
Time-optimal Motion Planning for n-DOF Robot Manipulators using a
Path-Parametric System Reformulation*

Robin Verschueren1, Niels van Duijkeren2, Jan Swevers2, Moritz Diehl1

Abstract— Time-optimal motion planning for robotic manip-
ulators consists of moving the robot along a path in Cartesian
space as fast as possible. In contrast to time-optimal path fol-
lowing, small deviations from a predefined path are acceptable
and can be exploited to further reduce the overall motion time.
In this paper, we present a new method to compute time-
optimal motions around a path. By employing an appropriate
change of variables for the robot dynamics to path coordinates,
geometric constraints enter the optimal control formulation in
a convenient way. The reformulation of the robot dynamics and
the path constraints is illustrated with numerical examples.

I. INTRODUCTION

Time-optimal motion is of significant importance for max-
imizing the productivity of robot systems. Frequently, the
essence of a task for a robot is described by the path it
should follow. Examples include control of CNC machines,
welding robots, but also control of autonomous aerial, land,
underwater vehicles. From previous work we learn that gen-
erating time-optimal motion starting from a given geometric
path can be beneficial. The operator can choose a path
that ensures collision avoidance and satisfies other geometric
constraints in advance. Given a fixed path in the configuration
space of the robot (which may require an inverse kinematics
step), the remainder of the trajectory generation problem
consists of the significantly simpler step of choosing the
optimal timing where to be when on the given path [6], [16].
We will call this the decoupled approach to time-optimal
motion generation. An example of this is [8], an online two-
level method, where the secondary level modifies a nominal
trajectory by performing a time scaling during motion. This
idea is elaborated in [15] with a decoupling between lateral
and longitudinal control. Other online approaches to path
following go one step further and consider a geometric path
solely as reference and generate an optimal feedback law that
decides on both the timing and the distance to the reference
using a nonlinear model predictive control (NMPC) approach
[10], [14].

*This research benefits from ERC-HIGHWIND (259 166), FP7-ITN-
TEMPO (607 957), and H2020-ITN-AWESCO (642 682), K.U.Leuven-BOF
PFV/10/002, Center-of-Excellence Optimization in Engineering (OPTEC),
and the Belgian Programme on Interuniversity Attraction Poles, initiated by
the Belgian Federal Science Policy Office (DYSCO). Robin Verschueren
and Niels van Duijkeren are fellows of the TEMPO FP7 Initial Training
Network.

1Systems Control and Optimization Laboratory, Department
of Microsystems Engineering, University of Freiburg, Germany
robin.verschueren@imtek.uni-freiburg.de

2Division of Production engineering, Machine design and Automa-
tion, Department of Mechanical Engineering, KU Leuven, Belgium
Niels.vanDuijkeren@kuleuven.be

The geometric path in the workspace of the robot may
not be completely strict and, in fact, limited deviations may
be perfectly acceptable, for instance in tasks with a certain
machining tolerance, or in orientation invariant tasks. The
work in [9] presents a time-optimal approach which allows
deviation from the reference path, by projecting the robot
dynamics on the reference path and introducing constraints
on the forward position kinematics. As in [9], we propose
a trajectory generation methodology closely related to the
decoupled approach. The main difference is that we do not
project the robot dynamics onto a predefined path. Rather, we
reformulate the dynamics around it; by doing so, we allow
the end-effector of the robot to deviate from the path. This
method relies on a so-called spatial reformulation (or time
transformation) previously proposed in [12], [11] for planar
motions. The concept of this reformulation is to introduce
a variable s that measures the progress of the motion in
the workspace of our system and to transform the system
dynamics to evolve with this progress instead of time. This
approach is appealing, since it allows all static geometric
aspects in the optimization problem to appear explicitly in the
horizon of the optimal control problem. The price to pay is a
nonlinear transformation of the system dynamics and the loss
of the ability to explicitly define changing geometric prop-
erties in time. Examples of implementations of the spatial
reformulation include research on driver assistance functions
for high way driving of long heavy vehicle combinations
(LHVCs) [19], and time-optimal nonlinear model predictive
control (NMPC) on small-scale race cars [20].

In this paper, we present a generalization of the time-
transformation for paths in three-dimensional Euclidean
space, applied to a reference path in the workspace of a
serial-link robotic arm. The spatial reformulation enables
us to express a natural formulation of an optimal control
problem (OCP) for time and energy optimal motion, since
travel time becomes a state variable of the system equations.

