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Abstract—Nonlinear model predictive control (MPC) and rein-
forcement learning (RL) are two powerful control strategies with
complementary advantages. This work shows how actor-critic RL
techniques can be leveraged to improve the performance of MPC.
The RL critic is used as an approximation of the optimal value
function, and an actor rollout provides an initial guess for the
primal variables of the MPC. A parallel control architecture is
proposed where each MPC instance is solved twice for different
initial guesses. Besides the actor rollout initialization, a shifted
initialization from the previous solution is used. The control
actions from the lowest-cost trajectory are applied to the system
at each time step. We provide some theoretical justification of the
proposed algorithm by establishing that the discounted closed-
loop cost is upper-bounded by the discounted closed-loop cost
of the original RL actor plus an error term that depends on
the (sub)optimality of the RL actor and the accuracy of the
critic. These results do not require globally optimal solutions
and indicate that larger horizons mitigate the effect of errors
in the critic approximation. The proposed algorithm is intended
for applications where standard methods to construct terminal
costs or constraints for MPC are impractical. The approach is
demonstrated in an illustrative toy example and an autonomous
driving overtaking scenario.

Index Terms—Dynamic programming (DP), model predictive
control (MPC), reinforcement learning (RL).

I. INTRODUCTION

BOTH nonlinear model predictive control (MPC) and
reinforcement learning (RL) are techniques to obtain

optimal policies for optimal control problems (OCPs) [1], [2].
MPC minimizes the cost of a simulated environmental model
online [1]. The optimization framework offers an intuitive
and effective approach for designing nonlinear controllers
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suitable for a wide range of applications [3]. For instance,
it allows direct optimization over the desired cost function
or specific constraints. However, for constrained systems with
fast dynamics or scarce computational resources, the com-
putational demands associated with solving the optimization
problem within the available sampling time are often pro-
hibitive, limiting the adoption of MPC in many applications.
A common way to decrease the computation time is to shorten
the optimization horizon and approximate the remaining hori-
zon by a terminal value function [1], [4], [5]. A shorter online
optimization horizon reduces the number of decision variables
and, therefore, the computation time. While standard methods
exist to construct this terminal cost (and terminal constraint),
these methods require an available, desirable, and reachable
(stabilizable) steady state for the system [1], [5]. However,
more general control objectives, such as the autonomous
driving overtaking scenario considered in Section V-C, do not
meet this requirement and cannot rely on standard methods.

Another challenge with nonlinear MPC arises if the opti-
mization problem is solved by direct methods, which formulate
it as an nonlinear program (NLP) [6]. These methods require
an initial guess close to the global or a sufficiently good, local
optimal solution to avoid getting stuck in a substantially sub-
optimal solution. Sufficiently good initial guesses reduce the
number of iterations required for the optimization algorithm
to converge.

RL refers to a collection of algorithms that aim at learning
optimal policies for OCPs by principles of dynamic program-
ming (DP) and Monte Carlo sampling [2], [7], [8]. The optimal
policy, also referred to as actor, and an optimal value function,
also referred to as critic, are approximated by parameterized
functions and trained during interaction with the environment.
Intrinsic to all RL algorithms is the goal of obtaining globally
optimal policies and value functions via interactions with the
environment. RL typically yields policies with low accuracy
but close to global solutions, in contrast to MPC, which
finds high-accuracy local solutions. The limitations of RL
algorithms stem from the potentially high-dimensional state
and action spaces, the limited number of samples, and the
limited expressiveness of the neural networks (NNs).

Remarkably, the RL properties are nearly orthogonal to
those of MPC [9]. We propose the algorithm actor-critic RL
for guiding model predictive control (AC4MPC) that combines
these complementary advantages. AC4MPC aims at obtaining
globally optimal policies by using trained NNs of actor-critic
RL algorithms to construct a terminal value function and a
policy rollout to provide an initial guess for MPC. To obtain
fast online computation times, a framework is proposed to
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augment the real-time iteration (RTI) scheme [10] with a
parallel optimizer and evaluate whether this parallel solution
exhibits a lower cost. Evaluating the parallel solutions for their
predicted performance at each iteration is nontrivial since it
may be an intermediate solution of the RTI scheme. Moreover,
we utilize the actor and critic networks for an auxiliary
evaluation control law, terminal rollout, and terminal value
function to rank the trajectories based on their predicted costs
and select the lowest-cost control for each iteration.

A. Related Work

Due to their complementary advantages, MPC and RL have
been previously combined in various ways. To promote sample
efficiency and safety, Amos et al. [11], Gros and Zanon [12],
[13], Romero et al. [14], and Reiter et al. [15] use MPC
together with NNs within the RL policy. These methods do
not address the challenges of MPC warm-starts and terminal
cost approximations.

Similar to [16] and [17], the presented approach flips the
paradigm of [18], [19], and [20], which uses MPC as an expert
to warm-start the training of an actor-critic RL algorithm. In
fact, we assume a well-trained actor-critic RL to warm-start
the online optimization of an MPC, thereby improving the
overall performance.

Allocating initial guesses by external modules such as NNs
and using approximations of the terminal value function have
been studied in various works. For instance, in [21], warm-
starts for the active set are used, Sambharya et al. [22]
use warm-starts quadratic programs (QPs), and Masti and
Bemporad [23] and Marcucci and Tedrake [24] use trained
NNs to warm-start mixed-integer solvers. Alboni et al. [16],
Grandesso et al. [17], Mansard et al. [25], Qu et al. [26],
and Chen et al. [27] use a trained NN to warm-start MPC.
However, using external warm-starts in each iteration may
conflict with the RTI scheme [10]. Compared to [16] and
[17], this article focuses on merging the opposing paradigms
of reinitializations close to “better” local minima and the
RTI scheme that initializes the optimization solver with the
previous trajectory.

Shen and Borrelli [28] use RL on a coarse discrete state
space to provide approximate motion plans for multiple vehi-
cles tracked thereafter by distributed MPC.

Abdufattokhov et al. [29] approximate the optimal value
function for Markov decision process (MDP) related to
regulation problems where a quadratic terminal value func-
tion is obtained by supervised learning. Zhong et al. [4],
Beckenbach et al. [30], Beckenbach and Streif [31], and
Moreno-Mora et al. [32] use approximate DP or Q-learning,
respectively, to approximate the value function for MPC
and Deits et al. [33] use combinatorial optimization solver
evaluations to approximate the value function related to a
mixed-integer problem. Nonetheless, Beckenbach et al. [30]
and Beckenbach and Streif [31] require a specific struc-
ture of the cost function. Similar to the proposed approach,
Karnchanachari et al. [34] learn a value function as
part of an MPC policy within an actor-critic method.
Karnchanachari et al. [34] state relevant practical consider-
ations when using sequential quadratic programming (SQP)

with NNs. However, Karnchanachari et al. [34] do not uti-
lize the actor, nor do it employ parallel computations or
evaluations.

For regulation [35], [36], [37] or economic MPC problems
[38], a stabilizing control law can be used to construct an
approximate terminal value function.

Bertsekas [39] summarizes several fundamental concepts
used within this work, i.e., suboptimal control, explicit value
function approximations, and rollouts as implicit approxi-
mations. AC4MPC can be seen as a specific suboptimal
control algorithm to approximate the optimal policy and value
function.

B. Contribution

The contributions of this work are the following:
1) derivation of a control strategy, namely, AC4MPC, that

combines MPC and RL to improve the overall perfor-
mance and omits local optima;

2) theoretical bounds for the closed-loop cost of the pro-
posed AC4MPC control strategy, indicating potential
performance improvements relative to the RL actor for
either optimal or suboptimal (locally optimal) solutions
to the AC4MPC optimization problem;

3) derivation of a real-time capable algorithm based on
AC4MPC and RTI, referred to as AC4MPC-RTI;

4) evaluation of AC4MPC-RTI on a realistic autonomous
driving task.

The proposed algorithm is designed for a general class of
control problems, focusing on applications where steady-state
targets are not available and standard methods for constructing
terminal cost or constraints for MPC are not feasible.

C. Outline

The remainder of this article is structured as follows. In
Section II, we repeat the pivotal concepts of MPC and actor-
critic RL. In Section III, the main algorithm, AC4MPC, is
introduced, and its theoretical properties are derived. The
method is, furthermore, adapted to yield a real-time capable
version, AC4MPC-RTI, in Section IV. In Section V, the
performance on an illustrative example and a more realistic
automated driving (AD) example are evaluated. We conclude
and discuss this article in Section VI.

