computed minimum curvature
path. The parameters related to LLNLP are the constraint limits and the square
penalties on the input (jerk) and the acceleration states. The estimation of the
acceleration constraints is separated from the bi-level optimization problem into
a separate constraint estimation QP (CQP) whose constraint estimates update

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 227

both the bi-level program for the weight parameter estimation and the final
LLNLP for predicting the opponent trajectories in real-time.

The performance of the described algorithm is shown with recorded data from
differently driving opponent race cars in a Hardware-In-The-Loop setting.

Related Work

Trajectory prediction in the domain of autonomous vehicles is dominated by
data-driven approaches, which are based on regression and pattern matching.
This is applicable if the availability of sufficient data related to human driven
vehicles on public streets is given. If interaction and sequential decision making
are considered, often inverse optimal control (IOC) or inverse reinforcement
learning (IRL) are used. Often deep neural networks (DNNs) are used as
function approximators [162], and the time dependency suggests the use of
recurrent neural architectures as seen in [61, 314, 127]. Also, various other
DNN architectures are used, such as convolutional neural networks [193]. If
statistically qualitative data is available, these approaches work well, and
even their application to real-time systems as trained networks is favorable
due to the high evaluation speed of DNNs. Using an optimization problem
as a function approximator or even within a neural network is a field with
many related research areas, ranging from reinforcement learning with an
embedded MPC structure [110] to generic optimization layers [7]. Using bi-level
optimization to estimate the parameters of a low-level problem is used more
rarely. Related to vehicle predictions, it was used in a similar approach, which
focuses on urban driving scenarios and the game theoretic interaction between
agents [68, 160]. Furthermore, for robotic predictions [177] or even human
motion predictions [182], a bi-level problem was used. For unconstrained linear
systems, [178], the authors show that the IOC can even be stated as a convex
semidefinite program. A detailed survey of vehicle prediction approaches is
given in [162], although IOC appears only in the context of IRL. A general
survey on bi-level optimization is given in [260], which mentions the presented
approach of solving the lower-level program by restricting it to a stationary
point, especially for convex problems.

Contribution

In the domain of autonomous racing, to the best knowledge of the authors, this
work is the first that uses bi-level optimization together with the LLNLP for
real-time trajectory prediction. Since bi-level problems are hard to solve, this
work also addresses novel techniques that can be used in challenging real-world

228 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

conditions such as racing. This paper follows previous work for solving motion
planning problems for autonomous racing [225, 222].

7.1.2 Prediction Architecture

In Fig. 7.2, the architecture of the proposed algorithm is shown. The algorithm
consists of an offline and an online part. The precomputations in the offline
part account for the optimal racing path along the known racetrack. The online
part is constructed for each observed opponent vehicle and is split into a slower
(0.5 Hz) estimation part and a faster (10 Hz) prediction part. In the path
prediction (PP), a curve is blended from the current opponents vehicle position
to the precomputed racing line. The main prediction component is the LLNLP,
which computes the trajectory with respect to the parameterized constraints
and the parameterized weights, starting at the observed current opponent value.
The constraint estimator (CQP) passes its estimated constraint parameters to
the high-level NLP (HLNLP), and both the CQP and the high-level nonlinear
program (HLNLP) estimate the parameters of the LLNLP. The online part is
executed for each of the M observed vehicles.

7.1.3 Prediction Algorithm

In the following, the prediction algorithm is described by each component. In
Sections 7.1.3 to 7.1.3, the main blocks of Fig. 7.2 are described, and in the
final part, the pseudocode (2) are stated.

Path Prediction (PP)

Given the racetrack layout, a time-optimal path ptopt(s) is computed by
curvature minimization related to [222]. The path variable s is related to
the position on a reference center track line. Given the current opponent
vehicle state, a linear extended constant motion path pc(s) is blended into the
precomputed path for s < sf with

pp(s) = s

sf
ptopt(s) + s− sf

sf
pc(s). (7.1)

For s ≥ sf , the prediction path is set equal to the racing path.

Low-level Program for the Trajectory Prediction (LLNLP)

The path predictor predicts the curve that is described by its path length s and
the associated curvature κ(s) = dφ

ds . The curvature is described by a piece-wise

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 229

M instances

“Slow”
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast”
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal
racing curve

Predicted trajectories

a

b c

d

e

f

g

Figure 7.2: Algorithm architecture. (a: global racing path, b: initial state x̄0,
c: trajectory data samples, d: constraints amax, e: weights w, f: Cartesian
coordinates and curvature parameters of blended path segment κ̄, g: predicted
trajectory)

linear polynomial and parameterized to interpolate Nκ precomputed values κi
for the curvature along the path segment. The values are summarized as
κ̄ =

[
κi . . . κNκ−1

]
. Details on the computation can be found in [222].

Note that the linear interpolation leads to discontinuous derivatives in
the inequality constraints and violates the condition of twice continuously
differentiable functions required for second-order NLP algorithms. Nevertheless,
we empirically found a speedup of a factor of 100 to 1000 compared to bsplines
as interpolating polynomials, with practically no convergence problems.

The LLNLP predicts the estimated velocity along this curve by solving an
optimal control problem which consists of a linear discrete model F (xk, uk,∆t),
acceleration constraints ha(xk, κ̄, amax) and state constraints x and x. Since
the path is given, the predicted motion along the curve is described by means

230 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

of three chained integrators, where the input u is the jerk. The state vector
consequently consists of the path progress s, the velocity v and the acceleration a
with x =

[
s v a

]> ∈ R3. Since the integrator chain is a linear system, the
discretization (zero-order-hold controls) of the dynamics can be computed
exactly by matrix exponentials and leads to the affine function F (xk, uk,∆t) =
A(∆t)xk +B(∆t)uk. The only constraint captured in the box constraints x ≤
xk ≤ x is the limitation of the speed v to vmax and to positive values. The
optimal control problem is discretized in N − 1 intervals using discrete multiple
shooting and solved by sequential quadratic programming using the real-time
NMPC solver acados [291]. To account for the progress maximizing requirement
for the resulting trajectory, a linear negative cost qn =

[
−1 0 0

]> for the
last discrete position is used. The matrix W = diag(

[
0 0 wacc

]
) and the

scalar R = wjerk are the weights that describe the motion of the predicted
opponent vehicle in the presented structure, if no constraints are active. Finding
the values of wacc and wjerk is the objective of the HLNLP component. Slack
variables sLL =

[
sLL,0, . . . , sLL,N

]
∈ R8×N with weights α1, α2 are added

for the online forward implementation to account for the robustness of the SQP
algorithm. We can then state the lower-level problem PLL(w, x̄0, κ̄, amax) as

min
x0,...,xN ,

U0,...,UN−1,
s0,...,sN

N−1∑
k=0

‖xk‖22,W + ‖Uk‖22,R + q>NxN +
N∑
k=0

α11>sLL,k + α2 ‖sLL,k‖22

s.t. x0 = x̄0,

xk+1 = F (xk, Uk,∆t), k = 0, . . . , N − 1,

x ≤ xk ≤ x,

0 ≤ ha(xk, κ̄amax) + sLL,k,

0 ≤ sLL,k, k = 0, . . . , N,

(7.2)

where 1 is a vector of all 1’s of appropriate size. The acceleration
constraints ha(xk, κ̄, amax) approximate the friction, throttle, and breaking
boundaries of the vehicle by means of a polytope in the space of the two-
dimensional acceleration vector a(xk, κ̄) =

[
alat(xk, κ̄) alon(xk)

]
which are

often related to the “Kamm’s circle”. The polytope is typically symmetric to
the longitudinal axis. It is chosen such that it consists of box constraints along
the axes and diagonal constraints that are parallel to the lines described by the
connection of the axis-aligned maximum values. Consequently, the diagonal
constraints depend on the values of the axis-aligned constraints. The presented
approach computes the axis aligned constraints first and uses those values as
inputs to the diagonal constraints. An example of the fitted acceleration
constraints can be seen in Fig. 7.3. Therefore, 8 linear constraints arise,

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 231

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

alat (
m
s2)

−12

−10

−8

−6

−4

−2

0

2

4

a l
on

(
m s2
)

estimated bounds
measured data

Figure 7.3: Acceleration constraint estimation. In total, eight constraints are
fitted as a convex polytope to measurement data.

where 6 of them are pair-wise symmetric. The only non convexity in (7.2)
emerges from the dependency of alat(xk) = −v2

kκ(sk, κ̄). The acceleration
constraints ha(xk, κ̄, amax) can be stated as

ha(xk, κ̄, amax) = amax − diag(dlen)Da(xk, κ̄), (7.3a)

ā =
√
a2

lat,max + a2
lon,max, (7.3b)

d>len =
[
1 1 1 1 ā ā ā ā

]
, (7.3c)

D =

1 0
−1 0
0 −1
0 −1

alon,max alat,max
−alon,max alat,max
alon,min −alat,max
−alon,min −alat,max

, amax =

alat,max
alat,max
alon,max
alon,min
aq,north
aq,north
aq,south
aq,south

. (7.3d)

The term diag(dlen)D collects the row vectors with unit length that represent
direction vectors that are used to project the acceleration vector and to constrain

232 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

to the consecutive projected scalar value. Obviously, the second part of the
vector dlen and the lower part of the matrix D shows the dependency on the
axis aligned constraints. The maximum acceleration values are collected in
the vector amax, the initial observed state x̄0, together with the weights w> =[
wjerk wacc

]
are the input parameters of the LLNLP. The parameters that are

not subject to be changed by the estimation within the HLNLP are summarized
as p> =

[
x̄0 a>max κ̄

]
.

Quadratic Program for Constraint Estimation (CQP)

In order to remove computational complexity from the HLNLP, the constraint
estimation was separated. Even with fixed constraints, the structure of the
HLNLP is highly non-convex and challenging to solve. By means of a Kalman-
filter-based vehicle state estimation, the observed accelerations ai are computed
and stored as a data set of Na data samples in R2. Those acceleration data are
used to fit linear constraints. The projection e>k Dai for the estimation of the
linear constraint ck is performed for the 8 constraints. The vector ek represents
the k-th unit vector in R8. Since the measured data is noisy, a robust estimation
of the constraints that account for outliers is required. This is achieved by the
quadratic program (7.4), where the estimated constraint violation is penalized
linearly and realized by means of a hinge loss h(x) = max(0, x). This function
adds no costs if the measured value is lower than the constraint and penalizes
linearly otherwise. The deflection of the constraint is penalized quadratically
with a weight ω and a minimum at the prior estimated value ĉk. Since the
prior estimated value acts as a lower bound and would not decrease during
iterations, the value is lowered by a factor r < 1 in each iteration for the axis
aligned constraints with ĉk ← rĉk. For the diagonal constraints, ĉk is chosen
as the distance of the diagonal line of the origin. The problem formulation for
estimating constraint k in the bounding polytope with 8 linear constraints is
stated as

min
ck ∈ R

1
Na

Na−1∑
i=0

max(0, e>k Dai − ck) + ω(ck − ĉk)2. (7.4)

The problem can be formulated into a smooth quadratic program using slack
variables ζ for implementing the hinge function, which leads to the formulation

min
ck∈R,
ζ∈RNa

ω(ck − ĉk)2 + 1
Na

Na−1∑
i=0

ζi

s.t. 0 ≤ ζi, e>k Dai − ck ≤ ζi, i = 0, . . . , Na − 1.

(7.5)

The solutions of the CQP are directly used as acceleration constraints amax in
(7.3d).

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 233

Bi-level Program for the LLNLP Parameter Estimation (HLNLP)

The HLNLP fits the LLNLP with the parameters derived from the CQP to
observed measurement data x̄ with a least-squares error measure. The observed
trajectory might differ at the last points from the predicted trajectory, even if
the true parameters were used, since the controller of the observed vehicle most
likely had adapted to even further distant constraints like a sharp curve. To
account for this structural uncertainty, the weight matrix Qk is linearly reduced
to zero for the final NR points. Problem (7.6) shows the basic structure of
the problem. The optimization variables are the estimated trajectory x of the
LLNLP and the weighting parameters w. To account for the iterative estimation
of the parameter w, the previously estimated parameter ŵ together with the
associated weight matrix P is used as an arrival cost, as shown with MHE
in [217]. To simplify the algorithm, the weight matrix is set constant. The basic
structure of the problem can be written as

min
x, U,w

NT−1∑
k=1
‖xk − x̄k‖22,Qk + ‖w − ŵ‖22,P−1

s.t. x, u ∈ argminPLL(w, x̄0, κ̄, amax), w ≥ 0

(7.6)

where x ∈ RNx×NT , U ∈ RNu×(NT−1) and w ∈ R2. The optimization variables
are the estimated trajectory x of the LLNLP and the weighting parameters w.

The low-level program PLL(w, x̄0, κ̄, amax) in (7.2) can be written as

min
z ∈ RNz

fLL(z, w)

s.t. gLL(z) = 0, hLL(z, x̄0, κ̄, amax) ≥ 0
(7.7)

with z =
[
vec(x)> vec(u)>

]> and Nz = NxNT +Nu(NT − 1). The domains
and co-domains of the functions are fLL : RNz×Nw → R, gLL : RNz → RNTNx
and hLL : RNz → RNTNh,LL , where Nh,LL = 10 in this case, with two
bounds on the velocity state and 8 acceleration constraints. The number
of weights corresponding to the smoothness is Nw = 2. The constraints amax
are parameters and updated by means of the estimation of the CQP.
To solve the problem, the bi-level problem can be formulated as an NLP, which

234 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

is summarized as

min
x,U,w,
τ,λ,µ,s

NT−1∑
k=0
‖xk − x̄k‖22,Qk + qττ + β11>s+ β2 ‖s‖22 + ‖w − ŵ‖22,P−1 (7.8a)

s.t. 0 =∇zf(z, w)−∇zgLL(z)λ−∇zhLL(z, p)µ, (7.8b)

0 ≤w, (7.8c)

0 =gLL(z), (7.8d)

0 ≤τ, (7.8e)

0 ≤µ, (7.8f)

0 ≤hLL(z, p) + s, (7.8g)

τ ≥µihLL,i(z, p), i = 0, . . . , Nh,LL − 1, (7.8h)

s ≥0, (7.8i)

where x ∈ RNx×NT , U ∈ RNu×(NT−1), w ∈ R2, s ∈ RNTNh,LL , τ ∈ R, λ ∈
RNTNx , and µ ∈ RNTNh,LL .

We enforce a stationary point in the LLNLP as a constraint in the high-level
problem by enforcing the KKT conditions by means of constraints which are
stated in (7.8b-7.8h). For this aim, additional optimization variables arise that
are the dual variables λ and µ. A major challenge here is to account for the
highly non-convex complementarity conditions arising from the inequalities of
the LLNLP. Therefore, a relaxed problem is stated within the constraints, which
is lower bounded by the actual complementarity condition and upper bounded
by its relaxed version related to the interior point approach as seen in (7.8e-
7.8h). If the complimentarity is relaxed too much, the estimation of the weight
parameters can become wrong. Consequently, the relaxing parameter τ ∈ R is
also integrated as an optimization variable into the HLNLP and initialized with
a “high” value (e.g., 1.0). A high value for qτ together with the linear penalty
of τ is used to achieve the exact complementarity constraints. Slack variables s
account for infeasibilities.

The number of primal variables in the high-level program, which are Nvar,HL =
2NxNT +Nu(Nx−1)+2NhNT rises notably compared to the low-level program,
which is Nvar,LL = NxNT + Nu(Nx − 1), but is of the same complexity
w.r.t. Nx, NT and Nh. This program is solved using the interior point solver
IPOPT [307] formulated in CasADi [14], which again uses a relaxation of the
problem in order to account for the inequality constraints. By using the presented
formulation, we can explicitly account for the accuracy of the complementarity
constraint in the stationary point of the low-level program. Note that the

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 235

Hessian of the HLNLP actually contains third-order derivatives of the original
LLNLP, thus posing the condition of three times differentiable smooth functions
in the LLNLP.

Algorithm

Algorithm (2) describes the sequential interaction of the components with
respect to the architecture in Fig. 7.2. The solvers CQP and HLNLP are
executed as threads that update the estimation values in a lower frequency than
the main predicting solver LLNLP, together with the path prediction PP.

Algorithm 2: IOC Prediction
input : Initial weights and constraints ŵ, ck,

Observed state measurements x̄0
output :Predicted trajectory xpred

1 HLNLPsolved←True;
2 CQPsolved←True;
3 while True do
4 if CQPsolved then
5 CQPsolved←False;
6 x̄←last Na state samples;
7 κ̄←curv(x̄);
8 ĉk ← rck k = 0, . . . 3;
9 ĉk ← dist(ĉ) k = 4, . . . 7;

10 Set CQP parameters ĉk, ω, a(x̄, κ̄);
11 Start CQP solver (Updates: CQPsolved, ck);
12 end
13 if HLNLPsolved then
14 HLNLPsolved←False;
15 x̄← last NT state samples;
16 κ̄← curv(x̄);
17 ŵ ← w;
18 alat,k ← ck k = 0, . . . 7;
19 Set HLNLP parameters alat, x̄, κ̄, ŵ;
20 Start HLNLP solver (Updates: HLNLPsolved, w);
21 end
22 x̄0 ← State measurement input;
23 alat,k ← ck k = 0, . . . 7;
24 κ̄← PP (x̄0);
25 xpred ←solve LLNLP(x̄0, κ̄, w, alat);
26 end

236 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

Table 7.1: Parameter Settings
Parameter Value Parameter Value
ck,0 . . . ck,3 5, 5, 2.5, -5 m/s sf 300m
wT0 [0.5 0.2] N 111
ω 12.5 ∆T (LL) 0.1s
Na 103 ∆T (HL) 1s
Nκ 700 α1, α2 104, 108

NT 25s β1, β2 105, 106

P diag([2 · 10−7 9 · 107]) qτ 107

7.1.4 Results

The algorithm was tested with recorded data. Qualitatively, these tests
fully describe the performance of the algorithm. Nevertheless, the embedded
performance, especially the real-time performance of the LLNLP was proven in
several real racing events. This shows that the proposed algorithm can work in
embedded real-world systems.

Hardware and Software Setup

The proposed LLNLP was tested on race car hardware (Section 7.1.4), including
the NVIDIA DrivePX 2 in a Docker environment with Ubuntu 20.04. This
electronic control unit (ECU) provides two CPUs (4x ARM Denver, 8x ARM
Cortex A57) and two GPUs (2x Tegra X2, 2x Pascal GPU). The open-source
OSQP solver [268] was used in a mixed Python/C++ ROS-framework for solving
the problem (7.1.3) using CasADi [14] as an interface. CasADi was also used
as an interface together with IPOPT [307] to solve the HLNLP of Section 7.1.3.
The time-critical real-time estimation related to the LLNLP (Section 7.1.3)
was performed using acados [291] as an NLP solver. For each opponent car, a
separate solver was created, which was executed as a thread, updating a data
structure that contained the most recent prediction. The full algorithm was
tested offline (Section 7.1.4) in simulations with an Alienware m-15 Notebook and
an Intel Core i7-8550 CPU (1.8 GHz). The parameters used for the evaluation are
shown in Table 7.1. In Table 7.3, the time statistics of the different optimization
parts are shown, and in Table 7.2, the relevant settings are given. Notably, the
LLNLP was failing in 2 out of 1000 randomly parameterized test runs, which
was due to the linear interpolation of the curvature as described in Section
7.1.3. This failure rate is outweighed in practice by the enormous speed gain of
a linear interpolation.

