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Abstract

In this thesis, we discuss several techniques for solving nonlinear optimization
problems arising in nonlinear model predictive control (NMPC). They share
two things in common: they all approximate some non-convex functions with
convex ones, and they are all useful in a real-time, embedded context. First,
a convexification method for structured indefinite quadratic programming
problems is presented. Such problems are found in sequential quadratic
programming (SQP) methods for NMPC problems. Its main advantage is a
convergence speedup, i.e. local quadratic convergence, under some assumptions
compared to a quasi-Newton or a generalized Gauss-Newton approach.

A second new technique, called sequential convex quadratic programming
(SCQP), is useful in the presence of constraint and objective functions that are
‘convex-over-nonlinear’. SCQP is a generalization of the GGN method, similar
to sequential convex programming (SCP) but at a lower computational cost. For
example, it exploits the convexity in ellipsoidal constraints, often encountered
in practice. Two additional convex approximation methods are presented for
time-optimal problems. The first one is an approximation of the time-optimal
problem with convex l1 penalties. The second method reformulates nonlinear,
non-convex path constraints as simple bounds, under some conditions.

As a final contribution, we present a novel software framework, acados, in which
the above techniques are implemented. It is a modular framework for embedded
optimization, meant to facilitate rapid prototyping of new algorithms. New
features with respect to existing software like ACADO are that it is built on the
optimized linear algebra library BLASFEO and on the automatic differentiation
library CasADi. Interfaces to higher-level languages such as Python and Matlab
are available. Some numerical examples show the ease-of-use and a significant
speedup with respect to ACADO.
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Kurze Zusammenfassung

Diese Dissertation behandelt mehrere Methoden zur Lösung von Opti-
mierungsproblemen die in der nichtlinearen Modellprädiktiven Regelung
(NMPC) auftreten. Sie haben alle zwei Dinge gemein: alle Methoden
approximieren nicht-konvexe Funktionen mit konvexen Funktionen, und sind
praktisch einsetzbar für Echtzeitanwendungen auf eingebetteten Systemen. Ein
erster Beitrag ist ein Konvexifizierungsverfahren für strukturierte, indefinite
quadratische Optimierungsprobleme, wie sie in sequentiellen quadratischen
Optimierungsmethoden (SQP) für NMPC vorkommen. Der Hauptvorteil ist eine
Konvergenzbeschleunigung, d.h. lokale quadratische Konvergenz, im Vergleich
zum quasi-Newton oder dem generalisierten Gauss-Newton (GGN) Verfahren.

Eine zweite neue Methode, genannt sequentielle konvex-quadratische Optimie-
rung (SCQP), ist hilfreich für ‘konvex-nichtlineare’, verkettete Funktionen in den
Nebenbedingungen und in der Zielfunktion. SCQP ist eine Verallgemeinerung
des GGN Verfahren, ähnlich der sequentiellen konvexen Optimierung (SCP)
jedoch zu niedrigeren Rechenkosten pro Iteration. Zum Beispiel kann
die Konvexität aus ellipsenförmiger Nebenbedingungen, die oft in der
Praxis vorkommen, ausgenutzt werden. Außerdem werden zwei weitere
Approximationsmethoden für zeitoptimale Probleme eingeführt. Die erste
Methode ist eine konvexe Approximation zeitoptimaler Optimierungsproblem
mit l1 Funktionen. Die zweite Methode ist eine Reformulierung von
nichtlinearen, nicht-konvexen Ungleichheitsnebenbedingungen als einfache Ober-
und Untergrenzen.

Als letzten Beitrag stellen wir ein neues Softwarepaket vor, acados, in dem u.a.
die obengenannten Techniken implementiert sind. Es ist ein modulares Paket für
eingebettete Optimierung, das eine schnelle Entwicklung von neuen Algorithmen
ermöglicht. Eine Neuheit im Vergleich zu schon bestehenden Softwarepaketen
wie ACADO ist, dass acados auf der Sofrware für lineare Algebra BLASFEO und
der automatischen Differentiationssoftware CasADi aufbaut. Interfaces mit
höheren Programmiersprachen wie Python und Matlab stehen ebenfalls zur
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vi KURZE ZUSAMMENFASSUNG

Verfügung. Numerische Beispiele zeigen eine hohe Benutzerfreundlichkeit und
eine signifikante Beschleunigung der Rechenzeiten im Vergleich zu ACADO.
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Chapter 1

Motivation & Background

All models are wrong, but some are useful.

George E. P. Box, statistician

1.1 Motivation

Control algorithms operate all around us. From the autonomous subway
carriages in cities like Copenhagen and Tokyo, the cooling system in the laptop
I’m writing on, to the large chemical plants seen at major ports around the
globe. In some cases control algorithms replace human labor, in other cases they
augment our human capacity. Often, they appear in places where no human
can go, or under conditions that humans would not be willing to accept, or
at millisecond and microsecond timescales that are beyond human capabilities.
Let us call these last kind of systems autonomous: systems that operate in
circumstances where man, for some reason, declines or is not able to take
control.

Examples of autonomous systems are autonomous submarines looking for oil (a
human would be crushed under the pressure), lithography systems producing
computer chips (no human could reach the same speed or precision), and
robot-taxis already on the road in some cities around the world.

It is safe to say that many autonomous systems rely on optimization of some
sort. One reason for this is that it offers a meaningful way of explaining our

1



2 MOTIVATION & BACKGROUND

wishes to a machine, e.g. “minimize the time to get to a certain goal while
staying within the road bounds and speed limits”. Such a wish could be cast as
an optimization problem as follows:

minimize
throttle,
steering

arrival time

subject to stay on road

don1t violate speed limits

avoid obstacles

The ‘minimize’ keyword declares an optimization problem. Beneath it, the
decision variables are listed. An optimization algorithm searches for values of
the decision variables such that the quantity to the right is as small as possible,
while respecting the constraints listed in the ‘subject to’ clause. Humans are
famously bad at solving optimization problems, except for the most trivial ones.
Algorithms can do it much faster and much more accurately1.

In autonomous systems, the kind of optimization that appears is often called
‘optimization-based control’. An extra ingredient, as opposed to classical
optimization problems, is the notion of a dynamic system that evolves over
time. It needs to be included in the optimization formulation to be able to
meaningfully steer it autonomously. In this context, the notion of feedback is
important.

There is quite some difference in how optimization-based control methods are
used. Offline methods solve dynamic optimization problems with no timing
constraints - they may take minutes or hours to come up with an answer. These
kind of problems arise in e.g. parameter estimation, training of deep neural
networks and production planning.

Online or real-time optimization methods, however, are expected to yield results
before a certain deadline, as the result is useful only within this time window.
Outdated results are meaningless or might even be dangerous. Sometimes, online
optimization algorithms operate under very strict timing constraints, often with
sampling times of a few milliseconds or less. The study of online methods for
dynamic optimization problems within strict computational constraints is called
embedded optimization, according to the definition from [Ferreau et al., 2017]:

1On the other hand, humans are far ahead of machines still when it comes to cognitively
‘easy’ problems such as perception and mobility. This is called Moravec’s paradox [Moravec,
1988]



MOTIVATION 3

“An optimization method is called embedded if and only if it a) can
run autonomously, i.e., if it delivers a sufficiently accurate solution
within a real-time limit given a priori, and b) can be deployed on a
computing hardware with limited resources.”

This type of optimization methods forms the focus of this thesis. More
specifically, it centers on one optimization-based control method in particular:
model predictive control (MPC). From a high-level perspective, it can be
conceived as an algorithm repeating the following three steps:

1. Estimate the current state of the system under control,

2. Calculate an optimal response, given a prediction of the future behavior
of the system obtained through a model,

3. Feed the optimal input to the system. Go to 1.

The model predictive nature (in step 2) of this technique makes for an attractive
alternative to classical control methods, such as proportional-integral-derivative
(PID) control. One could liken PID to driving a car by looking out the side
window. With MPC, we look through the front windshield. Moreover, the
optimization problem to be solved in step 2 can incorporate constraints, such as
operating limits and safety margins, directly. For classical state-space control
methods, which do feature a (linear) predictive model, constraints are often an
afterthought.

Given the tight timing constraints for the calculation of an optimal response,
it is typically necessary to make approximations. Approximations can happen
in various places, e.g. in the modeling of the system, in the formulation of the
optimization problem and in the optimization algorithms themselves. Concretely,
we look at convex approximations for non-convex problems. Convexity, defined
later in this chapter, is a mathematical concept that, if fulfilled by an
optimization problem, allows for efficient algorithms. Non-convex problems,
on the other hand, are much harder to solve in general. By making these
approximations, we are thus able to calculate accurate solutions efficiently.

Throughout this thesis, we look at various convex approximations with
applications in different contexts - this forms the bulk of the text. Another
important part is software. Having efficient algorithms is less useful if it is
not available as code for academics and practitioners. Therefore, we will
introduce a new software package for embedded optimization and nonlinear
model predictive control. It includes efficient implementations of the convex
approximation methods discussed in the remainder of the thesis. But first, let
us lay the mathematical foundations.
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The remainder of this chapter forms the groundwork upon which the remaining
chapters are built. It follows a bottom-up approach: we introduce the concepts
of mathematical optimization and numerical simulation before tackling optimal
control and model predictive control. Along the way, we will build up a
framework and a notation, in order to better develop the work discussed in the
subsequent chapters.

1.2 Numerical optimization

Numerical optimization, sometimes also called mathematical programming, is a
field in applied mathematics in which one looks at solving optimization problems
using some (approximate) numerical method. Optimization problems exist in
a wide variety. In this thesis, we restrict ourselves to nonlinear optimization
problems in Euclidean space.

At its core, each optimization problem consists of a set of n decision variables
w P Rn and an objective function f : Rn Ñ R. When we say that we are
‘optimizing’, we mean trying to find a point w‹ P Rn for which the value of f is
the lowest. In short, an (unconstrained) optimization problem reads as

minimize
w P Rn

fpwq. (1.1)

By convention, we only regard minimization problems, instead of maximization
problems, since minimizing fpwq is equivalent with maximizing ´fpwq.

Some optimization problems come with additional requirements, or constraints,
on the decision variables. Such constraints are either equality constraints
gpwq “ 0, with g : Rn Ñ Rmeq or inequality constraints cpwq ď 0, where
c : Rn Ñ Rmineq . In short, many optimization problems can be cast as

minimize
w P Rn

fpwq (1.2a)

subject to gpwq “ 0 (1.2b)

cpwq ď 0. (1.2c)

Remark 1.1. Please note that this is not at all the most general optimization
problem formulation. For instance, instead of vector inequalities with respect
to Rmineq

` , we could have a generalized inequality ĺK with respect to any cone
K. However, we consider formulations more general than (1.2) to be out of the
scope of this thesis.
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At the dawn of numerical optimization as a field, quite a bit of attention went
to linear programming – problems in which constraint and objective functions
are affine. It is maybe for this reason that for a long time, a sharp divide existed
between linear and nonlinear programming [Forsgren et al., 2002]. Nowadays,
however, there seems to be a large consensus that, at least conceptually, this
divide should lie between convex and non-convex optimization. What does it
mean for an optimization problem to be convex? Before we introduce the concept
of convexity, we discuss a few preliminaries from mathematical optimization.

A candidate point w P Rn is called feasible if it satisfies the constraints (1.2b)-
(1.2c). The set of all feasible points is called the feasible set – we define it as
follows.

Definition 1.1. The feasible set Ωf of an optimization problem of the form (1.2)
is

Ωf :“ tw P Rn | gpwq “ 0, cpwq ď 0u. (feasible set)

In absence of constraints, we call the optimization problem unconstrained,
and the feasible set is Rn. A problem is called infeasible if Ωf “ H. An
inequality constraint is called active at some point w P Rn if equality holds
in (1.2c), i.e. if cipwq “ 0 for some integer i P I where we define the index set
I :“ t1, . . . ,minequ. The active set is a subset of I, namely

Apwq :“ ti P I | cipwq “ 0u. (active set)

Next, let us look at what a ‘solution’ means in the context of an optimization
problem. A point w‹ P Ωf is called a (global) minimizer if it holds that

fpw‹q ď fpwq, @w P Ωf . (1.3)

Generally speaking, an optimization problem can have any number of minimizers:

• minw e´w: no minimizer,

• minw w2: one minimizer,

• minw w4 ´ w2: two minimizers,

• minw sinpwq: infinitely many minimizers.

A point w‹ P Ωf is called a local minimizer if (1.3) holds in a neighborhood of
w‹. More precisely,

fpw‹q ď fpwq, @w P Ωf X B‹β , (1.4)
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Figure 1.1: Some simple convex and non-convex sets. Left. The hexagon, which
includes its boundary (shown darker), is convex. Middle. The kidney shaped
set is not convex, since the line segment between the two points in the set
shown as dots is not contained in the set. Right. The square contains some
boundary points but not others, and is not convex. Text and image from [Boyd
and Vandenberghe, 2004].

for some β, where we define B‹β :“ tw P Rn | }w´w‹}2 ď βu to be a Euclidean
ball with radius β around w‹. Note that the intersection in (1.4) is important,
as the minimizer might lie on the boundary of the constraints.

1.2.1 Convexity

Convexity is a concept that has been extensively studied in theoretical
mathematical fields such as convex analysis. For our purposes, we can restrict
ourselves to two distinct, but related facets of it: convex functions and convex
sets.

Definition 1.2 (Convex set). A set Ω Ă Rn is a convex set if for any two
points w1, w2 P Ω and for all θ P r0, 1s it holds that

θw1 ` p1´ θqw2 P Ω. (convex combination lies in Ω)

In plain language, a convex set is a set in which we can draw a straight line
between any two points in the set, that lies itself in the set. We can see examples
of convex and non-convex sets in Figure 1.1. Other important examples of
convex sets include

• A line : tw P R | aw ` b “ 0u, with a, b P R,

• An affine set : tw P Rn | Aw ` b “ 0u, with A P Rmˆn, b P Rm,

• A Euclidean ball : tw P Rn | }w ´ w‹}2 ď βu, with w‹ P Rn and β ą 0.
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Next, we define what it means for a function to be convex:
Definition 1.3 (Convex function). A function f : Ω Ñ R is a convex function
if Ω is convex and for any two points w1, w2 P Ω and for all θ P r0, 1s it holds
that

fpθw1 ` p1´ θqw2q ď θw1 ` p1´ θqw2. (Jensen’s inequality)

In other words, all lines between two points on the graph fpwq should lie above
the graph. If Jensen’s inequality is strict, we call the function strictly convex.
A function f is concave if ´f is convex. The following definition is useful in
the context of convex functions:
Definition 1.4 (Positive definite matrix). A symmetric matrix H P Rnˆn is
positive definite, i.e. H ą 0, if

wJHw ą 0, @w P Rnzt0u.

If for all w P Rn it holds that wJHw ě 0, the matrix is called positive
semidefinite, denoted by H ľ 0.

Simple examples of convex functions of w P Rn are

• An affine function : aJw ` b with a P Rn, b P R,

• A quadratic function : wJH w` bJw, with H P Rnˆn, b P Rn and H ľ 0.

• An exponential function : epbJwq, with b P Rn.

Note the elegant similarity between Definition 1.2 and 1.3 – indeed, there is
a connection between these two concepts, namely that any sub-level set of a
convex function f , i.e.

Ωα :“ tw P Rn | fpwq ď αu, (α-sublevel set)

is convex.

Armed with the notion of convexity, we can now discuss different types of
optimization problems that arise in various fields of engineering.

1.2.2 A taxonomy of optimization problems

Convex optimization problems (i.e. optimization problems with convex objective
and convex constraints) have a beneficial property: each local minimizer, if
there are any, is a global one. We will make this the main distinction in the zoo
of optimization problems.
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optimization
problems

convex
problems

non-convex
problems

mixed-
integer
problems

SDP

SOCP

QCQP

convex
QP

LP

NLP

MINLP

MIQP

non-convex
QP

NLP with
convex

substructure

Figure 1.2: The relations between some important optimization problem classes.
The framed classes depict the ones treated in this thesis.

Affine problems Linear programming (LP) problems were the first type of
optimization problems solved with computers. Indeed, the first computers
were running optimization solvers for linear programming problems used to
deal with transportation, scheduling and allocation of resources during World
War II [Britannica, 2018]. Linear programming is characterized by problems
with an affine objective and affine (in)equality constraints. Problems of this
kind arise in planning and resource management. Linear programming is still a
vibrant topic in e.g. operations research.

Quadratic problems Quadratic programming (QP) problems have a quadratic
cost function and affine constraints:

minimize
w P Rn

1
2w

JHw ` bJw

subject to Gw ` g “ 0

Cw ` c ď 0

(1.5)

We call it a convex QP problem if H ľ 0.
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QP problems arise naturally in statistical regression and parameter estimation.
For instance, linear least squares problems can be cast as an unconstrained QP
problem. Also in control we often encounter QP problems. Usually, a steady
state is tracked and deviations from this steady state are penalized quadratically.
The control practitioner will typically choose the cost function such that the
QP problem is convex, e.g. a diagonal matrix H with H ľ 0. However, this is
not always how QPs emerge.

Non-convex quadratic problems Sometimes, QPs arise as subproblems in
algorithms for more general problems. For instance, sequential quadratic
programming (SQP) is an iterative method for solving nonlinear optimization
problems. It linearizes the nonlinear constraints and builds a second-order
approximation of the objective. The resulting quadratic function may be non-
convex. In fact, some of the main results of this thesis (cf. Chapter 2) focus on
non-convex quadratics. We note that because of their non-convexity, algorithms
for global solution of non-convex QP problems have a worst-case exponential
complexity.

Mixed-integer problems There is a large body of applications where the
decision variables of optimization problem (1.2) are discrete: they take on
integer values 0, 1,´1, 2, etc. Examples of this are switches in electronic
circuits [Stellato et al., 2017b], gear shifts in a car [Kehrle et al., 2011], or
the well-known 3SAT boolean satisfiability problem. Algorithms for global
solution of this kind of problems also have an exponential worst-case complexity.

Nonlinear programming In nonlinear programming (NLP) problems, the cost
function and constraints in (1.2) are general nonlinear functions. Often, we make
the additional assumptions that f, g and c are twice continuously differentiable.
A special class of NLP, namely ‘NLP with convex substructure’, introduced
in (1.10), is relevant for Chapter 3.

Nonlinear convex problems In the realm of nonlinear (and non-quadratic)
functions, we can find quite a bit more classes of convex problems. The easiest
extension to a QP is a quadratically constrained quadratic programming (QCQP)
problem, with affine equalities but convex quadratic inequalities. Going further
along this route, we have second-order cone programming (SOCP) problems,
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which in standard form look like:
minimize
w P Rn

bJw

subject to Gw ` g “ 0

}Ciw ` ci}2 ď aJi w ` bi, i “ 1, . . . ,mineq.

(SOCP)

SOCP derives its name from the second-order cone with respect to which we
consider the inequalities. A more general cone is the positive semi-definite cone,
which gives rise to semi-definite programming (SDP) problems:

minimize
w P Rn

bJw

subject to Gw ` g “ 0

G0 `G1w1 ` . . .`Gnwn ĺ 0.