II. PRELIMINARIES

This section introduces the problem setup and essential
concepts from both RL and MPC. The index j is used for
a closed-loop time step, and index k refers to time steps
in a prediction. The natural numbers are N = {0, 1, . . .},
and we use the definition NN = {x ∈ N|x ≤ N} and
N[n,N] = {x ∈ NN |n ≤ x}. The vector of “all ones” is 1
with suitable dimensions. Throughout this work, deterministic
environments are considered.

The state s ∈ S ⊆ Rns and the control u ∈ U ⊆ Rnu are
related to the dynamic discrete-time Markovian environment
with the continuous transition function

s j+1 = F
�
s j, u j

�
, F : S× U→ S.
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Note that S is the domain/range of the state space, not a
desired state constraint. The objective is formulated in terms
of minimizing a continuous, nonnegative stage cost c(s, u) :
Rns × Rnu → R≥0. With a discount factor γ ∈ (0, 1], the value
function of a control law or policy π(s) : S→ U is

Jπ (s) :=
∞X

k=0

γkc (sk, uk)

s0 = s, sk+1 = F (sk, uk) , uk = π (sk) (1)

and the OCP that defines the optimal cost J∗(s) for a given
state s can be stated by

J∗ (s) := min
π

Jπ (s) .

The optimal policy π∗ is defined such that π∗(s) =

arg minπ Jπ(s) for all s ∈ S. The optimal Q-function is directly
related to the optimal value function by

Q∗ (s, u) := c (s, u) + γJ∗ (F (s, u)) . (2)

We include constraints into the cost function, i.e., we rewrite
hard constraints via L1 penalties. Particularly, a priority over a
nominal cost c0(s, u) is given to satisfying equality constraints
g(s, u) = 0 with g(s, u) : Rns × Rnu → Rng and constraints
h(s, u) ≥ 0 with h(s, u) : Rns × Rnu → Rnh within the cost
formulation

c (sk, uk) = c0 (sk, uk)

+ w>g |g (sk, uk)|+ w>h min (h (sk, uk) , 0) . (3)

For sufficiently large weights wg ∈ R
ng and wh ∈ R

nh , the
optimal solution is equivalent to the solution of the constrained
problem [40]. We consider a general class of nonnegative stage
costs c(s, u) that characterize the performance of the controller.
Thus, we do not assume that there exists a desirable and
reachable steady state for the system. As a result, achieving
and maintaining c(s, u) = 0 may not be possible, and γ < 1
may be required to ensure that J∗(s) is finite for all s ∈ S.

A. Reinforcement Learning

This work is based on actor-critic RL algorithms to approxi-
mate π∗(s), J∗(s), and/or Q∗(s, u) with parameterized functions
π̂(s), Ĵ(s), and/or Q̂(s, u). Within RL, one can distinguish
between on-policy methods, such as proximal policy opti-
mization (PPO) [41], which collect samples with the currently
learned policy π̂ before each update, and off-policy methods,
such as soft actor-critic (SAC) [42], which use data generated
from policies unrelated to the currently learned policy. In the
following, we utilize both actor-critic policy types, i.e., SAC
and PPO. The value function obtained by SAC is typically of
the type Q̂(s, u), and from PPO, it is Ĵ(s).

In the tabular setting, comprising discrete states and controls
without function approximation, the convergence of π̂(s), Ĵ(s),
and Q̂(s, u) toward their optimal counterparts π∗(s), J∗(s), and
Q∗(s, u) can be shown for both SAC [43] with vanishing
entropy term and PPO [44]. For continuous state and control
spaces, approximation error bounds are often restricted to lin-
ear function approximation, excluding nonlinear functions like
NNs [2]. However, in practice, the estimates often converge

toward the optimal policy π∗(s) and optimal value functions
J∗(s) or Q∗(s, u).

B. Nonlinear Mpc

MPC approximates the infinite horizon cost function in (1)
via a finite horizon N ∈ N with N ≥ 1 and a terminal cost
V f : S→ R≥0, stated as

VN (s,u) :=
N−1X
k=0

γkc (sk, uk) + γNV f (sN) (4)

in which u = (u0, u1, . . . , uN−1), sk+1 = F(sk, uk), and s0 = s.
The terminal cost V f (s) is typically designed to approximate
the value function Jπ(s) for a policy π(s) that asymptotically
stabilizes the nominal system or achieves a sufficient perfor-
mance objective. Then, the MPC optimization problem is

V0
N (s) := min

u∈UN
VN (s,u) . (5)

The following assumption ensures that solutions for (5) exist.
Assumption 1 (Continuity and Compactness): The functions

F : S × U → S, c : S × U → R≥0, and V f : S → R≥0 are
continuous. The set S is closed, and U is compact.

In Section III, we leverage the concept of terminal costs and
associated theoretical results to devise the proposed method.

In order to compute the solution of (5), we adopt a direct
approach, specifically direct multiple shooting [6], yielding the
following problem formulation:

min
s,u

N−1X
k=0

γkc (sk, uk) + γNV f (sN)

s.t.

(
s0 = s j

sk+1 = F (sk, uk) , uk ∈ U, k ∈ NN−1.
(6)

Let s = (s0, . . . , sN) be the vector that collects the state along
the prediction horizon. We include s among the optimization
variables and a continuity condition for the system dynamics
at each step of the control horizon. Enlarging the dimension
of the NLP with the variables in s makes (6) sparse and
structured. These properties enhance numerical stability and
improve convergence. A favorable numerical method for solv-
ing (6) is SQP [45]. It enables the effective warm-starting of
the primal variables s and u. Iteratively converging schemes,
such as the RTI scheme [10], can deal with fast sampling times
and constrained memory of embedded devices.

Precisely, SQP attains the solution of the given NLP by
iteratively solving QPs obtained by linearizing the nonlinear
constraints in (6) and computing a quadratic approximation of
the, potentially nonlinear, cost function. Thus, the convergence
of an SQP algorithm to a minimizer of the NLP (6) requires
the solution of potentially several QPs.

One can mitigate this burden by adopting the RTI scheme,
which performs only one, or in general M, SQP iterations per
sampling time. Intuitively, converging toward the minimizer of
(6) takes place over consecutive time steps. In every closed-
loop iteration, the previous solution is shifted to provide the
initial guess for the new OCP. Note that within RTI, we
may apply a control action to the system that stems from
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an SQP iteration, which is not yet fully converged to the
optimum of (6). Hence, the RTI solution may violate the
nonlinear constraint of (6), e.g., the resulting trajectory may
not be dynamically feasible. This observation will be critical
in Section IV-B to evaluate the cost of an infeasible trajectory.

If a reachable and fixed steady-state target is available,
we can typically design terminal costs or constraints for
NMPC using standard methods, even if the stage cost is not
positive-definite with respect to this steady-state target, i.e.,
an economic NMPC problem [5]. However, these standard
methods and associated theoretical guarantees are not easily
extended to applications without available, reachable, or desir-
able steady-state targets. For example, the autonomous driving
experiment considered in Section V-C requires the controller
to execute an overtaking maneuver. In this application, there is
no desired steady state. The maneuver is instead characterized
by a performance objective defined by the stage cost. Con-
structing terminal costs or constraints via standard methods
is therefore not possible. In this article, we are primarily
interested in this more general class of problems for which
terminal costs/constraints cannot be constructed via standard
methods.

Without terminal costs/constraints, NMPC still guarantees
suitable performance bounds if a sufficiently long horizon
is used, globally optimal solutions to each NMPC problem
are obtained, and the system satisfies a turnpike/dissipativity
assumption, which is typically difficult to verify [46] and [47].
In fact, even NMPC with quadratic, positive-definite stage
costs may not satisfy this property or guarantee asymptotic
stability for any finite horizon [48]. In the discounted case
(γ < 1), worst-case performance bounds can be derived if the
stage cost admits a finite upper bound.

In Section III, we propose a method that utilizes RL to
provide both a terminal cost and an initial guess for the NMPC
optimization problem, thereby offering an alternative means
to ensure suitable performance for NMPC without requiring
standard methods to design a terminal cost or constraint. In
contrast to the results available for NMPC without a terminal
cost or constraint, we establish a performance guarantee that
holds for any horizon length and does not require globally
optimal solutions to the NMPC optimization problem. We also
show that this bound improves with increasing horizon N,
demonstrating the potential for improved performance relative
to the RL actor for large N (if the actor is not already optimal).