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 237

Table 7.2: Component settings
Component Samples/Nodes Notes Runs
PP 150 1e3
CQP 500 Eval. per constraint (1/5) 1e2
HLNLP 35 ∆t=1s 50
LLNLP 60 ∆t=0.1s 1e3

Table 7.3: Solver timing statistics
Component Solver tmax (ms) tave (ms) fail rate (%)
PP none < 1 < 1 0
CQP OSQP 15.5 8.1 0
HLNLP IPOPT 6237 520 5

LLNLP acados
HPIPM 2748 91 0.2

Performance Analysis with Recorded Data

Validation of the CQP. Fig. 7.3 shows the estimation of constraints related
to 1000 recorded acceleration data samples. The acceleration was computed
out of the observed and estimated trajectory state. Obviously, the constraints
of any observed race car acceleration data could be of any shape, but the
representational capacity of the constraint assumptions have to be traded off for
fast and reliable real-time execution in the LLNLP. According to our experience,
the approximation with either 4 (box only) or 8 (adding diagonals) constraints
achieved the best performance.

Validation of the velocity profile estimation. Using the same recorded real-
world trajectory as in 7.1.4 and also its estimated constraints amax as seen
in Fig. 7.3, we use the HLNLP to estimate the parameters w. All estimated
parameters together are then forwarded to the LLNLP, which predicts the
velocity and the progress along the given curve by solving the nonlinear program.
The results are compared to the standard constant velocity predictor, which is
often used in robotic applications [254], and that assumes a vehicle progression
with the measured constant velocity. In Fig. 7.4, the mean position error of the
presented algorithm ēs is compared to the mean position error of the constant
velocity predictor ēs,const. Furthermore, the standard deviations σs and σs,const
are compared respectively. In Fig. 7.5 the prediction velocity error ēv and its
standard deviation σv of the presented algorithm are compared to the mean

238 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

0 2 4 6 8 10 12
Time (s)

−100

−50

0

50

Er
ro

r
(m

)

ēs,const

ēs

σs,const

σs

Figure 7.4: Mean and standard deviation of the position estimation errors for
the constant velocity estimator ēs,const/σs,const and the presented algorithm
ēs/σs along the path obtained from the PP component evaluated on recorded
data.

0 2 4 6 8 10 12
Time (s)

−15

−10

−5

0

5

10

Er
ro

r
(

m s
)

ēv,const

ēv

σv,const

σv

Figure 7.5: Mean and standard deviation of the velocity estimation errors for the
constant velocity estimator ēv,const/σv,const and the presented algorithm ēv/σv
along the path obtained from the PP component evaluated on recorded data.

error and standard deviation of the velocity of the constant velocity estimator,
that is ēv,const and σv,const The presented algorithm outperforms the constant
velocity predictor significantly, although in a short prediction horizon, the errors
are similar.

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 239

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

Es
ti

m
at

ed
W

ei
gh

ts wacc

wjerk

Figure 7.6: Weight estimates for the jerk and acceleration weighting obtained
by the HLNLP component. Low weights correspond to aggressive driving that
is only limited by the velocity and acceleration constraints.

Validation of the Full Algorithm

The algorithm was evaluated with two opponent vehicles in a simulation
environment, as shown in Fig. 7.1. The two opponent race cars follow a
racing line that was computed by a semi-analytic velocity profile computation
as shown in [289] together with differently parameterized racing paths according
to [222]. Therefore, the resulting trajectories are not in the solution space of
the LLNLP and consequently can not be approximated exactly, which is similar
to real observations. The HLNLP estimates the weight parameters and keeps
converging to a semi-stationary solution after approximately 200 seconds as
shown in Fig. 7.6. The convergence behavior depends heavily on the choice
of hyperparameters, particularly on the arrival weight P in (7.8). After the
weights converged, the predictions of all active components (all components)
were compared to other estimation algorithms. First, the initial parameter
setting was simulated, where the weights and constraints were kept constant,
and only the LLNLP was active (referred to as LLNLP). Secondly, a constant
velocity estimation was used, where the path was computed by means of the PP
component, but the velocity was set constant to the observed velocity (referred
to as constant velocity). Fig. 7.7 shows the comparison of the three settings
by evaluating the Euclidean position error after certain prediction horizons. It
can be seen that for increasing prediction horizons, the differences in the error
measures become large due to the acceleration constraints related to curves
and the integrating errors. For short prediction horizons, the constant velocity
estimator is performing similarly in our test cases, which was also observed
in [254]. The prediction performance with respect to the Euclidean position
error was further compared by deactivating either the CQP or the HLNLP
part. Fig. 7.8 shows the comparison with either component active (CQP active
or HLNLP active), with all parameters fixed (fixed parameters) or with the

240 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

Figure 7.7: Box plot statistics (mean, standard deviation, maximum and
minimum values) of the Euclidean position error of the prediction compared to
the ground truth for different prediction algorithms and at particular prediction
horizons

full algorithm (all active) at a prediction horizon of 6 and 8 seconds. The
results looked similar for all observed race cars. In our simulation, the biggest
improvement originated from the HLNLP part, which can be seen in Fig. 7.8
and which is due to the rather aggressive driving behavior of the observed
vehicles and the moderate initialization of the corresponding weight parameters
of the LLNLP.

7.1.5 Conclusions

The paper presents a novel approach for predicting race car trajectories in real-
time and with sparse observation data. It is shown that the algorithm works
in an embedded setting and yields satisfying predictions. The key advantage
of using an optimization problem as a predictor is the natural integration
of constraints. Nevertheless, the quality of the solution is restricted by the
assumptions related to the low-level problem, e.g., which norms are used as
penalties and what quantities are supposed to be penalized. The expressiveness

INVERSE OPTIMAL CONTROL FOR TRAJECTORY PREDICTION 241

Figure 7.8: Box plot statistics (mean, standard deviation, maximum and
minimum values) of the Euclidean position error of the prediction compared to
the ground truth for different active components at a prediction horizon of 6
and 8 seconds.

of the low-level problem is limited due to its KKT conditions arising in a high-
level optimization problem, which poses a non-smooth optimization problem
with no guaranteed solution. Yet, in practice, the problem, as stated, is posed
well enough to be solvable by means of a robust solver like IPOPT. Future
investigations might include an algorithm that also estimates an uncertainty
measure and updates the arrival cost correspondingly, as well as investigating
rich function approximators in various parts of the algorithm to achieve a
vanishing error as the number of samples increases.

242 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 243

7.2 A Hierarchical Approach for Strategic Motion
Planning in Autonomous Racing

In this section, the paper published in [224] is reprinted with permission of Jasper
Hoffmann, Joschka Boedecker and Moritz Diehl. Note that the formatting of some
formulas, terms, and numbers has been slightly adjusted for consistency without
changing their meaning or content.

The contributions of each author are listed in the following.

Rudolf Reiter: idea, programming of the overall system and the published
algorithm, design of the experiments, programming and
training for machine learning (reinforcement learning),
writing of the document (all sections)

Jasper Hoffmann: programming the training for machine learning (re-
inforcement learning), transcript of the document
(“reinforcement learning” section)

Joschka Boedecker: corrections on the topic of “reinforcement learning”
Moritz Diehl: mathematical corrections, stylistic corrections, linguistic

improvements

©2023 European Control Association. DOI: 10.23919/ECC57647.2023.10178143.

Abstract. We present an approach for safe trajectory planning, where a
strategic task related to autonomous racing is learned sample efficiently within
a simulation environment. A high-level policy, represented as a neural network,
outputs a reward specification that is used within the function of a parametric
nonlinear model predictive controller. By including constraints and vehicle
kinematics in the nonlinear program, we can guarantee safe and feasible
trajectories related to the used model. Compared to classical reinforcement
learning, our approach restricts the exploration to safe trajectories, starts with
an excellent prior performance and yields complete trajectories that can be
passed to a tracking lowest-level controller. We do not address the lowest-level
controller in this work and assume perfect tracking of feasible trajectories. We
show the superior performance of our algorithm on simulated racing tasks that
include high-level decision-making. The vehicle learns to efficiently overtake
slower vehicles and avoids getting overtaken by blocking faster ones.

244 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

7.2.1 Introduction

Motion planning for autonomous racing is challenging due to the fact that
vehicles operate at performance limits and planning requires interactive yet safe
behavior. This work focuses on strategic planning for fixed opponent policies
with safety guarantees. Current research is usually based on either graph-based,
sampling-based, learning-based, or optimization-based planners [41, 199]. We
propose a combination of model-predictive control (MPC) and a neural network
(NN) trained by a reinforcement learning (RL) algorithm within simulations.
MPC is a powerful optimization-based technique commonly used to solve
trajectory planning and control problems. Using efficient numerical solvers
and the possibility to incorporate constraints directly makes MPC attractive
in terms of safety, explainability, and performance [217]. Nevertheless, in
problems like interactive driving, it is difficult to model the behavior of other
vehicles. In contrast to MPC, RL is an exploration-driven approach for solving
optimal control problems. Instead of an optimization-friendly model, RL only
requires samples of the dynamics and can, in theory, optimize over arbitrary cost
functions. The flexibility of RL comes at the cost of a high sample inefficiency
that is often unfavorable for real-world applications, where data is expensive and
rare. Furthermore, RL, in the general setting, lacks safety guarantees. However,
once the amount and quality of data are sufficient, the learned policies can show
impressive results [306]. In this paper, we combine MPC and RL by using an
MPC-inspired low-level trajectory planner to yield kinematic feasible and safe
trajectories and use the high-level RL policy for strategic decision-making. We
use the expression reference tracking nonlinear model predictive control (NMPC)
(parameterized model predictive planner) to refer to an MPC-based planner,
which outputs feasible reference trajectories that we assume to be tracked
by a lowest-level control systems. This hierarchical approach is common in
automotive software stacks [293, 199]. We use the reference tracking NMPC to
formulate safety-critical constraints and basic time-optimal behavior but let the
cost function be subject to changes by the high-level RL policy. Particularly, we
propose an interface where the high-level RL policy outputs a reference in the
Frenet coordinate frame. With this approach, we start with an excellent prior
strategy for known model parts. We can guarantee safe behavior concerning
the chosen vehicle model and the prediction of opponents.
The structure of this paper is as follows. In Sec. 7.2.2, we motivate our approach
by a similar formulation named safety filter [294], in Sec. 7.2.4, we describe the
MPC-based planner, and in Sec. 7.2.5, we explain the implementation of the
high-level RL policy and how we train it. Finally, in Sec. 7.2.6, we evaluate the
algorithm, which we refer to as HILEPP (hierarchical learning-based predictive
planner), in a multi-agent simulation that involves strategic decision-making.

Contribution: We contribute by deriving and evaluating a sample efficient and
safe motion planning algorithm for autonomous race cars. It includes a novel

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 245

cost function formulation for the interaction of MPC and RL with a strong
prior performance, real-time applicability, and high interpretability.

Related work: Several works consider RL as a set-point generator for MPC for
autonomous agents [107, 48]. As opposed to our approach, they focus on final
target points. Another research branch focuses on safety verification with a
so-called “safety filter” [55]. For instance, in [294], a rudimentary MPC variant
is proposed that considers constraints using MPC as a verification module.
Similarly, the authors of [171] use MPC to correct an RL policy if a collision
check fails. RL is also used for MPC weight tuning, such as in [265] for UAVs and
in [313] for adaptive control in autonomous driving. Related research for motion
planning of autonomous racing was recently surveyed in [41]. Several works
focus on local planning without strategic considerations [293, 196], thus can
not directly be used in multi-agent settings. Other works use a game-theoretic
framework [167], which often limits the applicability due to its complexity.

An algorithm for obtaining Nash equilibria is iterated best response (IBR), as
shown for drone racing in [266] or for vehicle racing in [299]. However, IBR has
high computation times. An algorithm aiming at the necessary KKT conditions
of the generalized Nash equilibrium problem is presented in [161]. However, the
resulting optimization problem is hard to solve. In [252], long-term strategic
behavior is learned through simulation without safety considerations.

7.2.2 Background and Motivation

A trained neural network (NN) used as a function approximator for the
policy πθ(s), where θ ∈ Rnθ is the learned parameter vector and s ∈ Rns
is the RL environment state, can generally not guarantee safety. Safety is
related to constraints for states and controls that must be satisfied at all times.
Therefore, the authors in [294] propose an MPC-based policy πS : Rna → Rna
that projects the NN output a ∈ Rna to a safe control uS = πS(x, a), where
it is guaranteed that uS ∈ US ⊆ Rna . The safe set US is defined for a
known (simple) system model ẋ = f(x, u) with states x and controls u and
corresponding, often tightened, constraints. In this formulation, the input u
has the same interpretation as the action a and the state x relates to the
model inside the filter. Constraint satisfaction for states is expressed via the
set membership x ∈ X and for controls via u ∈ U . The system model is usually
transformed to discrete-time via an integration function xi+1 = F (xi, ui) with
step size ∆t. When using direct multiple shooting [45] one obtains decision
variables for the state X = [x0, . . . , xN] ∈ Rnx×(N+1) and for the controls
u = [u0, . . . , uN−1] ∈ Rnu×N . Since the optimization problem can only be
formulated for a finite horizon, a control invariant terminal set St needs to be

246 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

included. The safety filter solves the following optimization problem

min
X,U

‖u0 − ā‖2R

s.t. x0 = x̄0, xN ∈ St,

xi+1 = F (xi, ui), i = 0, . . . , N − 1,

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1

(7.9)

and takes the first control u∗0 of the solution (X∗, U∗) as output uS := u∗0. The
authors in [294] use the filter as a post-processing safety adaption. However,
we propose to use this formulation as a basis for an online filter, even during
learning, which makes it applicable to safety-relevant environments. We do
not require the same physical inputs to our filter, but rather modifications to
a parametric optimization problem, similar to [110]. We propose a general
interface between the high-level RL policy and MPC, namely a cost function
L(X,U, a), modified by action a. Our version of the reference tracking NMPC
as a fundamental part of the algorithm solves the optimization problem

min
X,U

L(X,U, a)

s.t. x0 = x̂0, xN ∈ St,

xi+1 = F (xi, ui), i = 0, . . . , N − 1,

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1,

(7.10)

and takes the optimal state trajectory of the solution (X∗, U∗) as out-
put Xref := X∗ of the reference tracking NMPC algorithm. Due to the pruning
of infeasible, i.e., unsafe, trajectories of the actual control, the algorithm becomes
sample efficient.

7.2.3 General Method

We apply our algorithm to a multi-agent vehicle competition on a race track. We
aim to obtain a sample efficient planner that performs time-optimal trajectory
planning, avoids interactive opponents, and learns strategic behavior, such
as blocking other vehicles in simulation. We assume fixed policies of a fixed
number of Nob opponents and, therefore, do not consider the interaction as a
game-theoretical problem [315]. We use an obstacle avoidance rule, according
to the autonomous racing competitions Roborace [233] and F1TENTH [196],
where in a dueling situation, the following vehicle (FV) is mainly responsible
avoiding a crash. However, the leading vehicle (LV) must not provoke a crash.

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 247

MPPRL-policy
Pa

Xrefz

πMPP(z, P)πθ(s)

Environment

HILEPP

s
gs(z) GP (a)

x̂

πLL(Xref , x̂)ego vehicle

Nob controlled opponent vehicles

random road

Figure 7.9: Proposed control structure. The multi-vehicle environment
constitutes a trajectory tracking ego agent (lowest-level controller πLL(·)). A
state z concatenates all Nob + 1 vehicle states and road curvature information.
A function gs(z) projects the state to a lower dimensional state space. A
high-level RL policy πθ(s) and an expanding function GP (a) modify the cost
function of parameterized model predictive planner (reference tracking NMPC)
πMPC(z, P) by action a. The reference tracking NMPC outputs a feasible and
safe trajectory Xref to the ego lowest-level controller.

Unfortunately, to the best of the author’s knowledge, there is no rigorous rule
for determining the allowed actions of dueling vehicles. However, we formalize
the competition rules of F1TENTH similar to [166], where the LV only avoids
an inevitable crash, which we state detailed in Sec. 7.2.4. A block diagram of
our proposed algorithm is shown in Fig. 7.9, where we assume a multi-agent
environment with a measured state z ∈ Rnz , which concatenates the ego agent
states x, the obstacle/opponent vehicle states xob and the road curvature κ(ζi)
on evaluation points ζi. We include prior domain knowledge to get the high-
level RL policy state s ∈ Rns with the pre-processing function s = gs(z). For
instance, we use relative distances of the opponents to the ego vehicle instead
of absolute values. An expansion function P = GP (a), with the high-level RL
policy a = πθ(s), is used to increase the dimension of the NN output to obtain
a parametric cost function. The expansion function is used to include prior

248 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

knowledge and to obtain an optimization-friendly cost function in the reference
tracking NMPC.

7.2.4 Parameterized Model Predictive Planner

Our core component reference tracking NMPC constitutes an MPC formulation
that accounts for safety and strong initial racing performance. It comprises a
vehicle model, safety constraints, and a parameterized cost function, which we
will explain in the following section.

Vehicle Model

We use rear-wheel-centered kinematic single-track vehicle models in the Frenet
coordinate frame, as motivated in previous work [222]. The models are governed
by the longitudinal force Fd that accounts for accelerating and braking, and the
steering rate r, which is the first derivative of the steering angle δ. The most
prominent resistance forces Fres(v) = cairv

2 + crollsign(v) are included. The air
drag depends on the vehicle speed v with the constant cair. The rolling resistance
is proportional to sign(v) by the constant croll. We drop the sign function since
we only consider positive speed. As shown in previous work [222, 225], the Frenet
transformation F(·) relates Cartesian states xC = [xe ye ϕ]>, where xe and
ye are Cartesian positions and ϕ is the heading angle, to the curvilinear states

xF = F(xC) = [ζ n α]>. (7.11)

The Frenet states are related to the center lane γ(ζ) = [γx(ζ) γy(ζ)], with
signed curvature κ(ζ) and tangent angle ϕγ(ζ), where ζ is the 1d-position of
the closest point of the center lane, n is the lateral normal distance and α is
the difference of the vehicle heading angle to the tangent of the reference curve.
Under mild assumptions [222], the Frenet transformation and its inverse

xC = F−1(xF) =

γx(ζ)− n sin(ϕγ(ζ))
γy(ζ) + n cos(ϕγ(ζ))

ϕγ(ζ)− α

 (7.12)

are well-defined. We summarize the states with x =
[
ζ n α v δ

]> and
controls with u =

[
Fd r

]>. The Frenet frame vehicle model is parameterized
by the mass m and length l and given as

ẋ = f(x, u) =

v cos(α)
1−nκ(ζ)
v sin(α)

v
l tan(δ)− κ(ζ)v cos(α)

1−nκ(ζ)
1
m (Fd − Fres(v))

r

 . (7.13)

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 249

The discrete states xk at sampling time k∆t are obtained by an RK4 integration
function xk+1 = F (xk, uk,∆t).

Safety Constraints

As stated in Sec. 7.2.2, the reference tracking NMPC formulation should restrict
trajectories Xref to be within model constraints. Since we assume known
vehicle parameters and no measurement noise, this can be guaranteed for most
limitations in a straightforward way. Nevertheless, the interactive behavior
of the opponent vehicles poses a severe challenge to the formulation. On one
extreme, we could model the other vehicles robustly, which means we account
for all possible maneuvers, which yields quite conservative constraints. On the
other extreme, with known parameters of all vehicles, one could model the
opponent by “leaving space” for at least one possible motion of the opponent
without a crash, thus not forcing a collision. The latter leads to a hard bi-level
optimization problem since the feasibility problem, which is an optimization
problem itself, is needed as a constraint of the reference tracking NMPC. In
this work, we aim at a heuristic explained in Sec. 7.2.4.