(SDP)

It can be shown that the class of SDP problems contains the class of SOCP
problems, and more general, for convex problems we have the following hierarchy:

LP Ă convex QP Ă QCQP Ă SOCP Ă SDP,

also depicted in Figure 1.2. In this thesis, we will mainly focus on algorithms
and methods concerned with NLPs and non-convex QPs.

1.2.3 Conditions for optimality

Conditions for optimality are a central theme in numerical optimization. They
not only give us mathematical guarantees, they are often also a starting point
for new algorithms. We discuss three optimality conditions in this context: the
first-order necessary conditions (better known as the Karush-Kuhn-Tucker or
KKT conditions), the second-order necessary conditions and the second-order
sufficient conditions. The following technical condition will be useful in the
remainder of this section.
Definition 1.5 (LICQ). The linear independence constraint qualification is
said to hold at some point w P Rn if

"

Bgi
Bw
pwq

ˇ

ˇ

ˇ
i “ 1, . . . ,meq

*

Y

"

Bci
Bw
pwq

ˇ

ˇ

ˇ
i P Apwq

*

form a linearly independent set of vectors.
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KKT conditions for optimality

First, we define the Lagrangian function corresponding to NLP (1.2). To
this end, we introduce Lagrange multipliers (sometimes called ‘shadow costs’)
λ P Rmeq and µ P Rmineq associated with the equality and inequality constraints,
respectively. The Lagrangian is then defined as

Lpw, λ, µq :“ fpwq ` λJgpwq ` µJcpwq. (Lagrangian)

We can interpret the Lagrangian as an extension to the cost function where we
linearly penalize constraint deviations.

The necessary first-order conditions for optimality give us a set of equations.
Pedagogically, methods for nonlinear optimization like SQP and interior point
(IP) methods can be motivated from these conditions. We state them in the
following theorem – for a proof, we refer the reader to [Nocedal and Wright,
2006].

The KKT conditions are then defined as follows.
Theorem 1.1 (KKT conditions). Assume that there exists a local minimizer
w‹ of problem (1.2). Furthermore, assume that f, g and c are continuously
differentiable, and that LICQ holds, at w‹. Then, there exists a triple v‹ :“
pw‹, λ‹, µ‹q, called a KKT point, such that the following equations hold:

∇wLpw‹, λ‹, µ‹q “ 0, (1.6a)

gpw‹q “ 0, (1.6b)

cpw‹q ď 0, (1.6c)

µ‹ ě 0, (1.6d)

µ‹i cipw
‹q “ 0, i “ 1, . . . ,mineq. (1.6e)

The last three conditions are called the complementarity conditions. We say
that strict complementarity holds at a KKT point v‹ if either

µ‹i “ 0, cipw‹q ‰ 0
or

µ‹i ‰ 0, cipw‹q “ 0

holds for all i P t1, . . . ,minequ, and there exists no i P t1, . . . ,minequ for which
µ‹i “ 0, cipw‹q “ 0.

What is the use of strict complementarity? Let us look at an example where
strict complementarity does not hold.
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Example 1.1. Consider the following QP, with c P r0,8s:

minimize
w P R2

1
2
`

w2
1 ` w

2
2
˘

subject to c ď w1.

(1.7)

We find that w‹ “ pc, 0q is the unique global solution. LICQ holds at that point,
so we can compute the optimal Lagrange multiplier from the first KKT condition:

∇wLpw, µq “
„

w1
w2



` µ

„

´1
0



.

By putting ∇wLpw‹, µ‹q “ 0, we quickly see that µ‹ “ c. Now, fix c “ 1. The
optimal value of the multiplier can be interpreted as the ‘cost’ that the constraint
incurs. Thus, we can estimate the optimal value (at least locally) from this
multiplier, if the constraint were to move. If we move the constraint bound to
c “ 1.1, the estimated optimal value would be fpw‹q`∆c ¨µ‹ “ 0.5`0.1 ¨1 “ 0.6
which is close to the actual new optimal value 0.605.

Now consider c “ 0. This implies that µ‹ “ 0, i.e. we have no information on
how much the constraint is costing us – in principle, it could be removed from
the problem without changing the optimal value, at least in a first-order sense.
For theoretical investigations, we often assume strict complementarity to hold
at KKT points.

Second-order conditions for optimality

The KKT conditions only take into account first-order derivative information.
If second-order derivatives are available – i.e. f, g and c are twice continuously
differentiable – we can write down another set of necessary conditions for
optimality of a point v‹.

First, for a fixed point w, let us introduce a shorthand notation for the
equality constraints together with the active inequalities (with a slight abuse of
terminology, we will call this the vector of ‘active constraints’):

g̃pwq :“
„

gpwq
cipwq



, i P Apwq,

with length m “ meq ` cardpApwqq.

Now let us look at two of the four fundamental subspaces of Brg
Bw pwq.
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Definition 1.6 (Range space and null space basis). For some feasible w, we
introduce the shorthand

rG :“ Bg̃

Bw
pwq.

We define an orthonormal basis for the range space of rGJ and the null space of
rG as follows:

rG rZ “ 0,
”

rY rZ
ıJ ”

rY rZ
ı

“ I,

with rZ P Rnˆpn´mq and rY P Rnˆm.

Employing this definition we can now state the second-order necessary conditions
for optimality.

Theorem 1.2 (SONC). Let v‹ “ pw‹, λ‹, µ‹q be a KKT point, assume strict
complementarity holds and define rZ as in Definition 1.6. If w‹ is a local
minimizer, it holds that

rZJ∇2
wLpv‹q rZ ľ 0.

In Chapter 2, we will see an equivalent statement to SONC, motivating an
efficient method for recovering convexity in non-convex QPs. For completeness,
we now also state the second-order sufficient conditions for optimality, under
the same assumptions as Theorem 1.2:

Theorem 1.3 (SOSC). Let v‹ “ pw‹, λ‹, µ‹q be a KKT point, assume strict
complementarity holds and define rZ as in Definition 1.6. If it holds that

rZJ∇2
wLpv‹q rZ ą 0,

then w‹ is a unique local minimizer.

The following definition is useful in the rest of the text.

Definition 1.7. A KKT-point v‹ :“ pw‹, λ‹, µ‹q at which LICQ, SOSC and
strict complementarity hold, is called a regular solution of NLP (1.2).

1.2.4 Newton-type optimization

The conditions for optimality discussed in the previous section inspired different
optimization methods. In this thesis, we solve optimization problems such as
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NLP (1.2) with Newton-type methods. A Newton-type algorithm proceeds to
find solutions to the KKT complementarity system (1.6) by iterating on the
triple

vj :“ pwj , λj , µjq pat iteration jq
until a solution is reached, up to some accuracy. Two major approaches exist
– sequential quadratic programming (SQP) and interior point methods. They
differ in the way they treat the inequalities.

Interior point methods

Instead of solving the non-smooth complementarity system formed by the KKT
conditions (1.6), we can approximate the system by decreasingly perturbing
it with a barrier parameter. The resulting (ordinary) nonlinear system of
equations is then solved with Newton’s method. This is the fundamental idea
behind interior point methods. Pedagogically, there are two equivalent ways of
describing interior point methods – as a barrier problem or as a perturbation of
the KKT conditions. We will opt for the latter here.

When looking more closely at the KKT conditions, we see that all equations
are smooth, except for (1.6e). In fact, there is a kink at pw, λ, µq for which
cipwq “ 0, µi “ 0, i P I. In order to apply Newton’s method, we require a
smooth set of nonlinear equations, so we introduce an approximation as follows:

∇wLpw, λ, µq “ 0 (1.8a)

gpwq “ 0 (1.8b)

µicipwq “ ηj , i “ 1, . . . ,mineq (1.8c)

where ηj is called the barrier parameter at iteration j. For fixed ηj , solving the
perturbed KKT conditions with a Newton-type method gives rise to structured
linear systems that can be solved by any sparsity-exploiting linear algebra solver,
e.g. one from the HSL suite [HSL, 2011]. By adapting the barrier parameter in
each iteration such that

lim
jÑ8

ηj “ 0,

the method ultimately converges (under some conditions) to pw‹, λ‹, µ‹q. Since
the focus of this thesis does not lie on interior point methods, we refer the
reader to [Bertsekas, 1999] and the survey paper [Forsgren et al., 2002] for a
much deeper treatise on the subject.

We remark that the biggest contrast between interior point methods for solving
QPs and NLPs is the barrier update strategy. An important ingredient of interior
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point methods is how to update the barrier parameter from one iteration to
the next. The Mehrotra predictor-corrector [Mehrotra, 1992] is by far the most
popular one for interior point methods for linear and quadratic programming.
It is an adaptive technique, meaning that the value of the barrier parameter
can move up and down, before going to zero in the limit. Another barrier
update strategy, sometimes encountered in nonlinear programming, e.g. in
IPOPT [Wächter and Biegler, 2006] or KNITRO [Byrd et al., 2006], is the monotone
Fiacco-McCormick approach.

Compared to sequential quadratic programming methods, treated in the
following section, it is more difficult to warm-start interior point methods,
although recent advances have been made in this direction [Shahzad and Goulart,
2011; Gondzio and Grothey, 2006; Zanelli et al., 2017b].

Sequential quadratic programming

Just like interior point methods, sequential quadratic programming (SQP)
methods make an approximation to the KKT conditions (1.6). However,
instead of perturbing the nonlinear conditions directly, it constructs successive
quadratic approximations of the KKT conditions around the current iterate
vj “ pwj , λj , µjq. This gives rise to inequality-constrained QP problems, of the
form:

minimize
∆w P Rn

1
2∆wJH ∆w `∇fpwjq∆w

subject to Bg

Bw

`

wj
˘

∆w ` gpwjq “ 0

Bc

Bw

`

wj
˘

∆w ` cpwjq ď 0.

(1.9)

We denote the primal solution ∆wQP and dual solution λQP, µQP, corresponding
to the equalities and inequalities, respectively. We introduced the Hessian
matrix H P Rnˆn. For now, we assume an exact Hessian based SQP method,
so H “ ∇2

wLpvjq.

At its core, an SQP algorithm successively linearizes the KKT conditions around
the current iterate vj , solves QP subproblem (1.9) and updates the current
iterate by

wj`1 “ wj `∆wQP

λj`1 “ λQP

µj`1 “ µQP.
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There are many extensions to this basic SQP algorithm. For instance, a globalized
SQP method employs line search or a trust region to guarantee convergence to a
local optimum. In embedded optimization, typically globalization is not pursued
as it incurs some overhead and real-time constraints might already be stringent.
We refer to the monograph [Conn et al., 2000] for a detailed description of trust
region methods and to [Nocedal and Wright, 2006] for line search methods.

Another extension is formed by the quasi-Newton SQP methods. These do not
compute the Hessian of the Lagrangian pH “ ∇2

wLpvjqq exactly, but instead
rely an approximations of it, by an update rule. Among the quasi-Newton
methods we have the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
the symmetric rank 1 (SR1) update, and Broyden’s method. Some of these
are widely used in nonlinear optimization methods. However, the fact that
the number of Hessian updates per iteration might become large renders these
methods less attractive for embedded optimization.

One Hessian approximation that is popular in embedded optimization is the
Gauss-Newton Hessian approximation. Given a nonlinear least squares objective,

fpwq “
1
2}rpwq}

2
2,

we can derive the Gauss-Newton Hessian approximation as follows: as opposed
to an exact Hessian approach, we linearize ‘inside the norm’:

f jGNpwq “
1
2}rpw

jq `
Br

Bw
pwjq

`

w ´ wj
˘

}22.

This is a quadratic function of w, with Hessian

HGN “
Br

Bw
pwjqJ

Br

Bw
pwjq.

Advantages of using a Gauss-Newton Hessian in an SQP-type context are the
following: first, it is always positive definite. Second, it is cheap to compute
compared to an exact Hessian, and it does not require an estimate of the
Lagrange multipliers. Lastly, though convergence of an SQP method using a
Gauss-Newton Hessian approximation is ‘only’ linear, if the residuals rpw‹q are
small at the solution, the linear convergence rate is fast.

One lesser known property of the Gauss-Newton method, in the context of
parameter estimation, is that it avoids convergence to ‘statistically unstable’
solutions [Bock et al., 2007]. We will show this behavior in an example.

Example 1.2. Consider the following parameter estimation problem:



NUMERICAL OPTIMIZATION 17

minimize
w P R

fpwq “
1
2

M
ÿ

i“1

ˆ

yi ´
1

1` pw ` xiq2

˙2
,

with M “ 100 the number of measurements pxi, yiq, and w the parameter
with true value w‹ “ 1. Measurements are generated from the ‘true’ model
1{p1`pw‹`xiq2q`εi with xi, i “ 1, . . . ,M , being M equidistant points between
´5 and 5, and εi „ N p0, 0.1q being normally distributed.

We solve this optimization problem once with a globalized SQP solver (the SQP
algorithm from fmincon in Matlab) and once with a full-step Gauss-Newton
method. Interestingly, as can be seen from Figure 1.3, when starting both
methods from the same point, the globalized fmincon routine finds a solution
at w « 6.67, as the gradient is zero there. However, it is not a solution in the
statistical sense, i.e. it is not a “continuous deformation of the true parameter
value due to perturbations by measurement noise” [Bock et al., 2007]. If we look
at the Gauss-Newton method, it seems to be able to ‘jump over’ the hill in the
objective value to reach the correct solution w‹ “ 1, see Figure 1.3 for the fit.
Moreover, even if we start really close to w « 6.67, the Gauss-Newton method
will move away and either converge to the correct solution, or diverge. This
behavior shows that even if a full-step Gauss-Newton method does not always
converge, it is not a sign of a bad optimization method, but of a wrong problem
formulation. To quote [Bock et al., 2007]:

“From this point of view quasi-Newton methods have only limited
use for parameter estimation, since they do not deliver estimates
for the true parameter values! Thus, slow local convergence or no
convergence of the full-step Gauss-Newton method, seen often as a
disadvantage of the method, indicates deficiencies in the model or
lack of data and can be considered as its advantage!”

Sequential convex programming

In the last section we tackled SQP, in which we solve a QP problem in each
iteration. We can take this idea one step further and solve a more general
convex problem in each iteration. Such an approach is called sequential convex
programming (SCP) [Tran-Dinh and Diehl, 2010]. We will discuss SCP briefly
for the following NLP with convex substructure in objective and constraints:
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Figure 1.3: Parameter estimation example. (a) Objective and gradient, with
(local) solution found by each method, starting from the same initial guess. (b)
Resulting parameter fit. A curve corresponding to the ‘true’ solution pw‹ “ 1q
is depicted in black.
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minimize
w P Rn

φ0pr0pwqq

subject to gpwq “ 0

ripwq P Ωi, i “ 1, . . . ,mineq,

(1.10)

where Ωi are convex sets and φ0 is a convex function. Note that a constrained
nonlinear least squares problem is a special case of above problem with φ0 ”
1
2} ¨ }

2
2.

For problem (1.10), full-step SCP amounts to solving convex subproblems of
the form

minimize
w P Rn

φ0

ˆ

r0pw
jq `

Br0

Bw
pwjq

`

w ´ wj
˘

˙

subject to gpwjq `
Bg

Bw
pwjq

`

w ´ wj
˘

“ 0

ripw
jq `

Bri
Bw
pwjq

`

w ´ wj
˘

P Ωi, i “ 1, . . . ,mineq.

Note that the convex substructure is kept in the subproblems. Typically, off-
the-shelf nonlinear convex optimization solvers are then used to solve these
possibly nonlinear convex subproblems. In Chapter 3, we will see an algorithm
called ‘sequential convex quadratic programming’ (SCQP) that finds the middle
ground between SQP and SCP: in SCQP we do not neglect convex substructure
in objective and/or constraints, but we are still able to use QP solvers, which
have been proven to work efficiently and robustly.

1.3 Dynamics

In this work, our goal is to control systems in some optimized way. In this
context, ‘systems’ can be regarded as mathematical objects with inputs, some
internal state, and outputs. Systems as encountered in the real world are always
time-varying, nonlinear and stochastic. However, for pedagogical reasons, and
for reason of scope, we can study idealized systems that do not exhibit all of
these properties. In this thesis, we focus on deterministic nonlinear dynamical
systems. If the system varies over time, it will be stated explicitly. Furthermore,
we look at lumped parameter systems from a state-space point of view. We
will not discuss any distributed parameter systems (e.g. systems governed by
partial differential equations) or non-parametric systems (e.g. frequency-domain
models).
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The state xptq of a system is denoted by nx quantities, varying over time:

x : RÑ Rnx

We influence the state of the system by applying controls (sometimes called
inputs), defined as a function of time,

u : RÑ Rnu

to the system. The equations that govern this interaction are called the dynamics
of the system.

1.3.1 Linear dynamics

In the history of control theory, most research effort is spent on the study of
linear time-invariant systems. These are systems of the form

9xptq “ Axptq `Buptq, @t P r0,8q. (linear dynamics)

To study and simulate these kind of systems in a digital computer, we need
some means of evaluating the evolution of the state at discrete points in time
tk “ k ¨ ∆t, for k “ 0, 1, . . ., with ∆t the sampling time. Thus, we need a
discrete-time formulation of the continuous-time dynamics. In fact, for linear
systems, if we assume the input to be piecewise constant the matrix exponential
lets us bridge the gap between continuous-time and discrete-time dynamics:

xk`1 “ Adxk `Bduk, k “ 0, 1, . . . ,

with

Ad “ eA∆t, (matrix exponential)

Bd “

ż ∆t

0
eAp∆t´τqB dτ.

There are only few systems that can be realistically modeled by linear equations.
Indeed, linear dynamical systems often arise as a linearization of some nonlinear
system, which we look at next.
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1.3.2 Nonlinear dynamics

We start with a basic class of nonlinear dynamic systems. An initial value
problem (IVP) of an ordinary differential equation (ODE) is characterized as
follows:

9xptq “ ψpxptq, uptqq, @t P r0, T s, xp0q “ x0, (1.11)
with ψ : Rnx ˆRnu Ñ Rnx and initial value x0 P Rnx . It is well-established that
existence and uniqueness of a solution holds when ψ is continuously differentiable
and T small enough, which we will assume for the remainder of the text. Note
that a solution to an initial value problem can still ‘explode’ in finite time, e.g.
9x “ 1` x2, xp0q “ x0 [Strogatz, 2001].

Throughout the thesis, we will see various examples of different ODEs.

Differential-algebraic equations

A differential-algebraic equations (DAE) is more general than an ODE. It
includes additional algebraic functions ν : Rnx ˆ Rnu ˆ Rnz Ñ Rna . The
algebraic variables zptq, with z : RÑ Rnz , along with the states and controls,
are governed by the DAE as follows:

9xptq “ ψpxptq, uptq, zptqq, (semi-explicit DAE)

0 “ νpxptq, uptq, zptqq, @t P r0, T s.

These kind of equations arise naturally from conservation laws or from additional
constraints on the system, often induced by some physical law, for example
mechanical constraints or chemical reaction rates. Often, DAEs arise in the
Euler-Lagrange modeling formalism. Please refer to [Brenan et al., 1987] for an
in-depth discussion.

An even more general formulation is a so-called fully implicit set of DAEs:

0 “ Ψp 9xptq, xptq, uptq, zptqq.

If the Jacobian BΨ
Bp 9x,zq is invertible, we say that the DAE is of index 1.