III. ACTOR AND CRITIC MODELS FOR NONLINEAR MPC

Notice that solving (6) in each step to the global optimum,
using a perfectly estimated value function V f (s) ≡ J∗(s) and
applying the first control, yields the optimal policy π∗(s). This
follows directly from the definitions (1) and (2). In general,
none of the optimal functions π∗(s), J∗(s), or Q∗(s, u) are avail-
able. Instead, AC4MPC uses an actor model π̂(s) and a critic
model Ĵ(s) or Q̂(s, u) to improve the performance of MPC.
The trained actor and critic NNs are obtained by methods
described in Section II-A. The algorithm, which is this article’s
main contribution, is summarized in Algorithm 1 and permits
both globally optimal and suboptimal solutions to the MPC
optimization problem, with the closed-loop performance of

both the globally optimal and suboptimal algorithms discussed
in Sections III-B and III-C, respectively.

A. Basic Ac4Mpc Algorithm Description

In AC4MPC, the terminal cost for the standard MPC
formulation is defined by either the approximate value function
Ĵ(s), e.g., obtained by PPO, or Q-value function Q̂(s, π̂(s)),
e.g., obtained by SAC. Since these estimated value functions
are not exact, including an additional rollout of the actor π̂(s)
can improve the estimate of the true value function for this
actor policy [39]. For a rollout of R ∈ N and estimated value
function Ĵ(·), we define the terminal cost as

V f (s) :=
R−1X
i=0

γic (sk, π̂ (sk)) + γR Ĵ (sR) (7)

in which sk+1 = F(sk, π̂(sk)) and s0 = s. For an estimated
Q-value function, we simply replace Ĵ(s) by Q̂(s, π̂(s)). This
rollout aims to better approximate the value function for the
actor π̂(s). With this terminal cost, the MPC objective function
becomes

VN,R (s,u) =

N−1X
k=0

γkc (sk, uk)

+

N+R−1X
k=N

γkc (sk, π̂ (sk)) + γN+R Ĵ
�
sN+R

�
(8)

in which

sk+1 =

(
F (sk, uk) , k ∈ N[0,N−1]

F (sk, π̂ (sk)) , k ∈ N[N,N+R−1].

Thus, the first N inputs uk are free variables, while the
following R inputs are fixed by the actor π̂(·).

In addition to the rollout, the actor π̂(s) provides an initial
trajectory of states and controls for the AC4MPC optimiza-
tion problem. Specifically, we define the simulated state and
input trajectory from an initial state s ∈ S as Φ̂N(s; π̂(·)) =

(ŝ0, ŝ1, . . . , ŝN) and Ψ̂N(s; π̂(·)) = (û0, û1, . . . , ûN−1) in which

ŝk+1 = F (ŝk, ûk) , ûk = π̂ (ŝk) , ŝ0 = s. (9)

B. Optimal Solution

First, we consider a control policy based on the (global)
optimum of the following minimization problem:

V0
N,R (s) := min

u∈UN
VN,R (s,u)

u0
N,R (s) := arg min

u∈UN
VN,R (s,u) .

The first input of the solution to this optimization problem,
then, defines the control policy

κ0
N,R (s) := u0 (0; s)

in which u0
N,R(s) = (u0

0(s), u0
1(s), . . . , u0

N−1(s)). With this policy,
the closed-loop system is

s j+1 = F
�
s j, u j

�
, u j = κ0

N,R

�
s j
�
. (10)
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We are interested in the closed-loop performance of the
optimal AC4MPC control policy defined by

J 0
T (s0) :=

T−1X
j=0

γ jc
�
s j, u j

�
s.t. (10)

relative to the closed-loop performance of the actor π̂(s0)
defined by Jπ̂(s0).

The inherent inaccuracy of the critic, due to both approxima-
tion error and finite training data, is captured via the Bellman
error of Ĵ(s) concerning the actor π̂. To establish the desired
guarantees, we require bounds on the (one-sided) Bellman
error of the critic and the critic’s overestimation of the value
function Jπ̂(s) for all s ∈ S.

Assumption 2 (Bellman Error) The actor π̂ : S → U
is continuous. The critic Ĵ : S → R≥0 is continuous and
nonnegative, and there exist ε ≥ 0 and δ ≥ 0 such that for
all s ∈ S

γĴ (F (s, π̂ (s))) ≤ Ĵ (s) − c (s, π̂ (s)) + δ (11)

Ĵ (s) ≤ Jπ̂ (s) + ε. (12)

Note that Assumption 2 does not require that a reachable,
zero-cost, steady-state pair (ss, us) ∈ S × U exists (ss =

F(ss, us) and c(ss, us) = 0), nor do we require that such a
steady state is rendered asymptotically stable by the potentially
suboptimal actor π̂(s). This fact is important as the RL actor
may not ensure π̂(ss) = us due to approximation errors.
Moreover, in some applications, the optimal policy may not
involve stabilizing a specific steady state (see Section V-C).
Continuity of π̂(s) and Ĵ(s) ensures that V f (s), defined in (7),
is continuous and therefore V0

N,R(s) and u0
N,R(s) exist.

The policy evaluation step in actor-critic methods aims
to minimize the Bellman error for the actor π̂(s), thereby
minimizing δ and ε [2]. For continuous state–action spaces,
we cannot tightly compute δ and ε, but estimates of these
constants can be obtained by sampling.1 However, we expect
the resulting guarantees to be conservative, as is typical for
nonlinear systems, and the specific bounds are, therefore,
not expected to be useful in a quantitative sense. Instead,
the subsequent theoretical results are primarily intended to
provide theoretical justification for the observed performance
and behavior of the proposed algorithm.

We begin with the following cost decrease inequality.
Lemma 1: If Assumptions 1 and 2 hold, then

γV0
N,R

�
s+
�
≤ V0

N,R (s) − c
�
s, κ0

N,R (s)
�
+ γN+Rδ (13)

in which s+ = F(s, κ0
N,R(s)) for all s ∈ S.

Proof: For any s ∈ S, define the optimal open-loop input
trajectory (u0

0, u
0
1, . . . , u

0
N−1) = u0

N,R(s) and the open-loop state
trajectory as

s0
k+1 =

(
F
�
s0

k , u
0
k

�
, k ∈ N[0,N−1]

F
�
s0

k , π̂
�
s0

k

��
, k ∈ N[N,N+R−1].

For s+ = F(s, κ0
N,R(s)), we define the candidate trajectory

ũ+ :=
�
u0

1 (s) , u0
2 (s) , . . . , u0

N−1 (s) , π̂
�
s0

N

��
.

1For each sample si ∈ S, we can evaluate δi := γĴ(F(s, π̂(si))) − Ĵ(si) +
c(si, π̂(si)) and simulate the actor π̂(s), for sufficiently long time, to estimate
Jπ̂(si) and the error εi := Ĵ(si)−Jπ̂(si). This yields δ = maxi δi and ε = maxi εi.

We, therefore, have from (8) that

γVN,R
�
s+, ũ+

�
= V0

N,R (s) − c
�
s, κ0

N,R (s)
�

+ γN+R �γĴ
�
sN+R+1

�
+ c

�
s0

N+R, π̂
�
s0

N+R

��
− Ĵ

�
s0

N+R

��
in which sN+R+1 = F(s0

N+R, π̂(s0
N+R)). By rearranging (11), we

have that

γĴ
�
sN+R+1

�
+ c

�
s0

N+R, π̂
�
s0

N+R

��
− Ĵ

�
s0

N+R

�
≤ δ

and therefore

γVN,R
�
s+, ũ+

�
≤ V0

N,R (s) − c
�
s, κ0

N,R (s)
�
+ γN+Rδ.

By optimality, V0
N,R(s+) ≤ VN,R(s+, ũ+) and we, therefore,

have (13).�
If γ < 1, (13) indicates that large horizons N and rollouts R

in AC4MPC reduce the effect of the Bellman error in the critic
Ĵ(s). At the other extreme, AC4MPC with N = 1 and R = 0
is equivalent to one value iteration of the critic Ĵ(s). These
observations are consistent with results for `-step lookahead
algorithms in DP (see [49]). The key contribution of Lemma 1
is that this result also applies to the closed-loop performance.

For a general class of nonlinear systems and stage costs, (13)
is tight because the candidate trajectory may be the solution
to the optimization problem, i.e., u0(s+) = ũ+. If the critic
provides an overestimate of stagewise cost decrease for all
s ∈ S, i.e., δ = 0 in (11), then (13) is equivalent to the
ideal cost decrease guarantee for MPC. Moreover, if c(s, u)
is a (continuous) positive-definite function with respect to a
reachable steady-state target, and γ = 1, then (20) is equivalent
to the cost decrease condition required for VN(·) to be a
(practical) Lyapunov function for the closed-loop system. The
stability of the origin, then, follows from standard assumptions
about the continuity of V0

N(·) at the origin [1, s. 2.4.2]. In
general, however, δ > 0 in Assumption 2 does not guarantee
asymptotic stability of the origin.