Vehicle Limitations. Slack variables σ = [σv, σα, σn, σδ, σa, σo]> ∈ R6, for
state (7.14), acceleration (7.16) and obstacles constraints (7.18) are used to
achieve numerically robust behavior. We use box constraints for states

Bx(σ) :=
{
x

∣∣∣∣ −σn + n ≤n ≤ n+ σn, (7.14a)

−σα + α ≤α ≤ α+ σα, (7.14b)

0 ≤v ≤ v + σv, (7.14c)

−σδ + δ ≤δ ≤ δ + σδ
}
, (7.14d)

and controls

Bu :=
{
u
∣∣ F d ≤ Fd ≤ F d, r ≤ r ≤ r

}
. (7.15)

Further, we use a lateral acceleration constraints set

Blat(σ) :=
{
x

∣∣∣∣∣
∣∣∣∣v2 tan(δ)

l

∣∣∣∣ ≤ alat + σa

}
, (7.16)

to account for friction limits.

250 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

Obstacle Constraints. We approximate the rectangular shape of obstacles
(referenced by “ob”) in the Cartesian coordinate frame by an ellipse and
the ego vehicle by a circle, which yields superior computational properties
compared to other approaches, cf. [228]. We assume a predictor of an
obstacle vehicle i that outputs the expected Cartesian positions of the
vehicle center pobi

k = [xobi
e,k yobi

e,k]> ∈ R2 with a constraint ellipse shape
matrix Σ̂obi

k (x) ∈ R2×2 at time step k that depends on the (Frenet) vehicle
state in x. The ellipse area is increased by Σobi(x) = Σ̂obi(x) + I(r + ∆r)2

with radii of the ego covering circle r and a safety distance ∆r. Since the
ego vehicle position p> = [xe ye] is measured at the rear axis and in order to
have a centered covering circle, we project the rear position to the ego vehicle
center pmid by

pmid =
[
xe,mid
ye,mid

]
= P (xC) =

[
xe + l

2 cosϕ
ye + l

2 sinϕ

]
(7.17)

For obstacle avoidance with respect to the ellipse matrix, we use the constraint
set in compact notation

BO(xob,Σob, σ) =
{
x ∈ R2

∣∣∣ ∥∥P (F−1(x))− pob∥∥2
(Σob(x))−1 ≥ 1− σo

}
. (7.18)

Obstacle Prediction. The opponent prediction uses a simplified model with
states xob = [ζob, nob, vob]> and assumes curvilinear motion depending on the
initial estimated state x̂ob. With the constant acceleration force F ob

d , the ODE
of the opponent estimator can be written as

ζ̇ob = vob(t) cos(α̂ob)
1− nobκ(ζob) , ṅob = vob(t) sin(α̂ob), v̇ob = 1

mobF
ob
d . (7.19a)

Since the FV is responsible for a crash, it generously predicts the LV by
assuming constant velocity motion, where F ob

d is set to 0. The LV predicts
the FV most evasively, which we realize by assuming an FV full stop with
its maximum braking force F ob

d = F ob
d . In any situation, this allows the

FV to plan for at least one safe trajectory (i.e., a full stop) Thus, the LV
does not “provoke” a crash, as required in racing competition rules [233, 196].
Besides these minimum safety restrictions, interaction should be learned by
the high-level RL policy. We simulate the system forward with a function
Φ(), using steps of the RK4 integration function to obtain the predicted states
[xob

0 , . . . , xob
N] = Φ(x̂ob, α̂ob, F ob

d).

Recursive Feasibility. In order to guarantee safety for a finite horizon and
constraints (7.14), (7.15) and (7.16), we refer to the concept of recursive
feasibility and control invariant sets (CIS) [217]. A straightforward CIS is
the trivial set of zero velocity {x | v = 0}. An approximation to the CIS, which

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 251

is theoretically not a CIS but which has shown good performance in practice, is
the limited-velocity terminal set St := {x | α = 0, v ≤ vmax}. For long horizons,
the influence of the terminal set vanishes.

Objective

For the parameterized cost function L(X,U, a), we propose a formulation with
the following properties:

1. Simple structure for reliable and fast NLP iterations

2. Expressive behavior related to strategic driving

3. Low dimensional action space

4. Good initial performance

The first property is achieved by restricting the cost function to a quadratic
form. The second property is achieved by formulating the state reference in the
Frenet coordinate frame. The final properties of a low dimensional action space
and an excellent initial performance are achieved by interpreting the actions as
reference lateral position nref and reference speed vref . By setting the reference
speed, also the corresponding longitudinal state ζref,k of a curvilinear trajectory
is defined by ζref,k = ζ̂ + k∆tvref . The reference heading angle miss-match αref
and the steering angle δref are set to zero, with fixed weights wα and wδ, since
these weights are tuned for smooth driving behavior. Setting the reference
speed vref above maximum speed approximates time-optimal driving [151]. We
compare the influence using references with their associated weights wv, wn
(HILEPP-II with aII = [vref nref wv wn]>) to fixed weights without using
them in the action space (HILEPP-I with aI = [vref nref]>).

NLP Formulation

We use the action-dependent stage cost matrix Qw(a) with Qw : Rna → Rnx×nx
and a cost independent terminal cost Qt ∈ Rnx×nx . We set the values of R,
Q0 and Qt to values corresponding to driving smoothly and time-optimally.
With constant action inputs ā, this leads to a strong initial performance at the
beginning of training the high-level RL policy. With the constant time action-
dependent reference values ξref,k(a) = [0 n 0 vx 0]> ∈ Rnx for HILEPP-
I/II and constant time reference weights Qw(a) = diag([0 wn 0 wv 0]) for
HILEPP-II, we can write the expanding function as

GP (a) : a→
(
ξref,0(a), . . . , ξref,N (a), Qw(a)

)
, (7.20)

252 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

which maps na to n2
x(N + 1) + nx(N + 1) dimensions for cost matrices and

reference values. We state the final NLP, using the vehicle model (7.13), the MPC
path constraints for obstacle avoidance (7.18), vehicle constraints (7.14), (7.15)
and (7.16) and the parametric cost functions of (7.10). The full objective,
including slack variables Ξ = [σ0, . . . , σN] ∈ R6×N for each stage, associated L2
weights Qσ,2 = diag(qσ,2) ∈ R6×6 and L1 weights qσ,1 ∈ R6, reads as

L(X,U, a,Ξ) =
N−1∑
k=0
‖xk − ξref,k(a)‖2Qw(a) + ‖uk‖2R

+ ‖xN − ξref,N (a)‖2Qt +
N∑
k=0
‖σk‖2Qσ,2 + |q>σ,1σk|.

(7.21)

Together with the predictor for time step k of the j-th future opponent vehicle
states, represented as bounding ellipses with the parameters pob,j

i ,Σob,j
i , the

parametric NLP can be written as

min
X,U,Ξ

L(X,U, a,Ξ)

s.t. x0 = x̂, Ξ ≥ 0, xN ∈ St,

xi+1 = F (xi, ui) i = 0, . . . , N − 1,

Ui ∈ Bu, i = 0, . . . , N − 1,

xi ∈ Bx(σk) ∩Blat(σk) i = 0, . . . , N,

xi ∈ Bob(pob,j
i ,Σob,j

i , σk) i = 0, . . . , N,

j = 0, . . . , Nob.

(7.22)

The final reference tracking NMPC algorithm is stated in Alg. (3).

7.2.5 Hierarchical Learning-based Predictive Planner

The reference tracking NMPC of Sec. 7.2.4 plans safely and time-optimally, but
not strategically. Therefore, we learn a policy πθ with RL that decides how to
parameterize the reference tracking NMPC to achieve a strategic goal at each
time step. Since we assume stationary opponent policies, we can apply standard,
i.e., single-agent RL algorithms [315] and solve for the best response. In the
following, we give a brief theoretical background to policy gradient methods
and then describe the training procedure in detail.

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 253

Algorithm 3: reference tracking NMPC
input : action a, ego states x̂, Nob obstacle states x̂ob

output : planned trajectory Xref
1 for j in range(Nob) do
2 if ζ̂ob ≤ ζ̂ then
3 Consider opp. as FV: F ob

d ← F ob
d

4 end
5 else
6 Consider opp. as LV F ob

d ← 0
7 end
8 Predict [xob

0 , . . . , xob
N] = Φ(x̂ob, α̂ob, F ob

d);
9 Compute constraint ellipses Σob,j

k = Σ0(ϕob,j);
10 end
11 Compute weights

(
ζref,k, Qw

)
← GP (a);

12 Xref ←Solve NLP (7.10) with
(
ζref,k, Qw

)
;

Policy Gradient

RL requires a Markov Decision Process (MDP) framework. A MDP consists
of a state space S, an action space A, a transition kernel P (sk+1 | sk, ak), a
reward function R : S ×A 7→ R that describes how desirable a state is (equal to
the negative cost) and a discount factor γ ∈ [0, 1). The goal for a given MDP is
finding a policy πθ : S 7→ A that maximizes the expected discounted return

J(πθ) = E

[∞∑
k=0

γkR(sk, ak) | s0 = s

]
, sk ∼ P (sk+1 | sk, ak), ak ∼ πθ(sk).

(7.23)
where sk is the state and ak the action taken by the policy πθ at time step k.
An important additional concept is the state-action value function

Qπ
θ

(s, a) = E

[∞∑
k=0

γkR(sk, ak) | s0 = s, a0 = a

]
(7.24)

that is the expected value of the policy πθ starting in state s and taking an
action a. In general, finding an optimal policy πθ by directly optimizing θ
in (7.23) is impossible. The expectation in (7.23) might be computationally
intractable, or the exact transition probabilities P may be unknown. Thus, the
policy gradient ∇J(πθ) is approximated using only transition samples from the
environment. We sample these transitions from a simulator. However, they
could also come from real-world experiments. A particularly successful branch
of policy gradient methods is actor-critic methods [274], where we train two
neural networks, an actor πθ, and a critic Qφ. The critic estimates the value of

254 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

a chosen action and is trained by minimizing the temporal difference loss

JQ(φ) = Es,a,r,s′∼D
[(
r + γQφ′

(
s′, πθ(s′)

)
−Qφ(s, a)

)2]
. (7.25)

The trained critic is used to train the actor with the objective

Jπ(θ) = Es∼D
[
Qφ(s, πθ(s))

]
. (7.26)

To derive the gradient for the policy πθ from (7.26) we can use the chain
rule [258]

∇θJπ(θ) = Es∼D
[
∇θπθ(s) ∇aQφ(s, a)

∣∣
a=πθ(x)

]
. (7.27)

The soft-actor critic method, introduced by [117] enhances the actor-critic
method by adding an entropy term into (7.26) and using the reparameterization
trick to calculate the gradient. For a complete description, we refer to [117].
Note that, with a slight abuse of notation, in the equations from above, we
sample transitions tuple (s, a, r, s′) and states s from the same distribution D.
In our context, D is a buffer storing all transitions and states that have occurred
so far by interacting with the environment.

Training Environment

We reduce the RL state space based on domain knowledge, which we put into
the function gs(zk). The race track layout is approximated by finite curvature
evaluations κ(ζ + di) at different longitudinal distances di relative to the ego
vehicle position ζ, for i = 1, . . . , Nκ. For the RL ego state s(zk) = [n, v, α]>, we
include the lateral position n, the velocity v and the heading angle miss-match α.
For opponent i, we additionally add the opponent longitudinal distance ζob − ζ
to the ego vehicle to state sobi = [ζobi − ζ, nobi , vobi , αobi]>. Combined, we get
the following state definition for the RL agent

sk = gs(zk) = [κ(ζ + di), . . . , κ(ζ + dN), s>, s>ob1
, . . . , s>obNob

]>. (7.28)

We propose a simple reward that encourages time-optimal and strategic driving:
For driving time-optimally, we reward the progress on the race track by
measuring the velocity of the ego vehicle projected point on the center line ṡk.
For driving strategically, we reward ego vehicle overall rank by adding 1 for
being in front of every opponent. Combined, we get the reward function

R(s, a) = ṡ

200 +
Nob∑
i=1

1
ζk>ζ

obi
k

. (7.29)

At each time step, the high-level RL policy chooses a parameter for the reference
tracking NMPC; thus, the action space is the parameter space of the reference

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 255

tracking NMPC. For training the high-level RL policy, an essential part is the
simulation function of the environment znext = sim(z, κ(·)), which we simulate
for nepi episodes and a maximum of nscene steps. The road layout defined
by κ(ζ) is randomized within an interval [90.04, 0.04]m−1 before each training
episode. The curvature is set together with initial random vehicle states z by
a reset function (z, κ(ζ)) = Z(). We use Alg. 4 for training and Alg. 5 for the
final deployment of HILEPP.

Algorithm 4: HILEPP training
input : number of episodes nepi, maximum scenario steps nscene, reset

function (z, κ(ζ)) = Z(), reward function r(z)
output : learned policy πθ(ζ)

1 for j in range(nepi) do
2 reset+randomize environment (z, κ(ζ))← Z();
3 for i in range(nscene) do
4 get NN input state s← gs(z);
5 get high-level action a← πθ(s);
6 evaluate planner Xref ←reference tracking NMPC(a, z);
7 simulate environment znext = sim(Xref);
8 get reward (r, done)← R(znext, a);
9 RL update θ ←train(z, znext, r, a);

10 if done then
11 exit loop
12 end
13 z← znext
14 end
15 end
16 return πθ(s);

Algorithm 5: HILEPP deployment
input : environment state z, trained policy πθ(s)
output : reference trajectory Xref

1 compute NN input state s← gs(z);
2 compute high-level RL policy output a← πθ(s);
3 return reference tracking NMPC output Xref ←reference tracking

NMPC(z, a);

256 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

overtaking

agents

blocking

mixed

eg
o

we
ak
er

st
ro
ng

er

starting positionsscenarios

Figure 7.10: Scenarios differ in the initial rank and performance of vehicles.

7.2.6 Simulated Experiments

We evaluate (Alg. 5) and train (Alg. 4) HILEPP on three different scenarios
that resemble racing situations (cf. Fig. 7.10). The first scenario overtaking
constitutes three “weaker”, initially leading opponent agents, where “weaker”
relates to the parameters of maximum accelerations, maximum torques, and
vehicle mass (cf. Tab. 7.4). The second scenario blocking constitutes three
“stronger”, initially subsequent opponents. The ego agent starts between a
stronger and a weaker opponent in a third mixed scenario. Each scenario is
simulated for one minute, where the ego agent has to perform best related to the
reward (7.29). We train the HILEPP agent with the different proposed action
interfaces (I: A = {nref , vref}, II: A = {nref , vref , wn, wv}). Opponent agents, as
well as the ego agent baseline, are simulated with the state-of-the-art reference
tracking NMPC (Alg. 3) with a fixed action a that accounts for non-strategic
time-optimal driving with obstacle avoidance. We perform a hyper-parameter
(HP) search for the RL parameters with Optuna [9]. The search space was
defined by [10−5, 10−3] for the learning rate, τ ∈ [10−5, 10−2] for the polyak
averaging of the target networks, {64, 128, 256} for the width of the hidden
layers, {1, 2, 3} for the number of hidden layers and {128, 256} for the batch
size. We used the average return of 30 evaluation episodes after training for 105

steps as the search metric. We trained on randomized scenarios for 10 ·105 steps
with 10 different seeds on each scenario. For estimating the performance of the
final policy, we evaluated the episode return (sum of rewards) on 100 episodes.
We further compare our trained HILEPP against a pure RL policy that directly
outputs the controls u. The final experiments were run on a computing cluster
were all 30 runs for one method where run on 8 GeForce RTX 2080 Ti with a
AMD EPYC 7502 32-Core Processor with a training time of around 6 hours.
We use the NLP solver acados [291] with HPIPM [97], RTI iterations and a
partial condensing horizon of N2 .

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 257

Name Variable Ego “Weak” “Strong”
Agent Agent Agent

wheelbase lr, lf 1.7 1.7 1.7
chassis lengths lr,ch, lf,ch 2 2 2
chassis width wch 1.9 1.9 1.9
mass m 1160 2000 600
max. lateral acc. alat, alat ±8 ±5 ±13
max. acc. force F d 10kN 8kN 12kN
max. brake force F d 20kN 20kN 20kN
max. steering rate r, r ±0.39 ±0.39 ±0.39
velocity bound v 60 60 60
steering angle bound δ, δ ±0.3 ±0.3 ±0.3
road bounds n, n ±7 ±7 ±7

Table 7.4: Vehicle model parameters. SI-units, if not stated explicitly.

Name Variable Value

nodes / disc. time N/ ∆t 50/ 0.1
terminal velocity vN 15
state weights q [1, 500, 103, 103, 104]∆t
terminal state weights qN [10, 90, 100, 10, 10]
L2 slack weights qσ,2 [102, 103, 106, 103, 106, 106]
L1 slack weights qσ,1 [0, 0, 106, 104, 107, 106]
control weights R diag([10−3, 2 · 106])∆t

Table 7.5: Parameters for reference tracking NMPC in SI units

Results

In Fig. 7.11, we compare the training performance related to the reward (7.29),
and in Fig. 7.12, we show the final performance of the two HILEPP formulations.
HILEPP quickly outperforms the base-line reference tracking NMPC as well as
the pure RL formulation, showing its high sample efficiency. With a smaller
action space, HILEPP-I seems to learn faster. However, with more samples,
HILEPP-II outperforms the smaller action space in all three scenarios on the
evaluation runs in terms of median performance, see Fig. 7.12. The training
was stopped after 106 steps due to the already high training time and the
slow return increase, as shown in Fig. 7.11. Despite using state-of-the-art RL
learning algorithms and an extensive HP search on GPU clusters, the pure RL

258 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

0 10

Env. Steps (105)

0

500

A
ve

ra
g
e

T
ra

in
in

g
R

et
u

rn

Overtaking

0 10

Env. Steps (105)

Blocking

0 10

Env. Steps (105)

Mixed

HILEPP I HILEPP II RL MPP

Figure 7.11: Training performance of average episode return (sum of rewards)
of HILEPP with different action interfaces (I: actions vref , nref , II: actions
vref , nref , wv, wn), pure RL and the reference tracking NMPC baseline. We
used a moving average of over 1000 steps. Remarkably, we could not train a
successful pure RL agent in the overtaking scenario.

Module Mean± Std. Max

reference tracking NMPC 5.45± 2.73 8.62
RL policy 0.13± 0.01 0.26
HILEPP-I 6.90± 3.17 9.56
HILEPP-II 7.41± 2.28 9.21

Table 7.6: Computation times (ms) of modules.

agent could not, in general, outperform the reference tracking NMPC baseline.
Furthermore, the pure RL policy could not prevent crashes, whereas reference
tracking NMPC successfully filters the actions within HILEPP to safe actions
that do not cause safety violations. Notably, due to the struggle of the pure RL
agent with lateral acceleration constraints, it has learned a less efficient strategy
to drive slowly and just focus on blocking subsequent opponents in scenarios
blocking and mixed. Therefore, pure RL could not perform efficient overtaking
maneuvers in the overtaking scenario and yields evasive returns (consequently
excluded in Fig. 7.12). In Tab. 7.6, we show that HILEPP is capable of planning
trajectories with approximately 100Hz, which is sufficient and competitive for
automotive motion planning [41]. A rendered plot of learned blocking is shown in
Fig. 7.13, where also the time signals are shown of how the high-level RL policy
sets the references of HILEPP-I. A rendered simulation for all three scenarios
can be found on the website https://rudolfreiter.github.io/hilepp_vis/.

https://rudolfreiter.github.io/hilepp_vis/

HIERARCHICAL APPROACH FOR STRATEGIC MOTION PLANNING 259

Overtaking

Blocking

0 200 400 600 800

Average Return

Mixed

HILEPP I HILEPP II RL MPP

Figure 7.12: Final episode return of 100 evaluation runs of the proposed
interfaces for different scenarios (Fig. 7.10).