This paper is organized in the following way. First we
introduce and derive the so-called spatial reformulation for
motion of the end-effector of a robotic arm with respect
to a reference curve in the Euclidean workspace of the
robot. Secondly, an OCP is introduced that is solved with
two equivalent formulations; the first approach uses the
novel technique presented in this paper, the second takes
the traditional approach of scaling the horizon and system
dynamics linearly by an optimization variable. We illustrate
the efficacy of the method to describe geometric constraints
to facilitate e.g., collision avoidance. Thereafter we briefly
elaborate on the implementation and the tools that were



employed. The paper concludes with a discussion on the
simulation results and a brief preview of future work.

In the remainder of this paper, we will make use of the

notation (·)′ =
d(·)
ds

and ˙(·) =
d(·)
dt

.

II. SPATIAL REFORMULATION OF ROBOT
DYNAMICS

To illustrate the spatial reformulation, we apply it to an
optimal motion planning task for a robotic arm. Let us
consider a rigid-body n-DOF serial-link robotic manipulator.
Recall that the motion equations of this kind of systems can
be written in the form, cf. [18]:

dq
dt

= q̇ (1a)

M(q)
dq̇

dt
= τ − C(q, q̇)q̇ −G(q), (1b)

where q, q̇, τ ∈ Rn are the joint angles, joint velocities and
actuation torques in the joints, respectively. M(q), C(q, q̇)
denote the mass matrix and a matrix accounting for Coriolis
and centrifugal effects, G(q) is a vector of torques due to
gravitation. Note that Coulomb friction and viscous friction
are neglected as they are not readily taken into account in
applying the spatial reformulation.

In this section, we will first present the way in which we
represent the path and establish a formula for the progress
along the path. We then use this relation to apply the spatial
reformulation of the dynamics.

A. Path Representation

Let γ(t) be a continuous, sufficiently often differentiable
curve in three-dimensional Euclidean space, assuming that
the velocity vector γ̇(t) 6= 0. We introduce the arc length
s(t) as the distance traveled along the path. The path Γ =
{γ(s) ∈ R3 : s ∈ [0, l] → γ(s)} is parametrized by its arc
length

s(t) =

∫ t

0

‖γ̇(x)‖2 dx. (2)

Local properties of the curve are characterized by the cur-
vature κ and the torsion σ. At each point s on Γ we
define an orthonormal basis frame of three vectors T , N
and B, referred to as the tangent, normal and binormal unit
vectors. These unit vectors are defined by T (s) := γ′(s),
N (s) := T ′(s)/‖κ(s)‖2 and B(s) := T (s) × N (s) and
satisfy the Frenet-Serret formulas, cf. [13]:

T ′ = κN , N ′ = −κT + σB, B′ = −σN . (3)

Furthermore, let p(t) be the vector of positional coordi-
nates at fixed time t in the inertial world frame (forward
position kinematics of the robotic manipulator), then the
point on the path γ closest to p(t) is γ(s?), where

r(s, t) = p(t)− γ(s) (4)

s? = arg min
s

1

2
‖r(s, t)‖22. (5)

See Fig. 1 for an illustration of the concept.

s
s?

p

T

N

B

Fig. 1: Illustration of the position of the end-effector with
respect to the closest position of the path.

As is clear from (4)-(5), finding s?(t) involves an opti-
mization problem. Since it is undesired to embed this into a
higher-level optimization problem, we attempt to find the
temporal evolution of s?(t) by looking at the optimality
conditions. Recall that for unconstrained optimization, the
first order necessary condition for optimality is:

0 =
d

ds

(
1

2
‖r(s, t)‖22

)
(6a)

= r(s, t)T γ′(s). (6b)

Consider that the position s? is known at an initial time-
point, we can enforce the solution to be optimal in time
by setting the time derivative of the necessary first order
optimality condition (6) to zero, i.e.,

0 =
d

dt

(
r (s, t)

T
γ′ (s)

)
(7a)

= (v(t)− γ′ (s) ṡ(t))T γ′ (s) + r (s, t)
T
γ′′ (s) ṡ(t), (7b)

where v(t) = dp(t)
dt . This ultimately gives us a closed formula

for the velocity of the point on the path closest to p(t),

ṡ(t) =
v(t)TT (s)

1− κ (s) r (s, t)
T N (s)

. (8)

B. Spatial reformulation

We augment the state vector with r = [rx, ry, rz]
T .