While the undiscounted problem is important in the context
of steady-state tracking control, we focus on a more general
setting. Thus, we permit unreachable setpoints and general
performance objectives without specifying, or assuming the
existence of a reachable steady-state target. In this setting,
γ < 1 is typically required to ensure that J∗(s) and Jπ̂(s) are
finite for all s ∈ S, as is typical in approximate DP and RL.
Given this more general setting, the subsequent guarantees
are necessarily more conservative than a typical steady-state
tracking result. Closed-loop performance bounds are provided,
but asymptotic stability of a steady state is not necessarily the
desired or achieved outcome.

For γ ∈ (0, 1), we establish the following bound for the
infinite horizon closed-loop performance.

Theorem 1: If Assumptions 1 and 2 hold and γ ∈ (0, 1),
then

lim sup
T→∞

J 0
T (s0) ≤ Jπ̂ (s0) − σN,R (s0) + γN+Rε+

γN+Rδ

1 − γ
(14)

for all s0 ∈ S in which

σN,R (s0) := VN,R (s0, û) − V0
N,R (s0) , û = Ψ̂N (s0; π̂ (·)) .
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Proof: For any s0 ∈ S, let ûk = π̂(ŝk) and x̂k+1 = F(ŝk, ûk)
for k ∈ N[0,N+R−1]. Let û = (û0, . . . , ûN+1) and note that û =

Ψ̂N(s0; π̂(·)). We have from Assumption 2 that

VN,R (s0, û) =

N+R−1X
k=0

γk` (ŝk, ûk) + γN+R Ĵ
�
ŝN+R

�
≤

N+R−1X
k=0

γk` (ŝk, ûk) + γN+RJπ̂
�
ŝN+R

�
+ γN+Rε

≤ Jπ̂ (s0) + γN+Rε. (15)

Using this inequality with the definition of σN,R(s0) gives

V0
N,R (s0) ≤ Jπ̂ (s0) + γN+Rε − σN,R (s0) . (16)

For the closed-loop system starting from s0 ∈ S, we have
from (13) that

c
�
s j, κ

0
N

�
s j
��
≤ V0

N,R

�
s j
�
− γV0

N,R

�
s j+1

�
+ γN+Rδ

for all j ≥ 0. By repeated application of this bound, we have

J 0
T (s0) ≤ V0

N,R (s0) − γT V0
N,R (sT ) + γN+R

T−1X
j=0

γ jδ.

Note that V0
N,R(sT ) is nonnegative because c(·) and Ĵ(·) are

nonnegative. In the limit as T → ∞, we have

lim sup
T→∞

J 0
T (s0) ≤ V0

N,R (s0) +
γN+Rδ

1 − γ
.

By applying (16) to upper bound V0
N,R(s0), we have the desired

bound in (14) for all s0 ∈ S.�
The bound in Theorem 1 demonstrates the tradeoffs associ-

ated with using the proposed algorithm relative to the RL actor.
The function σN,R(s0) is defined by the cost improvement of
the optimal MPC solution relative to the actor rollout over
the same horizon N, with a terminal cost defined by the
horizon R. Note that σN,R(s0) is nonnegative by the definition
of optimality. This value is easily computed during the imple-
mentation of ACMPC, and larger values indicate a greater
potential for improvement in the closed-loop performance of
the proposed method relative to the RL actor. However, this
bound is degraded by possible inaccuracies in the critic defined
by the constants δ and ε in Assumption 2. These inaccuracies
are mitigated by increasing N or R.

Remark 1 (Comparison With RL) If the RL actor is
nearly optimal for all states s0 ∈ S, quantified by the value
of σN,R(s0), then the proposed framework can only provide
minor improvements while also introducing the possibility of
underperforming the RL actor due to inaccuracies in the critic.
We do not recommend the proposed method over the RL
actor in this case. Alternatively, if the RL actor is suboptimal,
the proposed framework offers the potential to significantly
improve the RL actor’s performance, despite possible inaccu-
racies in the critic.

Remark 2 (Comparison With NMPC): The proposed
approach offers an alternative method for constructing a
suitable terminal cost in applications where standard meth-
ods are not feasible. While NMPC offers some performance
guarantees without a terminal cost, these methods require

a sufficiently long horizon (that increases computational
demand) and dissipativity/turnpike properties that can be diffi-
cult to verify a priori [46], [47], [50]. By contrast, Theorem 1
provides a performance guarantee for all values of N ≥ 1. We
note that if c(s, u) is bounded, NMPC without a terminal cost
(Ĵ(s) = 0 and R = 0) also obtains the guarantee in Theorem 1,
but with the worst possible value of δ := maxs∈S,u∈U c(s, u).
For a sufficiently poor actor or critic, using NMPC without
a terminal cost is likely preferable to the proposed method.
Alternatively, if an actor with good performance and an
accurate critic are available, then the proposed method can
significantly outperform NMPC without a terminal cost, as
demonstrated in subsequent experiments.

Remark 3 (N Versus R): Note that the potential improve-
ment defined by the function σN,R(s0) is primarily controlled
by the MPC horizon N, as additional decision variables u
in the optimization problem provide additional flexibility in
improving the optimal cost. Thus, the practical benefits of
increasing N or R are based on the (sub)optimality of the
actor [characterized by σN,R(s0)] relative to the accuracy of the
critic (characterized by ε and δ). For suboptimal actors, larger
values of N are expected to increase the value of σN,R(s0) and
therefore improve the bound in (14). For inaccurate critics,
increasing R is preferable as it mitigates this inaccuracy
without increasing the number of decision variables in the
optimization problem.

If the actor is suboptimal within the NMPC horizon
(σN,R(s0) > 0), then we can demonstrate guaranteed improve-
ment with respect to this actor for sufficiently large N + R.

Corollary 1: If Assumptions 1 and 2 hold and γ ∈ (0, 1),
then for any s0 ∈ S such that σN,R(s0) > 0, there exists
sufficiently large N ≥ 1 and R ≥ 0, such that

lim sup
T→∞

J 0
T (s0) < Jπ̂ (s0) .

Corollary 1 provides a justification for the observed benefits
of the proposed method. If performance worse than the RL
actor is observed, Corollary 1 indicates that increasing the
horizon length can fix this issue. In the subsequent experi-
ments, we do not explicitly verify that N and R are sufficient to
guarantee the result in Corollary 1, but nonetheless empirically
observe this result with modest horizons.

C. Suboptimal Solutions

In practice, however, globally optimal solutions to the
NMPC or AC4MPC minimization problem may not be
tractable due to computational constraints and local min-
ima. Thus, suboptimal (locally optimal) solutions are often
used instead. We, therefore, consider a formulation of the
AC4MPC algorithm and control policy that does not rely on
globally optimal solutions to the minimization problem. We
describe the closed-loop iterations of AC4MPC below and in
Algorithm 1. Note that for NMPC without terminal costs/
constraints, no guarantees are available for the suboptimal
solutions permitted in Algorithm 1 or encountered in practice.

At the first time step, we roll out the actor π̂ from the current
state measurement s and use this input trajectory as an initial
guess for the optimization problem. The AC4MPC algorithm
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Algorithm 1 AC4MPC—Closed-Loop Iterations

ensures that the computed input trajectory is better (no worse)
than this initial guess, i.e., produces a lower value of VN(·).
After the first time step, the subsequent initial guess is obtained
by shifting the most recent iterate and using the actor π̂(s) to
provide an initial guess only for the very last control. Let
u = (u0, u1, . . . , uN−1) denote the input trajectory computed
by AC4MPC for the current state s = s0. Then, we define a
shifted input trajectory at the subsequent time step as

ũ+ = ζ (s,u; π̂ (·)) := (u1, . . . , uN−1, π̂ (sN)) . (17)

The AC4MPC algorithm, then, selects a better policy (no
worse) than ũ, i.e., produces a lower value of VN(·). Thus,
the AC4MPC algorithm (Algorithm 1) implicitly defines a
function KN : S× UN → UN , which satisfies

KN(s, ũ) ∈
˚
u ∈ UN | VN(s,u) ≤ VN(s, ũ)

	
. (18)

Note that the global optimum of the AC4MPC optimization
problem satisfies the requirements of KN(s, ũ). The control
policy κN : S×UN → U defined by AC4MPC is the first input
in the trajectory defined by KN(s, ũ), i.e.,

κN (s, ũ) := u0 with (u0, u1, . . . , uN−1) = KN (s,u) .

