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Abstract— This work presents an embedded nonlinear model
predictive control (NMPC) strategy for autonomous vehicles
under a minimum time objective. The time-optimal control
problem is stated in a path-parametric formulation such that
existing reliable numerical methods for real-time nonlinear
MPC can be used. Building on previous work on time-
optimal driving, we present an approach based on a sequential
quadratic programming type algorithm with online propagation
of second order derivatives. As an illustration of our method,
we provide closed-loop simulation results based on a vehicle
model identified for small-scale electric race cars.

I. INTRODUCTION

To this day, a variety of advanced driver assistance systems
(ADAS), such as automatic parking, autonomous cruise
control and lane keeping functionality, have been introduced
in consumer vehicles. The mentioned assistance systems
are often based on traditional control schemes, and their
scope is limited to specific simple tasks. Fully autonomous
driving, on the other hand, requires more advanced control
paradigms. For instance, model predictive control (MPC) has
been shown to be a reliable and efficient control technique
for self-driving ground vehicles. Some earlier attempts were
due to [7], [11], and include experimental validation. These
approaches use various model simplification techniques to
reduce the computational complexity. A detailed vehicle
model consisting of 14 states, and with inclusion of a Pacejka
tire model, used in a nonlinear MPC (NMPC) scheme is
presented in [10]. In there, the control problem is rendered
real-time feasible by using fast tailored NMPC algorithms.

Time-optimal driving is one of the most challenging tasks,
due to the obvious antagonism between safety and speed: the
controller needs to act fast while coping with the nonlinear
vehicle dynamics and satisfying the track boundaries. In this
paper we focus on efficient algorithms and tailored problem
formulations for time-optimal driving.

A related task to time-optimal driving is path following.
Given a prespecified nominal trajectory, path following cal-
culates a timing law, that determines when to be where
on this trajectory. Nonlinear MPC is a suitable control
technique for online path following, as showed in [8] and
experimentally validated in e.g. [17]. A convex formulation
for path following for general vehicles is presented in [24],
[18].
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In contrast to path following, driving time-optimally
means to deviate largely from a nominal path (e.g. the center-
line of the race track) in order to save time. A conventional
solution strategy to time-optimal driving consists of a two-
level scheme. On the higher level, a dynamic optimiziation
routine calculates the optimal geometric trajectory, while the
lower level tracking controller uses the resulting trajectory as
a time-dependent reference. Such a scheme is worked out in
[4] and in [17] including experimental results on small-scale
race cars. The work in [16] displays experimental results on
a full-scale racing car on a track with low friction coefficient.
Others have proposed a one-level approach, as [15], [23]. In
[12], offline computed time-optimal trajectories are fed as
reference to an actual vehicle.

In [25], a real-time NMPC scheme is presented, based on
a multiple shooting discretization in the real-time iteration
(RTI) framework [5]. The time-optimal problem is refor-
mulated as a path-parametric system, as proposed in [10].
Similar to existing efficient algorithms for real-time NMPC
problems with least squares cost function, a Gauss-Newton
Hessian approximation is used to solve the time-optimal
problem.

Note that time-optimal driving is an economic MPC
problem as the stage cost is not bounded from below by a
K∞ function [1]. Therefore, stability is harder to guarantee
and efficient algorithms developed for tracking MPC cannot
be deployed. In this paper we focus on the second issue.

The contribution of this paper is as follows. In contrast
to the previous work in [25], we solve a nonlinear eco-
nomic MPC (EMPC) problem directly, taking into account
nonlinear vehicle dynamics, path constraints and control
bounds. We compute second order derivatives online and
use them in a sequential quadratic programming (SQP) type
algorithm based on a multiple shooting discretization. Recent
algorithmic advances have made it possible to generate
second order sensitivities efficiently [21], which makes it
possible to use them in real-time algorithms. Furthermore, we
present a slightly more sophisticated version of the vehicle
model used in [25].