Additionally, the state t(s) is included to keep track of
the evolution of time. The state vector then reads ξ =[
qT , q̇T , rT , t

]T ∈ Rl. Using the established representation
for the dynamics of the position of the end-effector p(t) with
respect to the path, we perform a spatial transformation of
the equations of motion:

ξ′ :=
dξ

ds
=

dξ

dt

dt

ds
, (9)

with the state vector ξ. For ṡ(t) 6= 0, we have that dt
ds = 1

ṡ(t) ,
and therefore

ξ′ =
1

ṡ(t)
ξ̇. (10)



The resulting equations of motion are:

dq

ds
=
q̇

ṡ
(11a)

M(q)
dq̇

ds
=
τ − C(q, q̇)q̇ −G(q)

ṡ
(11b)

dr

ds
=
ṗ

ṡ
− T (s) (11c)

dt

ds
=

1

ṡ
, (11d)

(11e)

where the velocity of the end-effector can be written as
ṗ = J(q)q̇, with J(q) the robot Jacobian, and ṡ is obtained
from (8).

The time transformation applied above is nonlinear, but is
nevertheless appealing for two reasons. First, with the newly
obtained state variable t(s) and the according first-order
differential equation dt

ds , time-optimal motion is equivalent
to minimizing t over the motion along the path. Secondly,
the required knowledge about the temporal evolution of the
T , N and B vectors describing the local Frenet-Serret frame
and many other geometric properties (such as obstacles) at
time t become explicitly available in the integration scheme
for ξ′.

III. OPTIMAL CONTROL PROBLEM
FORMULATION

In order to illustrate the benefits of the spatial reformula-
tion of the robot dynamics, we formulate a time-optmimal
trajectory generation problem. The OCP we intend to solve
is stated as

minimize
ξ(·)∈Rl,
τ(·)∈Rm

tf =

∫ tf

t=0

dt (12a)

subject to ξ̇(t) = f(ξ(t), τ(t)) ∀t ∈ [0, tf] (12b)
g(p(t)) ≤ 0 ∀t ∈ [0, tf] (12c)

τ(t) ≤ τ(t) ≤ τ(t) ∀t ∈ [0, tf] (12d)

with system dynamics, path constraints and torque bounds
as constraints, respectively. This formulation is not readily
passed to an optimization routine, as the time interval [0, tf]
on which we solve the OCP is not independent of the
optimization variables. Therefore, we proceed to pose two
reformulations of the above OCP, which we will compare in
the subsequent sections. The first is a time-optimal formu-
lation using a rescaling of the time variable, with geometric
constraints as nonlinear constraints. The second one makes
use of our proposed spatial reformulation.

For both formulations, ξ = [qT , q̇T , rT , t]T is the state
vector and τ are the controls.

A. Time-scaled time-optimal control problem

We introduce θ = t/tf as a scaling of the time variable.
Furthermore, for the formulation in time, we do not make
use of a predefined path, so we take γ(s) = 0; this results
in r = p. In this way, notation is consistent with the spatial

formulation. Using the linear time scaling θ = t/tf, the OCP
in (12) becomes

minimize
ξ(·)∈Rl,
τ(·)∈Rm

tf =

∫ 1

θ=0

tf dθ (13a)

subject to
dξ(θ)

dθ
= tf · f(ξ(θ), τ(θ)) ∀θ ∈ [0, 1] (13b)

gθ(r(θ)) ≤ 0 ∀θ ∈ [0, 1] (13c)

τ(θ) ≤ τ(θ) ≤ τ(θ) ∀θ ∈ [0, 1] (13d)

Using the above linear rescaling, we are indeed capable
of making the integration interval [0, 1] independent of the
decision variables ξ, τ .

B. Spatial time-optimal control problem

From (10), we get the spatial dynamics as f(ξ(s), τ(s))/ṡ.
The optimal control formulation then reads as

minimize
ξ(·)∈Rl,
τ(·)∈Rm

tf =

∫ sf

s=0

dt

ds
ds (14a)

subject to ξ′(s) =
f(ξ(s), τ(s))

ṡ
∀s ∈ [0, sf] (14b)

gs(r(s)) ≤ 0 ∀s ∈ [0, sf] (14c)

τ(s) ≤ τ(s) ≤ τ(s) ∀s ∈ [0, sf] (14d)

where we obtain ṡ from (8).
Note that both OCPs (13) and (14) are equivalent to

(12), as the objective function and the constraints remain
equivalent after transformation of variables.