With this control policy, we obtain the closed-loop system-
optimizer dynamics

s j+1 = F
�
s j, u j

�
, u j = κN

�
s j, ũ j

�
ũ j+1 = ζ

�
s j,KN

�
s j, ũ j

�
; π̂ (·)

�
. (19)

Note that both the state s j and the initial guess ũ j evolve
according to autonomous dynamics defined by AC4MPC.
Algorithm 1 provides a simple example of an AC4MPC
algorithm that satisfies the requirements in (18). Different
conceptual parts are highlighted in color and aligned with the
associated parts in Section IV, i.e., a policy rollout (red), the
initialization of the MPC (yellow), obtaining the solution of
the MPC (blue), evaluating different trajectories (green), and
shifting and simulating the last control (purple). Note that the
solution to the MPC problem in Algorithm 1 (i.e., solve MPC)
does not need to be a global optimum.

Lemma 2 (Cost Decrease): If Assumptions 1 and 2 hold,
then

γVN
�
s+,KN

�
s+, ũ+

��
− VN (s,KN (s, ũ))

≤ −c (s, κN (s, ũ)) + γN+Rδ (20)

in which s+ = F(s, κN(s, ũ)) and ũ+ = ζ(s,KN(s, ũ); π̂(·)) for
all s ∈ S and ũ ∈ UN .

Proof: We proceed similar to the proof of Lemma 1.
For any s ∈ S and ũ ∈ UN , let s+ = F(s, κN(s, ũ)) and
ũ+ = ζ(s,KN(s, ũ); π̂(·)). Let sk denote the open-loop state
at time k ∈ NN for given s0 = s and the input trajectory
u = (u0, u1, . . . , uN−1) = KN(s, ũ). Let sk+1 = F(sk, π̂(sk)) for
all k ∈ {N, . . . ,N + R − 1}. From the definition of ũ+ and (8)
that, we have

γVN
�
s+, ũ+

�
− VN (s,KN (s, ũ))

= −c (s, κN (s, ũ))

+ γN+R �γĴ
�
sN+R+1

�
+ c

�
sN , π̂

�
sN+R

��
− Ĵ

�
sN+R

��
.

By rearranging (11), we have that

γĴ
�
sN+R+1

�
+ c

�
sN+R, π̂

�
sN+R

��
− Ĵ

�
sN+R

�
≤ δ

and therefore

γVN
�
s+, ũ+

�
− VN (s,KN (s, ũ))

≤ −c (s, κN (s, ũ)) + γN+Rδ.

From the definition of KN(·), we have

VN
�
s+,KN

�
s+, ũ+

��
≤ VN

�
s+, ũ+

�
and combining these equations gives (20).�

For the suboptimal AC4MPC control policy, we see that
Lemma 2 provides effectively the same result as Lemma 1.
We again consider the closed-loop performance of this policy

JT (s0) :=
T−1X
j=0

γ jc
�
s j, u j

�
s.t. (19).

For this suboptimal solution, computed via Algorithm 1
and satisfying (18), we establish a closed-loop performance
bound in the subsequent theorem (Theorem 2). Note that the
bound in Theorem 2 is nearly identical to that of Theorem 1,
with the exception that the newly defined function σ̃N,R(s0)
depends on the (possibly) suboptimal solution KN(s0, û) from
Algorithm 1.

Theorem 2 (Performance): If Assumptions 1 and 2 hold
and γ ∈ (0, 1), then

lim sup
T→∞

JT (s0) ≤ Jπ̂ (s0) − σ̃N,R (s0) + γN+Rε+
γN+Rδ

1 − γ
(21)

for all s0 ∈ S in which û = Ψ̂N(s0; π̂(·)) and

σ̃N,R (s0) := VN,R (s0, û) − VN,R (s0,KN (s0, û)) . (22)

Proof: For any s0 ∈ S, let ûk = π̂(ŝk) and x̂k+1 = F(ŝk, ûk)
for k ∈ {0, 1, . . . ,N + R − 1}. Let û = (û0, . . . , ûN+1) and note
that û = Ψ̂N(s0; π̂(·)). We have from Assumption 2 that

VN,R (s0, û) =

N+R−1X
k=0

γk` (ŝk, ûk) + γN+R Ĵ
�
ŝN+R

�
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≤

N+R−1X
k=0

γk` (ŝk, ûk) + γN+RJπ̂
�
ŝN+R

�
+ γN+Rε

≤ Jπ̂ (s0) + γN+Rε. (23)

Using this inequality with the definition of σ̃N,R(s0) gives

VN,R (s0,KN (s0, û)) ≤ Jπ̂ (s0) + γN+Rε − σ̃N,R (s0) . (24)

From Lemma 2 and the same arguments as in the proof of
Theorem 1, the closed-loop system starting from s0 ∈ S and
ũ0 = Ψ̂N(s0; π̂(·)) satisfies

JT (s0) ≤ VN,R (s0,KN (s0, ũ0))

− γT VN,R (sT ,KN (sT , ũT )) + γN+R
T−1X
j=0

γ jδ.

Note that VN,R(·) is nonnengative because c(·) and Ĵ(·) are
nonnegative. In the limit as T → ∞, we have

JT (s0) ≤ VN (s0,KN (s0, ũ0)) +
γN+Rδ

1 − γ
.

By applying (24), we have (21).�
These observations are again consistent with results for

`-step lookahead algorithms in DP (see [49]). We note, how-
ever, that DP typically assumes that a globally optimal solution
is obtained for the `-step lookahead minimization. Since we
are permitting suboptimal solutions in the AC4MPC algorithm,
the best guarantee we obtain is that the closed-loop perfor-
mance is bounded relative to the closed-loop performance
of the actor used in the AC4MPC algorithm. In economic
MPC, similar results are obtained with respect to a periodic
reference trajectory that is used to construct the terminal cost
and constraint [5], [51].

Theorem 2 provides a performance guarantee for any hori-
zon length (N and R) and does not require globally optimal
solutions to the proposed optimization problem, a further
improvement relative to Theorem 1 and the discussion in
Remark 2. In contrast to the optimal solution and Theorem 1,
this suboptimal algorithm and Theorem 2 do not cover typical
implementations of NMPC without a terminal cost, even if
c(s, u) is bounded, because there is no actor available to
generate the warm-start. A large cost improvement relative
to the RL actor, as defined by σ̃N,R(s0), is still important to
justify the use of AC4MPC instead of simply implementing
the RL actor, but global optimality is not required to achieve
this improvement. Remark 1 still holds and Remark 3 also
applies to σ̃N,R(s0).

Moreover, we emphasize that the bound in (21) is con-
servative. In practice, we expect AC4MPC with moderate
horizon lengths N and rollout lengths R to outperform the RL
actor, as demonstrated in the subsequent experiments. Stronger
guarantees may be possible if we strengthen the assumptions
on the stage cost and system, e.g., strict dissipativity or
turnpike properties [52].

IV. MULTIPLE SHOOTING AND RTIS FOR AC4MPC

So far, AC4MPC was defined conceptually as a single shoot-
ing formulation without a practical algorithm to solve the MPC

Fig. 1. Sequential algorithm sketch of AC4MPC-RTI. In each iteration, the
actor policy is rolled out to obtain a control and state trajectory (red). After
each P iteration, the parallel MPC is initialized with the policy rollout (yellow)
and, otherwise, by the shifted previous MPC solution. The active MPC is
initialized with the lowest-cost trajectory, which can be either the shifted
solution from its last iteration, the parallel MPC trajectory, or the policy
rollout. The cost is provided by the proposed evaluation algorithm “ac4eval”
(green).

problem (5). In the following, we propose AC4MPC-RTI,
a practical extension to AC4MPC that significantly reduces
online computation time.

Particularly, we propose to use the RTI scheme [10] and
multiple shooting [6], which create additional challenges for
the algorithm. The solution never fully converges within the
RTI scheme. The local optimum is instead tracked over several
time steps, as discussed in Section II-B. Therefore, an initial
guess provided by a policy rollout may only obtain a lower
cost after several QP steps. In fact, the solution obtained
after each QP step may even be infeasible for the nonlinear
system dynamics due to the multiple shooting formulation, i.e.,
F(s, u) − s+ , 0. The cost of an infeasible trajectory cannot
be directly evaluated.