1.3.3 Numerical simulation

For nonlinear dynamics, there is no general closed-form expression to obtain
discrete-time dynamics from continuous-time dynamics, as was the case for
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linear systems. Instead, we rely on numerical integration routines that compute
simulations and corresponding sensitivities with respect to the input variables.

Given an initial state x0 and a control u (assumed to be constant on the interval
r0, T s), we want to obtain the following quantities from our simulation routines:

xpT ;x0, uq,
BxpT ;x0, uq

Bx0
,

BxpT ;x0, uq

Bu
,

that is, the simulated value of the state at time T given an initial value for the
state and a value for the control vector, and its derivatives with respect to the
parameters x0 and u. There are many ways of computing these derivatives. For
an in-depth discussion, we refer the reader to [Quirynen, 2017]. We discuss one
particular class of methods next.

Runge-Kutta integration methods

Among the most well-known integration methods are the Runge-Kutta (RK)
methods. They form a family of integrators of different orders and come in both
explicit and implicit forms [Hairer et al., 1993]. ‘Order’ in this context means
that, for example, if an integrator has order p and the step size ∆t shrinks by a
factor 2, the integration error shrinks by 2p. The difference between implicit
and explicit methods is that explicit methods do not have to solve a nonlinear
set of equations to obtain the simulation result, due to the fact that the Butcher
tableau is lower triangular. Implicit methods exhibit better integration stability
properties in the case of stiff equations compared to explicit RK methods.

In the following, we denote an integrator by ψd, a ‘discrete’ version of ODE ψ.
One of the two most famous Runge-Kutta integrators is the explicit Runge-Kutta
integrator of order 1 (also called ‘explicit Euler method’):

xk`1 “ ψdpxk, ukq “ xk `∆t ¨ ψpxk, ukq. (explicit Euler)

It borrows its popularity from its simplicity. However, not much more difficult
to implement, but significantly more accurate at lower computational cost, is
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the explicit Runge-Kutta integrator of order 4, also called ‘RK4’:

k1 “ ∆t ¨ ψpxk, ukq,

k2 “ ∆t ¨ ψpxk `
k1

2 , ukq,

k3 “ ∆t ¨ ψpxk `
k2

2 , ukq, (RK4)

k4 “ ∆t ¨ ψpxk ` k3, ukq,

xk`1 “ ψdpxk, ukq “ xk `
1
6 pk1 ` 2k2 ` 2k3 ` k4q.

DAEs are often simulated with implicit Runge-Kutta integration methods,
such like collocation integrators. We refer to [Quirynen, 2017] for an in-depth
discussion on the implementation of efficient implicit integrators in the context
of embedded optimization.

1.4 Optimal control

The previous two topics of this chapter, namely numerical optimization and
dynamical systems, form the two crucial ingredients for optimal control.
An optimal control problem in continuous time, being an optimization
problem where some constraints include continuous-time dynamics, reads as
follows:

minimize
xp¨q, up¨q

ż T

0
lpxptq, uptqqdt` lfpxpT qq

subject to xp0q “ x0,

9xptq “ ψpxptq, uptqq @t P r0, T s,

cpxptq, uptqq ď 0 @t P r0, T s,

cfpxpT qq ď 0.

(1.12)

In contrast to an NLP – for example, (1.2) – the solution is not a vector
of numbers but rather a function (for simplicity, we do not specify in which
function space2). The equality constraints arise from the dynamics, in this

2We refer to [Luenberger, 1969] for a treatise on optimization in more general spaces than
Euclidean space.
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case modeled by an explicit ODE as in (1.11). The inequality constraints
c : Rnx ˆ Rnu Ñ Rmineq are called path constraints and cf : Rnx Ñ Rmineq,T is
called the terminal constraint. The initial value for the state is x0. Function
l : Rnx ˆ Rnu Ñ R is called the running cost or stage cost, lf : Rnx Ñ R is
called the terminal cost. These are typically chosen by the control designer to
obtain the desired control performance. Before we discuss different methods for
solving OCP (1.12), we discuss two different choices for l, lf , arising in practice.

Reference tracking In optimization-based control, the most widely studied
form of cost function is a reference tracking cost. This means that we penalize
(often quadratically) the deviation from the state to some steady state pxSS, uSSq,
for which it holds that

9x “ ψpxSS, uSSq “ 0.

This is often exactly the behavior that you want in practice: some steady state
of the system is known exactly or approximately, and the system behavior
is beneficial at that steady state. An example might be a chemical reactor
producing a certain product of a required quality at a fixed rate. The stage cost
and terminal cost functions then read as

lpxptq, uptqq “ }xptq ´ xSS}
2
Q ` }uptq ´ uSS}

2
R, (steady state tracking)

lfpxpT qq “ }xpT q ´ xSS}
2
Qf
.

Here, Q,Qf and R are weighting matrices to be chosen by the control designer.
Often, they are chosen diagonal and positive definite.

Sometimes, we do not track a reference state/control pair but an output:

lpxptq, uptqq “ }ypxptq, uptqq ´ yref}
2
W , (output tracking)

lfpxpT qq “ }yfpxpT qq ´ yref}
2
Wf
,

where y : Rnx ˆ Rnu Ñ Rny and yf : Rnx Ñ Rny form the (nonlinear) output
functions and yref P Rny are the reference values for those outputs, respectively,
weighted by matrices W and Wf .

Time-optimal control When we optimize for time, there is nothing to track:
we want to minimize the time spent for our system to move from some initial
state to some terminal state. Without loss of generality, we assume the terminal
state is the origin. This implies that the total moving time T becomes a decision
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variable:
minimize
xp¨q, up¨q, T

T

subject to xp0q “ x0,

9xptq “ ψpxptq, uptqq @t P r0, T s,

cpxptq, uptqq ď 0 @t P r0, T s,

xpT q “ 0,

0 ď T.

(1.13)

As such, l ” 1 and lf ” 0. A standard technique (see e.g. [Rösmann et al., 2015])
to work around the fact that the time interval r0, T s is not known a priori, is to
scale the time variable and consequently, the dynamics, by a factor T .

τ :“ t

T
(pseudo-time)

which implies
dx
dτ pτq “

dx
dt ptq ¨

dt
dτ pτq
loomoon

“T

,

“ ψpxptq, uptqq ¨ T, @t P r0, T s, (time transformation)

“ rψpxpτq, upτq, T q, @τ P r0, 1s. (1.14)

We will call this technique time scaling. A different, more useful alternative to
formulation (1.13) in the context of embedded optimization will be presented
in Chapter 4.

1.4.1 Solution method classes for optimal control

Indirect methods for optimal control formulate the necessary conditions for
optimality for an infinite-dimensional solution to optimal control problem (1.12),
sometimes based on the Pontryagin maximum principle, and as such result in
a boundary-value problem (BVP) that is solved numerically. Once functions
xp¨q and up¨q are found, we need to sample them at the rate of our system
under control. These methods are often described to ‘first optimize, then
discretize’. Historically, the methods we now call indirect have taken up most
of the attention, most notably in aerospace research. For an introductory work
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on indirect methods, we refer to [Athans and Falb, 1966]. Many different types
of optimal control problems can be solved using this technique. One difficulty
with indirect methods is the handling of arbitrary path constraints.

Direct methods for optimal control form another class of methods. They,
by contrast, operate under the motto ‘first discretize, then optimize’. The
more recently developed direct methods offer more flexibility and are easier to
implement. We will focus on the latter for the rest of this thesis.

The main drawback of indirect methods is that they require the solution of
a BVP, which is difficult for the general case. Direct methods, by contrast,
approximate the solution of this BVP by introducing a grid on the time interval
r0, T s into N intervals. On each interval we simulate the continuous-time
dynamics. By doing so, we obtain a finite-dimensional problem (i.e. with
decision variables in Rn instead of some function space), which we can solve
with the optimization methods discussed in Section 1.2. Three often used direct
methods are single shooting, multiple shooting and direct collocation. Each of
them will be discussed subsequently.

1.4.2 Single shooting

The term ‘shooting’ refers in this context to the simulation of the dynamical
system. By single shooting, we mean the simulation of the state trajectories
on all the grid intervals, given a control trajectory, at once. The controls are
usually assumed to be piecewise constant (this corresponds to practice, where
zero-order hold signals are used for analog-to-digital conversion). Doing so, the
decision variables in single shooting are the controls u0, . . . , uN´1, which are
used to simulate the state trajectory, as follows:

xpk∆t;x0, uq, k “ 0, . . . , N,

where we concatenate all control variables in uJ :“ ruJ0 , uJ1 , . . . , uJN´1s.

Optimization problems obtained from single shooting read as

minimize
u

N´1
ÿ

k“0
lpxpk∆t;x0, uq, ukq ` lT pxpT ;x0, uqq

subject to cpxpk∆t;x0, uq, ukq ď 0, k “ 0, . . . , N ´ 1

cT pxpT ;x0, uqq ď 0.

(1.15)

We can see why single shooting is sometimes called the ‘sequential approach’:
in order to formulate the optimization problem fully, we need to have simulated
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through all shooting intervals. This means that optimization and simulation
are performed in lockstep, hence the adjective ‘sequential’.

1.4.3 Multiple shooting

Multiple shooting takes it one step further: it not only introduces a grid of
control values, but also introduces additional decision variables for the states,
on the same grid. A typical multiple shooting problem has the following form:

Definition 1.8 (NLP with OCP structure).

minimize
x0,...,xN ,
u0,...,uN´1

N´1
ÿ

k“0
lkpxk, ukq ` lfpxN q (1.16a)

subject to x0 “ x0, (1.16b)

xk`1 “ ψd,kpxk, ukq, k “ 0, . . . , N´1, (1.16c)

ckpxk, ukq ď 0, k “ 0, . . . , N´1, (1.16d)

cfpxN q ď 0. (1.16e)

Here, the simulation and optimization is interwoven, so this approach is
sometimes called ‘simultaneous’. For instance, the integration could be readily
computed in parallel. Although multiple shooting introduces extra optimization
variables, it does not necessarily come at higher computational cost to solve, by
employing structure-exploiting solver techniques, as discussed in Section 1.5.
Moreover, multiple shooting has better convergence properties than single
shooting, as discussed in [Bock, 1987].

1.4.4 Direct collocation

Instead of employing an integrator to simulate the dynamics, we could also make
use of a polynomial function that interpolates the continuous-time dynamics at
well-chosen points. This is the main idea behind direct collocation. Again, we
choose a time grid, indexed by k “ 0, 1, . . . , N with piecewise constant controls.
On one grid interval, we choose a smaller grid of collocation points indexed
by i “ 0, 1, . . . ,K. On all N grid intervals we define polynomials of degree K,
which interpolate the continuous-time dynamics at the collocation points [Lynn
and Zahradnik, 1970; Stryk, 1993].
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Table 1.1: Collocation points

K Gauss-Legendre Radau IIA
1 0.5 1.0
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051

0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000

Direct collocation results in an NLP that is even more structured, when
comparing it to the NLP arising in multiple shooting. The NLP can directly be
solved with a large-scale sparse optimization solver like IPOPT [Wächter and
Biegler, 2006] in combination with a sparse linear algebra solver, for example
ma86 from HSL [HSL, 2011].

It remains to be chosen where the collocation points lie; two often-used
collocation methods are ‘Gauss-Legendre’ and ‘Radau IIA’, which use collocation
points at the roots of Legendre polynomial LK : R Ñ R of degree K and at
the roots of LK ´ LK´1, respectively. The Radau IIA collocation method
(integration order 2K ´ 1, i.e. polynomial dynamics of order 2K ´ 1 are
represented exactly) has better stability properties, the Gauss-Legendre method
is of one order higher. For low-order schemes, we list the collocation points for
both methods in Table 1.1. From the table, we can see one additional advantage
of Radau IIA methods: in a given stage, the last node lies at the first time point
of the next stage. This simplifies implementation a little. We note that many
other collocation schemes exist, for example the ‘Gauss-Lobatto’ or ‘Chebyshev’
methods, for which we refer the reader to [Hairer and Wanner, 1991].



MODEL PREDICTIVE CONTROL 29

1.5 Model predictive control

In the preceding sections, we discussed optimization methods for solving optimal
control problems in order to find an optimal state and control trajectory. Having
an optimal control trajectory at hand, it can then be fed (or ‘replayed’) to
the system. In an isolated setting, this might perform satisfactorily. In a
dynamically changing environment, however, we would like to adjust our control
solutions as the system under control progresses. Arguably the most popular
online optimization-based control technique is model predictive control (MPC).
The basic idea is to carry out the following steps repeatedly:

1. Measure or estimate the system state x0 at the current time.

2. Calculate an (approximately) optimal control trajectory by using a
prediction of the future behavior of the system.

3. Feed the first optimal control u‹0 to the system until the next measurement
arrives.

In step 2 above, we typically solve an OCP of type (1.12) with any of the direct
methods that were discussed in Section 1.4. MPC gives rise to problems that
we can categorize in two broad categories: linear-quadratic MPC (LQMPC)
and nonlinear MPC.

1.5.1 Linear-quadratic MPC

LQMPC is characterized by affine (in)equality constraints and a quadratic cost
function. LQMPC gives rise to structured QPs, as follows:

Definition 1.9 (QP with OCP structure).

QPpH q : minimize
x0,...,xN ,
u0,...,uN´1

1
2

N´1
ÿ

k“0

„

xk
uk

J

Hk
„

Qk SJk
Sk Rk

 „

xk
uk



`
1
2x
J
NQNxN (1.17a)

subject to x0 “ x0, (1.17b)

xk`1 “ Akxk `Bkuk, k “ 0, . . . , N´1, (1.17c)

Ck,xxk ` Ck,uuk ď 0, k “ 0, . . . , N´1, (1.17d)

CNxN ď 0, (1.17e)
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where we define the state vectors as xk P Rnx , the controls as uk P Rnu ,
and the cost matrices as Qk P Rnxˆnx , Sk P Rnuˆnx , Rk P Rnuˆnu and
the Hessian matrix H :“ diagpH0, . . . ,HN´1, QN q. In LQMPC, the cost
matrices Hk, k “ 0, . . . , N ´ 1 and QN are to be chosen by the control
designer, often as positive-definite diagonal matrices, such that QP (1.17)
is convex. The constraints denote, respectively, dynamic constraints with
matrices Ak P Rnxˆnx , Bk P Rnxˆnu , inequality constraints with Ck,x P

Rmineq,kˆnx , Ck,u P Rmineq,kˆnu , CN P Rmineq,Nˆnx and an initial constraint
with x̄0 P Rnx .

Remark 1.2. Note that this compact notation, as proposed in e.g. [Frison et al.,
2014], allows for a more general OCP formulation including linear cost terms
and constant terms in the constraints, coming from e.g. a tracking objective, if
the state is augmented by one constant entry ‘1’.

Solving QP problems arising in LQMPC in an embedded context with tight
timing constraints calls for fast tailored methods. We discuss several strategies
shortly.

Explicit MPC

Consider QP (1.17) as a parametric optimization problem, with parameter x0.
The optimal control solution map as a function of the initial state, u‹0px0q, can
be shown to be continuous and piecewise affine. Each ‘piece’ of the solution
map lives in a so-called critical region. This insight gave rise to the idea of
explicit MPC [Bemporad et al., 1999]. It computes and enumerates all possible
critical regions and corresponding control laws. These computations can be
done offline, i.e. ahead of the runtime of the process. During the runtime of the
process, the optimal control can be found by a simple query in a lookup table.
A drawback of explicit MPC is the high memory requirements for storing the
different regions due to the combinatorial explosion of the number of so-called
‘critical regions’. In [Pannocchia et al., 2007], it is mentioned that “Practically
speaking, the offline computation - identification of all regions [. . . ] may be
tractable for single-input-single-output problems with relatively short control
horizon N , but it quickly becomes intractable as the dimensions [. . . ] and
control horizon N grows.” Since the problems we target in this thesis potentially
have a long horizon and more than a few states, we focus on other methods.
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Condensing

One other idea for a tailored QP solution method was presented in [Bock
and Plitt, 1984] and is called condensing. The dynamic equality constraints
in QP (1.17) are used to eliminate the state variables xk, k “ 0, . . . , N . The
resulting QP hasN ¨nu optimization variables, collected in u, and reads as

minimize
u

uJHcd u` b
J
cdu

subject to Ccdu` ccd ď 0,
(condensed QP)

where the inequalities consist of the eliminated dynamic equality constraints
and the original inequalities. The constraints are defined by Ccd P Rmcdˆncd

and ccd P Rmcd , with ncd “ Nnu and mcd “ Npnx `mineqq `mineq,N . The
condensed ‘Hessian’ matrix and ‘gradient’ are defined by Hcd P Rncdˆncd and
bcd P Rncd . From [Frison, 2015] we know that an efficiently implemented
condensing has quadratic worst-case complexity as a function of the horizon
length N . For details on the algorithm and notes on how to efficiently implement
such a condensing method, please refer to that work.

After condensing, the dense subproblem can be passed to a generic QP solver, e.g.
QPKWIK [Schmid and Biegler, 1994], QPOPT [Gill et al., 1995], qpOASES [Ferreau
et al., 2014], to obtain the solution and afterwards recover all of the state
variables and Lagrange multipliers by a so-called expansion step [Bock and
Plitt, 1984].

Partial condensing A slightly different method for solving (1.17) can be
obtained by not eliminating all state variables, but only per block of N{N2
stages (if N is an integer multiple of N2), where N2 is the ‘new’ horizon length
of the partially condensed problem. By this additional degree of freedom, partial
condensing enables us to find a better trade-off between horizon length and
number of optimization variables, for a given problem. For more details on
partial condensing, please refer to [Axehill, 2015].

Active-set methods

Active-set methods are based on the principle that if one happens to know the
set of active constraints at the solution, the optimization amounts to nothing
more than the solution of a single set of linear equations, which is substantively
simpler than solving an inequality constrained QP. Thus, active-set methods
possess in each iteration a current guess of the set of active constraints (also
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called the working set), and, when the optimal active set is not found yet,
updates this guess accordingly.

An active-set QP solver that has shown to be practical in the context of (N)MPC
is qpOASES [Ferreau et al., 2014]. Its active set updates are based on the fact
that subsequent problems in real-time MPC lie close to each other. qpOASES is
best suited for small and dense problems, and it is typically used in combination
with the condensing approach (discussed above). The fundamental idea behind
qpOASES is based on a homotopy on the initial state. Starting at the optimal
solution of a QP, the algorithm proceeds as follows. Given a new parameter
x0, we can construct a homotopy with homotopy parameter p P r0, 1s, where
p “ 0 is associated with the ‘old’ solution and p “ 1 with the new one. Three
different possibilities arise, when moving along the homotopy path: 1) an active
constraint becomes inactive, therefore we remove it from the working set, 2)
an inactive constraint becomes active, such that we add it to the working
set, or 3) we reach p “ 1, which means we found the optimal solution with
respect to the new parameter x0. Since qpOASES is able to reuse information
(i.e. warm-starting) from one problem to the next, it is particularly well-suited
for (N)MPC.

Interior point methods

In principle, problem (1.17) could be solved by any general-purpose interior
point QP solver, like OOQP [Gertz and Wright, 2003]. Often, such solvers are
based on direct sparse linear algebra solvers. However, given the special ‘optimal
control’ structure of the problem, we can do even better.