7.2.7 Conclusions

We have shown a hierarchical planning algorithm for strategic racing. We
use RL to train for strategies in simulated environments and have shown to
outperform a basic time-optimal and obstacle-avoiding approach, as well as
pure deep-learning-based RL in several scenarios. The major drawbacks of our
approach are the restrictive prediction and the stationary policy of opponents.
Further work could consider multi-agent RL (MARL) algorithms based on
Markov games, which, however, is still a challenging open research area [315].

260 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

−2.5
0.0
2.5

r
(r

ad
/s

) ×10−4

−25

0

F
d

(k
N

)

−5

0

5

n
re

f
(m

)

0 5 10 15 20 25 30

Time (s)

25

50

v r
ef

(m
/s

)

300 325 350 375 400
x (m)

−160

−140

−120

y
(m

)
C

on
trols

u
A

ction
s
a

ego agent

stronger agent

14

15

16

T
rajectory

x
(t)

in
(s)

Figure 7.13: Exemplary evaluation episode of the HILEPP-I planner in the
mixed scenario. On the bottom, the controls of the reference tracking NMPC
and the actions of the high-level RL policy are shown. The grey box indicates
a time window where snapshots of a blocking maneuver are shown in the top
plot. The vehicles move from right to left.

7.3 Critical Discussion

In this chapter, two concepts for collision avoidance within autonomous racing
were presented. Sect. 7.1 and the related publication [226] focused on estimating
other future vehicle trajectories in order to include those within the ego
vehicle motion planner for collision avoidance. In Sect 7.2 and the related
publication [224], the aim was to learn strategic behavior from simulation by
reinforcement learning. A low-level model predictive control (MPC) provided
guarantees for safety to a known model, which is essential for autonomous racing
tasks. As opposed to Sect. 7.1, the low-level MPC in Sect 7.2 used constant-
velocity predictions for other racing vehicles. However, it could directly be

CRITICAL DISCUSSION 261

combined with the inverse optimal control prediction approach from Sect. 7.1.

To the best of the author’s knowledge, the prediction approach of Sect. 7.1
is the first method in the domain of autonomous racing to employ derivative-
based bi-level optimization for real-time trajectory prediction. Given the
inherent complexity of bi-level problems, our research introduces a specific
smooth formulation of the Karush-Kuhn-Tucker conditions to solve the high-
level problems. Using the proposed optimization-based approach to predict
trajectories, the signed longitudinal position error after 12 seconds was decreased
from 10 meters mean and 200 meters standard deviation to zero meters
mean and 25 meters standard deviation compared to the constant velocity
predictor [253]. The online computation time of the optimization-based
low-level predictor was real-time capable on embedded hardware with an
average computation time of 91 ms. The bi-level estimation was performed
asynchronously with an average computation time of 520 ms, making it
independent on sampling time limits.

In Sect 7.2, significant contributions to the field of autonomous race car motion
planning are shown by deriving and evaluating a sample efficient and safe motion
planning algorithm. The approach includes a novel cost function formulation
that uses an reinforcement learning (RL) policy to parameterize an MPC. This
hierarchical architecture ensures strong prior performance, real-time applicability
with online computation times of less than 10 ms, and high interpretability. On
three scenarios, i.e., overtaking, blocking, and performing both, the average
reward for driving fast and having a good rank was increased by 8%, 37%,
and 96% compared to standard MPC. Compared to pure RL, the reward was
increased by 133% and 84% for blocking and mixed overtaking and blocking.
The pure RL did not perform reasonably on the overtaking scenario, even after
more than one million training steps.

Using a low-level MPC to predict other traffic participants turned out to
be highly efficient and was used by the Autonomous Racing Graz (ARG)
team [3] as one of the most successful predictors in further races held by
Roborace [233]. Notably, the computational requirements for solving multiple
nonlinear programs (NLPs) in real-time for motion prediction were compared
to other components high but within the limits of the embedded computing
platform. Our reported mean computation time of 91 ms is comparable to a
timing analysis reported by [12] of the popular Apollo open source driving
stack [2], where a mean computation time of 130 ms is reported for the prediction
module.

The need for online adaption of the high-level nonlinear program (HLNLP)
declined in this particular racing series because the simulated opponent
race cars followed a similar behavior throughout the races. Moreover, the
HLNLP exhibited the risk of converging to local solutions that could even
degrade the performance on parts of the race track. The ARG team generally

262 COLLISION AVOIDANCE FOR AUTONOMOUS RACING

assumes that the online adaptation of safety critical components is challenging.
Remarkably, the parameterization of the low-level nonlinear program (LLNLP)
could be restricted to a reasonable set of parameters by sacrificing the
LLNLP expressiveness. A further limitation of the approach is rooted in
the assumption of non-interactive agents, which was the setting in the particular
Roborace [233] competition. In an autonomous racing event where several
“intelligent” agents would compete, the interactions would become essential and
imply the connection of the ego planner with the prediction. The final algorithm
would be more sophisticated since game-theoretic considerations based on the
particular racing rules would also apply. Up to the publication of this work,
no clearly defined rules for competitive interactive racing were available. The
approach of Sect. 7.2 aims to separate interactive decision-making from collision
avoidance based on a simple predictor. The presented method is both limiting
but also provides safety guarantees. In fact, the high-level policy aims to learn
interactions that are restricted by MPC plans that evade constant-velocity
obstacle predictions for leading vehicles. The following vehicles are predicted
by assuming full braking, which accounts for the leader’s assumed rule-book
advantage. The switching behavior of the opponents is not considered within
the planning horizon, which is a conservative approximation. Nevertheless,
a striking advantage of this architecture is that for every control of the ego
vehicle, a safe trajectory of the opponent exists, i.e., the ego agent never forces
an inevitable crash, assuming exact vehicle models.

Noteworthy, the environment setting assumes constant policies of other agents.
Policies could be changed in a game-like race with multiple “intelligent”
agents, which, again, requires game-theoretic considerations or multi-agent
reinforcement learning techniques [109].

The combination of RL with MPC is an active field of research due to their
appealing “orthogonal” advantages [115], where the weaknesses of one approach
are the strengths of the other. RL and MPC can be combined in various
configurations and overall desiderata. Our architecture conceptually uses MPC
as part of the environment during learning, i.e., the RL exploration and the
critic evaluation are performed on the actions that parameterize the MPC. This
has the advantage that when using RL experience replay, the forward path of the
MPC does not need to be reevaluated by solving an NLP, and gradients in the
backward path do not require differentiating through the NLP solver. A similar
approach was used in, e.g., [203, 210, 48]. An alternative would use the MPC
as part of the RL policy, add exploration noise on either the MPC parameters
or the MPC controls, and evaluate the critic based on the MPC actions instead
of the parameters. This configuration profits from the computation of gradients
through the NLP, possibly allowing a higher number of MPC parameters set by
the RL policy. This configuration was used in, e.g., [235, 279]. Besides these two
particular configurations, many other architectures were proposed, such as using
MPC only after training as a safety-filter [280], using an RL policy to initialize
the primal variables of an MPC [105, 223] or providing expert trajectories in the

CRITICAL DISCUSSION 263

initial RL training phase [163]. The benchmarking among different approaches
is open for future research.

Chapter 8

Conclusion

This thesis presents significant contributions to the field of motion planning
and control for autonomous vehicles, focusing on mixed-integer programming
formulations, reinforcement learning (RL) and model predictive control (MPC)-
based hierarchical motion planning, and Frenet coordinate frame (FCF) vehicle
models. Critical challenges are addressed, and novel solutions are proposed to
advance state-of-the-art autonomous vehicle motion planning and control. This
thesis comprises several publications in peer-reviewed journals and conferences.
The following summarizes the contributions, elaborates on the strengths and
limitations, and provides an outlook for further research.

Summary of Contributions

The contributions of this thesis can be clustered into the three main optimization-
based automotive motion planning topics. First, model formulations for FCF-
based MPC are proposed for local nonlinear optimization algorithms. Second,
mixed-integer formulations and an improved learning-based solution strategy
are proposed for the global optimization of obstacle avoidance problems. Finally,
novel approaches for optimization-based obstacle prediction and interactive
driving in autonomous racing are contributed. The three main topic clusters
are aligned with the core Chapters 5 to 7.

Chapter 5: Model Formulations for Optimization-Based Motion Planning.
The first main chapter introduces novel FCF vehicle model formulations
used within MPC that improve the numerical robustness, safety, and online
computation speed in real-time applications. This section focuses on improving
problem formulations for local derivative-based nonlinear optimization. The
proposed preprocessing algorithm of Sect. 5.1 guarantees a singularity-free

265

266 CONCLUSION

state space and smoothens nonlinearities, which results in improved closed-
loop performance, empirically evaluated in simulations. For a sharp curve
where the singularity originating from the Frenet model representation is close
to the feasible state space, the quadratic program (QP) solver HPIPM [97]
failed without the proposed preprocessing method in 40% of the simulated
scenarios. No QP errors occurred when the track was preprocessed in the same
scenarios with the algorithm in Sect. 5.1. Moreover, the preprocessing reduced
the online computation time by 23% in the particular scenarios. The novel
model formulation in Sect. 5.2 guarantees safe and tight over-approximations
of obstacles using sequential quadratic programming (SQP). The tighter over-
approximations result in a 30% increased maximum progress in the simulated
environment, which involved overtaking three truck-sized obstacles. Additionally,
the online computation time was decreased by 6.6% for truck-sized obstacles
in the simulated scenarios. The core idea of Sect. 5.2 is to lift the model
formulation into two coordinate frames, the FCF and the Cartesian coordinate
frame (CCF), which leads to redundant configuration states. Constraints
and costs are formulated using the more favorable configuration states of
either coordinate frame to achieve superior numerical properties when solving
optimization problems.

Chapter 6: Mixed-Integer Optimization for Collision Avoidance. The
second main chapter addresses mixed-integer quadratic program (MIQP)-
based optimization for motion planning with multiple obstacles by leveraging
novel problem formulations and machine learning techniques. The proposed
formulations significantly reduce the number of integer variables required for
collision-avoidance problems from O(NNobs) [213], where N is the number of
prediction steps and Nobs is the number of obstacles, to O(Nobs) for static
obstacles and long-term prediction in highway scenarios. The formulations
improve the computational efficiency to achieve real-time feasibility. For static
obstacles, this is achieved by combining a mixed-integer linear program (MILP)
with an SQP homotopy, cf., Sect. 6.1, and for highway predictions by an
MIQP formulation in the position-time-lane space, cf., Sect. 6.2. The approach
of Sect. 6.1 was evaluated in a real-world competition (Roborace [233], Bedford
UK, 2021) on embedded hardware of an autonomous race car. The long
short term motion planner (LSTMP) of Sect. 6.2 was evaluated in traffic
simulations using CommonRoad [13] where it achieved a speedup between 2%
and 100% compared to A? [8] and an mixed-integer programming-based decision
maker (MIP-DM) [213] for different hyper-parameters. Additionally, the
LSTMP achieved a closed-loop cost reduction of up to 10% and is Pareto
optimal for the trade-off between online-computation time and closed-loop cost
compared to A? and the MIP-DM.

Moreover, a combined machine learning and online optimization approach was
presented, cf. Sect. 6.3. The trained learning-based predictor replaces the

CONCLUSION 267

combinatorial part of a mixed-integer solver and drastically reduces the worst-
case computation time from 4000 ms to 60 ms and 3000 ms to 30 ms compared
to the MIP-DM in two randomized closed-loop traffic scenarios provided by
CommonRoad [13]. A slight increase of the closed-loop cost of 1.5% and 6.4%
is accepted since collisions can still be prevented by deploying a so-called
feasibility projector and parallel ensemble networks. Key to the approach is
a novel recurrent equivariant deep set (REDS) architecture that provides a
powerful inductive bias aligned with the obstacle avoidance problem. In fact,
the novel neural network (NN) architecture improves the accuracy of predicting
all integer variables, e.g., from 15% to 48% when using seven simultaneous
obstacles and 28 prediction steps compared to [62]. The applicability of the
planning framework is demonstrated via simulation in interactive environments
for highway driving. The framework is general enough to be extended to urban
motion planning.

Chapter 7: Collision Avoidance for Autonomous Racing. The final main
chapter focuses on obstacle prediction and strategic behavior learning in
autonomous racing. The primary contributions are trajectory prediction
utilizing bi-level and online optimization and a novel hierarchical RL and MPC
architecture that learns strategic maneuvers while maintaining safety. The use
of derivative-based bi-level optimization for real-time trajectory prediction is a
novel contribution to the field of autonomous racing. It provides superior
prediction performance for non-interactive predictions. For example, the
standard deviation of signed longitudinal position prediction error after 12
seconds was decreased from 200 meters to 25 meters in simulations utilizing
embedded hardware and the Autonomous Racing Graz (ARG) driving stack,
when compared to the constant velocity predictor [253]. The computation time
of the low-level optimization-based predictor was, on average, below 100 ms
with a maximum of 2.7 s on the embedded hardware NVIDIA Drive PX2. When
the computation time overshot the real-time sampling time, the prediction of
the previous iteration was used, making computational outliers acceptable. The
integration of trajectory optimization and RL into a hierarchical motion planning
framework in Sect. 7.2 ensures real-time applicability with online computation
times of less than 10 ms and high performance in learning strategic behavior in
autonomous racing scenarios. Notably, in three different scenarios, the average
reward was increased by 8%, 37% and 96% compared to standard MPC and
by 133% and 84% compared to plain RL. In one scenario, the RL agent could
not achieve any meaningful performance even after more than 106 training
steps.

268 CONCLUSION

Strengths and Limitations

The strengths of this thesis lie in its computationally efficient formulations
for optimization-based motion planning and their real-time applicability,
making these methods suitable for real-time motion planning. The empirical
performance was evaluated in simulations and, partly, in real-world experiments.

The major limitations of the proposed thesis are listed in the following.

• Assumptions: The methods were tested based on particular assumptions,
such as known road geometry, deterministic obstacles, perfectly estimated
obstacle or ego states, a racing objective of surrounding vehicles (SVs)
or stationary policies. The assumptions are reasonably motivated in the
specific sections and appropriate for the proposed contribution. However,
in real-world integrated systems, the assumptions may not always hold.
In this case, the proposed algorithms may need to be adapted.

• Dependencies on the integrated software stack: Most algorithms
were tested as part of an autonomous driving (AD) software stack, cf.,
Sect. 4. The different modules within the software stack all have certain
characteristics and influence each other during performance measurements.
For instance, the performance of the lowest-level controller significantly
influences the performance of the motion planner. Particularly, if any
module of the AD software stack performs poorly, the performance
evaluation of one individual component, such as the planner, is challenging.
In order to omit any cross-dependencies between modules, the AD stacks
were kept as simple as possible but as realistic as necessary. Moreover,
a major effort was made to achieve high performance in each necessary
module.

• Specific Environments: In this thesis, a great effort was taken to
verify the proposed contributions on a wide range of environments. In
case simulations were used to evaluate the performance of an algorithm,
the environment was randomized to a great extent. For instance, the
curvature or the road boundaries of reference tracks, SV parameters, or
initial states were randomized to create highly random road environments.
However, the generated scenarios do not cover all possible scenarios, and
it cannot be excluded that there exists a particular environment in which
the proposed algorithms do not perform superiorly.

• Solving hard optimization problems: Most algorithms rely on
nonlinear program (NLP) or MIQP problem formulations, utilizing solvers
such as acados [291] or Gurobi [114]. Due to the complex problem classes
these solvers can treat, they have few guarantees of solving the problem
correctly. Even though, in practice, robust empirical convergence is
observed. It remains a more fundamental question whether less expressive

CONCLUSION 269

convex formulations and related solvers are inevitable in guaranteeing
reliable convergence and a limited worst-case computation time or if
the empirically evaluated performance of more sophisticated solvers is
sufficient for real-world systems.

• Linear and convex mixed-integer formulations: The reliance on
MIQP formulations for combinatorial obstacle avoidance of Chapter 6
limits the expressiveness of the models. The equality constraints within
the optimization problem related to the model are required to be linear,
and constraints need to be convex quadratic. Notably, it is possible to
add model complexity to a linear model within the proposed MIQP-based
formulation. Specifically, nonlinear functions and convex sets can be
approximated by adding continuous and integer variables [304], which
is also used in several formulations of Sect. 6.2. Even though nonlinear
functions and nonconvex sets can be approximated by MIQP formulations,
they cannot be formulated exactly. Alternatively, nonlinear functions can
be directly used within mixed-integer nonlinear programmings (MINLPs)
formulations. MINLP formulations treat nonlinearities differently and,
therefore, exhibit the possibility of improving the overall performance.

• Mixed-integer solvers for embedded systems: Up to this point,
only few commercial high-performance MIQP solvers comparable to,
e.g., Gurobi [114], for embedded real-time critical hardware are available.
Even though research is performed in this direction, cf. [18, 212, 269] and
high-performance open-source solvers exist, such as HiGHS [125].

Future Directions

The proposed methods show outstanding performance in the particular tested
environments. Nonetheless, the research gave rise to several possible extensions
and new research questions.

• Comparison of CCF and FCF model formulations: As mentioned
in Sect. 5.2 and the introduction Sect. 3.7, an alternative to the FCF
model formulation uses the CCF and an auxiliary path variable. Up to
this point, no thorough comparison is known to the author of this thesis,
making the choice of the coordinate frame in many publications rather
based on intuitive arguments. A theoretical and practical comparison of
real-world embedded systems would make the decision of the coordinate
frame more informed for future researchers and practitioners.

• Evaluation of MINLP formulations: The methods of Chapter 6 are
all based on MIQP formulations, which limit the expressiveness of the
model. It remains an interesting research question if state-of-the-art
MINLP solvers can solve nonlinear formulations more efficiently.

270 CONCLUSION

• Advancing motion planning algorithms to game-theoretic foun-
dations: The proposed methods do not consider game-theoretic
considerations due to their sophisticated implications for motion planning
algorithms. However, ignoring game-theoretic considerations limits the
performance due to, e.g., an increased conservativeness. Particularly
for autonomous racing, even a rigorous mathematical description of the
“racing game” is missing due to diverse rules in real-world competitions.
A formulation of autonomous racing as a game-theoretic problem would
allow the development of more rigorous algorithms.

• Multi-agent reinforcement learning and MPC: This direction is
conditioned on the previous point of a game-theoretic formulation of the
autonomous racing problem. The hierarchical RL and MPC approach of
Sect. 7.2 only considers static policies of the opponents, making it a single-
agent RL problem. Assuming the other agents are rational “players”, the
setting becomes a multi-agent RL problem. Combining multi-agent RL
in the hierarchical setting of Sect. 7.2 would be an exciting direction for
future research.

• Unifying MPC and RL: Both, the implicit online-optimization
approach of MPC and the explicit model-free RL method achieve
outstanding performance in many real-world tasks. Often, the underlying
goal is equal, such as in time-optimal racing. Interestingly, the advantages
of both methods are “orthogonal”, meaning the weaknesses of one approach
are the strengths of the other. Unifying both frameworks into a partly
model-based and model-free learning approach is a fascinating direction
for future research.

Bibliography

[1] DARPA Urban Challenge, https://www.darpa.mil/about-
us/timeline/darpa-urban-challenge, 2007.

[2] Baidu Apollo team, Apollo: Open Source Autonomous Driving,
https://github.com/ApolloAuto/apollo, 2017.

[3] ARG - Autonomous Racing Graz, https://autonomousracing.ai/, 2024.

[4] Eclipse Foundation. Eclipse Cyclone DDS, https://cyclonedds.io/, 2024.

[5] Eclipse Foundation. Eclipse iceoryx - An inter-process communication
middleware, https://iceoryx.io/v2.0.2/, 2024.

[6] IAC - Indy Autonomous Challenge,
https://www.indyautonomouschallenge.com/, 2024.