To be compatible with the RTI scheme, AC4MPC-RTI is
extended by the following: 1) maintaining a state trajectory
s beside control trajectory u; 2) allowing trajectories to
converge over multiple controller iterations by maintaining
two MPC instances and reinitializing only one of them at
all P iterations; and 3) adapting an evaluation algorithm that
tackles the challenging cost prediction of a usually infeasible,
multiple shooting trajectory. The basic algorithmic parts of
AC4MPC-RTI are aligned with AC4MPC, see colored boxes
in Algorithms 1 and 2 and Fig. 1.

A parallel RTI iteration scheme for AC4MPC-RTI with
different initialization strategies that address 1) and 2) is
described in Section IV-A. The evaluation algorithm related
to 3) is described in Section IV-B. A schematic overview of
AC4MPC-RTI is shown in Fig. 1 and Algorithm 2.

The proposed algorithm is generalizable to several parallel
policy rollouts, which could be obtained by different NNs, see
a mixture of experts [53]. For clarity of exposition, we regard
only one rollout in the following.
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Algorithm 2 AC4MPC-RTI Closed-Loop Iterations

A. Parallelization

In AC4MPC-RTI, two MPC instances and the policy rollout
are evaluated in each time step. In the parallel MPC, the
candidate trajectories ŝ j = Φ̂N(s j; π̂(·)) and û j = Ψ̂N(s j; π̂(·))
obtained from the policy rollout are used as an initial guess
for an MPC (6) (see Fig. 1). The RTI scheme, then, performs
M SQP iterations starting from this initial guess. We use RTI
over several closed-loop time steps j to allow the solver to
converge. Particularly, the actor does not initialize the MPC
solver in each iteration j but instead in all P ∈ N+ time steps,
where mod( j, P) = 0. If mod( j, P) , 0, the initial guess for
the parallel MPC solver is obtained by shifting. The active
solver uses the RTI scheme with the previous shifted solution,
where the previous solution is the lowest-cost solution of
either the active solver, the parallel solver, or the pure actor
rollout. Shifting, as described previously for AC4MPC, shifts
the primal variable of the MPC problem and simulates the
system with the actor for the very last initial state, i.e., the
controls are shifted by ζ(s,u; π̂(·)), and the states s are shifted
by

ξ (s; π̂ (·)) := (s1, . . . , sN , F (sN , π̂ (sN))) .

If the trajectory (ŝ j, û j) obtained from the policy rollout or
the parallel optimized trajectory (s̃p

j , ũ
p
j ) is superior in terms

of the evaluated cost (see Section IV-B), the related states are
used to initialize the active solver in the next iteration. Given

that the evaluated cost of the trajectory (s̃ j, ũ j) obtained from
the active solver is lowest, the active solver is not reinitialized
with any policy, rather RTIs, or generally, M SQP iterations
are performed with successively starting at the shifted previous
solution. This guarantees that AC4MPC-RTI performs at least
as well as an MPC formulation using RTI, while also incurring
the computational burden of parallel policy evaluations.

B. Evaluation

After each iteration, the candidates (ŝ j, û j) obtained from
the policy rollout, the parallel sequentially optimized roll-
outs (s̃p

j , ũ
p
j ), and the trajectory of the active solver (s̃ j, ũ j)

are evaluated and ranked among their lowest predicted cost.
Evaluating the expected closed-loop cost of the optimization
problem defined by (4) solved by multiple-shooting and RTIs
is nontrivial due to the following.

First, the problem can only be evaluated on a finite horizon.
To approximate the infinite horizon, the critic is used in the
evaluator to approximate the infinite horizon cost, such as in
the MPC formulation (6).

Second, evaluating the expected closed-loop cost of a
multiple-shooting scheme using RTIs is challenging because
the dynamics constraints might not be satisfied within the SQP
iterations, i.e., the trajectory exhibits gaps [54].

Within globalization strategies of optimization algorithms
for multiple-shooting formulations, these gaps are typically
combined with the objective via a merit function to obtain a
single evaluation criterion. These merit functions need large
exact penalties to outweigh the other objectives [45]. The merit
function serves the purpose of closing the gaps over iteration
but is not suited to evaluate the expected closed-loop cost due
to the somewhat arbitrary choice of weights, given that they
are large enough and lead to a numerically stable optimization
algorithm. Additionally, with open gaps, the trajectory is not
dynamically feasible and, thus, unsuitable for evaluation.

A straightforward method to obtain a feasible trajectory
would involve using the controls u to simulate the system
F(·) forward, starting from the current state s. Trivially, the
trajectory would be feasible. However, for unstable systems,
the obtained state trajectory may differ significantly from the
multiple-shooting trajectory s, potentially resulting in a high
evaluation cost. Since the open-loop trajectory is recomputed
based on the state feedback in each step, the control law
would stabilize the obtained closed-loop trajectory. Therefore,
simulating the control law for evaluating infeasible trajectories
also yields a better cost prediction.

In the following, a feasibility projection method is proposed
to evaluate any trajectory (s,u) of length N that utilizes the
actor policy as a correcting control law associated with open
gaps. The method involves a homotopy parameter α ∈ [0, 1]
that scales the impact of the correction law. We use an
auxiliary control law

s̄k+1 = F (s̄k, ūk) , ūk = uk + α (π̂ (s̄k) − π̂ (sk)) (25)

to simulate the system forward to obtain the simulated controls
ū = [ū0, . . . , ūN−1] and states s̄ = [s̄0, . . . , s̄N]. A parameter of
α = 0 would correspond to an open-loop forward simulation
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Algorithm 3 ac4eval(·)

without feedback. Notably, the auxiliary state trajectory s̃
obtained from the control law defined in (25) would only
differ from the SQP solution of the states ŝ if the states ŝ
were infeasible with respect to the dynamics function.

Along the lines of [39] and as discussed in Section III,
the value function is approximated by a rollout of the actor
policy for R steps at the final state s̄N to obtain s̄N+1, . . . , s̄N+R

and ūN , . . . , ūN+R−1 and the final critic value at s̄N+R (see
Algorithm 3).

C. Parameterization

Besides numerical parameters of the NLP used within the
MPC and hyperparameters for the RL training, several param-
eters specific to AC4MPC-RTI need to be chosen, i.e., the
reinitialization parameter P ∈ N≥1, the correction parameter
α ∈ [0, 1], and the evaluation rollout length R ∈ N. Suppose the
system is considered unstable, and the learned policy stabilizes
the system empirically. In that case, the parameter α should
be closer to 1 to use a policy that stabilizes the potentially
open gaps of the shooting nodes. If the learned terminal value
function is poor quality, the evaluation rollout length R should
be increased. This enables the AC4MPC-RTI algorithm to
more effectively evaluate which candidate trajectory yields the
lowest open-loop cost.

V. EXPERIMENTS

Section V highlights the properties and performance of
the proposed algorithms in experiments. In Section V-B, the
properties of AC4MPC are illustrated on a low-dimensional
example. In Section V-C, AC4MPC-RTI is evaluated in a more
realistic scenario of time-optimally overtaking vehicles. First,
in Section V-A, we discuss some important implementation
issues when using NNs within an MPC.

Fig. 2. Acceleration acting on the 1-D vehicle due to a snowy slope and the
maximum input acceleration in the snow hill environment.

A. Using NNs Within Mpc

Although MPC solvers, such as acaods [55], are capable
of solving nonlinear and nonconvex programs, the expected
performance depends to a major extent on the local smooth-
ness of the model. NNs may contradict local smoothness
requirements, e.g., rectified linear unit (ReLU) networks are
not even continuously differentiable. Therefore, the proposed
AC4MPC and AC4MPC-RTI algorithms require smooth acti-
vation functions, such as tanh-activation functions, which we
use in the following experiments.

For AC4MPC, the interior point algorithm ipopt [56] is used
to solve the optimization problem to a local optimum. For the
AC4MPC-RTI algorithm, we use SQP iterations with the RTI
scheme and Gauss–Newton Hessian approximations for the
stage costs and the constraints due to their favorable numerical
properties [10]. We use the interior point QP solver HPIPM
[57] for the QP-subproblems. For the terminal value function,
which is an NN in the proposed algorithm, we set the Hessian
matrix in the QP subproblems to a diagonal matrix with
small entries and only compute first-order derivatives since
this increased the numerical robustness in the performed exper-
iments. In the AD example, the nonlinearity of the critic was
occasionally preventing the solver from converging. Therefore,
the influence of the critic was diminished by multiplying it in
the terminal value function by a factor 0 ≤ β ≤ 1.

For the RTI solver, we used acados [55] and the
learning framework L4CasADi [58] to interface Pytorch
models. The actor and critic networks were trained using
stable-baselines-3 [59].