In [Steinbach, 1994; Rao et al., 1998], a structure-exploiting strategy for linear
MPC problems is presented, which inspired others to write efficient interior
point solvers. One such solver is FORCES [Domahidi et al., 2012]. It is a code-
generation tool for linear MPC problems (recently, Forces Pro [Domahidi and
Perez, 2013; Zanelli et al., 2017a] also offers nonlinear MPC solvers).

Another example of structure-exploiting interior point solver based on a Riccati
recursion for the linear system solution is HPMPC [Frison et al., 2014], and its
successor HPIPM [Frison, 2017]. They use a similar strategy as presented in [Rao
et al., 1998], but additionally offer linear algebra kernels for small-to-midsize
matrices (implemented in BLASFEO [Frison et al., 2018]), optimized for different
computer architectures. This enabled an additional speedup compared to
existing methods.
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Dual-Newton strategy

The dual-Newton strategy is an alternative active set method tailored to
QP (1.17), with an open-source implementation called qpDUNES [Frasch et al.,
2015].

By looking at QP (1.17) in detail, we see that all constraints except for the
dynamic constraints are local to a stage, i.e. they only refer to variables of
that stage. Thus, we can dualize the dynamic constraints in (1.17) and solve
the (unconstrained) dual problem, e.g. by Newton’s method with line search.
This dual problem is concave and piecewise quadratic, given that it is a strictly
convex problem. The Newton system is constructed by solving N ` 1 decoupled
QP problems, localized to each stage. To this end, we can pick any QP solver,
qpDUNES is implemented with qpOASES. An additional ingredient of the dual-
Newton strategy is that it features an efficient factorization of the dual Hessian
going from one problem to the next.

1.5.2 Nonlinear MPC

Many physical systems can not accurately be represented by linear dynamics.
This motivates a generalization to allow for nonlinear dynamic equations and
nonlinear path constraints. In this thesis, we will mainly look at nonlinear MPC
(NMPC) problems in a multiple shooting context, giving rise to problems like
NLP (1.16).

A popular technique in embedded optimization to solve NLP (1.16), if it has
a least-squares objective, is the generalized Gauss-Newton (GGN) method
proposed by [Bock, 1983]. It is an SQP method that employs a Gauss-Newton
Hessian. In each iteration, the QP subproblem to be solved is of the form (1.17),
similar to LQMPC. Thus, the same tailored solution strategies can be used to
solve the QP subproblems in the SQP algorithm.

Advantages of the GGN method include that no second order derivatives need
to be evaluated, that it is a multiplier-free algorithm, and that the Hessian
approximation is always positive (semi-) definite. Therefore each QP subproblem
is convex and can be solved efficiently and reliably. The GGN algorithm has
been shown to be a reliable approach for real-time NMPC [Diehl et al., 2002].

The GGN method makes no distinction between convex or arbitrary nonlinear
inequality constraints. This is undesirable: the linearization of e.g. an elliptical
constraint might give rise to a bad approximation. A generalization of GGN, as
one of the contributions in this thesis, is presented in Chapter 3.
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One drawback to GGN is that its local convergence rate is only linear, in general.
A remedy would be to use a similar SQP method, but with exact Hessians
instead. This, however, can result in indefinite QP problems. One solution to
this problem is presented in Chapter 2.

Online Methods

For NMPC problems, in contrast to linear-quadratic MPC, we have no
guarantees on the solution manifold u‹0px0q. In general, it is nonlinear and
non-continuous, as shown by [Rawlings et al., 2017].

Suppose we have a good approximation of the solution to some problem instance.
How do we prepare for the problem that arrives at the next sampling time?
In general, there are two actions that can be taken. First, we realize that
consecutive problems are not wildly different from each other. Thus, we can
shift our ‘old’ solution forwards in time to obtain a reasonable approximation
to be used with the next problem instance. Secondly, we can make use of a
tangential predictor, which amounts to a local approximation to the solution
manifold u‹0px0q. Combining these two techniques, we have an adequate initial
guess which we use to jump-start our optimization.

However, we face the real-time dilemma [Diehl et al., 2009]:

“Either the nonlinear iteration procedure is performed until a pre-
specified convergence criterion is met, which might introduce consid-
erable feedback delays, or the procedure is stopped prematurely with
only an approximate solution, so that a pre-specified computation
time limit can be met.”

One example of a method that tries to overcome this is the advanced step
controller by [Zavala and Biegler, 2009]. It compensates for the computational
delay introduced by the method. It is based on a nonlinear interior point
algorithm and solves a full NLP in each sampling time.

An alternative is to not fully solve the optimization problem to convergence.
This is opted for in e.g. the Newton-type controller by [Li and Biegler, 1989],
which only performs one full Newton SQP-step per sampling time. This method
is based on a single shooting discretization and does not make use of a tangential
predictor. The Continuation/GMRES method by [Ohtsuka, 2004] also takes
just one Newton step, but is based on a variant of an interior point algorithm,
and it does make use of a tangential predictor.
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Another approach for online NMPC and NMHE that has been proven to be
efficient in practice is the real-time iteration (RTI) method by [Diehl et al.,
2002]. This SQP-type method only solves one QP like (1.17) per sampling
instant. The underlying idea is to approach a local solution while controlling the
plant. The RTI method has some attractive properties for practical application.
First, it makes use of a generalized tangential predictor, which can be shown to
work well across active set changes, even when started from an approximate
solution (we refer to [Diehl et al., 2009] for a more in-depth comparison between
the different types of tangential predictors). Secondly, we can save time by
splitting our computations in a feedback and preparation phase. The preparation
phase consists of simulation of the nonlinear system, as well as generating first-
and second-order derivative information. Also condensing is part of this phase.
The feedback phase starts when the measurement of the initial state becomes
available, and consists just of the solution of one QP, thus minimizing feedback
delay.

A real-time implementation of the RTI method can be found in the ACADO
Toolkit by [Houska et al., 2011], more specifically its Code Generation Tool.
Many examples of experimental application of the RTI method exist, e.g. on
electrical drives in the Megawatt range in [Besselmann et al., 2015], on small-
scale race cars in [Verschueren et al., 2014], on autonomous agricultural vehicles
in [Kayacan et al., 2014] and on a 6-DOF robotic manipulator in [van Duijkeren
et al., 2016].

1.6 Outline & Contributions

After this introductory chapter we are ready to tackle the body of the thesis.
Chapters 2-5 each present one theoretical result in the context of nonlinear model
predictive control and show its usefulness with simulation studies. Chapter 6
presents a new software approach aspiring to be the successor of the ACADO Code
Generation Tool. We shortly discuss the main contributions of each chapter.

Chapter 2 : Convexification for optimal control. This chapter presents a
convexification method for indefinite QP problems as encountered in SQP-type
methods for direct optimal control. The three main contributions are:

• An alternative, more general, necessary and sufficient condition for a QP
problem to be convex (Theorem 2.6),
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• A proof that the proposed method always finds a positive definite Hessian
with OCP structure, if the reduced Hessian of the QP problem is positive
definite (Theorem 2.7),

• A result that states that the iterations of a convexified SQP method are
equal to the non-convexified SQP iterations, close to the NLP solution,
resulting in local quadratic convergence (Theorem 2.9).

A simulation study on a nonlinear optimal control problem illustrates the local
quadratic convergence and shows a significant convergence speedup compared
to state-of-the-art regularization methods.

Chapter 3 : Sequential convex quadratic programming. The generalized
Gauss-Newton (GGN) algorithm is a popular and successful algorithm for
constrained nonlinear least squares problems. However, in the presence of
e.g. ellipsoidal constraints, GGN sometimes perform badly. We introduce a
generalization of GGN, similar to sequential convex programming (SCP), called
sequential convex quadratic programming (SCQP). The contributions in this
chapter are as follows:

• A condition on the Hessian for local linear convergence (Theorem 3.2),

• A new Hessian approximation readily usable in SQP-type methods, called
SCQP,

• An illustration on a nonlinear optimal control problem where Gauss-
Newton does not converge and SCQP converges fast.

Chapter 4 : Time-optimal point-to-point motions. A classical optimal
control problem is the time-optimal control problem: bring a system from
some initial state to some final state, in as little time as possible. However, the
classical ‘time-scaling’ technique creates difficulties in obtaining Lyapunov-based
stability results. We contribute the following:

• A time-optimal formulation with l1 penalty functions and exponentially
increasing weights,

• A result stating that this formulation recovers the time-optimal solution
(Theorem 4.1),

• A stability proof in a nonlinear model predictive control context.

The practical usefulness of the time-optimal NMPC method is illustrated with
hardware-in-the-loop experiments on an embedded platform.



OUTLINE & CONTRIBUTIONS 37

Chapter 5 : Time-optimal path following for robotic manipulators.
Sometimes, a system needs to move time-optimally along a path, as opposed to
between two points. We propose a reformulation of the dynamics that achieves
the following:

• It decouples the timing information from the path geometry,

• As an added benefit, some path constraints are reformulated as simple
bounds.

Chapter 6 : The acados software framework. As a last contribution of this
thesis, we introduce a novel software framework called acados. It is novel
in the sense that it combines the numerical performance of the optimized
linear algebra package BLASFEO while staying modular, which enables rapid
prototyping. Moreover, it offers integration with CasADi as a modeling language
and automatic differentiation tool. Moreover, it comes with interfaces to high-
level languages Python and Matlab. Numerical experiments on an industrial
embedded platform show the practical applicability of the software.

We conclude the thesis text in Chapter 7, and present an outlook to future
research directions.



Chapter 2

Convexification methods for
exact Hessian sequential
quadratic programming
problems arising in direct
optimal control

The great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

R. Tyrrell Rockafellar, mathematician

This chapter offers one solution to a problem arising in SQP-type methods
for direct optimal control: the indefiniteness of the Hessian of the Lagrangian.
This is a problem, because an indefinite Hessian is not guaranteed to produce
a descent direction. Furthermore, many QP solvers do not support indefinite
Hessian matrices.

We present and discuss a method that convexifies the indefinite Hessian. The
convexified Hessian has the same OCP structure as the original Hessian. Far
from the solution, the convexified Hessian is an approximation. Close to the
solution of the NLP (i.e. when the correct active set is identified), however, we
can show that our convexification, combined with SQP, gives rise to exactly

38
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the same iterations as an SQP method with the original indefinite Hessian,
under some regularity conditions. This is important, as we could then apply
any QP solver that expects (strictly) positive-definite Hessian matrices to the
convexified problem. In a sense, we make a ‘jump’ over the great watershed
mentioned in the quote above.

An edited version of the work in this chapter has been published as an article
in the SIAM Journal on Optimization, as [Verschueren et al., 2017b].

2.1 Introduction

As we saw in Chapter 1, there exist several approaches to solve the structured
QP subproblem arising in SQP-type methods for optimal control. One method
is to use condensing in combination with a dense QP solver. Alternatively,
one can solve the QP directly using a structure-exploiting QP solver, of which
the computational complexity typically scales linearly with the horizon length.
This becomes advantageous in OCPs with long horizon lengths, in which case
the condensing approach is less competitive [Vukov et al., 2013]. Examples of
structure-exploiting QP solvers tailored to optimal control are qpDUNES [Frasch
et al., 2015], FORCES [Domahidi et al., 2012] and HPMPC [Frison et al., 2014].
The software package HQP [Franke and Arnold, 1997] is a general-purpose sparse
QP solver that can readily be used to solve large-scale OCPs. Although the
structure-exploiting QP solvers FORCES, HPMPC and qpDUNES require a positive
definite Hessian matrix, the second order sufficient conditions (SOSC) for
optimality require positive definiteness only of the reduced Hessian, which is
defined to be the Hessian matrix projected onto the null space of the active
constraints [Nocedal and Wright, 2006]. We point out that HPMPC and FORCES
would be in principle compatible with problems with an indefinite Hessian with
positive definite reduced Hessian, however, this would not allow part of the code
optimization for the Cholesky factorization and, therefore, indefinite Hessians
are not supported. Moreover, qpDUNES does not allow indefinite Hessians, not
even ones that are positive definite in the reduced space, as it is based on dual
decomposition, which requires strictly convex Hessian matrices.

In NMPC, it often happens that the Hessian of the QP subproblem with
OCP structure is indefinite, and therefore should be approximated with a
positive definite Hessian in order to make sure that the calculated step is a
descent direction; we refer to such a procedure as regularization. The Hessian
regularization is performed right before solving the QP. More specifically, for
the condensing approach, we could either regularize the full Hessian before
performing the condensing step, or we could regularize the condensed Hessian
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afterwards. A numerical case study comparing these two alternatives is presented
in [Verschueren et al., 2016c]. On the other hand, for the case of structure-
exploiting QP solvers, the solvers mentioned in the previous paragraph all
require the full Hessian to be positive definite. The proposed convexification
method is therefore particularly suited for structured QP subproblems.

There are several ways of performing regularization. Levenberg-Marquardt
regularization consists in adding a multiple of the identity matrix to the Hessian
[Nocedal and Wright, 2006]. In [Murray and Yakowitz, 1984], a way of ensuring
a positive definite Hessian without checking its eigenvalues, based on differential
dynamic programming, is presented. One other method adapts the positive
definiteness of the Hessian by directly modifying the factors of the Cholesky
factorization or the symmetric indefinite factorization of the Hessian [Nocedal
and Wright, 2006]. Quasi-Newton methods can generally be modified to directly
provide a positive definite Hessian approximation, see e.g. [Gill et al., 2005;
Gould and Robinson, 2010].

Regularization is also an important algorithmic component for interior point
methods. One could for example look at the KKT matrix and ensure that
it has the correct inertia, as e.g. in [Forsgren and Gill, 1998] by using an
inertia-controlling factorization. A similar idea is used in IPOPT [Wächter
and Biegler, 2006], that performs an inertia correction step on the KKT
matrix whenever necessary. The inertia information comes from the indefinite
symmetric linear system solvers used in that code. An improvement of the
IPOPT regularization in case of redundant constraints is presented in [Wan and
Biegler, 2016]. In [Morales et al., 2011], the non-convexity is overcome by solving
an additional equality constrained QP. One interesting alternative method of
dealing with indefiniteness is presented in [Gill and Robinson, 2013], which
consists of solving QP subproblems with indefinite Hessians that can be proven
to be equivalent to strictly convex QPs. Straightforward regularization methods
typically modify the reduced Hessian of an optimization problem, and therefore
also its corresponding optimal solution. Replacing the Hessian with a positive
definite one without altering the reduced Hessian is called convexification.

As the main contribution of this chapter, we propose a structure-preserving
convexification method for indefinite QPs with positive definite reduced Hessian.
In case the Hessian is indefinite but the reduced Hessian is positive definite, we
prove that the underlying convexity can be recovered by applying a modification
to the original Hessian without altering the reduced Hessian and at the same
time preserving the sparsity structure of the problem. The proposed algorithm
can readily be extended to the case of indefinite reduced Hessians, resulting
in a heuristic regularization approach which will be shown to perform well in
practice.
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Our convexification approach therefore (a) provides a fully positive definite
Hessian; (b) can be applied as a separate routine, independent of the QP
solver used; (c) preserves the optimal control sparsity structure and has a
computational complexity that is linear in the horizon length.

Our convexification algorithm, which fulfills the above criteria, is a recursive
procedure which exploits the block-diagonal structure of the Hessian and the
stage-by-stage structure which is typical for direct optimal control. The resulting
convexified Hessian can then be fed directly to a structure-exploiting QP solver.
Note that by doing so, we avoid the potentially costly step of condensing.
Instead, we directly solve the structured QP with the additional computational
cost resulting from the above convexification procedure.

Our approach is motivated by the convergence of a Newton-type SQP method
to a local solution for a nonlinear OCP. When employing the exact Hessian
in such a method, convergence to a nearby local minimum is quadratic under
mild assumptions [Nocedal and Wright, 2006]. When starting close enough to a
local minimum, the convergence of the Newton-type method with convexified
Hessian remains quadratic under the same assumptions. This will additionally
be illustrated further in a numerical case study. We would like to point out
that e.g. the method in [Gill and Robinson, 2013] will ultimately also recover
quadratic convergence, but indefinite QP subproblems are solved instead of
positive definite ones.

The structure of this chapter is as follows. In Section 2.2 we show how to
recover convexity from general QPs and QPs with optimal control structure
with positive definite reduced Hessians. This section also presents the structure
preserving convexification algorithm. Section 2.3 shows how to handle inequality
constraints and Section 2.4 deals with problems with indefinite reduced Hessian.
An illustration of our regularization method is given, based on a nonlinear OCP
example, in Section 2.5. We summarize the chapter in Section 2.6.

2.2 Equality constrained problems in optimal con-
trol

We focus now on QPs with an optimal control problem structure, as in
Definition 1.9. They typically arise as a subproblem in an SQP-type method to
solve the structured NLP (1.16). In addition to the notation in (1.17), we define
pQN :“ QN . We repeat the definition of a QP with optimal control problem
structure, for the purpose of readability:
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QPpH q : minimize
x0,...,xN ,
u0,...,uN´1

1
2

N´1
ÿ

k“0

„

xk
uk

J

Hk
„

Qk SJk
Sk Rk

 „

xk
uk



`
1
2x
J
N
pQNxN (2.1a)

subject to x0 “ x0, (2.1b)

xk`1 “ Akxk `Bkuk, k “ 0, . . . , N´1, (2.1c)

Ck,xxk ` Ck,uuk ď 0, k “ 0, . . . , N´1, (2.1d)

CNxN ď 0, (2.1e)

In general, the Hessian H of QP (2.1) might be indefinite, for example in case
of an exact Hessian based SQP method to solve NLP (1.16). However, this does
not necessarily prevent the problem from being convex and therefore the solution
of QP (2.1) to be global and unique. First, we present a general framework to
recover this underlying convexity.

For the sake of clarity of the exposition, we omit the inequality constraints from
QP (2.1) and refer to Section 2.3 for a discussion on how to deal with them
within the proposed convexification approach. Without inequality constraints,
we can write QP (2.1a)-(2.1b) in a more compact form, as follows.

Definition 2.1 (Equality constrained QP).

minimize
wPRn

1
2w

JHw (2.2a)

subject to Gw ` g “ 0, (2.2b)

with constraint matrix G P Rmeqˆn of full rank meq with meq ď n. Note that
the linear independence constraint qualification (LICQ) requires full rank of
G [Nocedal and Wright, 2006]. Furthermore, we have a symmetric but possibly
indefinite Hessian matrix H P Sn, where we define the space of symmetric
matrices of size n as follows:

Sn :“ tX P Rnˆn | X “ XJu. (2.3)

In case of a structured equality constrained QP (2.1a)-(2.1b), we have that
n “ pN ` 1q ¨ nx ` N ¨ nu, meq “ pN ` 1q ¨ nx and we choose the following
ordering of the optimization variables: wJ “ rxJ0 , uJ0 , . . . , xJN s. Let us define
the following, similar to Definition 1.6.



EQUALITY CONSTRAINED PROBLEMS IN OPTIMAL CONTROL 43

Definition 2.2 (Range space and null space basis of G). Consider QP (2.2)
and assume LICQ holds. We let Z P Rnˆpn´meqq denote a null space basis with
corresponding range space basis Y P Rnˆmeq of G that satisfy the following:

GZ “ 0, (2.4a)

pY |ZqJpY |Zq “ I. (2.4b)

Note that for any such Z, it holds that spanpZq “ nullpGq.