[7] Agrawal, A., Amos, B., Barratt, S. T., Boyd, S. P., Diamond, S.,
and Kolter, J. Z. Differentiable Convex Optimization Layers. CoRR
abs/1910.12430 (2019).

[8] Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., and Horn,
M. Search-Based Optimal Motion Planning for Automated Driving. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2018), pp. 4523–4530.

[9] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining (2019), pp. 2623–2631.

[10] Albersmeyer, J., and Diehl, M. The Lifted Newton Method and Its
Application in Optimization. SIAM Journal on Optimization 20, 3 (Jan.
2010), 1655–1684.

[11] Alcalá, E., Puig, V., and Quevedo, J. LPV-MP planning
for autonomous racing vehicles considering obstacles. Robotics and
Autonomous Systems 124 (2020), 103392.

271

272 BIBLIOGRAPHY

[12] Alcon, M., Tabani, H., Kosmidis, L., Mezzetti, E., Abella,
J., and Cazorla, F. J. Timing of Autonomous Driving Software:
Problem Analysis and Prospects for Future Solutions. IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS) (2020),
267–280.

[13] Althoff, M., Koschi, M., and Manzinger, S. CommonRoad:
Composable benchmarks for motion planning on roads. In IEEE Intelligent
Vehicles Symposium (IV) (2017), pp. 719–726.

[14] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and
Diehl, M. CasADi – A software framework for nonlinear optimization and
optimal control. Mathematical Programming Computation 11, 1 (2019),
1–36.

[15] Anstreicher, K. M. Linear programming: interior point methodsLinear
Programming: Interior Point Methods. In Encyclopedia of Optimization,
C. A. Floudas and P. M. Pardalos, Eds. Springer US, Boston, MA, 2001,
pp. 1279–1281.

[16] Appa, G., Pitsoulis, L., Williams, H. P., and Hillier, F. S., Eds.
Handbook on Modelling for Discrete Optimization, vol. 88 of International
Series in Operations Research & Management Science. Kluwer Academic
Publishers, Boston, MA, 2006.

[17] Aradi, S. Survey of Deep Reinforcement Learning for Motion Planning
of Autonomous Vehicles. IEEE Transactions on Intelligent Transportation
Systems 23, 2 (Feb. 2022), 740–759.

[18] Arnström, D., and Axehill, D. BnB-DAQP: A Mixed-Integer QP
Solver for Embedded Applications. IFAC-PapersOnLine 56, 2 (Jan. 2023),
7420–7427.

[19] Arrizabalaga, J., and Ryll, M. Spatial motion planning with
Pythagorean Hodograph curves. In IEEE 61st Conference on Decision
and Control (CDC) (Dec. 2022), pp. 2047–2053. ISSN: 2576-2370.

[20] Arrizabalaga, J., and Ryll, M. Towards Time-Optimal Tunnel-
Following for Quadrotors. In International Conference on Robotics and
Automation (ICRA) (May 2022), pp. 4044–4050.

[21] Arrizabalaga, J., and Ryll, M. Pose-Following with Dual
Quaternions. In 62nd IEEE Conference on Decision and Control (CDC)
(2023), pp. 5959–5966.

[22] Arrizabalaga, J., and Ryll, M. SCTOMP: Spatially Constrained
Time-Optimal Motion Planning. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Detroit, MI, USA, Oct. 2023),
IEEE, pp. 4827–4834.

BIBLIOGRAPHY 273

[23] Arslan, O., Berntorp, K., and Tsiotras, P. Sampling-based
algorithms for optimal motion planning using closed-loop prediction. In
IEEE International Conference on Robotics and Automation (ICRA)
(2017), pp. 4991–4996.

[24] Aspvall, B., and Stone, R. E. Khachiyan’s linear programming
algorithm. Journal of Algorithms 1, 1 (Mar. 1980), 1–13.

[25] Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M.,
Pajor, T., Sanders, P., Wagner, D., and Werneck, R. Route
Planning in Transportation Networks. vol. 9220. Nov. 2016, pp. 19–80.

[26] Batkovic, I., Rosolia, U., Zanon, M., and Falcone, P. A Robust
Scenario MPC Approach for Uncertain Multi-Modal Obstacles. IEEE
Control Systems Letters 5, 3 (July 2021), 947–952.

[27] Baumann, N., Ghignone, E., Kühne, J., Bastuck, N., Becker,
J., Imholz, N., Kränzlin, T., Lim, T. Y., Lötscher, M.,
Schwarzenbach, L., Tognoni, L., Vogt, C., Carron, A., and
Magno, M. ForzaETH Race Stack – Scaled Autonomous Head-to-
Head Racing on Fully Commercial off-the-Shelf Hardware, Mar. 2024.
arXiv:2403.11784 [cs, eess].

[28] Bellman, R. Dynamic programming. Science 153, 3731 (1966), 34–37.
Publisher: American Association for the Advancement of Science.

[29] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J.,
and Mahajan, A. Mixed-integer nonlinear optimization. Acta Numerica
22 (May 2013), 1–131.

[30] Bender, P., Tas, O. S., Ziegler, J., and Stiller, C. The
combinatorial aspect of motion planning: Maneuver variants in structured
environments. In IEEE Intelligent Vehicles Symposium (IV) (2015),
pp. 1386–1392.

[31] Bergman, K., and Axehill, D. Combining Homotopy Methods and
Numerical Optimal Control to Solve Motion Planning Problems. In IEEE
Intelligent Vehicles Symposium (IV) (June 2018), pp. 347–354.

[32] Bergman, K., Ljungqvist, O., and Axehill, D. Improved Path
Planning by Tightly Combining Lattice-Based Path Planning and Optimal
Control. IEEE Transactions on Intelligent Vehicles (2020), 1–1.

[33] Bergman, K., Ljungqvist, O., Glad, T., and Axehill, D. An
Optimization-Based Receding Horizon Trajectory Planning Algorithm.
IFAC-PapersOnLine 53, 2 (Jan. 2020), 15550–15557.

[34] Berntorp, K., Weiss, A., and Di Cairano, S. Integer ambiguity
resolution by mixture Kalman filter for improved GNSS precision. IEEE
Transactions on Aerospace and Electronic Systems 56, 4 (2020), 3170–3181.

274 BIBLIOGRAPHY

[35] Bertsekas, D. Reinforcement Learning and Optimal Control, first
edition ed. Athena Scientific, Belmont, Massachusetts, July 2019.

[36] Bertsekas, D., and Castanon, D. Adaptive aggregation methods for
infinite horizon dynamic programming. IEEE Transactions on Automatic
Control 34, 6 (1989), 589–598.

[37] Bertsekas, D. P. Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC*. European Journal of Control 11, 4 (Jan.
2005), 310–334.

[38] Bertsekas, D. P., and Tsitsiklis, J. N. Neuro-dynamic programming.
Optimization and neural computation series. Athena Scientific, Belmont,
Mass, 1996.

[39] Bertsimas, D., and Stellato, B. The voice of optimization. Machine
Learning 110, 2 (Feb. 2021), 249–277.

[40] Bertsimas, D., and Stellato, B. Online Mixed-Integer Optimization
in Milliseconds. INFORMS J. on Computing 34, 4 (July 2022), 2229–2248.

[41] Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl,
M., Krovi, V., and Mangharam, R. Autonomous Vehicles on the
Edge: A Survey on Autonomous Vehicle Racing. IEEE Open Journal of
Intelligent Transportation Systems 3 (2022), 458–488.

[42] Bishop, R. L. There is More than One Way to Frame a Curve. The
American Mathematical Monthly 82, 3 (1975), 246–251.

[43] Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine,
S. Training Diffusion Models with Reinforcement Learning. CoRR
2305.13301 (2023).

[44] Block, A., Jadbabaie, A., Pfrommer, D., Simchowitz, M., and
Tedrake, R. Provable Guarantees for Generative Behavior Cloning:
Bridging Low-Level Stability and High-Level Behavior. In Advances in
Neural Information Processing Systems (2023), A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36, Curran
Associates, Inc., pp. 48534–48547.

[45] Bock, H. G., and Plitt, K. J. A Multiple Shooting Algorithm for
Direct Solution of Optimal Control Problems. In IFAC (1984), Pergamon
Press, pp. 242–247.

[46] Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge
University Press, USA, 2004.

[47] Braghin, F., Cheli, F., Melzi, S., and Sabbioni, E. Race driver
model. Computers & Structures 86, 13-14 (July 2008), 1503–1516.

BIBLIOGRAPHY 275

[48] Brito, B., Everett, M., How, J. P., and Alonso-Mora, J. Where
to go Next: Learning a Subgoal Recommendation Policy for Navigation in
Dynamic Environments. IEEE Robotics and Automation Letters 6 (2021),
4616–4623.

[49] Brito, B., Floor, B., Ferranti, L., and Alonso-Mora, J. Model
Predictive Contouring Control for Collision Avoidance in Unstructured
Dynamic Environments, 2020.

[50] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym, 2016.

[51] Bronstein, E., Palatucci, M., Notz, D., White, B., Kuefler,
A., Lu, Y., Paul, S., Nikdel, P., Mougin, P., Chen, H., Fu, J.,
Abrams, A., Shah, P., Racah, E., Frenkel, B., Whiteson, S.,
and Anguelov, D. Hierarchical Model-Based Imitation Learning for
Planning in Autonomous Driving. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Oct. 2022), pp. 8652–8659.

[52] Brossette, S., and Wieber, P.-B. Collision avoidance based on
separating planes for feet trajectory generation. In IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids) (2017),
pp. 509–514.

[53] BROYDEN, C. G. The Convergence of a Class of Double-rank
Minimization Algorithms 1. General Considerations. IMA Journal of
Applied Mathematics 6, 1 (Mar. 1970), 76–90.

[54] Brummelen, J. V., O’Brien, M., Gruyer, D., and Najjaran, H.
Autonomous vehicle perception: The technology of today and tomorrow.
Transportation Research Part C: Emerging Technologies 89 (2018), 384–
406.

[55] Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S.,
Panerati, J., and Schoellig, A. P. Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review
of Control, Robotics, and Autonomous Systems 5, 1 (2022), 411–444.

[56] Buckman, N., Pierson, A., Schwarting, W., Karaman, S., and
Rus, D. Sharing is Caring: Socially-Compliant Autonomous Intersection
Negotiation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2019), pp. 6136–6143.

[57] Buckman, N., Schwarting, W., Karaman, S., and Rus, D. Semi-
Cooperative Control for Autonomous Emergency Vehicles. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2021), pp. 7052–7059.

276 BIBLIOGRAPHY

[58] Burger, C., and Lauer, M. Cooperative Multiple Vehicle Trajectory
Planning using MIQP. In 21st International Conference on Intelligent
Transportation Systems (ITSC) (2018), pp. 602–607.

[59] Burger, C., Yan, S., Burgard, W., and Stiller, C. Interaction-
Aware Motion Planning as a Game. In Cooperatively Interacting Vehicles:
Methods and Effects of Automated Cooperation in Traffic, C. Stiller,
M. Althoff, C. Burger, B. Deml, L. Eckstein, and F. Flemisch, Eds.
Springer International Publishing, Cham, 2024, pp. 203–229.

[60] Buyval, A., Gabdulin, A., Mustafin, R., and Shimchik, I. Deriving
overtaking strategy from nonlinear model predictive control for a race
car. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2017), pp. 2623–2628.

[61] Capobianco, S., Millefiori, L. M., Forti, N., Braca, P., and
Willett, P. Deep Learning Methods for Vessel Trajectory Prediction
based on Recurrent Neural Networks. CoRR abs/2101.02486 (2021).

[62] Cauligi, A., Chakrabarty, A., Cairano, S. D., and Quirynen, R.
PRISM: Recurrent Neural Networks and Presolve Methods for Fast Mixed-
integer Optimal Control. In Proceedings of The 4th Annual Learning for
Dynamics and Control Conference (June 2022), R. Firoozi, N. Mehr,
E. Yel, R. Antonova, J. Bohg, M. Schwager, and M. Kochenderfer, Eds.,
vol. 168 of Proceedings of Machine Learning Research, PMLR, pp. 34–46.

[63] Cauligi, A., Culbertson, P., Schmerling, E., Schwager, M.,
Stellato, B., and Pavone, M. CoCo: Online Mixed-Integer Control
Via Supervised Learning. IEEE Robotics and Automation Letters 7, 2
(2022), 1447–1454.

[64] Chan, C. C., and Cheng, M. Vehicle Traction Motorsvehicletraction
motors. In Encyclopedia of Sustainability Science and Technology, R. A.
Meyers, Ed. Springer New York, New York, NY, 2012, pp. 11522–11552.

[65] Chen, S., and Chen, H. MPC-based path tracking with PID speed
control for autonomous vehicles. IOP Conference Series: Materials Science
and Engineering 892, 1 (2020).

[66] Chougule, A., Chamola, V., Sam, A., Yu, F. R., and Sikdar, B.
A Comprehensive Review on Limitations of Autonomous Driving and Its
Impact on Accidents and Collisions. IEEE Open Journal of Vehicular
Technology 5 (2024), 142–161.

[67] Claussmann, L., Revilloud, M., Gruyer, D., and Glaser, S. A
Review of Motion Planning for Highway Autonomous Driving. IEEE
Transactions on Intelligent Transportation Systems 21, 5 (2020), 1826–
1848.

BIBLIOGRAPHY 277

[68] Cleac’h, S. L., Schwager, M., and Manchester, Z. LUCIDGames:
Online Unscented Inverse Dynamic Games for Adaptive Trajectory
Prediction and Planning. CoRR abs/2011.08152 (2020).

[69] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to Algorithms, third edition, third edition ed. The MIT Press,
Cambridge, Mass, July 2009.

[70] Curiel, I. Cooperative Game Theory and Applications: Cooperative
Games Arising from Combinatorial Optimization Problems, softcover
reprint of hardcover 1st ed. 1997 edition ed. Springer US, Boston, Feb.
2010.

[71] Dakin, R. J. A tree-search algorithm for mixed integer programming
problems. The Computer Journal 8, 3 (Jan. 1965), 250–255.

[72] Dantzig, G. B. The Simplex Method. RAND Corporation, Santa Monica,
CA, 1956.

[73] de Klerk, E., and Pasechnik, D. V. Approximation of the Stability
Number of a Graph via Copositive Programming. SIAM Journal on
Optimization 12, 4 (2002), 875–892.

[74] Debrouwere, F., Van Loock, W., Pipeleers, G., Dinh, Q. T.,
Diehl, M., De Schutter, J., and Swevers, J. Time-Optimal Path
Following for Robots With Convex–Concave Constraints Using Sequential
Convex Programming. IEEE Transactions on Robotics 29, 6 (2013),
1485–1495.

[75] Deichmann, J., Ebel, E., Heineke, K., Heuss, R., Kellner, M.,
and Steiner, F. The future of autonomous vehicles (AV) \textbar
McKinsey, Jan. 2023.

[76] Delling, D., Goldberg, A. V., Nowatzyk, A., and Werneck,
R. F. PHAST: Hardware-accelerated shortest path trees. Journal of
Parallel and Distributed Computing 73, 7 (July 2013), 940–952.

[77] Deolasee, S., Lin, Q., Li, J., and Dolan, J. M. Spatio-temporal
Motion Planning for Autonomous Vehicles with Trapezoidal Prism
Corridors and Bézier Curves. In American Control Conference, San
Diego, CA, USA (2023), IEEE, pp. 3207–3214.

[78] Di Cairano, S., and Kolmanovsky, I. V. Real-time optimization
and model predictive control for aerospace and automotive applications.
Amer. Control Conf., pp. 2392–2409.

[79] Diamond, S., and Boyd, S. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research
17, 83 (2016), 1–5.

278 BIBLIOGRAPHY

[80] Diehl, M., Bock, H. G., and Schlöder, J. P. A Real-Time Iteration
Scheme for Nonlinear Optimization in Optimal Feedback Control. SIAM
Journal on Control and Optimization 43, 5 (2005), 1714–1736.

[81] Dijkstra, E. W. A note on two problems in connexion with graphs.
Numerische Mathematik 1, 1 (Dec. 1959), 269–271.

[82] Domahidi, A., Chu, E., and Boyd, S. ECOS: An SOCP solver
for embedded systems. In European Control Conference (ECC) (2013),
pp. 3071–3076.

[83] Domahidi, A., and Jerez, J. FORCES Professional, 2014.

[84] Dugoff, H., Fancher, P. S., and Segel, L. An Analysis of Tire
Traction Properties and Their Influence on Vehicle Dynamic Performance.
SAE Transactions 79 (1970), 1219–1243.

[85] Duijkeren, N. v., Keviczky, T., Nilsson, P., and Laine, L. Real-
Time NMPC for Semi-Automated Highway Driving of Long Heavy Vehicle
Combinations. IFAC-PapersOnLine 48, 23 (Jan. 2015), 39–46.

[86] Eilbrecht, J., and Stursberg, O. Challenges of Trajectory Planning
with Integrator Models on Curved Roads. IFAC-PapersOnLine 53, 2
(2020), 15588–15595.

[87] Eiras, F., Hawasly, M., Albrecht, S. V., and Ramamoorthy, S.
A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving.
IEEE Transactions on Robotics 38, 2 (2022), 822–834.

[88] Erdmann, J. SUMO’s Lane-Changing Model. In Modeling Mobility with
Open Data (Cham, 2015), M. Behrisch and M. Weber, Eds., Springer
International Publishing, pp. 105–123.

[89] Ersal, T., Kolmanovsky, I., Masoud, N., Ozay, N., Scruggs,
J., Vasudevan, R., and Orosz, G. Connected and automated road
vehicles: state of the art and future challenges. Vehicle system dynamics
58, 5 (2020), 672–704.

[90] Espinoza, J. L. V., Liniger, A., Schwarting, W., Rus, D., and
Gool, L. V. Deep Interactive Motion Prediction and Planning: Playing
Games with Motion Prediction Models. In Proceedings of The 4th Annual
Learning for Dynamics and Control Conference (June 2022), R. Firoozi,
N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, and M. Kochenderfer,
Eds., vol. 168 of Proceedings of Machine Learning Research, PMLR,
pp. 1006–1019.

[91] Esterle, K., Kessler, T., and Knoll, A. Optimal Behavior Planning
for Autonomous Driving: A Generic Mixed-Integer Formulation. In IEEE
Intelligent Vehicles Symposium (IV) (2020), pp. 1914–1921.

BIBLIOGRAPHY 279

[92] Evens, B., Schuurmans, M., and Patrinos, P. Learning MPC for
Interaction-Aware Autonomous Driving: A Game-Theoretic Approach. In
European Control Conference (ECC) (2022), IEEE, pp. 34–39.

[93] Evestedt, N., Ward, E., Folkesson, J., and Axehill, D.
Interaction aware trajectory planning for merge scenarios in congested
traffic situations. In 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC) (Nov. 2016), pp. 465–472.
ISSN: 2153-0017.

[94] Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and
Diehl, M. qpOASES: A parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation 6, 4 (2014),
327–363.

[95] Fletcher, R. A new approach to variable metric algorithms. The
Computer Journal 13, 3 (Jan. 1970), 317–322.

[96] Frasch, J. V., Gray, A., Zanon, M., Ferreau, H. J., Sager,
S., Borrelli, F., and Diehl, M. An auto-generated nonlinear MPC
algorithm for real-time obstacle avoidance of ground vehicles. In European
Control Conference (ECC) (Zurich, July 2013), IEEE, pp. 4136–4141.

[97] Frison, G., and Diehl, M. HPIPM: a high-performance quadratic
programming framework for model predictive control. IFAC-PapersOnLine
53, 2 (Jan. 2020), 6563–6569.

[98] Fujimoto, S., van Hoof, H., and Meger, D. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the 35th
International Conference on Machine Learning (July 2018), J. Dy and
A. Krause, Eds., vol. 80 of Proceedings of Machine Learning Research,
PMLR, pp. 1587–1596.