B. Illustrative Example

To shed light on the fundamental properties of AC4MPC, an
illustrative snow hill environment is introduced. The environ-
ment models a point-mass vehicle with position p and velocity
v, with ṗ = v and the state s = [p, v]>. The vehicle moves
in one dimension and has to climb a snowy hill, which is
modeled by an acceleration shown in Fig. 2. The vehicle can
be controlled by a bounded acceleration |u| ≤ 1 m/s2, leading
to the model equation p̈ = v̇ = u + ares(p). The dynamics are
discretized by an RK4 integrator and a discretization time of
td = 0.1 s to yield the discrete-time system sk+1 = F(sk, uk).
Notably, the vehicle must first move away from the hill to gain
enough speed to climb the slope. Using the initial state ŝ, the
discrete-time snow hill environment OCP is

min
s0,...,sNsim ,u0,...,uNsim−1

NsimX
k=0

q
s>k Qsk + 1 +

Nsim−1X
k=0

u>k Ruk
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Fig. 3. Comparison of closed-loop trajectories S j and relevant value functions for different control algorithms applied to the snow hill environment. Optimization
solvers of any algorithm were solved toward full local convergence. Closed-loop trajectories are evaluated for four different starting states ŝ j, simulating the
system for 20 s, following the related policy. The goal state s̃ = [0, 0]> can only be reached by certain algorithm variants. The first plot shows the ground-truth
value function J∗ and trajectories obtained by MPC with a sufficiently long horizon to reach the goal state. The next plot shows trajectories obtained by DP,
which are only close to optimal due to the discretization error. The difference ∆Jdp = J∗ − Jdp of the DP value function Jdp to the optimal counterpart is
shown. The next two plots show simulated trajectories using the actor, as well as the critic value function difference ∆Jsac to the optimal one of SAC RL after
5 · 104 and 105 iterations, respectively. The bottom-left plot shows the nominal MPC evaluation by initializing the trajectories at the current state. The value
function Jmpc corresponds to the open-loop values computed by the NMPC, and we plot ∆Jmpc = J∗ − Jmpc. Next, we show the A4MPC, which uses the actor
obtained by SAC to initialize each MPC closed-loop iteration but no terminal value function, C4MPC, which uses the last state as the initial guess and the
critic of the SAC as terminal value function, and AC4MPC, which uses both. The value functions plotted for A4MPC, C4MPC, and AC4MPC correspond to
the SAC critic value Jsac50, which is used directly in C4MPC and AC4MPC as the terminal value function, and the related policy rollout is used in A4MPC
and AC4MPC-RTI.

s.t. s0 = ŝ, |uk | ≤ 1, sk+1 = F (sk, uk) , k ∈ NNsim−1.

In the following, different control approaches for the snow
hill environment and related to AC4MPC are qualitatively
compared via samples of closed-loop trajectories and their
value functions, as shown in Fig. 3. Furthermore, a quantitative
comparison of the obtained closed-loop cost for RL variants,
MPC, AC4MPC, and AC4MPC-RTI is given in Fig. 4. For all
experiments, we simulate for Nsim = 200 steps.

First, the “ground-truth” value function J∗ and the policy
are obtained by solving the OCP as NLP and fixing the final
state to the goal state s̃ = [0, 0]> (see top-left plot in Fig. 3).
Distinct globally optimal trajectories are shown for different
starting states ŝ. Note that by fixing the final state and using an
interior point solver ipopt [56], the solver always converged.

Second, the value function Jdp and policy are obtained by
DP within a discretization of ∆s = [0.05 m, 0.05 m/s]> and
∆u = 0.01 m/s2, between veval = [−3, 3] m/s and peval =

[−12, 4] m. DP yields nearly optimal trajectories despite the
state discretization error. In Fig. 3, the difference to the optimal
value function ∆Jdp = J∗−Jdp is shown, in addition to example
trajectories obtained by following the DP solution at each grid
cell.

Moreover, the policy obtained by SAC after 5 · 104 and 105

iterations and the critic function Jsac50 and Jsac100, respectively,
are evaluated. For both the actor and the critic, feed-forward
NNs with two layers of size 256 with tanh-activation functions

are used. Notably, in SAC, a Q-value function Q(s, u) is part
of the algorithm. The regular value function is obtained by
minimizing over the input u in each state. In Fig. 3, it can
be verified that the value function is approximated up to
a small error, and the optimal policy drives the trajectories
suboptimally to the goal state s̃.

Thereafter, the nominal MPC is evaluated using a terminal
cost equal to the stage cost and a horizon of Nmpc = 20. The
MPC is initialized at the current state and solved with the
ipopt [56] solver toward convergence in each iteration. Fig. 3
reveals that MPC gets occasionally stuck in local minima and
can barely reach the goal state. This is due to the missing
terminal value function and initial guesses that lead to poor
local minima. Moreover, the horizon is too short to add a
terminal constraint for the goal state.

Finally, AC4MPC is evaluated with two ablations. In the
ablation named A4MPC, the actor is used to initialize the
MPC, but without a terminal value function. In the ablation
C4MPC, the critics Jsac50 and Jsac100 are used as terminal
value functions for the MPC. In C4MPC, the current state
is used to initialize the primal variables of the MPC. In Fig. 3
and the performance comparison in Fig. 4, it can be verified
that superior performance can only be achieved by using both
the actor and the critic, as in AC4MPC. In this example,
the AC4MPC outperforms all other variants, including DP in
closed-loop performance.
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Fig. 4. Comparison of average suboptimality ρ = (J{·} − J∗)/J∗ evaluated
for closed-loop accumulated costs, corresponding to the closed-loop value
functions, for different control algorithms on the snow hill environment. The
proposed AC4MPC algorithm outperforms all other approaches, including DP.
In this example, using either the critic (C4MPC) or the actor (A4MPC) alone
leads to high costs, yielding only slight improvements over the nominal MPC.
Using AC4MPC incurs a high computational demand due to the need to solve
the optimization problem toward convergence in each iteration. AC4MPC-RTI,
which only solves one QP instead of the full NLP, significantly reduces the
online computation time yet slightly increases the closed-loop cost. The cost
of AC4MPC-RTI is considerably lower than the RL SAC cost. The zoomed
range in the top plot is highlighted in green.

Finally, in Fig. 4, we quantitatively evaluate AC4MPC-
RTI for a horizon of 20 steps and actor and critic networks
obtained after 105 or 5 · 104 SAC steps, respectively. We
used a correction parameter α = 1 in Algorithm 3 and
an evaluation rollout length R = 20. The results in Fig. 4
highlight that AC4MPC-RTI outperforms the corresponding
SAC variant. The computation time of AC4MPC-RTI is over
two orders of magnitude faster than AC4MPC, yet slower than
the SAC policy evaluation. An illustrative single simulation
of AC4MPC-RTI, including open-loop planned trajectories, is
shown for an initial state ŝ> = [−5,−1] in Fig. 5. It shows
that the solver switches occasionally to the parallel MPC
trajectory or the direct policy rollout. The parallel MPC solver
is reinitialized in all P = 5 steps.

Undoubtedly, the model used in AC4MPC plays a crucial
role in evaluating the suboptimality and optimizing the initial
guess provided by the actor network. If the model deviates
from the true system significantly, the algorithm is expected
to perform poorly, as evaluated empirically in Fig. 6 for the
snow hill environment.

In conclusion, the illustrative example demonstrates that,
in general, both the actor and critic approximations may
be relevant for the AC4MPC, and that AC4MPC-RTI sig-
nificantly improves computation time by slightly sacrificing
performance. Section V-C gives a more elaborate example of
AD using AC4MPC-RTI.

C. Autonomous Driving

The following example considers a practically relevant and
more involved autonomous driving scenario with parameters

Fig. 5. Phase plot of the AC4MPC-RTI closed-loop trajectory in the snow
hill environment, starting from the state s0 = [−5,−1]> and ending in the
goal state s̃ = [0, 0]>. At each P = 5 iterations (black cross), the parallel
MPC is reinitialized using the actor policy. The control corresponding to the
lowest-cost trajectory is applied to the system. The top plot shows whether
an NMPC control was applied in the current time step (blue) or the proposed
RL action (red). Additionally, green triangles indicate if, in the particular
time step, the source of the output changed between the NMPC variants or
the policy rollout. The bottom plot shows the parallel rollouts of potentially
both inactive NMPCs (orange) and the RL rollout (red).