2.2.1 A characterization of convexity

Using Definitions 2.1-2.2, we can state some interesting properties of QP (2.2)
with regard to convexity of the reduced Hessian. The following theorem is a
well-known result, of which a proof is presented in [Nocedal and Wright, 2006].

Theorem 2.1. Consider QP (2.2) and Definition 2.2, assuming that LICQ
holds. Then QP (2.2) has a unique global optimum if and only if the reduced
Hessian is positive definite, i.e.

ZJHZ ą 0. (2.5)

We note that the reduced Hessian being positive definite corresponds to the
second order sufficient condition (SOSC) for optimality, as defined in [Nocedal
and Wright, 2006]. A well-known fact related to this SOSC is stated in the
following theorem (for a proof, see e.g. [Nocedal and Wright, 2006]).

Theorem 2.2. Consider QP (2.2) with arbitrary H P Sn, Definition 2.2 and
assume that LICQ holds. Then

ZJHZ ą 0 ðñ Dγ P R : H ` γGJG ą 0. (2.6)

Theorem 2.2 is at the basis of the augmented Lagrangian method for
optimization, where one typically calls γ ą 0 the quadratic penalty parameter.
By choosing γ large enough one can always create a positive definite Hessian
at points satisfying SOSC. Note that H ` γGJG destroys the sparsity pattern
present in the original Hessian H, but an actual implementation would solve an
augmented primal-dual system with the correct sparsity in the Hessian, e.g. as
in [Gill and Robinson, 2013]. Theorem 2.2 can be generalized as follows:

Theorem 2.3 (Revealing Convexity). Consider QP (2.2), Definition 2.2, and
assume LICQ holds. The reduced Hessian satisfies

ZJHZ ą 0 (2.7a)
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if and only if there exists a symmetric matrix U P Sn with
ZJUZ “ 0 (2.7b)

such that
H ` U ą 0. (2.7c)

Proof. From (2.7b), (2.7c) and the fact that Z is of full rank, (2.7a) directly
follows. In order to prove the converse, let us introduce a change of basis,
where the new basis is formed by pY |Zq. Doing so, matrix inequality (2.7c)
is equivalent to pY |ZqJpH ` UqpY |Zq ą 0. This again, due to (2.7b) and the
Schur complement lemma [Haynsworth, 1968], is equivalent to

ZJHZ ą 0, (2.8)

Y JpH ` UqY ą Y JpH ` UqZ ¨ pZJHZq´1 ¨ ZJpH ` UqY. (2.9)

Thus, we need to show that there always exists a matrix U satisfying (2.7b)
and (2.9).

Using the same change of basis as above for U and using (2.7b), it holds that

U “ Y KY J ` YMZJ ` ZMJY J, (2.10)

with K P Smeq and M P Rmeqˆpn´meqq. It directly follows that ZJUZ “ 0.
Statement (2.9) can then be written as

K ą ´Y JHY ` pY JHZ `Mq ¨ pZJHZq´1 ¨ pY JHZ `MqJ. (2.11)

As K appears individually on the left hand side, for given H,M , there always
exists a matrix K such that (2.11) holds. Thus, there always exists a matrix U
satisfying (2.9).

The proof of Theorem 2.2 is obtained by choosing M “ 0, i.e. U “ Y KY J,
and observing that Y is a basis of the range space of GJ. It is interesting to
remark that the introduction of matrix U in order to obtain a certificate for
second order optimality bears some similarity in spirit to the introduction of
Lagrange multipliers in order to obtain a certificate of first order optimality.

The next section regards a different special case of Theorem 2.3, where we
impose an OCP structure on U , which cannot be obtained by U “ γGJG or
its generalization U “ GJΓG. Convexification is our name for the process of
finding such a matrix U , which we call structure-preserving convexification if U
has the same sparsity structure as the original Hessian matrix H.
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2.2.2 Structure-preserving convexification

The convexification algorithm presented in this section exploits the convexity
of the reduced Hessian in order to compute a modified quadratic cost matrix
rH P SN,nx,nu

OCP which is positive definite and has the same sparsity pattern as H;
here, we use the following definition for the space of symmetric block-diagonal
matrices with OCP structure:

SN,nx,nu

OCP :“ tX P SNpnx`nuq`nx | X “ diagpX0, . . . , XN q,

Xk P Snx`nu , k “ 0, . . . , N ´ 1, XN P Snxu.

The convexification can be performed by using the structure of the equality
constraints. The resulting modified QP( rH) has two important properties: (a)
the primal solutions of QP(H) and QP( rH) are equal; (b) rH is positive definite
if and only if the reduced Hessian of QP(H) is positive definite.

In the following, we establish property (a) in Theorem 2.4. Afterwards, we
present the convexification procedure in detail and state (b) in Theorem 2.5,
which is the main result of this section. Furthermore, we propose a procedure to
recover the dual solution of QP(H) from the solution of QP( rH) in Section 2.2.6.
To conclude this section, we present a tutorial example.

Throughout this section, we use the following definitions (see the equality
constrained QP (2.1a)-(2.1b)):

G :“

»

—

—

—

–

´I
A0 B0 ´I

. . . . . . . . .
AN´1 BN´1 ´I

fi

ffi

ffi

ffi

fl

, g :“

»

—

—

—

–

x0
0
...
0

fi

ffi

ffi

ffi

fl

, (2.12)

such that the dynamic equalities can be written as Gw ` g “ 0, where wJ “
rxJ0 , u

J
0 , . . . , x

J
N s. Furthermore, we will use matrix Z as in Definition 2.2.

2.2.3 Transfer of cost between stages

The N stages of QP (2.1a)-(2.1b) are coupled by the dynamic constraints
xk`1 “ Akxk ` Bkuk. These constraints are used to transfer cost between
consecutive stages of the problem without changing its primal solution. We
introduce the transferred cost as follows:

qkpxq :“ xJQkx, k “ 0, . . . , N, (2.13)
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for given matrices Qk, P Snx , k “ 0, . . . , N . Then, the stage cost lk and the
modified cost Lk are defined as follows (see (2.1a)-(2.1b)):

lkpxk, ukq :“
„

xk
uk

J

Hk

„

xk
uk



, k “ 0, . . . , N ´ 1, (2.14a)

Lkpxk, ukq :“ lkpxk, ukq ´ qkpxkq ` qk`1pAkxk `Bkukq, (2.14b)

“

„

xk
uk

J

rHk

„

xk
uk



, k “ 0, . . . , N ´ 1, (2.14c)

in which the modified cost Lk is calculated by adding the transferred cost
from the next stage qk`1 to the stage cost lk and subtracting the cost qk,
which is the cost to transfer to the previous stage. This yields a Hessian
rH “ diagp rH0, . . . , rHN´1, rQN q, where rQN :“ pQN ´ QN , and we recall that
pQ :“ QN , which allows us to state the following theorem.
Theorem 2.4 (Equality of primal QP solutions). Consider the equality
constrained QP (2.1a)-(2.1b) and assume that ZJHZ ą 0. Then, the primal
solutions of QPpHq and QPp rHq are equal.

Proof. By assumption ZJHZ ą 0, therefore QP(H) has a unique global
minimum, by Theorem 2.1. The cost function of QP( rH) satisfies
N´1
ÿ

k“0
Lkpxk, ukq ` x

J
N
rQNxN

“

N´1
ÿ

k“0
lkpxk, ukq ´ qkpxkq ` qk`1pAkxk `Bkukq ` x

J
N
rQNxN ,

“

N´1
ÿ

k“0
lkpxk, ukq ´ q0px0q ` qN pxN q ` x

J
N
rQNxN

“

N´1
ÿ

k“0
lkpxk, ukq ` x

J
N
pQNxN ´ q0px0q,

“

N´1
ÿ

k“0
lkpxk, ukq ` x

J
NQNxN ´ q0px0q,

which is equal to the cost function of QP(H), up to the constant term ´q0px0q.
It follows, because the constraints of QP(H) and QP( rH) are identical, that the
primal solutions of both problems coincide.



EQUALITY CONSTRAINED PROBLEMS IN OPTIMAL CONTROL 47

Note that we can write rH “ H ` UpQq where we let matrix UpQq :“
diagpU0, . . . , UN q, with Q :“ diagpQ0, . . . , QN q and the quantities Uk, k “
0, . . . , N are defined as follows:

Uk :“
„

AJkQk`1Ak ´Qk AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



, UN :“ ´QN . (2.15)

Matrix U can be computed by Algorithm 2.1. Note that H,U P SN,nx,nu

OCP so
that rH P SN,nx,nu

OCP also.

Algorithm 2.1 UpQq

Require: Q
Ensure: U

1: UN :“ ´QN
2: for k “ N ´ 1, . . . , 0 do

3: Uk :“
„

AJkQk`1Ak ´Qk AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



4: end for
5: U :“ diagpU0, . . . , UN q

Theorem 2.4 states that transferring cost as in (2.14) does not alter the primal
solution. In the following lemma we prove that also the reduced Hessian is
invariant under cost transfer (2.14).
Lemma 2.1. Consider the equality constrained QP (2.1a)-(2.1b), Z from
Definition 2.2 and U from (2.15) and assume LICQ is satisfied. Then, for any
Q, it holds that ZJUpQqZ “ 0.

Proof. Using Equations (2.15) and (2.12), we can rewrite U as
UpQq “ pG` ΣqJQpG` Σq ´ ΣJQΣ,

“ GJQG`GJQΣ` ΣJQG, (2.16)
where we introduced

Σ :“

»

—

—

—

–

I 0
I 0

. . .
I

fi

ffi

ffi

ffi

fl

, (2.17)

with I P Rnxˆnx so that Σ P Rmeqˆn, where n “ pN ` 1q ¨ nx ` N ¨ nu,
meq “ pN `1q ¨nx, as before. By definition GZ “ 0, therefore it follows directly
that ZJUZ “ 0.
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To summarize, we give an explicit form for the blocks of the diagonal block
matrix rH. For the last stage it holds that:

rQN “ pQN ` UN “ pQN ´QN . (2.18)
For the rest of the stages, we go in reverse order from k “ N ´ 1 to k “ 0 and
first compute the intermediate quantities

«

pQk pSJk
pSk pRk

ff

:“
„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



, (2.19)

and then set
rQk “ pQk ´Qk, (2.20)

rHk “ Hk ` Uk “

«

rQk pSJk
pSk pRk

ff

, k “ 0, . . . , N ´ 1. (2.21)

Moreover, we remark the resemblance of Equations (2.16) and (2.10), so that
we can write the following expressions for K,M :

K “ Y JUY “ Y J
`

GJQG`GJQΣ` ΣJQG
˘

Y,

M “ ZJUY “ ZJΣJQGY.

Please note that for arbitrary Q, the cost transfer operation presented in this
section generally results in indefinite rH. In the next section, we will establish
Theorem 2.5, which states that we can find a U P SN,nx,nu

OCP with corresponding
positive definite rH, and we present an algorithm to compute it.

2.2.4 The structure-preserving convexification algorithm

We propose a structure-preserving convexification procedure, which is built on
Equations (2.18)-(2.21). It computes rH “ H `UpQq which can be shown to be
positive definite, where UpQq is defined as in (2.15) based on a careful choice of
Q.

The procedure, shown in Algorithm 2.2, proceeds as follows: starting from the
last stage, we choose a positive definite matrix rQN “ δI, with δ ą 0 a small
constant, such that QN “ pQN ´ δI (lines 2 and 3), and we use this matrix
to transfer the cost xJNQNxN to the previous stage. The updated quantities
pQN´1, pSN´1, pRN´1 are calculated according to (2.19) in line 5. We use the
Schur complement lemma [Haynsworth, 1968] in line 6 of the algorithm to
ensure that rHN´1 ą 0. Next, we compute QN´1 “

pQN´1 ´ rQN´1 and we
repeat steps 5-8 until we arrive at the first stage of the problem.
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By inspection of Algorithm 2.2, we have that the computational complexity
scales linearly with the horizon length, i.e. it is OpNq. We include Qpδq and
pRpδq :“ diagp pR0, . . . , pRN´1q in the output of the algorithm for convenience.

Algorithm 2.2 Structure-Preserving Convexification: equality constrained
case
Require: H, δ
Ensure: Qpδq, rHpδq, pRpδq

1: pQN “ QN
2: rQN “ δI
3: QN “ pQN ´ rQN
4: for k “ N ´ 1, . . . , 0 do

5:

«

pQk pSJk
pSk pRk

ff

“

„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



6: rQk :“ pSJk
pR´1
k

pSk ` δI

7: rHk :“
«

rQk pSJk
pSk pRk

ff

8: Qk “ pQk ´ rQk
9: end for

10: rH :“ diagp rH0, . . . , rQN q

In Theorem 2.5, we show that Algorithm 2.2 indeed produces a positive definite
rH, given a sufficiently small value for δ, if and only if the reduced Hessian is
positive definite. Lemmas 2.2 and 2.3, presented next, help us to prove this
result.

Lemma 2.2. Consider the equality constrained QP (2.1a)-(2.1b) with OCP
structure and Definition 2.2, assuming LICQ, ZJHZ ą 0 hold. Then,
Algorithm (2.2) with δ “ 0 delivers positive definite pRp0q ą 0 and positive
semi-definite rHp0q ľ 0.

Proof. Since δ “ 0, Algorithm 2.2 starts with QN “ pQN “ QN . Following a
dynamic programming argument in order to solve QP (2.1a)-(2.1b), we have at
each stage the following problem, with xk fixed:

minimize
uk

1
2

„

xk
uk

J „

Qk SJk
Sk Rk

 „

xk
uk



`
1
2x
J
k`1Qk`1xk`1 (2.22a)

subject to xk`1 “ Akxk `Bkuk, (2.22b)
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which is equivalent to

minimize
uk

1
2

„

xk
uk

J „

Qk `A
J
kQk`1Ak SJk `A

J
kQk`1Bk

Sk `B
J
k Qk`1Ak Rk `B

J
k Qk`1Bk

 „

xk
uk



. (2.23)

By assumption, the reduced Hessian of the full QP (2.1a)-(2.1b) is positive
definite, which, by Theorem 2.1, entails that the minimum of the QP is unique.
Dynamic programming yields the same unique solution for each uk, which in
turn implies that the Hessian of (2.23) must be positive definite as well. This
amounts to pRk `BJk Qk`1Bkq “ pRk ą 0, for k “ 0, . . . , N ´ 1. From the Schur
complement lemma, we have that if pRk ą 0,

rQk ´ pSJk
pR´1
k

pSk ľ 0 ðñ
«

rQk pSJk
pSk pRk

ff

ľ 0. (2.24)

With δ “ 0, from Algorithm 2.2 it follows that rQk “ pSJk
pR´1
k

pSk, such that the
left hand side of (2.24) holds. This entails that the Hessian blocks rHk ľ 0, such
that, together with rQN “ 0, it holds that rH ľ 0.

In the following, we regard matrices R̂k from Algorithm 2 as the map R̂pδq and
we recall that pRpδq :“ diagp pR0, . . . , pRN´1q. We use this map in Lemma 2.3,
which will help us prove Theorem 2.5.

Lemma 2.3. Consider QP (2.1a)-(2.1b) and assume that ZJHZ ą 0 holds.
Then there exists a value δ ą 0 such that Algorithm 2.2 computes a positive
definite matrix pRpδq ą 0.

Proof. Consider the map pRpδq, implicitly defined by Algorithm 2.2. By
Lemma 2.2 it holds that pRp0q ą 0. Furthermore, δ enters linearly in the
equations of Algorithm 2.2 and each step of the algorithm is continuous. This
includes line 6, where the inverse of pRk appears, which is well-defined and
continuous as long as pRkpδq remains positive definite, which is true at δ “ 0.
As a consequence, the map pRpδq is continuous at the origin. It follows that
there exists a value δ ą 0 such that pRk ą 0, k “ 0, . . . , N ´ 1.

We conclude this section by establishing our main result.

Theorem 2.5. Consider QP (2.1a)-(2.1b), Definition 2.2 and assume LICQ
holds. Then ZJHZ ą 0 ðñ Dδ ą 0, such that rHpδq ą 0 as defined by
Algorithm 2.2.
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Proof. Assume there exists some δ ą 0 such that rH ą 0. Then ZJHZ ą 0
follows from rH “ H ` U and Lemma 2.1. The converse is proven as follows.
From Algorithm 2.2 we have that rQk ´ pSJk

pR´1
k

pSk “ δI ą 0. By Lemma 2.3,
Dδ ą 0 such that pRk ą 0. Then, from the Schur complement lemma, it follows
that

rHk :“
«

rQk pSJk
pSk pRk

ff

ą 0. (2.25)

As rQN “ δI ą 0, it follows that rH “ diagp rH0, . . . , rHN´1, rQN q ą 0.

2.2.5 Connection with the discrete Riccati equation

We establish next an interesting relation between Algorithm 2.2 and the discrete-
time Riccati equation. This result is not needed in the remainder of this chapter,
but is given for completeness.

Definition 2.3 (DRE). For a discrete linear time varying system xk`1 “
Akxk ` Bkuk, the discrete-time Riccati equation starting with XN :“ QN
iterates backwards from k “ N ´ 1 to k “ 0 by computing

Xk “ Qk `A
J
kXk`1Ak

´ pSJk `A
J
kXk`1BkqpRk `B

J
k Xk`1Bkq

´1pSk `B
J
k Xk`1Akq.

(2.26)

We call matrices Xk the cost-to-go matrices for k “ 0, . . . , N .

Lemma 2.4. Consider QP (2.1a)-(2.1b), Algorithm 2.2 and assume ZJHZ ą

0, with Z as in Definition 2.2. If δ “ 0, then the matrices Q0, . . . , QN in
the output of Algorithm 2.2 are equal to the cost-to-go matrices X0, . . . , XN

computed with the DRE as defined above.

Proof. For stage N , XN “ QN by definition. For k “ 0, . . . , N ´ 1, from
Definition 2.3, we have that

Xk “ Qk `A
J
kXk`1Ak

´ pSJk `A
J
kXk`1BkqpRk `B

J
k Xk`1Bkq

´1pSk `B
J
k Xk`1Akq,

(2.27)

and, if we replace Xk`1 by Qk`1,

Xk “ pQk ´ pSJk
pR´1
k

pSk, (2.28)

“ Qk, (2.29)
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where we used pQk, pSk, pRk as in (2.19) for ease of notation, and (2.29) follows
from Algorithm 2.2, where Qk “ pQk´ rQk, which is equivalent to the right hand
side of (2.28) for δ “ 0.

2.2.6 Recovering the dual solution of the original QP

We propose a procedure to recover the dual solution of QP(H) from its primal
solution. We define the Lagrangian of the equality constrained QP (2.1a)-(2.1b)
as follows:

Lpw, λq “ 1
2

N´1
ÿ

k“0
xJkQkxk ` 2xJk SJk uk ` uJkRkuk `

1
2x
J
NQNxN

`

N´1
ÿ

k“0
λJk`1

`

Akxk `Bkuk ´ xk`1
˘

` λJ0 px0 ´ x0q,

(2.30)

with λJ “ rλJ0 , . . . , λ
J
N s, λk P Rnx . We can obtain the Lagrange multipliers

by computing the partial derivatives of the Lagrangian with respect to xk,
which should equal zero by the necessary conditions for optimality [Nocedal
and Wright, 2006]. The derivation is shown below, a procedure to compute λ is
stated in Algorithm 2.3.