The remainder of the paper is structured as follows.
In Section II, the vehicle model and the spatial system
reformulation is presented. Thereafter, we show the time-
optimal nonlinear MPC problem under consideration and
formulate the exact Hessian based solution strategy. In Sec-
tion V, numerical simulations are introduced to present the
effectiveness of our method. The paper concludes with an
outreach to future research interests.



 

Fig. 1: Geometric properties of the vehicle model of Sec-
tion II.

II. VEHICLE DYNAMICS

In this section, we present the model equations derived
as an ordinary differential equation (ODE) in the time
domain first. In a second step, we make use of a spatial
transformation in order to formulate the model in the spatial
domain. This approach has been proposed and motivated
in [11], [10], [25].

A. Vehicle Model
In this paper, we consider an extension of the bicycle

model used in [25]. We model the lateral tire forces using a
Pacejka model [20]. The model is based on an experimental
test setup with race cars of scale 1:43. The system dynamics
in the time domain are given by

mv̇x = mψ̇vy + F d
x − F r

x, (1a)

mv̇y = −mψ̇vx + F r
y + F f

y cos(δ), (1b)

Jψ̈ = lfF
f
y cos(δ)− lrF r

y , (1c)

where vx and vy are the velocities along the x and y axes
in the car reference frame. Angle δ is the steering angle
which we assume to control directly. Angle ψ denotes the
orientation of the vehicle in the absolute reference frame
and ψ = 0 rad indicates that the axes x and y of the vehicle
reference frame are aligned with the axes X and Y of the
absolute reference frame. Parameters m and J denote the
vehicle’s mass and moment of inertia respectively, while lf
and lr denote the distance of the vehicle’s center of mass
from the front and rear wheel respectively, see Figure 1.

The engine drive force of the DC motor in the race cars
is given by

F d
x = (Cm1 − Cm2vx)D,

where D is the engine duty-cycle, and the rolling friction
force is given by F r

x = Cr0 + Cr2v
2
x. The lateral tire forces

are given by the Pacejka formula

F •y =

Dc sin(Cc tan−1(α•Bc − (α•Bc − tan−1(α•Bc))Ec)),

with • = f, r. The slip angles are given by

αf = − tan−1

(
vy + ψ̇lf
vx

)
+ δ,

αr = − tan−1

(
vy − ψ̇lr
vx

)
.

TABLE I: Parameters of the vehicle model.

Cm1 Cm2 Cr0 Cr2

0.48 N 0.087 kg/s 0.024 N 0.004 kg/m

Bc Cc Dc Ec

8 2.1 0.1 N 1

m J lf lr
0.04 kg 1.6 · 10−5 kg m2 0.028 m 0.028 m

Note that, as a first approximation, we assume no longitudi-
nal slip. This simplification is also due to the impossibility
to measure the rotational speed of the wheels in our setup,
which impedes the use of longitudinal tire models and, in
turn, of combined slip models.

The parameters of the Pacejka tire force model have been
identified on the real setup and are reported in Table I
together with all other model parameters. Please note that
a basic identification method has been used, a more elab-
orate method would be needed in order to obtain reliable
experimental results.

B. Spatial Reformulation of Dynamics

The vehicle model presented in the previous subsection is
formulated in the time domain. Taking into account track
information in the system dynamics directly leads to a
more natural formulation of the control problem. We will
make use of a path-parametric system reformulation, as
presented in [10], and briefly explained here for clarity. This
reformulation results in a dynamic model depending on a
path parameter, such that time becomes a state variable that
can be optimized for. Additionally, by using the curvilinear
coordinate system around the centerline of the track, road
constraints become simple bounds. The advantages relative
to this choice are discussed in [10].

We project the X − Y absolute coordinates on the cen-
terline of the track, parametrised as σ(s), and replace them
with the lateral displacement ey from σ(s). Similarly, ψ is
replaced by the angular deviation eψ . The time derivative
is related to the spatial derivative (·)′ = d·

ds = 1
ṡ

d·
dt , where

ṡ = 1
1−κσ·ey (vx cos(eψ) − vy sin(eψ)), and κσ is the local

curvature of the curve σ. For the newly introduced states we
obtain

e′y(s) = (vx sin(eψ) + vy cos(eψ))/ṡ,

e′ψ(s) = ψ̇/ṡ− κσ(s).