[99] Garey, M. R., and Johnson, D. S. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[100] Goerzen, C., Kong, Z., and Mettler, B. A Survey of Motion
Planning Algorithms from the Perspective of Autonomous UAV Guidance.
Journal of Intelligent and Robotic Systems 57 (Nov. 2010), 65–100.

[101] Goldstein, H. Classical Mechanics. Addison-Wesley, 1980.

[102] Goli, S. A., Far, B. H., and Fapojuwo, A. O. Vehicle Trajectory
Prediction with Gaussian Process Regression in Connected Vehicle
Environment. In IEEE Intelligent Vehicles Symposium (IV) (June 2018),
pp. 550–555.

280 BIBLIOGRAPHY

[103] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems
(2014), vol. 27, Curran Associates, Inc.

[104] Graf, M. Methode zur Erstellung und Absicherung einer modellbasierten
Sollvorgabe für Fahrdynamikregelsysteme. Ph.D. Thesis, Technische
Universität München, Munich, Nov. 2014.

[105] Grandesso, G., Alboni, E., Papini, G. P. R., Wensing,
P. M., and Prete, A. D. CACTO: Continuous Actor-Critic With
Trajectory Optimization—Towards Global Optimality. IEEE Robotics
and Automation Letters 8, 6 (June 2023), 3318–3325.

[106] Grant, M., and Boyd, S. CVX: Matlab Software for Disciplined
Convex Programming, version 2.1, Mar. 2014.

[107] Greatwood, C., and Richards, A. G. Reinforcement learning and
model predictive control for robust embedded quadrotor guidance and
control. Autonomous Robots 43, 7 (Oct. 2019), 1681–1693.

[108] Greiff, M., Di Cairano, S., Kim, K. J., and Berntorp, K. A
System-Level Cooperative Multiagent GNSS Positioning Solution. IEEE
Transactions on Control Systems Technology (2023).

[109] Gronauer, S., and Diepold, K. Multi-agent deep reinforcement
learning: a survey. Artificial Intelligence Review 55, 2 (Feb. 2022), 895–
943.

[110] Gros, S., and Zanon, M. Data-Driven Economic NMPC Using
Reinforcement Learning. IEEE Transactions on Automatic Control 65, 2
(Feb. 2020), 636–648.

[111] Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and Diehl,
M. From Linear to Nonlinear MPC: bridging the gap via the Real-Time
Iteration. International Journal of Control 93, 1 (2020), 62–80.

[112] Guanetti, J., Kim, Y., and Borrelli, F. Control of connected
and automated vehicles: State of the art and future challenges. Annual
Reviews in Control 45 (2018), 18–40.

[113] Guiggiani, M. The Science of Vehicle Dynamics, 3 ed. Springer Cham,
Nov. 2023.

[114] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual,
2023.

[115] Görges, D. Relations between Model Predictive Control and
Reinforcement Learning. IFAC-PapersOnLine 50, 1 (July 2017), 4920–
4928.

BIBLIOGRAPHY 281

[116] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement
learning with deep energy-based policies. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70 (2017),
ICML’17, JMLR.org, pp. 1352–1361.

[117] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning (2018),
PMLR, pp. 1861–1870.

[118] Hansen, L., and Salamon, P. Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12, 10 (1990),
993–1001.

[119] Hasselt, H. Double Q-learning. In Advances in Neural Information
Processing Systems (2010), J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, Eds., vol. 23, Curran Associates, Inc.

[120] Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J.,
Lienkamp, M., and Lohmann, B. Minimum curvature trajectory
planning and control for an autonomous race car. Vehicle System Dynamics
58, 10 (Oct. 2020), 1497–1527.

[121] Hermans, B., Themelis, A., and Patrinos, P. QPALM: A Newton-
type Proximal Augmented Lagrangian Method for Quadratic Programs. In
IEEE 58th Conference on Decision and Control (CDC) (2019), pp. 4325–
4330.

[122] Heß, D., Lattarulo, R., Pérez, J., Schindler, J., Hesse, T.,
and Köster, F. Fast Maneuver Planning for Cooperative Automated
Vehicles. In 21st International Conference on Intelligent Transportation
Systems (ITSC) (2018), pp. 1625–1632.

[123] Hicks, G. A., and Ray, W. H. Approximation methods for optimal
control synthesis. The Canadian Journal of Chemical Engineering 49, 4
(1971), 522–528.

[124] Hoschek, J., and Lasser, D. Fundamentals of Computer-aided
Geometric Design. Jones and Bartlett, 1993.

[125] Huangfu, Q., and Hall, J. A. J. Parallelizing the dual revised
simplex method. Mathematical Programming Computation 10, 1 (Mar.
2018), 119–142.

[126] Huegle, M., Kalweit, G., Mirchevska, B., Werling, M., and
Boedecker, J. Dynamic Input for Deep Reinforcement Learning
in Autonomous Driving. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2019), pp. 7566–7573.

282 BIBLIOGRAPHY

[127] Ip, A., Irio, L., and Oliveira, R. Vehicle Trajectory Prediction based
on LSTM Recurrent Neural Networks. In IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring) (2021), pp. 1–5.

[128] Janeček, F., Klaučo, M., Kalúz, M., and Kvasnica, M.
OPTIPLAN: A Matlab Toolbox for Model Predictive Control with
Obstacle Avoidance. IFAC-PapersOnLine 50, 1 (2017), 531 – 536.

[129] Jaynes, E. T. Information Theory and Statistical Mechanics. Phys. Rev.
106, 4 (May 1957), 620–630. Publisher: American Physical Society.

[130] Jeroslow, R. C. There Cannot be any Algorithm for Integer
Programming with Quadratic Constraints. Operations Research 21, 1
(1973), 221–224.

[131] Jo, E., Sunwoo, M., and Lee, M. Vehicle Trajectory Prediction Using
Hierarchical Graph Neural Network for Considering Interaction among
Multimodal Maneuvers. Sensors 21, 16 (2021).

[132] Johansen, T. A. Introduction to Nonlinear Model Predictive Control
and Moving Horizon Estimation. In Selected Topics on Constrained and
Nonlinear Control, M. Huba, S. Skogestad, M. Fikar, M. Hovd, T. A.
Johansen, and B. Rohal’-Ilkiv, Eds. 2011.

[133] Johnson, J., and Hauser, K. Optimal longitudinal control planning
with moving obstacles. In IEEE Intelligent Vehicles Symposium (IV)
(2013), pp. 605–611.

[134] Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele,
T., Jagzent, D., Schöder, J., Thuy, M., Goebl, M., von
Hundelshausen, F., Pink, O., Frese, C., and Stiller, C. Team
AnnieWAY’s Autonomous System for the DARPA Urban Challenge 2007.
In The DARPA Urban Challenge: Autonomous Vehicles in City Traffic,
M. Buehler, K. Iagnemma, and S. Singh, Eds. Springer, Berlin, Heidelberg,
2009, pp. 359–391.

[135] Kapania, N. R., Subosits, J., and Christian Gerdes, J. A
Sequential Two-Step Algorithm for Fast Generation of Vehicle Racing
Trajectories. Journal of Dynamic Systems, Measurement, and Control
138, 9 (Sept. 2016), 091005.

[136] Kappen, H. J. Linear Theory for Control of Nonlinear Stochastic Systems.
Physical Review Letters 95, 20 (Nov. 2005), 200201.

[137] Karaman, S., and Frazzoli, E. Sampling-Based Algorithms for
Optimal Motion Planning. Int. J. Rob. Res. 30, 7 (June 2011), 846–894.

BIBLIOGRAPHY 283

[138] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi,
M., Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y., and Azumi,
T. Autoware on Board: Enabling Autonomous Vehicles with Embedded
Systems. In ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS) (Porto, Apr. 2018), IEEE, pp. 287–296.

[139] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars,
M. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Automation 12,
4 (1996), 566–580.

[140] Kessler, T., Esterle, K., and Knoll, A. Linear Differential Games
for Cooperative Behavior Planning of Autonomous Vehicles Using Mixed-
Integer Programming. In 59th IEEE Conference on Decision and Control
(CDC) (2020), pp. 4060–4066.

[141] Kessler, T., Esterle, K., and Knoll, A. Mixed-Integer Motion
Planning on German Roads Within the Apollo Driving Stack. IEEE
Transactions on Intelligent Vehicles 8, 1 (2023), 851–867.

[142] Kesting, A., Treiber, M., and Helbing, D. General Lane-Changing
Model MOBIL for Car-Following Models. Transportation Research Record
1999, 1 (Jan. 2007), 86–94. Publisher: SAGE Publications Inc.

[143] Khachiyan, L. G. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics 20, 1 (1980), 53–
72.

[144] Khalil, E. B., Morris, C., and Lodi, A. MIP-GNN: A Data-Driven
Framework for Guiding Combinatorial Solvers. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (2022).

[145] Khorkov, A., and Galiev, S. Optimization of a k-covering of a
bounded set with circles of two given radii. Open Computer Science 11, 1
(2021), 232–240.

[146] Kim, D., Kim, G., Kim, H., and Huh, K. A Hierarchical Motion
Planning Framework for Autonomous Driving in Structured Highway
Environments. IEEE Access 10 (2022), 20102–20117.

[147] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), Y. Bengio and Y. LeCun, Eds.

[148] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.
A. A., Yogamani, S., and Pérez, P. Deep Reinforcement Learning
for Autonomous Driving: A Survey. IEEE Transactions on Intelligent
Transportation Systems 23, 6 (June 2022), 4909–4926.

284 BIBLIOGRAPHY

[149] Klančar, G., Seder, M., Blažič, S., Škrjanc, I., and Petrović,
I. Drivable Path Planning Using Hybrid Search Algorithm Based on E*
and Bernstein–Bézier Motion Primitives. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 51, 8 (2021), 4868–4882.

[150] Klischat, M., Dragoi, O., Eissa, M., and Althoff, M. Coupling
SUMO with a Motion Planning Framework for Automated Vehicles. In
SUMO User Conference (2019), pp. 1–9.

[151] Klöser, D., Schöls, T., Sartor, T., Zanelli, A., Prison, G., and
Diehl, M. NMPC for Racing Using a Singularity-Free Path-Parametric
Model with Obstacle Avoidance. IFAC-PapersOnLine 53, 2 (Jan. 2020),
14324–14329.

[152] Kobilarov, M. Cross-entropy motion planning. The International
Journal of Robotics Research 31, 7 (2012), 855–871.

[153] Kong, J., Pfeiffer, M., Schildbach, G., and Borrelli, F.
Kinematic and dynamic vehicle models for autonomous driving control
design. In IEEE Intelligent Vehicles Symposium (IV) (2015), pp. 1094–
1099.

[154] Kozlov, M. K., Tarasov, S. P., and Khachiyan, L. The polynomial
solvability of convex quadratic programming. {USSR} Computational
Mathematics and Mathematical Physics 20 (1980), 223–228.

[155] Krauss, S. Microscopic Modeling of Traffic Flow: Investigation of
Collision Free Vehicle Dynamics. PhD thesis, University of Cologne, Apr.
1998.

[156] Kronqvist, J., Bernal, D. E., Lundell, A., and Grossmann, I. E.
A review and comparison of solvers for convex MINLP. Optimization and
Engineering 20, 2 (June 2019), 397–455.

[157] Lam, D., Manzie, C., and Good, M. Model Predictive Contouring
Control. In IEEE Conference on Decision and Control (CDC) (2010).

[158] Laurense, V. A., and Gerdes, J. C. Long-Horizon Vehicle Motion
Planning and Control Through Serially Cascaded Model Complexity.
IEEE Transactions on Control Systems Technology 30, 1 (2022), 166–179.

[159] LaValle, S. M. Planning Algorithms. Cambridge University Press, USA,
2006.

[160] Le Cleac’h, S., Schwager, M., and Manchester, Z. ALGAMES:
A Fast Solver for Constrained Dynamic Games. Robotics: Science and
Systems XVI (July 2020).

BIBLIOGRAPHY 285

[161] Le Cleac’h, S., Schwager, M., and Manchester, Z. ALGAMES:
A Fast Augmented Lagrangian Solver for Constrained Dynamic Games.
Auton. Robots 46, 1 (Jan. 2022), 201–215.

[162] Leon, F., and Gavrilescu, M. A Review of Tracking and Trajectory
Prediction Methods for Autonomous Driving. Mathematics 9, 6 (2021).

[163] Levine, S., and Koltun, V. Guided Policy Search. In Proceedings
of the 30th International Conference on Machine Learning (May 2013),
PMLR, pp. 1–9. ISSN: 1938-7228.

[164] Li, J., Xie, X., Lin, Q., He, J., and Dolan, J. M. Motion Planning
by Search in Derivative Space and Convex Optimization with Enlarged
Solution Space. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2022), pp. 13500–13507.

[165] Li, L., Yang, M., Bing Wang, and Wang, C. An overview on
sensor map based localization for automated driving. In 2017 Joint Urban
Remote Sensing Event (JURSE) (Dubai, United Arab Emirates, Mar.
2017), IEEE, pp. 1–4.

[166] Li, N., Goubault, E., Pautet, L., and Putot, S. Autonomous
racecar control in head-to-head competition using Mixed-Integer Quadratic
Programming. In Opportunities and challenges with autonomous racing,
2021 ICRA workshop (Online, United States, May 2021).

[167] Liniger, A., Domahidi, A., and Morari, M. Optimization-based
autonomous racing of 1:43 scale RC cars. Optimal Control Applications
and Methods 36, 5 (2015), 628–647.

[168] Liniger, A., and Lygeros, J. A Noncooperative Game Approach to
Autonomous Racing. IEEE Transactions on Control Systems Technology
28, 3 (2020), 884–897.

[169] Livint, G., Horga, V., Ratoi, M., and Albu, M. Control of Hybrid
Electrical Vehicles. In Electric Vehicles, S. Soylu, Ed. IntechOpen, Rijeka,
2011.

[170] Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J.,
Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner,
P., and Wießner, E. Microscopic Traffic Simulation using SUMO. In
21st IEEE International Conference on Intelligent Transportation Systems
(2018), IEEE.

[171] Lubars, J., Gupta, H., Chinchali, S., Li, L., Raja, A., Srikant, R.,
and Wu, X. Combining Reinforcement Learning with Model Predictive
Control for On-Ramp Merging, 2021.

286 BIBLIOGRAPHY

[172] Mamedov, S., Reiter, R., Azad, S. M. B., Boedecker, J., Diehl,
M., and Swevers, J. Safe Imitation Learning of Nonlinear Model
Predictive Control for Flexible Robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), (accepted for
publication) (2024).

[173] Marcucci, T., Petersen, M., Wrangel, D. v., and Tedrake, R.
Motion planning around obstacles with convex optimization. Science
Robotics 8, 84 (2023).

[174] Maruyama, Y., Kato, S., and Azumi, T. Exploring the performance of
ROS2. In Proceedings of the 13th ACM SIGBED International Conference
on Embedded Software (EMSOFT) (2016), pp. 1–10.

[175] Masti, D., and Bemporad, A. Learning binary warm starts for
multiparametric mixed-integer quadratic programming. In 18th European
Control Conference (ECC) (2019), pp. 1494–1499.

[176] Matthaei, R., and Maurer, M. Autonomous driving – a top-down-
approach. at - Automatisierungstechnik 63, 3 (Mar. 2015), 155–167.

[177] Menner, M., Worsnop, P., and Zeilinger, M. N. Constrained
Inverse Optimal Control With Application to a Human Manipulation
Task. IEEE Transactions on Control Systems Technology 29, 2 (2021),
826–834.

[178] Menner, M., and Zeilinger, M. N. Convex Formulations and
Algebraic Solutions for Linear Quadratic Inverse Optimal Control
Problems. European Control Conference (ECC) (2018), 2107–2112.

[179] Meshginqalam, A., and Bauman, J. Two-Level MPC Speed Profile
Optimization of Autonomous Electric Vehicles Considering Detailed
Internal and External Losses. IEEE Access 8 (2020), 206559–206570.

[180] Meshginqalam, A., and Bauman, J. Integrated Convex Speed
Planning and Energy Management for Autonomous Fuel Cell Hybrid
Electric Vehicles. IEEE Transactions on Transportation Electrification 9,
1 (2023), 1072–1086.

[181] Miller, C., Pek, C., and Althoff, M. Efficient Mixed-
Integer Programming for Longitudinal and Lateral Motion Planning
of Autonomous Vehicles. In IEEE Intelligent Vehicles Symposium (IV)
(2018), pp. 1954–1961.

[182] Mombaur, K., Truong, A., and Laumond, J.-P. From human to
humanoid locomotion-An inverse optimal control approach. Auton. Robots
28 (Apr. 2010), 369–383.

BIBLIOGRAPHY 287

[183] Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov,
D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G.,
Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski,
A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny,
I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D.,
Vogt, A., and Thrun, S. Junior: The Stanford entry in the Urban
Challenge. Journal of Field Robotics 25, 9 (2008), 569–597.

[184] MOSEK ApS. MOSEK Optimization Toolbox for MATLAB Manual.
2024.

[185] Mouhagir, H., Talj, R., Cherfaoui, V., Aioun, F., and
Guillemard, F. Integrating safety distances with trajectory planning
by modifying the occupancy grid for autonomous vehicle navigation. In
IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC) (2016), pp. 1114–1119.

[186] Murty, K. G., and Kabadi, S. N. Some NP-complete problems in
quadratic and nonlinear programming. Mathematical Programming 39, 2
(June 1987), 117–129.

[187] Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. Neural
network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In IEEE international conference on robotics and
automation (ICRA) (2018), IEEE, pp. 7559–7566.

[188] Nair, S. H., Tseng, E. H., and Borrelli, F. Collision Avoidance for
Dynamic Obstacles with Uncertain Predictions using Model Predictive
Control. In IEEE 61st Conference on Decision and Control (CDC) (2022),
pp. 5267–5272.

[189] Nair, V., Bartunov, S., Gimeno, F., Glehn, I. v., Lichocki, P.,
Lobov, I., O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C.,
Wang, P., Addanki, R., Hapuarachchi, T., Keck, T., Keeling, J.,
Kohli, P., Ktena, I., Li, Y., Vinyals, O., and Zwols, Y. Solving
Mixed Integer Programs Using Neural Networks. ArXiv abs/2012.13349
(2020).

[190] Nemhauser, G., and Wolsey, L. Computational Complexity. In
Integer and Combinatorial Optimization. John Wiley & Sons, Ltd, 1988,
pp. 114–145.

[191] Nemhauser, G., and Wolsey, L. The Scope of Integer and
Combinatorial Optimization. In Integer and Combinatorial Optimization.
John Wiley & Sons, Ltd, 1988, pp. 1–26.

[192] Ng, A. Y., Harada, D., and Russell, S. J. Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping.

288 BIBLIOGRAPHY

In Proceedings of the Sixteenth International Conference on Machine
Learning (San Francisco, CA, USA, 1999), ICML ’99, Morgan Kaufmann
Publishers Inc., pp. 278–287.

[193] Nikhil, N., and Morris, B. T. Convolutional Neural Network for
Trajectory Prediction. In Computer Vision – ECCV 2018 Workshops,
vol. 11131. Springer International Publishing, Cham, 2019, pp. 186–196.

[194] Nocedal, J., and Wright, S. J. Numerical Optimization, second ed.
Springer, New York, NY, USA, 2006.

[195] Novi, T., Liniger, A., Capitani, R., and Annicchiarico, C. Real-
time control for at-limit handling driving on a predefined path. Vehicle
System Dynamics 58, 7 (2020), 1007–1036.