0 “ BLpw, λq
Bxk

J

, k “ 0, . . . , N ´ 1 (2.31)

“ Qkxk ` S
J
k uk `A

J
k λk`1 ´ λk, (2.32)

where additionally

0 “ BLpw, λq
BxN

J

“ QNxN ´ λN . (2.33)

Algorithm 2.3 Recovery of Lagrange multipliers: equality constrained case
Require: w
Ensure: λ

1: λN “ QNxN
2: for k “ N ´ 1, . . . , 0 do
3: λk Ð Qkxk ` S

J
k uk `A

J
k λk`1

4: end for
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2.2.7 A tutorial example

To illustrate our convexification method with a simple example, we regard the
following one-stage OCP:

minimize
x0,u0,x1

x2
0 ´

1
2u

2
0 ` x

2
1 ` x

4
1 (2.34a)

subject to x1 “ x0 ` u0 (2.34b)

x0 “ x0. (2.34c)

As the term x4
1 makes this problem an NLP, we solve it by using an SQP

method with exact Hessian. We set x0 “ 1.

We define w :“ rx0, u0, x1s
J. Optimization problem (2.34) has a global

minimizer at w‹ “ r1,´3{2,´1{2sJ. The Hessian of the Lagrangian at the
solution is equal to

∇2
wLpw‹, λ‹q “ ∇2fpw‹q “ diagp2,´1, 5q č 0. (2.35)

We define

G :“
„

´1 0 0
1 1 ´1



, Z :“

»

–

0
?

2{2
?

2{2

fi

fl , (2.36)

such that GZ “ 0 and ZJZ “ I. The reduced Hessian at the solution w‹ then
reads as ZJ∇2

wLpw‹, λ‹qZ “ 2 ą 0.

Applying our convexification with sufficiently small δ therefore results in strictly
convex QP subproblems, when the SQP method is sufficiently close to the
minimizer.

We compare the convergence of Newton’s method which employs either the
proposed convexification method or the regularization methods defined in (2.37),
called project and mirror, which do, instead, modify the reduced Hessian. Note
that these regularizations fulfill all three properties of the regularizations that
we desire, as mentioned in the introduction: they yield a fully positive definite
Hessian, they are independent of the QP solver and they preserve the OCP
structure.
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Figure 2.1: Convergence for SQP algorithm with three different regularization
methods. On the vertical axis we plot the distance to the global solution w‹. The
Hessian obtained by Algorithm 2.2 with δ “ 10´4 enables quadratic convergence
of the exact Newton method, in contrast to the alternative regularization
methods with ε “ 10´4.

With VkDkV
´1
k the eigenvalue decomposition of the Hessian block Hk, k “

0, . . . , N , these two regularizations are defined as follows:

projectpHk, εq :“ Vk
“

maxpε,Dkq
‰

V ´1
k , (2.37a)

mirrorpHk, εq :“ Vk
“

maxpε, abspDkqq
‰

V ´1
k , (2.37b)

where absp¨q is the operator which takes the element-wise absolute value and
ε ą 0.

In Figure 2.1, we compare convergence of the SQP method for the convexification
method and the two alternative regularizations in (2.37). We can observe from
the figure that Newton’s method which employs the proposed convexification
procedure exhibits locally quadratic convergence to the solution, as it finds
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the correct primal and dual solution of the QP in each iteration. The other
regularization methods result in linear convergence.

2.3 Inequality constrained optimization

In the previous section, we analyzed the case without inequality constraints. In
this section, we analyze the general case and present a generalized version of
Algorithm 2.2.

2.3.1 Revealing convexity under active inequalities

Consider solving NLP (1.2) with an exact Hessian SQP method, starting from
some point v “ pw, λ, µq. As discussed in Chapter 1, see (1.9), this gives rise to
QP subproblems of the form:

QPSQPpw,Hq :“ minimize
∆wPRn

1
2∆wJH ∆w `∇fpwqJ∆w (2.38a)

subject to 0 “ gpwq `
Bg

Bw
pwq∆w, (2.38b)

0 ě cpwq `
Bc

Bw
pwq∆w, (2.38c)

with primal solution ∆w‹ and optimal active set A‹QPpw,∆w‹, Hq.

Remark 2.1. Since ∇2
wLpvq might be indefinite, there could be multiple

solutions to QPSQPpw,∇2
wLpvqq. In the following, we will assume, as e.g.

in [Gould and Robinson, 2010; Robinson, 1974], that ∆w‹ is the minimum-
norm solution.

For a minimum-norm solution of QPSQPpw,∇2
wLpvqq, the following lemma

from [Nocedal and Wright, 2006] holds.

Lemma 2.5. Suppose that v‹ is a regular solution of NLP (1.2). Then
if v :“ pw, λ, µq is sufficiently close to v‹, the minimum-norm solution of
QPSQPpw,∇2

wLpvqq has an active set A‹QPpw,∆w‹,∇2
wLpvqq that is the same

as the active set Apw‹q of NLP (1.2) at v‹.

Suppose we are at a point pw, λ, µq sufficiently close to a solution of the NLP.
Then Lemma 2.5 serves as a motivation to define a QP, which is the same
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as QP (2.38), but with the active inequalities replaced by equalities. We will
use the following shorthands G :“ Bg

Bw pwq, Gact :“ Bci

Bw pwq, i P Apw‹q, and mact
denotes the number of active constraints. For ease of notation, we omit the
dependence of G,Gact on w, as it is constant within one QP subproblem.
Definition 2.4 (QP with fixed active set).

minimize
wPRn

1
2w

JHw (2.39a)

subject to rGw ` rg “ 0, (2.39b)

with rG :“
„

G
Gact



, G P Rmeqˆn, Gact P Rmactˆn and rg :“
„

g
gact



, g P Rmeq ,

gact P Rmact . Note that we omitted the gradient term in the objective from (2.38),
for ease of notation, by performing the same transformation of variables as
in [Frison et al., 2014]. Additionally, we introduce the following matrices:

Definition 2.5 (Null space of equalities and active inequalities). Consider rG

as in QP (2.39). We define rZ P Rnˆpn´meq´mactq, such that the following holds:
rG rZ “ 0, rZJ rZ “ I. (2.40)

Matrix rZ is a basis for the null space of rG. The null space of G comprises
rZ but is possibly larger. We complement rZ with Zc P Rnˆmact , and introduce
Z P Rnˆpn´meqq as a basis for the null space of G, as follows:

Z “ pZc| rZq, GZ “ 0, ZJZ “ I. (2.41)

From now on we call rZJH rZ the reduced Hessian. Furthermore, note that the
above definition of Z is compatible with Definition 2.2.

Using Definition 2.5, we establish an extension of Theorem 2.3 for the case of
active inequality constraints in Theorem 2.6, after proving the following lemma.
Lemma 2.6. Consider QP (2.39), Definition 2.5 and assume LICQ holds. We
then have the following equivalence:

rZJH rZ ą 0 ðñ DΓ P Smact : ZJpH `GJactΓGactqZ ą 0. (2.42)

Proof. The proof follows a similar argument as the proof of Theorem 2.3. We
consider H`GJactΓGact in the basis Z “ pZc| rZq, see (2.41). Applying the Schur
complement lemma yields the following conditions:

rZJH rZ ą 0, (2.43)

ZJc pH `G
J
actΓGactqZc ą ZJc H

rZ ¨ p rZJH rZq´1 ¨ rZJHZc, (2.44)
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where we used the fact that Gact rZ “ 0. The first inequality is the same as the
left hand side of (2.42). Using (2.41), and due to LICQ and the fact that Zc is
orthogonal to the null space of rG and part of the null space of G, it holds that
GactZc is of full rank and therefore invertible. Thus, (2.44) becomes

Γ ą pZJc G
J
actq

´1pZJc H
rZ ¨ p rZJH rZq´1 ¨ rZJHZc ´ Z

J
c HZcqpGactZcq

´1. (2.45)

As Γ appears solely on the left side of the inequality, there always exists a Γ
such that condition (2.44) is met.

Theorem 2.6. Consider QP (2.39), Definition 2.5 and assume LICQ holds.
It then holds that

rZJH rZ ą 0 ðñ DΓ P Smact , DU P Sn : ZJUZ “ 0, H `GJactΓGact ` U ą 0.
(2.46)

Proof The proof of the theorem follows from Theorem 2.3 and Lemma 2.6.

2.3.2 Preserving the OCP structure

Theorem 2.6 can be specialized for the case of an OCP structure. To this end,
let us introduce the following notation. We consider again problems with OCP
structure as in (1.16). For such a problem we have a stage-wise active set as
follows:

Akpwq :“ ti P Ik | rowipckpwqq “ 0u, (2.47)
with Ik the index set corresponding to the inequalities in each stage k “ 0, . . . , N ,
respectively. We can now define Gact,k at some feasible point w, as follows:

Gact,k :“ Browipckq
Bw

pwq : i P Akpwq. (2.48)

for k “ 0, . . . , N . Again, we omit w in the notation for Gact,k for improved
readability of the equations. Furthermore, we define GJact :“ pGJact,0 | . . . |

GJact,N q. We remark that GJactGact P SN,nx,nu

OCP . Using these definitions, we can
establish the following theorem:

Theorem 2.7. Consider QP (2.1), Definition 2.5 and assume that LICQ holds.
Then, it holds that

rZJH rZ ą 0

ðñ

Dγ P R, DU P SN,nx,nu

OCP : ZJUZ “ 0, H ` γGJactGact ` U ą 0.
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Proof. The proof follows from Theorem 2.6 with matrix Γ “ γI and Theorem 2.5.
Note that the sparsity structure of H is preserved in rH :“ H ` γGJactGact ` U ,
as U P SN,nx,nu

OCP and GJactGact P SN,nx,nu

OCP .

We now present the structure-preserving convexification algorithm, for problems
with inequalities, in Algorithm 2.4. It works along the same lines as
Algorithm 2.2, with the difference that we add γGJact,kGact,k to the original
Hessian blocks. For clarity, we introduce an operator HpH, δ, γ,Aq that
computes the convexified Hessian rH.

Algorithm 2.4 Structure-Preserving Convexification: inequality constrained
case
Require: H, δ, γ, current active set A
Ensure: rH :“ HpH, δ, γ,Aq

1: pQN “ QN
2: rQN “ δI
3: QN “ pQN ` γG

J
act,NGact,N ´ rQN

4: for k “ N ´ 1, . . . , 0 do

5:

«

pQk pSJk
pSk pRk

ff

“

„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



` γGJact,kGact,k

6: rQk :“ pSJk
pR´1
k

pSk ` δI

7: rHk :“
«

rQk pSJk
pSk pRk

ff

8: Qk “ pQk ´ rQk
9: end for

10: rH :“ diagp rH0, . . . , rQN q

Moreover, in the OCP case, we can again show that the primal solutions of
QP(H) and QP( rH) are equal.
Theorem 2.8. Consider a primal solution ∆w‹ of QP(H) as defined in (2.1)
with optimal active set A‹QP. Furthermore, consider Definition 2.4 and
Definition 2.5, and assume that LICQ and rZJH rZ ą 0 hold at w‹. Then
there exist δ, γ such that ∆w‹ is the unique primal solution of the convexified
QP( rH) with rH “ HpH, δ, γ,A‹QPq.

Proof. The proof is based on the null space method for solving equality
constrained QPs, as presented in [Nocedal and Wright, 2006]. We decompose
the primal solution vector w as follows (dropping the ‘QP’ subscript):

w “ rZwz ` rY wy, (2.49)
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with rZ as in Definition 2.5, and we complement the basis of the null space of rG
with a basis of its range space rY , such that p rZ|rY qJp rZ|rY q “ I. We can compute
wy from the constraints:

GrY wy “ ´g, (2.50)

Gact rY wy “ ´gact. (2.51)

We can obtain wz as follows. From the first order optimality conditions for
QP (2.1) we have that

H rZwz `H rY wy `G
Jλ`GJactµ “ 0. (2.52)

Multiplying from the left with rZJ gives
rZJH rZwz “ ´ rZJH rY wy, (2.53)

where we used the fact that rZ forms a basis for the null space of rG. Since
rZJH rZ ą 0 by assumption, the solution is well-defined. Substituting H by
rH “ H ` U ` γGJactGact, we have that

¨

˝
rZJH rZ ` rZJU rZ

loomoon

“0

`γ rZJGJact
looomooon

“0

Gact rZ

˛

‚wz

“ ´ rZJH rY wy ´ rZJU rY wy ´ rZJGJact
looomooon

“0

Gact rY wy.

(2.54)

The left hand side of (2.54) is equal to the left hand side of (2.53), due to
Theorem 2.7 and Definition 2.5. In order to prove equality of the right hand
side, we use Definition 2.5 and (2.16) to obtain

rZJU rY wy “ rZJGJ
loomoon

“0

QpG` ΣqrY wy ` rZJΣJQGrY wy, (2.55)

and we can show that rZJΣJQGrY wy “ 0, as follows:

rZJΣJQGrY wy “ rZJΣJQp´gq, from (2.50)

“ 0,

where the last step follows from the fact that only the first nx rows of g are non-
zero (see (2.12)), and the first nx columns of ZJc ΣJQ are zero (see (2.17) and
(2.41)). Thus, (2.53) and (2.54) are identical and, together with (2.50)-(2.51),
yield the same solution for wy, wz, from which we can compute the primal
solution w of the QP.
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2.3.3 Recovering the dual solution

Recovering the Lagrange multipliers of the original problem is possible also for
the case of active inequalities. Suppose we are sufficiently close to a regular
solution of NLP (1.2), such that QP (2.38) has a regular solution whose active
set is the same as the one from the solution w‹ of the NLP, as in Lemma 2.5.
Supposing we have identified the correct active set, we can write the QP as
in (2.39). The corresponding Lagrangian function and its gradient are

Lpw, λ, µq :“ 1
2w

JHw ` λJpGw ` gq ` µJactpGactw ` gactq, (2.56)

∇wLpw, λ, µq “ Hw `GJλ`GJactµact, (2.57)
where we define gact :“ cipwq, i P Apw‹q, and µact are the multipliers
corresponding to the active inequalities.

Multipliers of active inequality constraints Using the definitions of rG, rZ and
Zc as in (2.41), and stating ∇wLpw‹, λ‹, µ‹q “ 0, we can write

pGactZcq
Jµ‹act “ ´Z

J
c pHw

‹q, (2.58)
where we multiplied ∇wLpw‹, λ‹, µ‹q “ 0 from the left with ZJc . Note that
the matrix GactZc is invertible, for the same reasons as given in the proof of
Lemma 2.6. Substituting the original Hessian H by the convexified Hessian
rH “ H`U`γGJactGact gives us an expression for the multipliers corresponding
to the active inequalities of the convexified problem:

pGactZcq
Jµ‹conv,act “ ´Z

J
c pHw

‹ ` Uw‹ ` γGJactGactw
‹q. (2.59)

For QPs with OCP structure, as in (2.1), it holds that
ZJc Uw

‹ “ ZJc G
J

loomoon

“0

QpG` Σqw‹ ` ZJc ΣJQGw‹

“ ZJc ΣJQp´gq,

“ 0,
where we used a similar argument as in the proof of Theorem 2.8.

Comparing (2.58) and (2.59), we can recover the correct multipliers of the
original problem as

µ‹act “ µ‹conv,act ` γGactw
‹. (2.60)

We remark that the multipliers of the inequalities can be recovered in a stage-
wise fashion, as with the multipliers corresponding to the equality constraints,
as shown in Algorithm 2.5.
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Multipliers of equality constraints We need to make a small modification
to Algorithm 2.3 in order to recover the correct multipliers of the equality
constraints, because they depend on the multipliers of the active inequality
constraints. With the notation of QP (2.1), the procedure is shown in
Algorithm 2.5.

Algorithm 2.5 Recovery of Lagrange multipliers: inequality constrained case
Require: w, µconv,act

Ensure: λ, µact

1: µact,N Ð µconv,act,N ` γGact,N xN
2: λN Ð QNxN ` C

J
N µact,N

3: for k “ N ´ 1, . . . , 0 do
4: µact,k Ð µconv,act,k ` γGact,k wk
5: λk Ð Qkxk ` S

J
k uk `A

J
k λk`1 ` C

J
k,x µact,k

6: end for

To summarize, we first compute the primal solution, the QP solver provides
us with µconv,act, with which we compute the multipliers corresponding to the
active inequalities and the equality constraints.

2.3.4 Local convergence of SQP with structure-preserving
convexification

Since our convexification method does not alter the primal solution locally, and
we can correctly recover the dual solution, a full step SQP algorithm that employs
our structure-preserving convexification algorithm converges quadratically under
some assumptions, as is established in the next theorem. Note that this is a local
convergence result in a neighborhood of a minimizer, while global convergence
results require additional globalization strategies as discussed in [Nocedal and
Wright, 2006].

Theorem 2.9. Regard NLP (1.16) with a regular solution v‹ “ pw‹, λ‹, µ‹q.
Then there exist δ ą 0, γ ą 0, and ε ą 0 so that for all v0 “ pw0, λ0, µ0q
with }v0 ´ v‹} ă ε, a full step SQP algorithm with Hessian approximation
rH “ Hp∇2

wLpvq, δ, γ,Apw‹qq converges, the QP subproblems are convex, and
the convergence rate is quadratic.

Proof. We start the iterations with the optimal active set Apw‹q and the exact
Hessian at v0. By convexifying the exact Hessian, we do not alter the primal
solution, as established in Theorem 2.8. Moreover, by using Algorithm 2.5



62 CONVEXIFICATION FOR OPTIMAL CONTROL

we also recover the correct dual step. Therefore, by using our convexification
approach we take the same primal-dual steps as the exact Hessian SQP method
while solving convex QP subproblems. The quadratic convergence then follows
from a standard convergence proof of Newton’s method, e.g. Theorem 3.5 in
[Nocedal and Wright, 2006].

Remark 2.2. In Theorem 2.9 we assume that the SQP iterations start by using
the optimal active set of the NLP solution. We remark that this assumption
is not very restrictive: it is a standard property (see e.g. [Boggs and Tolle,
1995]) that if v0 is close enough to v‹, the QP subproblem even with inexact
positive definite Hessian matrix will identify the correct active set. This is
further illustrated by the numerical experiments in Section 2.5.

2.4 Dealing with indefinite reduced problems

In the previous sections, we assumed a positive reduced Hessian. We call
problems with an indefinite reduced Hessian rZJH rZ č 0 indefinite reduced
problems. In order to compute a positive definite Hessian approximation, we
need to introduce some regularization. There are different heuristics of doing
this which modify the problem in different ways to allow a unique global solution.
We present one variant here.

2.4.1 Regularization of the Hessian

Consider Algorithm 2.4. For an indefinite reduced problem, it is possible that
pRk č 0 holds in line 6 of the algorithm, such that the Schur complement lemma
no longer holds. Instead, we still compute pHk but regularize this Hessian block
by removing all negative eigenvalues and replacing them with slightly positive
eigenvalues. We call this action the ‘projection’ of the eigenvalues as in (2.37),
where ε ą 0 is some small positive number. Applying this regularization results
in Algorithm 2.6, which is based on Algorithm 2.4 but includes an if-clause
checking for positive definiteness of pRk.