All details of the spatial transformation can be found
in [11], [10], [25]. In the following, we lump the system
dynamics in ξ′ = f(ξ, u), where the state vector is ξ =
(ey, eψ, vx, vy, ψ̇, t) and the control vector is u = (δ,D).



III. EXACT HESSIAN BASED NONLINEAR MPC

In this section, we consider the following continuous and
nonlinear OCP formulation:

min
ξ(·), u(·)

E(ξ(S)) (2a)

s.t. 0 = ξ(0)− ξ̂0, (2b)
0 = f(ξ′(s), ξ(s), u(s)), ∀s ∈ [0, S], (2c)
0 ≤ c(ξ(s), u(s)), ∀s ∈ [0, S], (2d)

where s is usually time but, due to the use of a spatial
reformulation in our case it is the curvilinear coordinate
of the centerline of the track. We therefore also denote the
state derivatives as ξ′(s) instead of ξ̇(t). The control horizon
length is denoted as S, ξ(s) ∈ Rnξ denotes the differential
states and u(s) ∈ Rnu are the control inputs. This parametric
OCP depends on the current state estimate ξ̂0 ∈ Rnξ
through the initial value condition of Eq. (2b). The objective
in (2a) is defined by the terminal cost E(·) and the path
constraints in (2d) are assumed to be affine for simplicity of
notation. The nonlinear dynamics in Eq. (2c) are formulated
as a system of Ordinary Differential Equations (ODE). The
functions E(·) and f(·) for this discussion will need to be
twice continuously differentiable in all arguments within the
domain of interest, i.e. vx > 0, ṡ > 0, which corresponds to
forward motion of the vehicle.

A direct multiple shooting discretization [3] of OCP (2)
which divides the horizon in N control intervals, results in
the following NLP:

min
Ξ, U

E(ξN ) (3a)

s.t. 0 = φ(ξi, ui)− ξi+1, i = 0, . . . , N − 1, (3b)

0 ≤ ci + Ci

[
ξi
ui

]
, i = 0, . . . , N − 1, (3c)

with state trajectory Ξ := [ξ>0 , . . . , ξ
>
N ]> and control tra-

jectory U := [u>0 , . . . , u
>
N−1]>. Function φ(·) represents a

sufficiently accurate numerical simulation of the nonlinear
dynamics in (2c). To arrive at a more compact notation, the
initial value condition (2b) has been included in the affine
inequality constraints for i = 0 in Equation (3c).

A. Exact Hessian Based Sequential Quadratic Programming

In this paper, we solve NLP (3) by means of SQP, i.e. by
sequentially solving the following Quadratic Program (QP):

min
∆W

N−1∑
i=0

(
1

2
∆w>i Hi ∆wi

)
(4a)

+ g>N∆ξN +
1

2
∆ξ>NHN ∆ξN , (4b)

s.t. 0 = di +
dφ(w̄i)

dwi
∆wi −∆ξi+1, (4c)

0 ≤ c̃i + Ci ∆wi, i = 0, . . . , N − 1, (4d)

where ∆W := (∆w0, . . . ,∆wN ), ∆wi := wi − w̄i for i =
0, . . . , N − 1 and ∆wN := ∆ξN . The constraint values are

rewritten using di := φ(w̄i) − ξ̄i+1 and c̃i := ci + Ci w̄i.
The notation w̄i := (x̄i, ūi) is used to denote the current
optimization values, which are updated in each iteration by
solving the latter QP subproblem, i.e., W̄+ = W̄ + ∆W in
case of a full SQP step [19].