IV. NUMERICAL ALGORITHMS

To numerically solve the optimal control problems of
the previous section, we adopt the open-source CasADi
[3] software framework, which has been proven to solve
OCPs reliably and efficiently [5]. More specifically, we use
the Python front-end to formulate the OCP as a nonlinear
program (NLP) using Bock’s multiple shooting method [7]
as a discretization method. To this end, we relied on the
integrators cvodes and idas inside the sundials suite [1].

The resulting NLP is passed to the open-source solver
IPOPT [21]. It implements a primal-dual interior point
method suited for solving large-scale NLPs. The linear
algebra subroutine calls were passed to the sparse solver
ma57 from the HSL library [2]. Note that all of the software
packages mentioned above can be conveniently called from
within the CasADi framework.

For the second part of the simulations, we use a 6-DOF
robot model, which is constructed with the Python-based
toolbox SympyBotics [17].

V. SIMULATION RESULTS

We show the performance of our time-optimal OCP with
spatial reformulation of the dynamics on a simple three
link robot manipulator of which the Denavit-Hartenberg
parameters are shown in Table I. We consider two different
motion experiments: the first is a time-optimal point-to-point



TABLE I: Denavit-Hartenberg parameters for the
three-link robot used in simulation

d [m] θ [rad] a [m] α [rad]

Link 1 0.1 0 0 π/2
Link 2 0 π/2 1 0
Link 3 0 −π/2 0.7 0

motion, where we compare the results of both the spatial
reformulation and the linear time scaling. The second is a
problem where no end effector position is specified, and we
introduce a static obstacle.

Note that in the following, a small control regularization of
the form rτ

∑
i τ

2
i , with rτ = 10−4 is added to the objective

function in order to obtain smooth control trajectories.

A. Time-optimal point-to-point motion

To illustrate the equivalence of both methods discussed
in Section III, we solve the OCPs (13)-(14) for a simple
time-optimal motion planning task. The robot end-effector
travels from a starting point p0 to a fixed final position pf ,
staying inside a certain space, defined as the space between
two cilinders, see Fig. 2.

This constraint might be posed for the time-dependent
formulation as

R ≤ ‖[rx(θ), ry(θ)]T ‖2 ≤ R, ∀θ ∈ [0, 1], (15a)

Z ≤ rz(θ) ≤ Z, ∀θ ∈ [0, 1]. (15b)

Recall that, for the time-domain formulation, r denotes the
vector from the origin to the end-effector. For the spatial
formulation the constraints read as

Rs ≤ rTN (s) ≤ Rs, ∀s ∈ [0, π/2], (16a)

Z ≤ rz(θ) ≤ Z, ∀s ∈ [0, π/2], (16b)

with

T (s) = [− sin(s), cos(s), 0]T ,

N (s) = [− cos(s),− sin(s), 0]T ,

B(s) = [0, 0, 1]T ,

κ = 1.0 m−1,

σ = 0.0 m−1.

The graph in Fig. 2 corresponds with the values R =
0.8 m, R = 1.2 m, Rs = 0.2 m, Rs = 0.2 m, Z = −0.1 m,
Z = 0.1 m.

One advantage of the spatial reformulation follows from
the comparison of (16a) and (15a): in the latter case, the path
constraint is convex, in the first it is not. If convexity holds
for the constraint functions, convergence of the NLP solver
is often accelerated.

We compare the solution of the two different formulations
in Fig. 3. The solution trajectories of both methods are shown
as a function of time. The torque trajectories clearly show
that the methods result in different discretizations. The spatial
formulation yields a solution that takes longer time-steps in
the beginning of the interval than the time-based formulation,

1.41.210.80.6

Y [m]
0.40.20

1.4

1.2

1

0.8

0.6

X [m]

0.4

-0.2

-0.1

0

0.2

0.1

0.2

0

Z
 [

m
]

Fig. 2: Time-optimal solution (red) of optimal control prob-
lems (13) and (14) with cylindrical path constraints. The con-
straint space is delimited with dark blue faces, the centerline
is shown in black.

which takes equidistant steps. It is clear from the figure that
the resulting trajectories for the lateral and vertical deviation
from the centerline of the cylindrical path are the same, up
to the different discretizations. For a finer discretization grid,
these differences vanish.