Fig. 6. Robustness of AC4MPC is empirically evaluated in the snow
hill environment by evaluating the mean performance over 100 closed-loop
evaluations with an increasing model-plant mismatch, realized by modifying
the mass in the MPC model between 10% and 5000%. Up to a mass mismatch
of 200%, the closed-loop cost is barely influenced. However, the performance
significantly decreases beyond a mismatch of 200%.

according to the AD framework proposed in [15].2 The
scenario includes a randomized road, i.e., a road that is

2AD simulator available at https://github.com/RudolfReiter/vehicle gym
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TABLE I
ONLINE COMPUTATION TIMES (PARALLEL EVALUATION)

FOR AD EXAMPLE

constructed by randomizing its curvature κ(ps) along the
longitudinal position ps in an interval [κ, κ]. Two slower
surrounding vehicles (SVs) are simulated to follow a reference
speed and a curvilinear path at random positions in front
of a controlled ego vehicle (EV). All vehicles are simulated
as five-state single-track models in the Frenet coordinate
frame using ellipsoidal obstacle constraints. The goal of the
EV is to overtake the SVs while maintaining a speed limit
v = 20 m/s, considering longitudinal and lateral acceleration
constraints alon = 3 m/s2, alon = −12 m/s, and alat = 5 m/s,
respectively, and avoiding collisions. SV trajectories and the
related constraints are predicted in each time step assuming
constant velocity and a curvilinear motion in the reference
frame [15]. We use parameters for the real-world vehicle
devbot 2.0 of the competition Roborace [60].

To benchmark comparisons against the proposed AC4MPC-
RTI, a nominal MPC that utilizes the RTI scheme is
implemented as described in [15]. Moreover, three RL agents
are trained using the SAC method with 2 · 106 steps or using
PPO with 107 steps and different seeds for randomized initial
NN weights. The nominal MPC approximates time-optimal
driving by avoiding the obstacles, yet without a globalization
strategy, i.e., the MPC uses the RTIs purely based on the
previous solution. It uses a zero-velocity terminal constraint.
For AC4MPC-RTI, the nominal MPC prediction horizons N
of 10, 30, or 60 are compared with a discretization time of
td = 0.1 s, a correction parameter α = 0, and a reinitialization
parameter P = 5. Since, in this example, the primal variables
obtained during RTI iterations exhibit only small open gaps,
we directly evaluate the multiple shooting trajectory cost,
including penalties for open gaps. The SAC and PPO methods
learn a critic and actor feed-forward NN of two layers with
256 neurons each and smooth tanh activation functions. The
environment state used within this scenario consists of the
ego vehicle state, curvature evaluations κi = κ(ps,i) with
ps,i = 0, 10, 30, 70, 100, 150, and 200 m lookahead distance
of the current position, and the SV states. In this example, the
policy rollout is not evaluated without optimizer iterations, i.e.,
lines 18 and 19 in Algorithm 2 do not apply.

The algorithms are simulated in 100 random episodes with
equal seeds among the approaches. The final closed-loop cost,
as defined within the MPC and RL cost functions, is summed
for each episode and compared in Fig. 7.

The comparison reveals that the RL policy performs similar
to the MPC policy for a prediction horizon of N = 10.
For a prediction horizon of N = 30, the MPC significantly

Fig. 7. Accumulated mean episode cost of the AD example with different
prediction horizons N for various control algorithms. Three different training
seeds were used for algorithms that include NNs. The poor performance of
MPC with a large horizon (N = 60) stems from the increased sensitivity
to the initialization. Due to the initialization strategy of AC4MPC-RTI, the
closed-loop cost is much lower compared to MPC for long horizons.

outperforms the RL agents. For longer prediction horizons of
N = 60, the MPC gets occasionally stuck in local minima
created by the obstacle and boundary constraints. This leads
to a high closed-loop cost and a worse performance than the
RL agents, despite the higher computational demand. Table I
shows the average and maximum online solution time returned
by the compiled acados [55] solver. For AC4MPC-RTI, it
computes the maximum computation time over all solvers, i.e.,
it assumes parallel processing and synchronization after each
iteration. Notably, we do not account for other computation
times, as these operations are considered to be significantly
faster than solving the optimization problem.

The proposed AC4MPC-RTI algorithm outperforms both
baseline approaches in terms of closed-loop cost for both short
and longer horizons. For short horizons, the critic NN provides
a sufficient approximation for the terminal value function,
and the actor NN is of minor importance. The primary cost
decrease for longer horizons stems from the actor NN that
helps escape from local optima. Notably, in this scenario, it
was observed that the critic could also worsen the performance
of the AC4MPC-RTI approach. In fact, the critic had to
be scaled by a factor of 0.1. Otherwise, the MPC solver
acados [55] did not converge sufficiently. This highlights that
AC4MPC-RTI requires sufficiently well-trained and relatively
smooth NNs to achieve the proposed performance improve-
ment. In fact, tuning the critic to numerical stability was the
most challenging part of the proposed algorithm in the AD
example. Moreover, in this scenario, the rollout length was
set to R = 0 because an additional rollout for the evalua-
tion did not significantly improve the performance. Finally,
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Fig. 8. Snapshots at times t = 6, 7, 8, 9, and 10 s for an overtaking maneuver in
a randomized scenario of the ego vehicle (green) of two surrounding vehicles
(black) for the SAC RL, the MPC, and the AC4MPC-RTI policies. The RL
policy lags behind MPC and AC4MPC, while the MPC is stuck in a local
minimum behind a leading vehicle. AC4MPC escapes this minimum by a
policy rollout and swerves to the right. Red arrows indicate accelerations in
the longitudinal and lateral directions in the vehicle coordinate frame. Planned
trajectories are plotted in gray.

AC4MPC-RTI exhibits slightly larger online computation
times, as shown in Table I.

Exemplary snapshots3 of the simulation are shown during
the critical overtaking maneuver in Fig. 8. The rendering of the
simulation reveals that the RL agents progress conservatively
and only overtake in the presence of larger gaps. Compared
to AC4MPC-RTI, the RL policy does not involve any online
optimization, which makes it faster but results in higher costs,
given that the MPC model is accurate. As shown in Fig. 8,
MPC occasionally gets stuck behind vehicles due to the
presence of local minima. AC4MPC-RTI can escape this local
minimum due to the critic in the terminal value function and
the parallel policy rollouts. Compared to MPC, the AC4MPC-
RTI can, therefore, reduce the closed-loop cost at the expense
of a slightly larger online computation time.

VI. CONCLUSION, DISCUSSION, AND OUTLOOK

This work proposes a framework that can enhance the
performance of nonlinear MPC by utilizing sufficiently well-
trained NNs that approximate the optimal policy and optimal

3Rendered simulations available: https://rudolfreiter.github.io/ac4mpc vis/

value function. Training these networks is the primary goal
of RL, and recently, developed software tools (see [61]) offer
the possibility of merging these networks with MPC solvers.
Under certain assumptions, we have established the theoretical
foundation for the proposed improvement in closed-loop per-
formance. Practical, relevant examples provide experimental
validation. Notably, the proposed algorithm can be easily
parallelized to an ensemble of NNs. The main burden in
practical applications is the increased effort to obtain both
MPC, necessitating a differentiable model and careful tuning,
and RL, requiring a fast simulator. Moreover, the performance
of the proposed algorithm depends on the quality of the trained
RL networks and the model that approximates the real-world
environment. A poorly trained actor may not decrease the
overall performance compared to conventional MPC. However,
an ill-trained and, hence, highly nonlinear critic used as a
terminal value function may lead to numerical instabilities of
the optimizer. In this case, the optimization algorithm may fail
to converge. We observed such problems in the autonomous
driving example of Section V-C. The numerical properties
of the value function can be improved by either dedicated
optimization problem-solving strategies or by enforcing favor-
able numerical properties already during the learning, such
as in [29]. Fortunately, the proposed algorithm inherits the
robustness of MPC to model mismatches [62].

In our particular experiments, the influence of the feasibility
parameter α (see Section IV-B) was small. We assume that
this is due to the mildly unstable systems considered. In
the snow hill environment and autonomous driving example,
the trajectory within MPC has only minor gaps, leading to
a negligible influence of the feasibility parameter since it
only applies the actor control law for infeasible open gaps.
However, we generally expect an increased impact on highly
unstable or chaotic systems.
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Katrin Baumgärtner received the master’s degree
in computer science from the University of Freiburg,
Freiburg, Germany, in 2019, where she is currently
pursuing the Ph.D. degree under the supervision of
Dr. Moritz Diehl.

Her research interests are structure-exploiting
numerical methods for optimal feedback control and
open-source software development.

Jasper Hoffmann received the master’s degree in
computer science from the University of Freiburg,
Freiburg, Germany, in 2020, where he is currently
pursuing the Ph.D. degree under the supervision of
Dr. Joschka Bödecker.
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