The Lagrangian of OCP (3) is separable in time and
the terms at each stage i are defined as Li(wi, λi, νi) :=
λ>i (φ(wi)− ξi+1) + ν>i (ci + Ci wi) for i = 0, . . . , N − 1.
The quadratic term in the objective (4a) is defined by Hi :=
∇2
wiLi(w̄i, λ̄i, ν̄i), when using an exact Hessian based SQP

method [19]. The contribution to the Hessian can be written
as

Hi = ∇2
wi

(
λ̄>i φ(w̄i)

)
, i = 0, . . . , N − 1, (5)

where the Lagrange multipliers of the continuity con-
straints (3b) are defined as Λ := [λ>0 , . . . , λ

>
N−1]>.

The second order derivatives ∇2
wi

(
λ̄>i φ(w̄i)

)
are the

result of a propagation of sensitivities through the system
dynamics, which can be performed efficiently as discussed
in [21].

We define the contribution of the terminal cost to the
gradient and Hessian in (4b) as gN := ∇ξNE(ξ̄N ) and
HN := ∇2

ξN
E(ξ̄N ) respectively.

B. Efficient Convexification Procedures

The QP subproblem (4) is convex only when the Hessian
block Hi is positive semi-definite for i = 0, . . . , N , which
is not necessarily the case in general. In what follows,
we therefore target a suitable Hessian regularization based
on [19], [21].

An application of the eigenvalue decomposition to regular-
ize the Hessian, would consist in computing the approximate
Hessian H̃ as

H̃ := V abs (Γ)V > with H = V ΓV >, (6)

where the function abs (γ) is defined as:

abs (γ) :=

{
γ if γ > ε
ε otherwise

where ε > 0 denotes a small constant in order to ensure
positive definiteness of the Hessian approximation. Note that
also other heuristic definitions would be possible [21]. We
have introduced the eigenvalue decomposition H = V ΓV >,
i.e. Γ is a diagonal matrix and V is an orthogonal matrix.
The absolute value of the diagonal matrix Γ is computed
component-wise.

Clearly, the computational complexity of this approach
does not scale well with the size of the problem. We
therefore propose two different approaches, both based on the
eigenvalue decomposition, but not applied to the full Hessian
directly. The first one considers regularizing the condensed
Hessian, i.e. the Hessian obtained after eliminating the state
variables ∆ξi in the structured QP (4) by means of con-
densing [3]. The second one considers exploiting the block-
diagonal structure of the full Hessian in order to regularize
each block independently.



TABLE II: Computational complexity: Hessian regulariza-
tion.

Algorithm 1 Algorithm 2

EVD computation 9 (Nnu)3 9N (nx + nu)3 + 9n3
x

1) Regularizing the Condensed Hessian: The first ap-
proach that we propose consists in applying Equation (6)
to the condensed Hessian. Algorithm 1 summarizes the
resulting approach, using the compact notation reg (H) =
V abs (Γ)V >. Note that in the absence of (active) inequal-
ity constraints, the condensed Hessian is positive definite
whenever the reduced Hessian is positive definite [19]. This
entails that, in the absence of active inequality constraints,
Algorithm 1 will not regularize unless it is strictly necessary
to do so.

Algorithm 1 The condensed regularization approach
Input: Hessian blocks Hi for i = 0, . . . , N .
Output: The condensed and regularized Hessian H̃c � εI .
1: Perform the condensing routine [3] to the original QP (4).
2: Regularize the condensed Hessian matrix H̃c = reg (Hc).

While Algorithm 1 has a reduced numerical complexity ,
it still scales cubically with the horizon length N , as detailed
in Table II.

2) Regularizing the Hessian Blocks Independently: Al-
ternatively, one can decide to regularize each block Hi

for i = 0, . . . , N of the original Hessian, as described
in Algorithm 2. As opposed to regularizing the condensed
Hessian, this second approach has the disadvantage that
there is no equivalence with the positive definiteness of
the reduced Hessian, not even in case there are no (active)
inequality constraints at the solution. This means that, by
using Algorithm 2, one might need to regularize the Hessian
even in cases in which the condensed Hessian is positive
definite. On the other hand, as shown in Table II, the
block regularization approach scales linearly with the horizon
length N . This technique does in principle not require the
use of condensing to solve the QP and the regularization of
each Hessian block can additionally be performed in parallel,
similar to the numerical simulation routines within direct
multiple shooting [3].