Remark 2.3. In Theorem 2.7, we establish that there exists some γ ą 0, such
that there exists a positive definite convexified Hessian. In an SQP setting,
when we are close to a local solution of NLP (1.2), the active set of NLP (1.2)
and QP (2.38) are identical and in principle, we can choose γ arbitrarily big.
However, when we are at a point that is far from a local solution and the active
set is not stable yet, large values for γ might result in poor convergence. A
possible heuristic as an alternative to a fixed value γ is motivated by referring
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Algorithm 2.6 Structure-Preserving Convexification for inequality constrained
optimization, including the regularization of Hessian blocks
Require: H, δ, γ, ε, current active set A
Ensure: rH

1: pQN “ QN
2: rQN “ δI
3: QN “ pQN ` γG

J
act,NGact,N ´ rQN

4: for k “ N ´ 1, . . . , 0 do

5:

«

pQk pSJk
pSk pRk

ff

:“
„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk
BJk Qk`1Ak BJk Qk`1Bk



` γGJact,kGact,k

6: if pRk č 0 then

7: qHk :“
«

qQk qSJk
qSk qRk

ff

“ projectp pHk, εq

8: else

9: qHk :“
«

qQk qSJk
qSk qRk

ff

“

«

pQk pSJk
pSk pRk

ff

10: end if
11: rQk :“ qSJk

qR´1
k

qSk ` δI

12: rHk :“
«

rQk qSJk
qSk qRk

ff

13: Qk “ qQk ´ rQk
14: end for
15: rH :“ diagp rH0, . . . , rQN q

to Algorithm 2.6. In line 6 of the algorithm, we check for positive definiteness
of pRk. In line 5, we will try to make this matrix positive definite, by adding a
matrix GJact,kΓGact,k, where we compute Γ as follows. Consider a decomposition
of matrix Rk `BJk Qk`1Bk in a basis for the range space Yact,k and null space
Zact,k of Gact,k. A necessary condition for the positive definiteness of pRk, by
the Schur complement lemma, is then

Y Jact,kpRk `B
J
k Qk`1Bk `G

J
act,kΓGact,kqYact,k ą 0, (2.61)

such that we could propose the following expression for Γ:

Γ “ ´pY Jact,kG
J
act,kq

´1Y Jact,kpRk `B
J
k Qk`1BkqYact,kpGact,kYact,kq

´1 ` γI,
(2.62)

for some γ ą 0, where we used the fact that Gact,kYact,k is invertible by
construction. Note that (2.62) is a heuristic choice for Γ in the sense that the



64 CONVEXIFICATION FOR OPTIMAL CONTROL

above condition is only necessary, i.e. you still might have to apply regularization
on pHk, as in line 7 of Algorithm 2.6.

2.4.2 Recovering Lagrange multipliers

By applying our structure-preserving regularization method that is based on the
convexification method of Section 2.2.2, we have QP( rH) resulting in a different
primal and dual solution than the original problem. We need to recover the
dual solution with respect to the modified problem, i.e. without the backward
transfer of cost but including the extra convexity introduced by the ‘project’
operation in line 7 of Algorithm 2.6. In order to do so, we do not start from the
original Hessian as in Algorithm 2.5. Instead, we make use of the Hessian with
the regularization terms added, but without the cost transfer terms. In other
words, we keep a separate modified Hessian, which consists of the following
blocks:

Hmod “ H `∆H “ H ` diagp∆H0, . . . ,∆HN´1, 0q, (2.63)

where ∆Hk “ 0 when there was no regularization and ∆Hk “ qHk´ pHk otherwise.
We then apply Algorithm 2.5 to Hmod instead of H.

2.5 Numerical example

In this section, we offer a numerical example as an illustration of the practical
use of our convexification method. We solve a nonlinear optimal control problem
on an inverted pendulum. We will encounter this example a couple of times in
this thesis, as it is simple to understand but gives rise to non-trivial optimization
problems. This system, depicted in Figure 2.2, consists of a rod of length l
making an angle θ with the vertical axis, attached to a cart with mass M that
can move horizontally only, driven by a force F . At the end of the rod is a ball
of mass m. The values of the parameters are listed in Table 2.1.

Table 2.1: Parameters for the inverted pendulum example

Parameter Description Value
M mass of cart 1 kg
m mass of pendulum 0.1 kg
l length of rod 0.8 m
g gravitational acceleration 9.81 kg m{s2
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Figure 2.2: Schematic illustrating the inverted pendulum on top of a cart.

The dynamics of the inverted pendulum are described by the following ODE,
where p, v are the horizontal displacement and horizontal velocity, respectively,
θ is the angle with the vertical (see Figure 2.2) and ω the corresponding angular
velocity:

9p “ v, (2.64a)

9θ “ ω, (2.64b)

9v “
´ml sinpθq 9θ2 `mg cospθq sinpθq ` F

M `m´mpcospθqq2 , (2.64c)

9ω “
´ml cospθq sinpθq 9θ2 ` F cospθq ` pM `mqg sinpθq

lpM `m´mpcospθqq2q . (2.64d)

The control objective is to swing up the ball (θ “ 0), starting with the rod
hanging vertically down, θ “ π. We collect the states in the state vector
x :“ rp, θ, v, ωsJ. A multiple-shooting discretization of the control problem
corresponds to the following OCP formulation:

minimize
x0,...,xN ,
F0,...,FN´1

N´1
ÿ

k“0

„

xk
Fk

J „

Q 0
0 R

 „

xk
Fk



` xJNQxN (2.65a)

subject to xk`1 “ ψd,kpxk, Fkq, k “ 0, . . . , N´1, (2.65b)

´80 ď Fk ď 80, k “ 0, . . . , N´1, (2.65c)

x0 “ x0, (2.65d)
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Table 2.2: Exact-Hessian SQP iterations for the pendulum example
(N=100), using the structure-preserving convexification method
from Algorithm 2.6.

it. KKT
norm

step
size H ą 0 rZJH rZ ą 0 ZJHZ ą 0 regs.

act.
set
chgs.

1 1.52e+02 7.39e+02 True True True 0 74
2 5.33e+06 9.63e+02 9 10
3 2.02e+06 6.01e+02 9 1
4 1.47e+06 3.27e+02 5 4
5 9.44e+05 3.22e+02 4 0
6 3.75e+05 4.87e+02 3 7
7 1.04e+05 4.93e+02 1 22
8 9.13e+03 3.23e+02 2 14
9 3.90e+02 4.14e+02 True 0 2
10 1.25e+02 9.53e+01 True 0 5
11 6.66e+00 3.21e+00 True 0 0
12 1.38e-03 2.88e-03 True 0 0
13 2.02e-08 5.33e-09 True 0 0
14 1.42e-10 6.99e-11 True 0 0

where ψd,k denotes a numerical integration method (explicit Runge-Kutta
method of order 4) to simulate the continuous-time dynamics in (2.64) over one
shooting interval, the weight matrices are chosen as

Q “ diagpr103, 103, 10´2, 10´2sq,

R “ 10´2.

Because our aim is to swing up the pendulum, we selected strong weights on the
position and angle. The other states and the control are assigned a weak penalty
in order to avoid too abrupt swing-ups and to favor smooth trajectories. Note
that the weighting matrices Q and R are tuning parameters used by the control
engineer in the design process in order to obtain a desired behavior. Different
choices are therefore equally valid. The initial value is x0 “ r0, π, 0, 0sJ. We
choose N “ 100 shooting intervals of length 0.01 s.

We solve NLP (2.65) with a full-step SQP method, starting from v0 “ p0, 0, 0q,
i.e. we assume all inequality constraints inactive. In each iteration, we apply
our convexification method. We choose the following values for the parameters:
δ “ 1 ¨ 10´4, γ “ 1. In Table 2.2, the iterations are given. The SQP method
converges in 14 steps, given a tolerance of 10´8. The solution is plotted in
Figure 2.3. As can be seen, some inequality constraints are active at this (local)
minimum.
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Figure 2.3: Optimal trajectories for OCP (2.65). Note that the bounds on Fk
are active at the solution.

Only in the first iteration the Hessian matrix is positive definite. At the solution,
only the reduced Hessian is positive definite. Whenever the reduced Hessian
is not positive definite, we need to apply regularization as in Algorithm 2.6.
This is denoted in Table 2.2 with the amount of shooting intervals in which
we needed to regularize in the next to last column. The number of active set
changes in each iteration is listed in the rightmost column.

It is interesting to remark that whenever the reduced Hessian rZJH rZ is positive
definite, but ZJHZ č 0, we do not need to regularize thanks to the terms
γGJact,kGact,k coming from the active inequality constraints in each stage k.
However, please note that adding this term when we are still far from the
NLP solution adds extra regularization, as the correct active set has not been
identified yet. In the case the reduced Hessian is not positive definite and as
a consequence we have to regularize, we only need to do so at maximum 9
intervals of the 100 control intervals (in iteration 2 and 3 , see Table 2.2).
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We compare these results obtained with the structure-preserving convexification
against two other regularization methods, namely project and mirror as
described in (2.37), applied directly to each Hessian block in order to preserve
the OCP structure, where we choose ε “ δ “ 1 ¨ 10´4. The comparison in
convergence is made in Figure 2.4. As can be seen, using the convexification
as regularization method yields faster convergence, namely convergence in less
than half the number of iterations of regularization by projection, using a
tolerance of 10´8. Moreover, we obtain quadratic convergence, as we established
in Theorem 2.9, when using the convexification method once the optimal active
set is found (see Table 2.2). By contrast, the other regularization methods
result in linear convergence. For different horizon lengths, e.g. N “ 50, 150, 200,
the convergence behavior of the structure-preserving convexification method
is similar to the one reported in Table 2.2 and we obtain similar convergence
profiles for the other methods (see Figure 2.4, right side).

We remark that more advanced regularization schemes than the two that we
are comparing to would yield similar convergence rates, e.g. the methods
in [Gill and Robinson, 2013] or in [Wächter and Biegler, 2006]. Those methods,
however, do not fulfill the desired properties (as mentioned in the introduction
and Section 2.2.7) of the regularization schemes. The possibility of combining
our approach with the one of [Gill and Robinson, 2013] is the subject of ongoing
research.

2.6 Summary

In this chapter, we presented a structure-preserving convexification procedure
for indefinite QPs arising from solving nonlinear optimal control problems
using SQP. We proved that there is an equivalence between the existence of a
convexified Hessian and the reduced Hessian being positive definite, which result
in equal primal solutions. Furthermore, we offered an algorithm that constructs
such a convexified Hessian with the same structure as the original Hessian and
recovers the dual solution of the original problem. Doing so, we retain a locally
quadratic rate of convergence using full steps in the SQP algorithm.

In the case the reduced Hessian is not positive definite, we proposed a
regularization method based on the convexification. We illustrated our findings
with a numerical example, which consists of solving a nonlinear OCP with
an SQP-type method. Possible regularization methods were compared for the
indefinite reduced case.
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Figure 2.4: Comparison of the convergence of an SQP-type method applied to
obtain the solution to NLP (2.65), with three different regularization methods.
We compare two OCP instances, on the left N “ 100, on the right N “ 200.



Chapter 3

Sequential convex quadratic
programming

Do not disturb my circles!

Archimedes, scientist

In the former chapter, we looked at how to approximate a non-convex structured
QP with a convex approximation (under some conditions, the ‘approximation’ is
exact), by modifying the Hessian of the QP. In this chapter, we take a different
approach: we construct positive-definite Hessians much like the generalized
Gauss-Newton algorithm does, but our approach allows more general convex
functions than quadratics in the cost function, and it exploits convexity in the
constraints as well.

The work presented in this chapter was submitted and accepted to the Conference
on Decision and Control as [Verschueren et al., 2016a].

3.1 Introduction

In nonlinear model predictive control (NMPC), we typically encounter structured
NLPs arising from a multiple shooting discretization of a continuous-time OCP,
as in (1.16). Often, the stage cost and terminal cost are quadratic, or quadratic-

70
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over-nonlinear:

minimize
x0,...,xN
u0,...,uN´1

1
2

N´1
ÿ

k“0
}rkpxk, ukq}

2
2 `

1
2}rN pxN q}

2
2 (3.1a)

subject to x0 “ x0, (3.1b)

xk`1 “ ψd,kpxk, ukq, k “ 0, . . . , N ´ 1, (3.1c)

ckpxk, ukq ď 0, k “ 0, . . . , N ´ 1, (3.1d)

cN pxN q ď 0. (3.1e)

A popular method for solving problems of the above type is the generalized
Gauss-Newton (GGN) algorithm. It is well-known that the GGN algorithm has
good local convergence properties when the residual functions rkpx‹k, u‹kq are
small at the solution [Diehl, 2001]. Whenever this is not the case, the second
order derivatives for either the residual or for the constraint functions in (3.1c)-
(3.1e) need to be evaluated and included in the Hessian to obtain convergence
even when initializing the algorithm arbitrarily close to a local minimizer. In
case of an exact Hessian based method, one always obtains contraction close
to a minimizer and this convergence speed is quadratic [Nocedal and Wright,
2000]. However, the Hessian of the Lagrangian can be indefinite such that the
corresponding QP subproblem is non-convex and therefore generally not easy
to solve, as we saw in the last chapter.

Instead of approximating an indefinite QP, we aim at directly formulating convex
subproblems. Similar to the family of sequential convex programming (SCP)
methods as discussed in [Tran-Dinh and Diehl, 2010], one can often exploit some
convexity in either the objective or the constraint functions. The idea of an SCP
method is to linearize all non-convex functions and solve the resulting convex
subproblem in each iteration. Even though this approach can indeed locally
result in good linear convergence [Tran-Dinh and Diehl, 2010], one needs to rely
on a general convex solver. In this chapter, we instead propose an SQP method
in which we use the convexity available from objective and constraint functions
to obtain a more accurate Hessian approximation. This Hessian is based on the
second order derivatives of convex functions and is therefore always positive
semidefinite, similar to the case for the GGN method. A similar method which
only exploits convexity in the objective is presented in [Martens and Sutskever,
2011] in the context of training deep artificial neural networks.

As a main contribution of this chapter, we propose the sequential convex
quadratic programming (SCQP) method, which is presented as a generalization
of the classical GGN method. The advantages of this algorithm are motivated
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from the computational point of view, since the second order derivatives needed
for each Hessian approximation are relatively easy to evaluate unlike the
propagation of second order derivatives for the dynamics (3.1c). In addition,
each subproblem is a convex QP which is typically easier to solve than a more
general convex subproblem, as in SCP methods. Note that because of these
reasons, SCQP is suited for real-time optimization, e.g. in an NMPC setting.

Furthermore, it will be shown that SCQP can indeed improve the local
convergence properties as compared to the GGN method, possibly resulting in
a stronger contraction rate. The performance of this method is illustrated by a
numerical example.

3.2 Problem formulation

In order to present our method in a more compact way, we introduce a slightly
more general NLP formulation than NLP (3.1). As in Chapter 1, we will call
it an ‘NLP with convex substructure’. It should be noted that a non-convex
function can always be rewritten as φprpwqq ď 0, with φ convex, such that the
optimization problem reads as:

minimize
w P Rn

φ0pr0pwqq (3.2a)

subject to gipwq “ 0 i “ 1, . . . ,meq, (3.2b)

φipripwqq ď 0, i “ 1, . . . ,mineq, (3.2c)

with convex output functions φi : Rni
r Ñ R and possibly nonlinear ‘residual’

functions ri : Rn Ñ Rni
r for i “ 0, . . . ,mineq. GGN is well suited for the case

φ0pr0pwqq “
1
2}r0pwq}

2
2 as it exploits the least-squares nature of the objective

function. SCQP extends this idea to exploit general convex output functions in
the objective as well as in the inequality constraints. We call a function of the
form φprpwqq ‘convex-over-nonlinear’.

To arrive at an even more compact notation for NLP (3.2), we will refer to the
functions φipripwqq as ϕipwq. These functions are generally non-convex and
further assumed to be three times continuously differentiable.

We define the Lagrangian of NLP (3.2) with objective function ϕ0 : Rn Ñ R as

Lpw, λ, µq :“ ϕ0pwq ` λ
Jgpwq ` µJϕpwq, (3.3)

with the Lagrange multipliers λ P Rmeq , µ P Rmineq , and g : Rn Ñ Rmeq , ϕ :
Rn Ñ Rmineq , respectively, denote the concatenation of equality and inequality
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constraints. Furthermore, as before in Chapter 1, we define

rgpwq “

„

gpwq
ϕipwq



, i P Apwq,

as the vector of equality constraints and active inequality constraints, with
Apwq the active set of in w. Similarly, the Lagrange multipliers corresponding
to constraints rgpwq are denoted by

rµ “

„

λ
µi



, i P Apwq.

When NLP (3.2) is solved with a full-step SQP method, the primal iterates
evolve according to wj`1 “ wj ` ∆w, where ∆w is the solution (see (1.9))
of

minimize
∆w P Rn

1
2∆wJH ∆w `∇ϕ0pw

jq∆w

subject to Bg

Bw

`

wj
˘

∆w ` gpwjq “ 0

Bϕ

Bw

`

wj
˘

∆w ` ϕpwjq ď 0.

(3.4)

As mentioned in Section 1.2.4, in the case of a least squares cost function ϕ0pwq “
1
2}r0pwq}

2
2 one often uses the Gauss-Newton Hessian approximation [Bock, 1983]:

HGN
k “ Jpwkq

JJpwkq, where Jpwkq “
Br0pwkq

Bw
. (3.5)

However, a local minimizer pw‹, λ‹, µ‹q of NLP (3.2) might become an unstable
point for the SQP iterations with a Gauss-Newton Hessian approximation, i.e.
the SQP method in some cases may not converge to pw‹, λ‹, µ‹q even when
initialized arbitrarily close to this minimizer [Bock, 1987; Diehl et al., 2010].

Motivated by this observation, the next section presents a necessary and sufficient
condition on the Hessian approximation for asymptotic stability of a local
minimizer w‹.

3.3 Asymptotic stability of a local minimizer

First, we consider the case of unconstrained optimization. Afterwards, we show
that the same result is applicable to constrained optimization problems. We
assume that the Hessian approximation Hpwkq is continuously differentiable in
wk. Furthermore, unless it is specified, we will assume that Hpwkq ą 0.
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3.3.1 Unconstrained optimization problem

Consider the simplified version of the NLP in (3.2) without any constraints:

min
wPRn

ϕ0pwq. (3.6)

Assume that the second order sufficient conditions (SOSC) for optimality hold
at a local minimizer w‹, i.e. ∇2ϕ0pw

‹q ą 0. We solve the first order necessary
optimality condition ∇ϕ0pwq “ 0 with a Newton-type SQP method with a
Hessian only depending on the current linearization point wk, resulting in
iterations

wk`1 “ F pwkq

“ wk ` arg min
∆wkPRn

1
2∆wJkHpwkq∆wk `∇ϕ0pwkq

J∆wk

“ wk ´Hpwkq
´1∇ϕ0pwkq.

(3.7)

A standard result from linear stability analysis is stated without proof in the
following lemma.