[196] O’Kelly, M., Zheng, H., Karthik, D., and Mangharam, R.
F1TENTH: An Open-source Evaluation Environment for Continuous
Control and Reinforcement Learning. Proceedings of Machine Learning
Research 123 (2020).

[197] Ort, T., Paull, L., and Rus, D. Autonomous Vehicle Navigation in
Rural Environments Without Detailed Prior Maps. In IEEE International
Conference on Robotics and Automation (ICRA) (Brisbane, QLD, May
2018), IEEE, pp. 2040–2047.

[198] Pacejka, H. B., and Bakker, E. THE MAGIC FORMULA TYRE
MODEL. Vehicle System Dynamics 21 (1991), 1–18.

[199] Paden, B., Čáp, M., Yong, S. Z., Yershov, D., and Frazzoli, E.
A Survey of Motion Planning and Control Techniques for Self-Driving
Urban Vehicles. IEEE Transactions on Intelligent Vehicles 1, 1 (2016),
33–55.

[200] Pardalos, P. M., and Vavasis, S. A. Quadratic programming with
one negative eigenvalue is NP-hard. Journal of Global Optimization 1, 1
(Mar. 1991), 15–22.

[201] Park, J., Karumanchi, S., and Iagnemma, K. Homotopy-Based
Divide-and-Conquer Strategy for Optimal Trajectory Planning via Mixed-
Integer Programming. IEEE Transactions on Robotics 31, 5 (Oct. 2015),
1101–1115.

[202] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035.

BIBLIOGRAPHY 289

[203] Pfrommer, S., Gautam, T., Zhou, A., and Sojoudi, S. Safe
Reinforcement Learning with Chance-constrained Model Predictive
Control. In Proceedings of The 4th Annual Learning for Dynamics and
Control Conference (May 2022), PMLR, pp. 291–303. ISSN: 2640-3498.

[204] Pham, H. Continuous-time Stochastic Control and Optimization with
Financial Applications, vol. 61 of Stochastic Modelling and Applied
Probability. Springer, Berlin, Heidelberg, 2009.

[205] Piovesan, J. L., and Tanner, H. G. Randomized model predictive
control for robot navigation. In IEEE International Conference on Robotics
and Automation (2009), IEEE, pp. 94–99.

[206] Polack, P., Altché, F., d’Andréa Novel, B., and de La Fortelle,
A. The kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles? In IEEE Intelligent Vehicles
Symposium (IV) (June 2017), pp. 812–818.

[207] Pressley, A. Curves in the plane and in space. In Elementary Differential
Geometry, A. Pressley, Ed. Springer, London, 2010, pp. 1–27.

[208] Puterman, M. L., and Shin, M. C. Modified Policy Iteration
Algorithms for Discounted Markov Decision Problems. Management
Science 24, 11 (1978), 1127–1137. Publisher: INFORMS.

[209] Qian, X., Altché, F., Bender, P., Stiller, C., and
de La Fortelle, A. Optimal trajectory planning for autonomous driving
integrating logical constraints: An MIQP perspective. In IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC)
(2016), pp. 205–210.

[210] Qu, Y., Chu, H., Gao, S., Guan, J., Yan, H., Xiao, L., Li, S. E.,
and Duan, J. RL-Driven MPPI: Accelerating Online Control Laws
Calculation With Offline Policy. IEEE Transactions on Intelligent Vehicles
(2023), 1–12. Conference Name: IEEE Transactions on Intelligent Vehicles.

[211] Quirynen, R. Numerical Simulation Methods for Embedded Optimization.
PhD Thesis, Jan. 2017.

[212] Quirynen, R., and Cairano, S. D. Sequential Quadratic Programming
Algorithm for Real-Time Mixed-Integer Nonlinear MPC. In 60th IEEE
Conference on Decision and Control (CDC) (2021), pp. 993–999.

[213] Quirynen, R., Safaoui, S., and Di Cairano, S. Real-time Mixed-
Integer Quadratic Programming for Vehicle Decision Making and Motion
Planning. ArXiv abs/2308.10069 (2023).

[214] Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A.,
and Dormann, N. Stable baselines3, 2019.

290 BIBLIOGRAPHY

[215] Raji, A., Liniger, A., Giove, A., Toschi, A., Musiu, N.,
Morra, D., Verucchi, M., Caporale, D., and Bertogna, M.
Motion Planning and Control for Multi Vehicle Autonomous Racing
at High Speeds. In IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC) (2022), pp. 2775–2782.

[216] Rasekhipour, Y., Khajepour, A., Chen, S.-K., and Litkouhi,
B. A Potential Field-Based Model Predictive Path-Planning Controller
for Autonomous Road Vehicles. IEEE Transactions on Intelligent
Transportation Systems 18, 5 (2017), 1255–1267.

[217] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M. Model Predictive
Control: Theory, Computation, and Design, 2nd edition ed. Nob Hill,
2017.

[218] Reda, M., Onsy, A., Haikal, A. Y., and Ghanbari, A. Path
planning algorithms in the autonomous driving system: A comprehensive
review. Robotics and Autonomous Systems 174 (2024), 104630.

[219] Reif, J. H. Complexity of the mover’s problem and generalizations. In
20th Annual Symposium on Foundations of Computer Science (1979),
pp. 421–427.

[220] Reimpell, J., and Burckhardt, M. Fahrwerktechnik, Radschlupf-
Regelsysteme, 1. aufl ed. Vogel Communications Group GmbH & Co. KG,
Würzburg, Jan. 1993.

[221] Reiter, R., Baumgärtner, K., Quirynen, R., and Diehl, M.
Progressive Smoothing for Motion Planning in Real-Time NMPC. In
European Control Conference (ECC) (2024), pp. 1816–1823.

[222] Reiter, R., and Diehl, M. Parameterization Approach of the Frenet
Transformation for Model Predictive Control of Autonomous Vehicles. In
European Control Conference (ECC) (2021), pp. 2414–2419.

[223] Reiter, R., Ghezzi, A., Baumgärtner, K., Hoffmann, J.,
McAllister, R. D., and Diehl, M. AC4MPC: Actor-Critic
Reinforcement Learning for Nonlinear Model Predictive Control. CoRR
(June 2024).

[224] Reiter, R., Hoffmann, J., Boedecker, J., and Diehl, M. A
Hierarchical Approach for Strategic Motion Planning in Autonomous
Racing. In European Control Conference (ECC) (June 2023), pp. 1–8.

[225] Reiter, R., Kirchengast, M., Watzenig, D., and Diehl, M. Mixed-
integer optimization-based planning for autonomous racing with obstacles
and rewards. IFAC-PapersOnLine 54, 6 (2021), 99–106.

BIBLIOGRAPHY 291

[226] Reiter, R., Messerer, F., Schratter, M., Watzenig, D., and
Diehl, M. An Inverse Optimal Control Approach for Trajectory
Prediction of Autonomous Race Cars. In European Control Conference
(ECC) (2022), pp. 146–153.

[227] Reiter, R., Nurkanović, A., Bernardini, D., Diehl, M., and
Bemporad, A. A Long-Short-Term Mixed-Integer Formulation for
Highway Lane Change Planning. IEEE Transactions on Intelligent
Vehicles (2024), 1–15.

[228] Reiter, R., Nurkanović, A., Frey, J., and Diehl, M. Frenet-
Cartesian model representations for automotive obstacle avoidance within
nonlinear MPC. European Journal of Control (2023), 100847.

[229] Reiter, R., Quirynen, R., Diehl, M., and Di Cairano, S.
Equivariant Deep Learning of Mixed-Integer Optimal Control Solutions
for Vehicle Decision Making and Motion Planning. IEEE Transactions
on Control Systems Technology (2024), 1–15.

[230] Richards, A., Schouwenaars, T., How, J. P., and Feron, E.
Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-
Integer Linear Programming. Journal of Guidance, Control, and Dynamics
25, 4 (July 2002), 755–764.

[231] Rizano, T., Fontanelli, D., Palopoli, L., Pallottino, L., and
Salaris, P. Global path planning for competitive robotic cars. In 52nd
IEEE Conference on Decision and Control (2013), pp. 4510–4516.

[232] Robinson, S. M. Local structure of feasible sets in nonlinear
programming, Part III: Stability and sensitivity. In Nonlinear Analysis
and Optimization, B. Cornet, V. H. Nguyen, and J. P. Vial, Eds. Springer,
Berlin, Heidelberg, 1987, pp. 45–66.

[233] Roborace. Roborace Season Beta, 2020.

[234] Roffel, B., and Betlem, B. H. Internal Model Control. In Advanced
Practical Process Control, B. Roffel and B. H. Betlem, Eds. Springer,
Berlin, Heidelberg, 2004, pp. 161–169.

[235] Romero, A., Song, Y., and Scaramuzza, D. Actor-Critic Model
Predictive Control. In 2024 IEEE International Conference on Robotics
and Automation (ICRA) (Yokohama, Japan, May 2024), IEEE, pp. 14777–
14784.

[236] Romero, A., Sun, S., Foehn, P., and Scaramuzza, D. Model
Predictive Contouring Control for Time-Optimal Quadrotor Flight. IEEE
Transactions on Robotics 38, 6 (Dec. 2022), 3340–3356.

292 BIBLIOGRAPHY

[237] Rong, J., Arrigoni, S., Luan, N., and Braghin, F. Attention-based
Sampling Distribution for Motion Planning in Autonomous Driving. In
39th Chinese Control Conference (CCC) (2020), pp. 5671–5676.

[238] Rosolia, U., De Bruyne, S., and Alleyne, A. G. Autonomous
Vehicle Control: A Nonconvex Approach for Obstacle Avoidance. IEEE
Transactions on Control Systems Technology 25, 2 (2017), 469–484.

[239] Ross, S., and Bagnell, D. Efficient Reductions for Imitation Learning.
In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (Chia Laguna Resort, Sardinia, Italy, May
2010), Y. W. Teh and M. Titterington, Eds., vol. 9 of Proceedings of
Machine Learning Research, PMLR, pp. 661–668.

[240] Ross, S., Gordon, G., and Bagnell, D. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning. In
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (June 2011), JMLR Workshop and Conference
Proceedings, pp. 627–635.

[241] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach
(4th Edition). Pearson, 2020.

[242] Russo, L., Nair, S. H., Glielmo, L., and Borrelli, F. Learning
for Online Mixed-Integer Model Predictive Control With Parametric
Optimality Certificates. IEEE Control Systems Letters 7 (2023), 2215–
2220.

[243] Rüde, U. Mathematical and Computational Techniques for Multilevel
Adaptive Methods. Society for Industrial and Applied Mathematics, 1993.

[244] Sager, S. Numerical methods for mixed–integer optimal control problems.
PhD Thesis, Universitaet Heidelberg, Interdisciplinary Center for Scientific
Computing, Jan. 2006.

[245] Sathya, A., Sopasakis, P., Van Parys, R., Themelis, A.,
Pipeleers, G., and Patrinos, P. Embedded nonlinear model predictive
control for obstacle avoidance using PANOC. In European Control
Conference (ECC) (2018), pp. 1523–1528.

[246] Schouwenaars, T., De Moor, B., Feron, E., and How, J. Mixed
integer programming for multi-vehicle path planning. In European Control
Conference (ECC) (Sept. 2001), pp. 2603–2608.

[247] Schratter, M., Kirchengast, M., Ronecker, M., Riepl, S.,
Renzler, T., and Watzenig, D. From Simulation to the Race Track:
Development, Testing, and Deployment of Autonomous Racing Software.
In IEEE International Automated Vehicle Validation Conference (IAVVC)
(Austin, TX, USA, Oct. 2023), IEEE, pp. 1–8.

BIBLIOGRAPHY 293

[248] Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow,
H., Pan, J., Patil, S., Goldberg, K., and Abbeel, P. Motion
planning with sequential convex optimization and convex collision checking.
International Journal of Robotics Research 33, 9 (Aug. 2014), 1251–1270.

[249] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P.
Trust Region Policy Optimization. In Proceedings of the 32nd International
Conference on Machine Learning (Lille, France, July 2015), F. Bach and
D. Blei, Eds., vol. 37 of Proceedings of Machine Learning Research, PMLR,
pp. 1889–1897.

[250] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms. CoRR
abs/1707.06347 (2017).

[251] Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S.,
and Rus, D. Social behavior for autonomous vehicles. Proceedings of the
National Academy of Sciences 116, 50 (Dec. 2019), 24972–24978.

[252] Schwarting, W., Seyde, T., Gilitschenski, I., Liebenwein, L.,
Sander, R., Karaman, S., and Rus, D. Deep Latent Competition:
Learning to Race Using Visual Control Policies in Latent Space, 2021.

[253] Schöller, C., Aravantinos, V., Lay, F., and Knoll, A. What
the Constant Velocity Model Can Teach Us About Pedestrian Motion
Prediction. IEEE Robotics and Automation Letters 5, 2 (Apr. 2020),
1696–1703. Conference Name: IEEE Robotics and Automation Letters.

[254] Schöller, C., Aravantinos, V., Lay, F., and Knoll, A. C. The
Simpler the Better: Constant Velocity for Pedestrian Motion Prediction.
CoRR abs/1903.07933 (2019).

[255] Schürmann, B., Heß, D., Eilbrecht, J., Stursberg, O., Köster,
F., and Althoff, M. Ensuring drivability of planned motions using
formal methods. In IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC) (2017), pp. 1–8.

[256] Sharma, O., Sahoo, N. C., and Puhan, N. B. Recent advances
in motion and behavior planning techniques for software architecture of
autonomous vehicles: A state-of-the-art survey. Engineering Applications
of Artificial Intelligence 101 (May 2021), 104211.

[257] Sheckells, M., Caldwell, T. M., and Kobilarov, M. Fast
approximate path coordinate motion primitives for autonomous driving.
In IEEE 56th Annual Conference on Decision and Control (CDC) (2017),
pp. 837–842.

294 BIBLIOGRAPHY

[258] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. Deterministic policy gradient algorithms. In
International conference on machine learning (2014), PMLR, pp. 387–
395.

[259] Singh, A. K., and Bhadauria, B. S. Finite difference formulae
for unequal sub-intervals using Lagrange’s interpolation formula.
International Journal of Mathematical Analysis 3, 17-20 (2009), 815–827.

[260] Sinha, A., Malo, P., and Deb, K. A Review on Bilevel Optimization:
From Classical to Evolutionary Approaches and Applications. IEEE
Transactions on Evolutionary Computation 22, 2 (2018), 276–295.

[261] Sipser, M. Introduction to the theory of computation, third edition,
international edition ed. Cengage Learning, 2013.

[262] Sollich, P., and Krogh, A. Learning with ensembles: How overfitting
can be useful. In Advances in Neural Information Processing Systems
(1995), D. Touretzky, M. C. Mozer, and M. Hasselmo, Eds., vol. 8, MIT
Press.

[263] Soloperto, R., Köhler, J., Allgöwer, F., and Müller, M. A.
Collision avoidance for uncertain nonlinear systems with moving obstacles
using robust Model Predictive Control. In 18th European Control
Conference (ECC) (Naples, Italy, June 2019), IEEE, pp. 811–817.

[264] Song, J., Meng, C., and Ermon, S. Denoising Diffusion Implicit
Models. In International Conference on Learning Representations (2021).

[265] Song, Y., and Scaramuzza, D. Learning High-Level Policies for Model
Predictive Control. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2020), 7629–7636.

[266] Spica, R., Cristofalo, E., Wang, Z., Montijano, E., and
Schwager, M. A Real-Time Game Theoretic Planner for Autonomous
Two-Player Drone Racing. IEEE Transactions on Robotics 36, 5 (2020),
1389–1403.

[267] Srinivasan, M., Chakrabarty, A., Quirynen, R., Yoshikawa, N.,
Mariyama, T., and Di Cairano, S. Fast Multi-Robot Motion Planning
via Imitation Learning of Mixed-Integer Programs. IFAC-PapersOnLine
54, 20 (2021), 598–604.

[268] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. OSQP: an operator splitting solver for quadratic programs.
Mathematical Programming Computation 12, 4 (2020), 637–672.

BIBLIOGRAPHY 295

[269] Stellato, B., Naik, V. V., Bemporad, A., Goulart, P., and
Boyd, S. Embedded Mixed-Integer Quadratic optimization Using the
OSQP Solver. In European Control Conference (ECC) (Limassol, June
2018), IEEE, pp. 1536–1541.

[270] Sterman, J. Business Dynamics: Systems Thinking and Modeling for a
Complex World, ed edition ed. McGraw Hill Higher Education, Boston
Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St.
Louis Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan
New Delhi Seoul Singapore Sydney Taipei Toronto, Dec. 2000.

[271] Subash, A. J., Klöser, D., Frey, J., Reiter, R., Diehl, M.,
and Bohlmann, K. Model Predictive Control for Frenet-Cartesian
Trajectory Tracking of a Tricycle Kinematic Automated Guided Vehicle.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), (accepted for publication) (Abu Dhabi, 2024).

[272] Subosits, J., and Gerdes, J. C. Autonomous vehicle control for
emergency maneuvers: The effect of topography. In 2015 American
Control Conference (ACC) (Chicago, IL, USA, July 2015), IEEE, pp. 1405–
1410.

[273] Sutton, R. S. Temporal credit assignment in reinforcement learning.
PhD Thesis, University of Massachusetts Amherst, 1984.

[274] Sutton, R. S., and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

[275] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy Gradient Methods for Reinforcement Learning with Function
Approximation. In Advances in Neural Information Processing Systems
(1999), vol. 12, MIT Press.

[276] Szalay, Z., Tettamanti, T., Esztergár-Kiss, D., Varga, I., and
Bartolini, C. Development of a Test Track for Driverless Cars: Vehicle
Design, Track Configuration, and Liability Considerations. Periodica
Polytechnica Transportation Engineering 46, 1 (2018), 29–35.

[277] Szepesvari, C., Brachman, R., and Dietterich, T. Algorithms for
Reinforcement Learning. Morgan and Claypool Publishers, San Rafael,
Calif., June 2010.

[278] Tampuu, A., Matiisen, T., Semikin, M., Fishman, D., and
Muhammad, N. A Survey of End-to-End Driving: Architectures and
Training Methods. IEEE Transactions on Neural Networks and Learning
Systems 33, 4 (Apr. 2022), 1364–1384.

296 BIBLIOGRAPHY

[279] Tao, R., Cheng, S., Wang, X., Wang, S., and Hovakimyan, N.
DiffTune-MPC: Closed-Loop Learning for Model Predictive Control. IEEE
Robotics and Automation Letters (2024). Publisher: IEEE.

[280] Tearle, B., Wabersich, K. P., Carron, A., and Zeilinger, M. N.
A Predictive Safety Filter for Learning-Based Racing Control. IEEE
Robotics and Automation Letters 6, 4 (Oct. 2021), 7635–7642.

[281] Theodorou, E. A. Nonlinear Stochastic Control and Information
Theoretic Dualities: Connections, Interdependencies and Thermodynamic
Interpretations. Entropy 17, 5 (May 2015), 3352–3375.

[282] Theodorou, E. A., and Todorov, E. Relative entropy and free energy
dualities: Connections to Path Integral and KL control. In IEEE 51st
IEEE Conference on Decision and Control (CDC) (Dec. 2012), pp. 1466–
1473.

[283] Torrisi, F., and Bemporad, A. HYSDEL-a tool for generating
computational hybrid models for analysis and synthesis problems. IEEE
Transactions on Control Systems Technology 12, 2 (2004), 235–249.

[284] Tran Dinh, Q., Gumussoy, S., Michiels, W., and Diehl,
M. Combining Convex–Concave Decompositions and Linearization
Approaches for Solving BMIs, With Application to Static Output
Feedback. IEEE Transactions on Automatic Control 57, 6 (2012), 1377–
1390.