Algorithm 2 The block regularization approach
Input: Hessian blocks Hi for i = 0, . . . , N .
Output: The condensed and regularized Hessian H̃c � εI .
1: for i = 0 : N do
2: Regularize the Hessian block H̃i = reg (Hi).
3: end for
4: Perform the condensing routine [3] to the regularized QP (4).

Remark 1: For the computation of the eigenvalue decom-
position (EVD) of the symmetric Hessian matrix in Table II,
we considered the efficient combination of the Householder

tridiagonalization which reduces the matrix to a tridiagonal
form, followed by the symmetric QR algorithm. The latter
method requires overall about 9n3 flops to compute the
complete eigenvalue decomposition, where n denotes the
dimension of the symmetric matrix [13].

Remark 2: In general, only a linear convergence rate can
be expected for the SQP method based on the two compu-
tationally cheap but conservative convexification procedures
proposed in this paper, see [19]. It is important to mention
that such a result on the local convergence rate itself is of
less practical importance when implementing fast Nonlinear
MPC in a real-world test setup as targeted in this work.

IV. REAL-TIME NONLINEAR MPC IMPLEMENTATION

This section discusses the details of deploying a real-time
implementation of the presented Nonlinear MPC scheme on
the experimental setup.

A. Exact Hessian Based Real-Time Iterations

Algorithm 3 presents a detailed implementation of an
exact Hessian based version of the Real-Time Iteration (RTI)
scheme [5], as presented earlier in [21]. It can be based
either on Algorithm 2 or 1 to convexify and condense each
QP subproblem in Eq. (4). Note that the SQP iterations are
divided into a preparation and a feedback phase like in the
classical Gauss-Newton based RTI algorithm.

Remark 3: A full proof of local convergence and stability
for the exact Hessian based RTI variant in Algorithm 3
is outside the scope of this paper. The results in [6] for
the classical RTI scheme based on Gauss-Newton Hessian
approximations could however be extended, by applying the
convergence theory for exact Hessian based SQP [19].

Algorithm 3 Real-Time Exact Hessian RTI

Input: An initial guess for the trajectories W̄ , Λ̄.
1: while sampling instant do
2: Prepare the QP in (4) using AD [2] and a suitable integrator [22].
3: Apply Algorithm 1 or 2 to obtain the corresponding convexified and

condensed QP subproblem.
4: Wait until the new measurement x̂t arrives.
5: Solve the dense QP, update W̄+ = W̄ + ∆W and Λ̄+ is defined

by the Lagrange multipliers with respect to the constraints in (4c).
6: Send the new control input ū+0 to the process.
7: end while

B. ACADO Code Generation Software

This paper relies on the open-source software for auto-
generating an Exact Hessian based RTI scheme as part of
the ACADO Toolkit [14]. The software is free of charge and
can be downloaded from www.acadotoolkit.org for
reproducing the numerical results which are presented in this
paper. The tool allows the export of highly efficient C-code,
implementing Algorithm 3 based on algorithmic ideas that
have been presented in [14], [21]. In our implementation, the
QP solver is based on a condensing technique that has orig-
inally been proposed in [3]. The resulting smaller and dense
QP is then solved with an online active set method using the



software qpOASES [9]. The numerical performance of this
algorithm is discussed in the next section.

V. NUMERICAL RESULTS

In this section, we detail the MPC formulation used and
we present the simulation results obtained.