Another interesting remark is that the constraint on the
first joint torque is active throughout the entire interval, as
we would expect in a time-optimal motion. In addition, the
path constraints are seen to be active most of the times as
well, except to meet the initial and end point constraints.
To conclude the comparison, we examine the NLP solver
convergence. In this particular example, the time-optimal
OCP was solved faster with the spatial formulation than
the time formulation: the interior point solver needed 36
iterations (0.094 s) instead of 57 (0.191 s). More experiments
need to be carried out to confirm this as a general rule.

B. Time-optimal obstacle avoidance

A major advantage of employing the time transformation
instead of the conventional formulation, is the natural way
to insert geometric constraints. Also, this method is suited
for arbitrary paths in space, not just analytical ones as in
the above example. Both properties are made apparent in
the following simulation result, where we consider a 6-DOF
ABB IRB120 industrial robot (Fig. 4) [4]. The simulation
experiments are based on a dynamic model of this robot that
was made available by ABB, albeit without taking friction
into account.

In the following example, we perform a time-optimal
motion planning task. The robot has to follow a given path
within given tolerances as fast as possible, avoiding a static
cylindrical obstacle at the end of the path. Additionally,
we constrain the end-effector to point vertically down by
imposing additional constraints on the forward orientation
kinematics. The path specified (cf. dotted line in Fig. 5a) is
a planar path with piecewise constant curvature and given
initial tangent and normal vectors, both normalized. The



time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

LATERAL DEVIATION [m]

spatial
time

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-0.15

-0.1

-0.05

0

0.05

0.1

VERTICAL DEVIATION [m]

spatial
time

(a) The lateral and vertical deviation are taken with respect to the
centerline between the two cilinders.

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 1 TORQUE [Nm]

spatial
time

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 2 TORQUE [Nm]

spatial
time

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 3 TORQUE [Nm]

spatial
time

(b) The torques in the robot joints.

Fig. 3: Comparison of the solution of the two OCP formu-
lations (13) and (14). The joint torque bounds are taken to
be −50 Nm ≤ τ ≤ 50 Nm for both formulations.

Fig. 4: Sketch of the ABB IRB120 industrial robot. During
the simulation, the end-effector points down (as shown).

binormal, which is vertical at all points, is taken arbitrarily
as B0 = [0, 0, 1]. The cartesian coordinates of the path can
be retrieved by integrating the Frenet-Serret formulas (3)
forward in the path coordinate s, starting at s0 = 0 m.
Note that this integration can be incorporated in the state
equations (which are already in function of s) by augmenting
the dynamics with (3).

At the end of the prespecified path, there is a static
cylindrical obstacle narrowing down the maneuvering pos-
sibilities of the end-effector. In the spatial formulation, this
constraint will amount to increasing the lower bound of the
constraint (16a); it remains a simple bound. The resulting
time-optimal path can be seen in Fig. 5a. Again, we see
that the path touches the inner path constraint as we expect
for time-optimal trajectories. Note that in this case, the final
position of the end effector is not completely specified,
only constrained to lie in the plane spanned by N and B.
The vertical deviation is depicted in Fig. 5b. Also here the
constraints on the vertical deviation become active at some
point in the motion.

Note that the time-domain formulation (13) is not readily
applicable in this example, because the path constraints
are not straightforward to compute in the time domain for
arbitrary paths, in contrast with paths with an analytical de-
scription, as in the first example. This shortcoming originates
from the fact that we do not know on beforehand where in the
configuration space the end effector will be at which point in
time, i.e. the relation between t and s is not stated explicitly.
An expression of the path constraints in the time domain
results in possibly very nonlinear constraints; this holds even
more so for static obstacles as in the above example.

VI. CONCLUSION
In this paper, we introduced a path-parametric system

reformulation for robotic manipulators. It is aimed at conve-
nience for path specification, and exhibits a natural way to
impose geometric constraints. These advantages have been
shown in relation to time-optimal control using a time-
scaling approach, which does not posess these properties.

The work presented here forms the groundwork for future
developments. A first follow-up of the results showed is to
assess the novel method on an experimental testbed. Joint



X [m]
0.54 0.55 0.56 0.57 0.58 0.59 0.6

Y
 [m

]

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
TIME-OPTIMAL PATH WITH OBSTACLE AVOIDANCE

end effector path
center
path constraint

(a) Top view of the time-optimal path. Near the end of the path,
there is a static obstacle narrowing the available space of the robot
end-effector.

s [m]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Z
 [

m
]

0.275

0.28

0.285

0.29

0.295

0.3
VERTICAL DEVIATION

vertical deviation
center
bound

(b) Vertical deviation from the z = 0.288m horizontal plane.