[285] Trautman, P., and Krause, A. Unfreezing the robot: Navigation
in dense, interacting crowds. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (2010), pp. 797–803.

[286] Treiber, M., Hennecke, A., and Helbing, D. Congested traffic
states in empirical observations and microscopic simulations. Physical
Review E 62, 2 (Aug. 2000), 1805–1824. Publisher: American Physical
Society.

[287] Van Duijkeren, N., Verschueren, R., Pipeleers, G., Diehl, M.,
and Swevers, J. Path-following NMPC for serial-link robot manipulators
using a path-parametric system reformulation. In European Control
Conference (ECC) (Aalborg, Denmark, June 2016), IEEE, pp. 477–482.

[288] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all
you need. In Advances in neural information processing systems (2017),
pp. 5998–6008.

[289] Velenis, E., and Tsiotras, P. Optimal velocity profile generation
for given acceleration limits: theoretical analysis. In Proceedings of the
American Control Conference (2005), pp. 1478–1483 vol. 2.

BIBLIOGRAPHY 297

[290] Verschueren, R. Convex approximation methods for nonlinear model
predictive control. PhD Thesis, University of Freiburg, 2018.

[291] Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., Duijkeren,
N. v., Zanelli, A., Novoselnik, B., Albin, T., Quirynen, R., and
Diehl, M. acados – a modular open-source framework for fast embedded
optimal control. Mathematical Programming Computation (Oct. 2021).

[292] Verschueren, R., Zanon, M., Quirynen, R., and Diehl, M. Time-
optimal race car driving using an online exact hessian based nonlinear
MPC algorithm. European Control Conference (2017), 141–147.

[293] Vázquez, J. L., Brühlmeier, M., Liniger, A., Rupenyan, A.,
and Lygeros, J. Optimization-Based Hierarchical Motion Planning
for Autonomous Racing. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (Oct. 2020), pp. 2397–2403.

[294] Wabersich, K. P., and Zeilinger, M. N. A predictive safety filter
for learning-based control of constrained nonlinear dynamical systems.
Automatica 129 (2021), 109597.

[295] Wang, J., Chi, W., Li, C., Wang, C., and Meng, M. Q.-H. Neural
RRT*: Learning-Based Optimal Path Planning. IEEE Transactions on
Automation Science and Engineering 17, 4 (2020), 1748–1758.

[296] Wang, J., Li, B., and Meng, M. Q.-H. Kinematic Constrained Bi-
directional RRT with Efficient Branch Pruning for robot path planning.
Expert Systems with Applications 170 (2021), 114541.

[297] Wang, J., Yan, Y., Zhang, K., Chen, Y., Mingcong, C., and Yin,
G. Path Planning on Large Curvature Roads Using Driver-Vehicle-Road
System Based on the Kinematic Vehicle Model. IEEE Transactions on
Vehicular Technology PP (Nov. 2021), 1–1.

[298] Wang, M., Mehr, N., Gaidon, A., and Schwager, M. Game-
Theoretic Planning for Risk-Aware Interactive Agents. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2020),
pp. 6998–7005.

[299] Wang, M., Wang, Z., Talbot, J., Gerdes, J. C., and Schwager,
M. Game-Theoretic Planning for Self-Driving Cars in Multivehicle
Competitive Scenarios. IEEE Transactions on Robotics 37, 4 (2021),
1313–1325.

[300] Wang, P., Liu, D., Chen, J., Li, H., and Chan, C.-Y. Decision
Making for Autonomous Driving via Augmented Adversarial Inverse
Reinforcement Learning. In IEEE International Conference on Robotics
and Automation (ICRA) (2021), pp. 1036–1042.

298 BIBLIOGRAPHY

[301] Wang, Q., Weiskircher, T., and Ayalew, B. Hierarchical Hybrid
Predictive Control of an Autonomous Road Vehicle. In ASME 2015
Dynamic Systems and Control Conference (Oct. 2015).

[302] Werling, M., Ziegler, J., Kammel, S., and Thrun, S. Optimal
Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame.
In IEEE International Conference on Robotics and Automation (June
2010), pp. 987 – 993.

[303] Williams, G., Aldrich, A., and Theodorou, E. A. Model Predictive
Path Integral Control: From Theory to Parallel Computation. Journal of
Guidance, Control, and Dynamics 40, 2 (2017), 344–357.

[304] Williams, H. P. Model Building in Mathematical Programming. Wiley,
Hoboken, N.J., 2013.

[305] Williams, R. J. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3 (May 1992),
229–256.

[306] Wurman, P., Barrett, S., Kawamoto, K., MacGlashan, J.,
Subramanian, K., Walsh, T., Capobianco, R., Devlic, A.,
Eckert, F., Fuchs, F., Gilpin, L., Khandelwal, P., Kompella,
V., Lin, H., MacAlpine, P., Oller, D., Seno, T., Sherstan, C.,
Thomure, M., and Kitano, H. Outracing champion Gran Turismo
drivers with deep reinforcement learning. Nature 602 (Feb. 2022), 223–228.

[307] Wächter, A., and Biegler, L. T. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming, vol. 106. 2006.

[308] Würsching, G., and Althoff, M. Robust and Efficient Curvilinear
Coordinate Transformation with Guaranteed Map Coverage for Motion
Planning. In 2024 IEEE Intelligent Vehicles Symposium (IV) (2024).

[309] Xi, C., Shi, T., Wu, Y., and Sun, L. Efficient Motion Planning for
Automated Lane Change based on Imitation Learning and Mixed-Integer
Optimization. In IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC) (2020), pp. 1–6.

[310] Xing, X., Zhao, B., Han, C., Ren, D., and Xia, H. Vehicle
Motion Planning With Joint Cartesian-Frenet MPC. IEEE Robotics
and Automation Letters 7, 4 (2022), 10738–10745.

[311] Ye, B.-L., Niu, S., Li, L., and Wu, W. A Comparison Study of
Kinematic and Dynamic Models for Trajectory Tracking of Autonomous
Vehicles Using Model Predictive Control. International Journal of Control,
Automation and Systems 21, 9 (Sept. 2023), 3006–3021.

BIBLIOGRAPHY 299

[312] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep Sets. In Advances in
Neural Information Processing Systems (2017), vol. 30, Curran Associates,
Inc.

[313] Zarrouki, B., Klös, V., Heppner, N., Schwan, S., Ritschel, R.,
and Voßwinkel, R. Weights-varying MPC for Autonomous Vehicle
Guidance: a Deep Reinforcement Learning Approach. In European Control
Conference (ECC) (2021), pp. 119–125.

[314] Zhang, J., Liu, H., Chang, Q., Wang, L., and Gao, R. X.
Recurrent neural network for motion trajectory prediction in human-
robot collaborative assembly. CIRP Annals 69, 1 (2020), 9–12.

[315] Zhang, K., Yang, Z., and Başar, T. Multi-Agent Reinforcement
Learning: A Selective Overview of Theories and Algorithms. In Handbook
of Reinforcement Learning and Control, K. G. Vamvoudakis, Y. Wan,
F. L. Lewis, and D. Cansever, Eds. Springer International Publishing,
Cham, 2021, pp. 321–384.

[316] Zhang, Q., Langari, R., Tseng, H. E., Filev, D., Szwabowski,
S., and Coskun, S. A Game Theoretic Model Predictive Controller
With Aggressiveness Estimation for Mandatory Lane Change. IEEE
Transactions on Intelligent Vehicles 5, 1 (Mar. 2020), 75–89.

[317] Zhang, T., Sun, Y., Wang, Y., Li, B., Tian, Y., and Wang, F.-Y.
A Survey of Vehicle Dynamics Modeling Methods for Autonomous Racing:
Theoretical Models, Physical/Virtual Platforms, and Perspectives. IEEE
Transactions on Intelligent Vehicles 9, 3 (Mar. 2024), 4312–4334.

[318] Zhang, W., Drugge, L., Nybacka, M., Jerrelind, J., Wang,
Z., and Zhu, J. Exploring Model Complexity for Trajectory Planning
of Autonomous Vehicles in Critical Driving Scenarios. In Advances in
Dynamics of Vehicles on Roads and Tracks II (Cham, 2022), A. Orlova
and D. Cole, Eds., Springer International Publishing, pp. 1154–1165.

[319] Zhang, W., Wang, Z., Drugge, L., and Nybacka, M. Evaluating
Model Predictive Path Following and Yaw Stability Controllers for Over-
Actuated Autonomous Electric Vehicles. IEEE Transactions on Vehicular
Technology 69, 11 (2020), 12807–12821.

[320] Zhang, X., Liniger, A., and Borrelli, F. Optimization-Based
Collision Avoidance. IEEE Transactions on Control Systems Technology
29, 3 (May 2021), 972–983.

[321] Zhang, Y., Sun, H., Zhou, J., Pan, J., Hu, J., and Miao, J. Optimal
Vehicle Path Planning Using Quadratic Optimization for Baidu Apollo
Open Platform. In IEEE Intelligent Vehicles Symposium (IV) (Oct. 2020),
IEEE.

300 BIBLIOGRAPHY

[322] Zhong, S., Liu, A., Jiang, Y., Hu, S., Xiao, F., Huang, H.-J.,
and Song, Y. Energy and environmental impacts of shared autonomous
vehicles under different pricing strategies. npj Urban Sustainability 3, 1
(Feb. 2023), 1–10.

[323] Zhou, B., Schwarting, W., Rus, D., and Alonso-Mora, J.
Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory
Planning for Automated Urban Driving. In IEEE international conference
on robotics and automation (ICRA) (May 2018), pp. 2388–2394.

[324] Zhou, H., Ren, D., Xia, H., Fan, M., Yang, X., and Huang, H.
AST-GNN: An attention-based spatio-temporal graph neural network for
Interaction-aware pedestrian trajectory prediction. Neurocomputing 445
(2021), 298–308.

[325] Zhou, J. Interaction and Uncertainty-Aware Motion Planning for
Autonomous Vehicles Using Model Predictive Control. PhD Thesis,
Linköping University Electronic Press, 2023.

[326] Zhu, E. L., Busch, F. L., Johnson, J., and Borrelli, F. A Gaussian
Process Model for Opponent Prediction in Autonomous Racing. In 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (Oct. 2023), pp. 8186–8191.

[327] Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K.
Maximum Entropy Inverse Reinforcement Learning. In Proc. AAAI
(2008), pp. 1433–1438.

[328] Ziegler, J., Bender, P., Dang, T., and Stiller, C. Trajectory
planning for Bertha - A local, continuous method. In IEEE Intelligent
Vehicles Symposium, Proceedings (June 2014), pp. 450–457.

[329] Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss,
T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., Keller,
C. G., Kaus, E., Herrtwich, R. G., Rabe, C., Pfeiffer, D.,
Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knöppel, C.,
Hipp, J., Haueis, M., Trepte, M., Brenk, C., Tamke, A., Ghanaat,
M., Braun, M., Joos, A., Fritz, H., Mock, H., Hein, M., and
Zeeb, E. Making Bertha Drive—An Autonomous Journey on a Historic
Route. IEEE Intelligent Transportation Systems Magazine 6, 2 (2014),
8–20.

[330] Zilberstein, S. Using Anytime Algorithms in Intelligent Systems. AI
Magazine 17, 3 (1996), 73–83.

Curriculum Vitae

Rudolf Reiter was born on July 8, 1989 in Hallein, Austria.

Education:

Ph.D. Candidate,
University of Freiburg, Department of
Microsystems Engineering,
Prof. Dr. Moritz Diehl

Freiburg,
Germany

2020 - 2024

Research Visit,
ETH Zürich, Department of Mechanical
and Process Engineering,
Prof. Dr. Melanie Zeilinger

Zürich,
Switzerland

(Jan.-May) 2024

Research Visit,
IMT Lucca,
Prof. Dr. Alberto Bemporad

Lucca,
Italy

May 2022
Sep. 2023

Master of Science,
Graz University of Technology, Electri-
cal Engineering: Control Systems and
Mechatronics

Graz,
Austria

2009 - 2016

Community Service,
Paramedic at Red Cross

Salzburg,
Austria

2008 - 2009

Secondary Technical College,
HTL Salzburg, Department of Electron-
ics and Computer Science

Salzburg,
Austria

2004 - 2008

301

302 CURRICULUM VITAE

Industrial Experience:

Software Developer,
Autonomous Racing Graz

Remote, Graz,
Austria

2019 - 2024

Robotics Intern,
Mitsubishi Electric Research Laborato-
ries

Boston, MA,
USA

(Jan.-May) 2023

Research Visit,
ODYS S.r.l.

Milano,
Italy

(Apr.-May) 2022

Researcher,
Virtual Vehicle Research Center

Graz,
Austria

2018 - 2021

Control Systems Specialist,
Anton Paar GmbH

Graz,
Austria

2016 - 2018

Master Thesis Intern,
Virtual Vehicle Research Center

Graz,
Austria

2015 - 2016

Control Systems Intern,
B&R Industrial Automation GmbH

Salzburg,
Austria

(Sep.-Dec.) 2012

Software Development Intern,
B&R Industrial Automation GmbH

Salzburg,
Austria

(Jul.-Aug.) 2010

Software Development Intern,
Step Four GmbH

Salzburg,
Austria

(Apr.-Jul.) 2009

List of Publications

Journal Publications

1. Reiter R., Nurkanović A., Frey J., Diehl M. (2023). Frenet-Cartesian
Model Representations for Automotive Obstacle Avoidance within
Nonlinear MPC. European Journal of Control, p. 100847, ISSN: 0947-3580.

2. Reiter R., Nurkanović A., Bernardini D., Diehl M., Bemporad A. (2024).
A Long-Short-Term Mixed-Integer Formulation for Highway Lane Change
Planning. IEEE Transactions on Intelligent Vehicles, pp. 1-15, ISSN:
2379-8858.

3. Reiter R., Quirynen R., Diehl M., Di Cairano S. (2024). Equivariant Deep
Learning of Mixed-Integer Optimal Control Solutions for Vehicle Decision
Making and Motion Planning. IEEE Transactions on Control Systems
Technology, ISSN: 1558-0865.

Conference Publications (as the Main Author)

1. Reiter R., Diehl M. (2021). Parameterization Approach of the Frenet
Transformation for Model Predictive Control of Autonomous Vehicles. In
2021 European Control Conference (ECC) (pp. 2414-2419).

2. Reiter R., Kirchengast M., Watzenig D., Diehl M. (2021). Mixed-integer
optimization-based planning for autonomous racing with obstacles and
rewards. IFAC-PapersOnLine 54, 6, (pp. 99-106).

3. Reiter R., Messerer F., Schratter M., Watzenig D., Diehl M. (2022).
An Inverse Optimal Control Approach for Trajectory Prediction of
Autonomous Race Cars. In 2022 European Control Conference (ECC)
(pp. 146-153).

4. Reiter R., Hoffmann J., Boedecker J., Diehl M. (2023). A Hierarchical
Approach for Strategic Motion Planning in Autonomous Racing. In 2023
European Control Conference (ECC) (pp. 1-8).

303

304 LIST OF PUBLICATIONS

5. Reiter R., Baumgärtner K., Quirynen R., Diehl M. (2024). Progressive
Smoothing for Motion Planning in Real-Time NMPC. In 2024 European
Control Conference (ECC).

Conference Publications (as Coauthor)

6. Baumgärtner K., Reiter R., Diehl, M. (2022). Moving Horizon Estimation
with Adaptive Regularization for Ill-Posed State and Parameter Estimation
Problems. IEEE 61st Conference on Decision and Control (CDC), 2165-
2171.

7. Mamedov S., Reiter R., Azad S. M. B., Viljoen R., Boedecker J., Diehl M.,
Swevers J. (2024). Safe Imitation Learning of Nonlinear Model Predictive
Control for Flexible Robots. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

8. Subash J. A., Kloeser D., Frey J., Reiter R., Bohlmann K., Diehl M. (2024).
Model Predictive Control for Frenet-Cartesian Trajectory Tracking of a
Tricycle Kinematic Automated Guided Vehicle. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Workshop Papers

1. Reiter R., Hoffmann J., Boedecker J., Diehl M. (2024). Hierarchical
Reinforcement Learning and Model Predictive Control for Strategic Motion
Planning in Autonomous Racing. 2024 International Conference on
Machine Learning (ICML), Workshop on Foundations of Reinforcement
Learning and Control.

FACULTY OF ENGINEERING
DEPARTMENT OF MICROSYSTEMS ENGINEERING

SYSTEMS CONTROL AND OPTIMIZATION LABORATORY
Georges-Köhler-Allee 102

DE-79110 Freiburg i. Br.

	Abstract
	Kurze Zusammenfassung
	Abbreviations
	Notation and Symbols
	Contents
	Introduction
	Motion Planning and Control in Autonomous Driving
	Contributions and Outline

	Optimal Control
	Mathematical Background
	Optimization Problem Classes
	Continuous Optimization
	Mixed-Integer Programming

	Optimal Control Problem
	Optimal Control Algorithms
	Environment Models
	Implicit and Explicit Policies
	Derivative-Based Online Optimization
	Sampling-Based Online Optimization
	Imitation Learning
	Reinforcement Learning and Dynamic Programming

	Vehicle Models for Motion Planning
	Double-Track Model
	Dynamic Single-Track Model
	Kinematic Single-Track Model
	Point-Mass Model
	Tires and Longitudinal Dynamics
	Tire Models
	Longitudinal Forces

	Comparison of Models
	Coordinate Frames for Motion Planning
	Projection of Configuration States
	Contouring Control Formulation
	Projected Formulation

	Collision Avoidance
	Obstacle Shapes and Deterministic Formulation
	Stochastic Collision Avoidance
	Game-Theoretic Collision Avoidance

	Software and Hardware Environments
	Autonomous Racing Graz Stack
	CommonRoad Interactive Simulation Environment
	Custom Python-Based Environment Vehiclegym

	Model Formulations for Optimization-Based Motion Planning
	Parameterization Approach of the Frenet Transformation for MPC
	Introduction
	System Model
	Newton-Type Optimization
	Singularity and Smoothness Problem
	Optimal Curvilinear Parameterization
	Simulation Results
	Conclusions

	Frenet-Cartesian Model Representations for NMPC
	Introduction
	Vehicle Models
	Obstacle Avoidance Formulations
	NMPC Formulation
	Numerical Experiments
	Conclusions

	Critical Discussion

	Mixed-Integer Optimization for Collision Avoidance
	Mixed-Integer Optimization-Based Planning
	Introduction
	Vehicle and Object Models
	Combinatorial Optimization
	Trajectory Optimization
	Real-World and Simulation Results
	Conclusion

	A Long-Short-Term Mixed-Integer Formulation
	Introduction
	Preliminaries and Notation
	General Lane Changing Problem
	Short-Horizon Approximations
	Long-Horizon Approximations
	Long-Short-Horizon Motion Planner
	Evaluation
	Conclusion and Discussion

	Learning of Mixed-Integer Optimal Control Solutions
	Introduction
	Problem Setup and Formulation
	Expert Motion Planner
	Scalable Equivariant Deep Neural Network
	Soft QP Solution and Selection Method
	Feasibility Projection and SQP Algorithm
	Implementation Details
	In-Distribution Evaluations
	Closed-loop Validations with SUMO Simulator
	Conclusions and Discussion
	Appendix

	Critical Discussion

	Collision Avoidance for Autonomous Racing
	Inverse Optimal Control for Trajectory Prediction
	Introduction
	Prediction Architecture
	Prediction Algorithm
	Results
	Conclusions

	Hierarchical Approach for Strategic Motion Planning
	Introduction
	Background and Motivation
	General Method
	Parameterized Model Predictive Planner
	Hierarchical Learning-based Predictive Planner
	Simulated Experiments
	Conclusions

	Critical Discussion

	Conclusion
	Bibliography
	Curriculum Vitae
	List of Publications