A. MPC Setup

Because we use the spatial transformation, we formulate
the OCP in space. The continuous formulation is given by

min
ξ(·),u(·)

t(S) (7a)

s.t. ξ′(s) = f(s, ξ(s), u(s)), ∀s ∈ [0, S] (7b)
ey(s) ∈ [ey, ey], ∀s ∈ [0, S] (7c)
α•(s) ∈ [α, α], • = f, r, ∀s ∈ [0, S] (7d)

u(s) ∈ [δ, δ]× [−1, 1], ∀s ∈ [0, S] (7e)
ξ(0) = ξ0. (7f)

We discretize the OCP (7) using 35 control intervals with a
piecewise constant control parametrization. For discretizing
the system dynamics, we use a fixed stepsize explicit Runge-
Kutta integrator of order 4 with 10 integration steps over a
sampling length of 0.025 m.

Note that we introduced the somehow artificial
bounds (7d) on the slip angles. This choice is necessary to
avoid that the OCP solver brings the system in configurations
in which we cannot trust the model. A justification of this
choice is given in the following subsection. The bounds
are given by α = −α = 0.16 rad, δ = −δ = 25 deg and
ey = −ey = 0.13 m. We introduced two slack variables
as ficticious controls, one for the constraints on ey and the
other one for the constraints on α•, • = f, r.

B. Simulation Results

In this section, we present simulation results obtained
with the proposed time-optimal approach. We first solved
the periodic time-optimal problem offline with a multiple
shooting discretization using CasADi [2] and the NLP solver
Ipopt [26]. We used the obtained result as a baseline for
comparison for the performance of the closed-loop MPC
trajectory.

We first analyze the results obtained using the regular-
ization Algorithm 2. The simulation results obtained by the
closed-loop system are displayed in Figure 2 in thick line.
In the same figure, the offline-computed periodic optimal
trajectory is also displayed in thin line. Due to the finite
horizon, when exiting some curves, the next curve is not yet
in the MPC prediction horizon and therefore, the trajectory
computed by the MPC controller differs from the periodic
optimal one. It can be seen that, due to time-optimality, the
trajectory touches the constraints on ey . For safety reasons,
for these lateral road bounds a backoff of 0.04 m has
been taken with respect to the road boundary. This backoff
allows us to impose the road bound avoidance constraint
on the center of mass of the vehicle only. Clearly, while
this choice makes the formulation simpler and more efficient
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Fig. 2: Closed-loop MPC simulations (thick line) and pe-
riodic optimal trajectory (thin line). The centerline of the
track is displayed in dotted line and the track boundaries are
displayed in dashed lines.

from a computational point of view, it also introduces some
conservatism and other strategies can lead to trajectories that
get closer to the real bounds of the road and, therefore,
shorter lap times. Future research will investigate alternative
constraint formulations.

The slip angles, lateral forces and controls for both the
MPC closed loop simulations and the periodic optimal tra-
jectory are displayed in Figure 3. It can be seen that MPC
delivers a solution which is similar to the periodic optimal
one for the slip angles and lateral forces.

Concerning the controls, the steering angle δ is similar for
the MPC closed loop and the periodic optimal trajectory, but
the engine duty cycle D has a very different profile. It is
interesting to note how, due to time-optimality, for most of
the time there is at least one active constraint. By looking e.g.
at s = 5 m, one can see that the duty-cycle is not bang-bang,
but has a singular arc and so does the slip angle αr, while the
constraint on the steering angle δ becomes active. As soon
as the constraint on δ becomes inactive, both constraints on
D and αr become active again.

The lap times for the periodic optimal trajectory and for
the MPC closed-loop are 4.27 s and 4.55 s respectively. RTI-
based MPC therefore yields lap times which are 6.6 % higher
than the optimum. The largest part of this loss is due to the
prediction horizon being finite. By converging the algorithm,
it is possible to only marginally reduce the lap time to 4.52 s.
We remark, moreover, that such a control law would not be
real-time feasible and can therefore only be used as an ideal
term of comparison.