Fig. 5: Time-optimal optimal control problem with obstacle
avoidance around an arbitrary central path with piecewise
constant curvature.

and control trajectories can be computed offline, in a similar
fashion as to compute the simulation results showed. To this
end, an effective way of taking into account Coulomb and
viscous friction is needed.

Another possible advancement lies in the application of
the presented techniques in a model predictive framework,
both in simulation and on a real-life robot setup. More
specifically, the application of this method in real-time seems
a computational challenge, although the first steps in this
direction have been taken. Lastly, a setup running entirely
online, where path information is not specified in advance
but, for instance, supplied by human interaction via a manual

control device could exploit all the computational advantages
proposed above to a greater extent.

ACKNOWLEDGMENTS

The authors would like to thank ABB Sweden for supply-
ing us with useful information regarding the IRB120 robot
model.

REFERENCES

[1] Sundials. SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers. https://computation.llnl.gov/casc/
sundials, 2009.

[2] Hsl. A collection of fortran codes for large scale scientific computa-
tion. http://www.hsl.rl.ac.uk, 2011.

[3] CasADi. http://casadi.org, 2013.
[4] ABB. IRB120 technical data. http://new.abb.com/

products/robotics, 2015. [Online; accessed 22 September
2015].

[5] J. Andersson, J. Åkesson, and M. Diehl. CasADi – a symbolic package
for automatic differentiation and optimal control. In S. Forth, P. Hov-
land, E. Phipps, J. Utke, and A. Walther, editors, Recent Advances in
Algorithmic Differentiation, Lecture Notes in Computational Science
and Engineering, pages 297–307, Berlin, 2012. Springer.

[6] J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of
robotic manipulators along specified paths. The International Journal
of Robotics Research, 4(3):3–17, Sept. 1985.

[7] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct
solution of optimal control problems. In Proceedings of the IFAC
World Congress, pages 242–247. Pergamon Press, 1984.

[8] O. Dahl and L. Nielsen. Torque-limited path following by online tra-
jectory time scaling. IEEE Transactions on Robotics and Automation,
1990.

[9] F. Debrouwere, W. Van Loock, G. Pipeleers, and J. Swevers. Time-
optimal tube following for robotic manipulators. In 2014 IEEE 13th
International Workshop on Advanced Motion Control (AMC), 2014.

[10] T. Faulwasser, B. Kern, and R. Findeisen. Model predictive path-
following for constrained nonlinear systems. In Joint 48th IEEE
conference on Decision and Control and 28th Chinese Control Con-
ference, 2009.

[11] J. V. Frasch, A. J. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl. An auto-generated nonlinear MPC algorithm for real-
time obstacle avoidance of ground vehicles. In Proceedings of the
European Control Conference (ECC), pages 4136–4141, 2013.

[12] Y. Gao, A. Gray, J. V. Frasch, T. Lin, H. E. Tseng, J. Hedrick,
and F. Borrelli. Spatial predictive control for agile semi-autonomous
ground vehicles. In Proceedings of the 11th International Symposium
on Advanced Vehicle Control, 2012.

[13] H. Guggenheimer. Differential Geometry. Dover, 1977.
[14] D. Lam, C. Manzie, and M. Good. Model Predictive Contouring

Control. In Proceedings of the IEEE Conference on Decision and
Control (CDC), 2010.

[15] B. Olofsson. Topics in Machining with Industrial Robot Manipulators
and Optimal Motion Control. PhD thesis, Lund University, Department
of Automatic Control, 2015.

[16] K. G. Shin and N. D. McKay. Minimum-time control of robotic
manipulators with geometric path constraints. IEEE Transactions on
Automatic Control, 30(6):531–541, June 1985.

[17] C. D. Sousa. Sympybotics v1.0, Aug. 2014.
[18] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and

control. Wiley, 2006.
[19] N. van Duijkeren, T. Keviczky, P. Nilsson, and L. Laine. Real-time

nmpc for semi-automated highway driving of long heavy vehicle com-
binations. In Proceedings of the 5th IFAC Conference on Nonlinear
Model Predictive Control 2015 (NMPC’15), 2015.

[20] R. Verschueren, S. D. Bruyne, M. Zanon, J. V. Frasch, and M. Diehl.
Towards time-optimal race car driving using nonlinear MPC in real-
time. In Proceedings of the IEEE Conference on Decision and Control
(CDC), pages 2505–2510, 2014.

[21] A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, 2006.