We remark that the introduction of the constraints on the
slip angle is motivated by the simplification introduced in the
model. It is important to underline that the lateral forces are
not constrained by our formulation: because we choose the
upper bound on the slip angle as the value which yields the
peak of the Pacejka force, the vehicle is allowed to exploit
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Fig. 3: Slip angles, lateral forces and controls in simulations:
MPC closed loop in thick line and periodic optimal trajectory
in thin line.

the full available lateral force and it is only prevented from
drifting the wheels sidewise. The periodic optimal trajectory
obtained without imposing these constraints yields a lap time
of 4.03 s, with a gain of 5.6 % on the constrained trajectory.
The OCP solver obtains this improvement by letting the tires
drift sideways. However, because our tire model is not very
accurate and we do not take into account the longitudinal tire
dynamics, we decided not to trust the model beyond the peak
of Pacejka’s force. We remark that at the moment it is not
possible to account for the longitudinal tire dynamics, due to
the impossibility to measure the wheel rotational speed on
the real setup.

We now turn to analyzing the closed-loop results obtained
when using regularization Algorithm 1. The closed-loop
trajectory obtained are displayed in Figure 4 in thick line.
The closed-loop trajectory obtained with Algorithm 2 and
the periodic optimal trajectory are reported in thin and dotted
line respectively.

It can be seen that in this second case the trajectory is

farther from the periodic optimal one on almost all track
length. This is also reflected in the lap time, which is 5.58 s,
i.e. 22% higher than that obtained when using Algorithm 2.
This can be explained as follows. Because we rely on the
RTI framework for approximately solving the MPC NLP,
we take a single full Newton step at each sampling instant,
i.e. we do not perform any globalization strategy. For this
reason, we need to tune the threshold ε by choosing a high
enough value in order to guarantee contraction. In particular
for Algorithm 1, we needed to choose a rather high value
for ε, which guarantees contraction, but is likely to result to
slow convergence. Such a high value for ε produces worse
results, as described above and plotted in Figure 4.

Unfortunately, an automatic procedure for tuning the reg-
ularization parameter ε is currently not available. Future
research will aim at investigating regularization strategies
further. We remark that the implementation of exact Hessian
based RTI algorithms is fairly recent and the first result is
due to [21], in 2014.

To conclude this section, we measure the computational
load of Algorithm 2, as is shown in Table III. We remark
that there is no large difference between Algorithms 1 and
2, which is to be expected as the solver spends most of
the time inside of the online propagation of second order
sensitivities; in this case the method of regularization is
not the computational bottleneck; in other cases that might
depend on the problem dimensions, see Table II.

TABLE III: Computation times spent inside the tailored
ACADO algorithm. All computations done on a Macbook
Pro with Intel Core i7 2.5Ghz, 16GB RAM.

Computation times (ms) min max mean
One RTI step 3.1 5.6 3.6

VI. CONCLUSIONS

In this paper, we presented a nonlinear model predictive
control scheme for time-optimal driving of race cars based
on an exact Hessian SQP-type optimization algorithm. We
made use of a vehicle model based on a Pacejka model
for the lateral forces, while we assume no longitudinal
slip. The model was identified using measurements from an
experimental setup.

We show the algorithmic results with simulations, where
we have compared its performance to the periodic optimal
trajectory computed offline. As expected, the MPC trajectory
has a slightly worse performance than the periodic optimal
one, due to the prediction horizon being finite. Also, two
methods of regularization of the possibly indefinite Hessian
were presented and compared with one another.

As a subject of future work we envision the implementa-
tion of the control strategy on an experimental small-scale
race car setup. As can be seen in Table III, and considering
the experimental setup runs at a fixed control rate of 50 Hz,
the algorithm enables real-time experiments. Furthermore,
we intend to pursue a broader class of system identification
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Fig. 4: Closed-loop MPC simulations with Algorithm 1
(thick line), Algorithm 2 (thin line) and periodic optimal
trajectory (dotted line). The centerline of the track is dis-
played in dotted line and the track boundaries are displayed
in dashed lines.

experiments, in order to caption better the physical behavior
of the tire-road interaction.
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