Lemma 3.1 (Linear Stability Analysis). Regard an iteration of the form wk`1 “
F pwkq with F a continuously differentiable function in a neighborhood of a fixed
point F pw˚q “ w˚. If all eigenvalues of the Jacobian BF

Bw pw
˚q have a modulus

smaller than one, i.e. if the spectral radius is smaller than one ρ
`

BF
Bw pw

˚q
˘

ă 1,
then the fixed point w˚ is asymptotically stable. In that case, when started
in a neighborhood of the fixed point, the iterates converge to w˚ with a Q-
linear convergence rate with asymptotic contraction rate ρ

`

BF
Bw pw

˚q
˘

. On the
other hand, if one of the eigenvalues has a modulus larger than one, i.e. if
ρ
`

BF
Bw pw

˚q
˘

ą 1, then the fixed point is unstable.

The Taylor expansion of F pwkq in (3.7) around w‹ reads as

wk`1 “ wk´Hpw
‹q´1∇2ϕ0pw

‹qpwk ´ w
‹q

`Op}wk ´ w‹}2q,
(3.8)

where we used the fact that ∇ϕ0pw
‹q “ 0.

Neglecting higher order terms, we can rewrite (3.8) as

∆w‹k`1 “ Hpw‹q´1pHpw‹q ´∇2ϕ0pw
‹qq

looooooooooooooooooomooooooooooooooooooon

M‹

∆w‹k, (3.9)

with ∆w‹k “ wk ´ w
‹.
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Note that from (3.9) it follows that BF
Bw pw

‹q “M‹. A different characterization
of the necessary and sufficient condition on the spectral radius in Lemma 3.1 is
stated in the following lemma.

Lemma 3.2. Define M‹ as in (3.9). Then the two following statements are
equivalent.

1. The spectral radius ρpM‹q ď α,

2. ´αHpw‹q ĺ Hpw‹q ´∇2ϕ0pw
‹q ĺ αHpw‹q.

Proof. By assumption, Hpw‹q ą 0, so Hpw‹q´ 1
2 exists. It follows that the

eigenvalues of M‹ and Σ :“ Hpw‹q´
1
2 pHpw‹q ´ ∇2ϕ0pw

‹qqHpw‹q´
1
2 are the

same. Assume now that ρpM‹q ď α. As Σ is symmetric, we can write that
´αI ĺ Σ ĺ αI and thus ´αHpw‹q ĺ Hpw‹q ´ ∇2ϕ0pw

‹q ĺ αHpw‹q. The
converse follows from the definition of spectral radius.

Motivated by Lemmas 3.1 and 3.2, we can now state a necessary and sufficient
condition on Hpw‹q in order for w‹ to be asymptotically stable with contraction
rate α.

Theorem 3.1. A solution w‹ of NLP (3.6) is an asymptotically stable fixed
point for the Newton-type iteration in (3.7) with asymptotic contraction rate
0 ď α ă 1, if and only if the following conditions hold:

Hpw‹q ľ
∇2ϕ0pw

‹q

1` α , (3.10a)

Hpw‹q ĺ
∇2ϕ0pw

‹q

1´ α . (3.10b)

Proof. These two conditions are equivalent to

´ αHpw‹q ĺ Hpw‹q ´∇2ϕ0pw
‹q ĺ αHpw‹q. (3.11)

This condition is equivalent to ρp BF
Bw pw

‹qq ď α ă 1 because of Lemma 3.2, which
is in turn the necessary and sufficient condition for asymptotic stability as
defined by Lemma 3.1.

The bounds in (3.10) are illustrated in Figure 3.1.
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Figure 3.1: For a solution w‹ to be stable, the Hessian approximation Hpw‹q
has to lie inside the shaded region (3.10) for any w P Rnzt0u.

3.3.2 Equality and inequality constraints

Let us return to the Newton-type SQP method from (3.4), applied to the original
NLP (3.2). Assume that the linear independence constraint qualification (LICQ),
SOSC and strict complementarity hold at the local minimizer pw‹, λ‹, µ‹q. It
follows that the active set for the QP solution is stable close to a local minimizer
of the NLP, i.e. the active set for the QP in (3.4) is also the active set of the
original NLP [Nocedal and Wright, 2006].

The KKT system corresponding to the QP subproblem (3.4) after fixing the
active inequality constraints and omitting the inactive ones, reads as

„

Hpw, νq GpwqJ

Gpwq 0

 „

∆w
∆rµ



“ ´

„

∇wLpw, rµq
rgpwq



, (3.12)

where Gpwq “ Brg
Bw pwq and we recall that the multipliers rµ correspond to the

active constraints rgpwq :“ rgpwqJ, ϕiPApwq
JsJ only.
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Let us denote the constraint matrix at the local solution by G :“ Gpw‹q, such
that its QR factorization reads:

GJ “ QGRG “
“

Y Z
‰

„

RG
0



, (3.13)

with orthogonal matrix
“

Y Z
‰

. It follows that the matrix Z is a null space
basis for the constraint matrix G at the solution, i.e. GZ “ 0. Let us define the
reduced Hessian matrix and its corresponding approximation at a local solution
pw‹, rµ‹q:

Λ‹ :“ ZJ∇2
wL‹ Z,

rH‹ :“ ZJH‹ Z,

with shorthands ∇2
wL‹ :“ ∇2

wLpw‹, rµ‹q and H‹ :“ Bpw‹, rµ‹q. By assumption,
SOSC holds at the local minimizer pw‹, rµ‹q, which implies that the reduced
Hessian Λ‹ ą 0.

Introducing the compact notation v “ rwJ, rµJsJ, one step of the Newton-type
SQP method (3.12) reads as

vk`1 “ vk ´

„

Hpvkq Gpwkq
J

Gpwkq 0

´1 „∇wLpvkq
rgpwkq



“ vk ´

„

H‹ GJ

G 0

´1 „∇2
wL‹ GJ

G 0



pvk ´ v
‹q,

(3.14)

after neglecting higher order terms. Here, we used a Taylor expansion of
„

∇wLpvkq
rgpwkq



around v‹ and the fact that this quantity vanishes at v‹. We can
now state a version of Theorem 3.1, including equality and inequality constraints.

Theorem 3.2. Assume we are close to a local minimizer pw‹, λ‹, µ‹q of NLP
problem (3.2) where LICQ, SOSC and strict complementarity hold, such that the
current active set is equal to the active set at the local minimizer. Then pw‹, rµ‹q
is asymptotically stable for the Newton-type iteration (3.14) with asymptotic
contraction rate 0 ď α ă 1, if and only if the following conditions hold:

rH‹ ľ
Λ‹

1` α, (3.15a)

rH‹ ĺ
Λ‹

1´ α. (3.15b)
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Proof. Let us define a similar change of variables as in (3.9), ∆v‹k “ UJpvk´v
‹q,

with orthogonal matrix
U “

„

Z Y
I



, (3.16)

where Z, Y are defined by the QR factorization in (3.13). Equation (3.14) then
reads as:

∆v‹k`1 “ UJ
„

H‹ GJ

G 0

´1

UUJ
„

H‹ ´∇2
wL‹ 0

0 0



U∆v‹k,

“ L´1P ∆v‹k,

where we defined the matrices

L “ UJ
„

H‹ GJ

G 0



U,

P “ UJ
„

H‹ ´∇2
wL‹ 0

0 0



U.

For each eigenvalue β of matrix L´1P there exists a v ‰ 0 satisfying Pv “ βLu.
Expanding the matrix products yields

β

»

–

ZJH‹Z ZJH‹Y 0
Y JH‹Z Y JH‹Y RG

0 RJG 0

fi

fl

»

–

vz
vy
vr

fi

fl “

»

–

ZJpH‹ ´∇2
wL‹qZ ZJpH‹ ´∇2

wL‹qY 0
Y JpH‹ ´∇2

wL‹qZ Y JpH‹ ´∇2
wL‹qY 0

0 0 0

fi

fl

»

–

vz
vy
vr

fi

fl ,

(3.17)

where GZ “ 0 and GY “ RJG have been used.

For β ‰ 0, from the bottom row of the equation in (3.17) we have that
βRJGvy “ 0, which implies vy “ 0 since RG is invertible. From the top row it
then follows that βZJH‹Zvz “ ZJpH‹ ´∇2

wL‹qZvz, and consequently that

βvz “ pZ
JH‹Z

looomooon

ĂH‹

q´1pZJH‹Z
looomooon

ĂH‹

´ZJ∇2
wL‹Z

looooomooooon

Λ‹

qvz. (3.18)

Thus, the nonzero eigenvalues of matrix L´1P are equal to the eigenvalues
of p rH‹q´1p rH‹ ´ Λ‹q. We have now recovered the same form of (3.9) for each
Newton-type iteration. Consequently, the rest of the proof follows that of
Theorem 3.1 for the unconstrained case.
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As a corollary of Theorem 3.2 it holds that rH‹ ą 1
2Λ‹ implies asymptotic

stability for the local minimizer v‹. This can be seen from taking the limit
of (3.15a) for αÑ 1 (see Figure 3.1). Motivated by these results, we introduce
a novel Hessian approximation in the next section.

3.4 Sequential convex quadratic programming

Consider the NLP (3.2), which is the more general form of OCP (3.1), and
we recall that φi for i “ 0, . . . ,mineq are convex. We construct a Hessian
approximation using the contributions from the functions we know to be convex.
This is motivated by the fact that SQP might yield large steps ∆wk due to the
linearization of the inequalities, whose convexity is ignored. We propose to use
a modification of the generalized Gauss-Newton method, where we linearize the
convex inequalities, but add their positive definite second order derivative to
the Hessian. This Hessian approximation then reads

HSCQPpw, µq :“ Br0

Bw
pwqJ∇2

rφ0pr0pwqq
Br0

Bw
pwq

`

mineq
ÿ

i“1
µi
Bri
Bw
pwqJ∇2

rφipripwqq
Bri
Bw
pwq.

(3.19)

We will refer to the SQP method using HSCQP as a Hessian approximation in
its QP (3.4) subproblem, as sequential convex quadratic programming (SCQP).
The corresponding Hessian approximation error reads as:

ESCQPpw, λ, µq “

meq
ÿ

i“1
λi∇2gipwq `

ni
r

ÿ

j“1

Bφ0

Br0,j
pwq∇2r0,jpwq

`

mineq
ÿ

i“1
µi

ni
r

ÿ

j“1

Bφi
Bri,j

pwq∇2ri,jpwq.

(3.20)

Note that the GGN method is a special case of this class of methods. In
comparison to the Gauss-Newton Hessian, HSCQP has the benefit that we are
closer to a Hessian approximation rH‹ ą 1

2Λ‹ that implies asymptotic stability
of a local minimizer w‹. This fact is a corollary from the following lemma.

Lemma 3.3. For a local minimum pw‹, λ‹, µ‹q of NLP (3.2) with least squares
cost function φ0pr0pwqq “

1
2}r0pwq}

2
2, it holds that

HSCQPpw‹, µ‹q ľ HGNpw‹q. (3.21)
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Proof. For a least squares cost function, (3.21) follows directly from

HSCQPpw, µq “
Br0

Bw
pwqJ

Br0

Bw
pwq `

mineq
ÿ

i“1
µi
Bri
Bw
pwqJ∇2

rφipripwqq
Bri
Bw
pwq,

“ HGNpwq `

mineq
ÿ

i“1
µi
Bri
Bw
pwqJ∇2

rφipripwqq
Bri
Bw
pwq,

and the fact that inequalities φi are convex and multipliers µi are nonnegative
at a local solution.

Remark 3.1. SCQP is motivated by the results of Theorem 3.2. However, we
do not guarantee that the SCQP Hessian satisfies the bounds (3.15) in general.
As such, local convergence, just as in the case of GGN, is not guaranteed. In
practice, the SCQP Hessian is often ’closer’ to the exact Hessian, which might
result in better convergence properties, as shown in Section 2.5.

In the case of constant second order derivatives for the objective and inequality
constraint functions, SCQP is specifically easy to implement and computationally
cheap. But also in general, the second order derivatives for the Hessian in (3.19)
can be efficiently evaluated using Algorithmic Differentiation (AD) [Griewank,
2000].

An alternative point of view on SCQP is the following. Applying sequential
convex programming (SCP) in order to solve NLP (3.2) results in the
subproblems:

min
wPRn

φ0

ˆ

Br0

Bw
pwkqpw ´ wkq ` r0pwkq

˙

(3.22a)

s.t. Bgi
Bw
pwkqpw ´ wkq ` gipwkq “ 0, (3.22b)

φj

ˆ

Brj
Bw
pwkqpw ´ wkq ` rjpwkq

˙

ď 0, (3.22c)

with i “ 1, . . . ,meq, j “ 1, . . . ,mineq and the current linearization point wk.
One iteration of the SCQP method is then equivalent to an exact Hessian based
SQP iteration for the latter convex subproblem (3.22).

We illustrate the benefits of the SCQP algorithm using a numerical case study
in the next section.
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3.5 Numerical example

In this section, we solve an OCP of the form in (3.1) using sequential quadratic
programming. More specifically, we compare different techniques of Hessian
approximation and their resulting local convergence properties, including the
proposed SCQP method and the more classical Gauss-Newton (GGN) and exact
Hessian (EH) based SQP method.

3.5.1 Implementation and software

To numerically solve the optimal control problems, we adopt the open-source
CasADi software framework, which has been proven to solve OCPs reliably
and efficiently [Andersson et al., 2018]. More specifically, we use the Python
front-end to formulate the OCP as a nonlinear program (NLP) using direct
multiple shooting [Bock and Plitt, 1984] as a discretization method.

The resulting NLP is passed to the open-source solver IPOPT [Wächter and
Biegler, 2006]. It implements a primal-dual interior point method suited for
solving large-scale NLPs. The linear algebra subroutine calls were passed to
the sparse solver ma86 from the HSL library [HSL, 2011; Duff, 2004]. For
SCQP, GGN and exact Hessian SQP, we use the open-source QP solver
qpOASES [Ferreau et al., 2014]. Note that the software packages mentioned
above can be conveniently called from within the CasADi framework.

3.5.2 Inverted pendulum with terminal region

As an example, we regard a pendulum on a cart, as in Section 2.5. The X ´ Y
position of the pendulum is given by the equations

rpxq :“
„

X
Y



“

„

p´ l sinpθq
l cospθq



, (3.23)

with p the horizontal position of the cart, θ the angle with the vertical and l
the length of the rod (see Section 2.5).
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We solve the following OCP:

min
x0,...,xN
u0,...,uN´1

N´1
ÿ

k“0
u2
k, (3.24a)

s.t. x0 “ x0, (3.24b)

xk`1 “ ψd,kpxk, ukq, k “ 0, . . . , N ´ 1, (3.24c)

}rXN ´ l, YN ´ ls
J}22 ´R

2
e ď 0, (3.24d)

with xk “ rpk, θk, vk, ωksJ, uk “ Fk, initial value x0 “ r0, π, 0, 0sJ and XN , YN
the position of the pendulum at the end of the control horizon. The discrete
dynamics ψd,k are obtained by simulating the continuous-time dynamics with an
RK4 integrator with 20 integration stages and a sampling time of 0.05 s. Note
that the terminal constraint is of the convex-over-nonlinear form φprpxN qq ď 0,
with

φprpxN qq “

›

›

›

›

rpxN q ´

„

l
l


›

›

›

›

2

2
´R2

e,

and rpxN q as in (3.23). We use N “ 20 control intervals.

We compare the convergence of SCQP with that of GGN and exact Hessian
SQP, in Figure 3.2. We start each method close to a local solution with Re “
0.05 m, plotted in Figure (3.4a). Exact Hessian SQP converges quadratically,
as expected. SCQP converges linearly, in contrast to GGN, for which the local
solution is unstable and thus does not converge at all to the local minimum.
In the sense of Figure 3.1, the GGN Hessian approximation falls ‘under’ the
shaded region.

In fact, for decreasing radius Re, the solution stays an unstable fixed point
for GGN. This is shown in Fig 3.3, where we plot the largest eigenvalue of
p rH‹q´1p rH‹ ´ Λ‹q. Even for the terminal region quite large, as in Figure 3.4b,
GGN does not converge. GGN needs Re « 2 m for the solution to become
stable; in this case, there is no swing-up. SCQP converges to a nearby local
solution for all radii.

Remark 3.2. In this example, the extra computational cost of using SCQP
instead of GGN is almost negligible. More specifically, we need: (1) ∇2

rφprpxN qq,
which is constant and can be computed offline, (2) evaluation of Br

Bx pxN q, and
(3) the Lagrange multiplier, which we can directly get from the QP solver.
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Figure 3.2: Comparison of the convergence of exact Hessian SQP, GGN and
SCQP to a local minimum of the pendulum OCP. The measure of convergence
is the norm of the residual of the KKT system. Re “ 0.05 m, corresponding to
“A” in Figure 3.3.

3.6 Summary

This chapter proposed a generalization of the classical GGN method, referred
to as the sequential convex quadratic programming (SCQP) method. Similar to
Gauss-Newton, the novel Hessian approximation always results in a convex QP
subproblem by including the second order derivatives of only convex objective
and inequality constraint functions. It is shown that the SCQP approach has
better local convergence properties compared to GGN, as illustrated with a
numerical example.
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Figure 3.3: Greatest eigenvalue βmax “ ρpp rH‹q´1p rH‹ ´ Λ‹qq for GGN and
SCQP, for different values of Re. For a solution to OCP (3.24) to be a stable
fixed point, βmax has to lie below the horizontal line βmax “ 1. The lines “A”
and “B” correspond to solutions in Figure 3.4.
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(a) Re “ 0.05 m

(b) Re “ 1.0 m

Figure 3.4: Solution of OCP (3.24) for different values of Re. Note that for
these radii, the solution is a stable fixed point for SCQP, and an unstable one
for GGN (Figure 3.3).



Chapter 4

Time-optimal nonlinear model
predictive control for
point-to-point motions

But meanwhile time flies; it flies never to be regained.

Virgil, poet

Time-optimal control is one of the oldest optimal control problem classes, both in
continuous time and in discrete time, and an ample literature on this topic exists.
Often the solution techniques are based on indirect methods (see e.g. [Athans
and Falb, 1966]), and assume some properties on the optimal control a priori
(for example, a bang-bang structure, i.e. the controls are almost always at
their limits). For nonlinear systems, it is even more challenging to arrive at a
time-optimal control law in closed form; for some special classes of nonlinear
systems, this has been achieved, see e.g. [Nešić et al., 1998] and the references
therein.

For problems in discrete time, it was Kalman who first derived a time-optimal
controller for linear time-invariant (LTI) systems, also sometimes called dead-
beat control, for an excellent overview of such controllers, see [O’Reilly, 1981].
Although time-optimal control in both continuous and discrete time are similar
in nature, an important difference is that for discrete time systems, the time-
optimal control is generally non-unique and not always bang-bang, see [Desoer
and Wing, 1961].

86
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In this chapter and the following one, we tackle two different discrete time-
optimal NMPC techniques: one for point-to-point motions and one for path
following. The one of this chapter focuses on point-to-point motions and has
been published as a separate conference paper in the Conference on Decision
and Control [Verschueren et al., 2017a].

4.1 Introduction

In this chapter, we focus on point-to-point time-optimal control of discretized
nonlinear dynamic systems, using direct methods. Point-to-point motions are a
sizable application field, for example in robotic manipulators [Geering et al.,
1986], wafer steppers [Lau and Pao, 2003] and cranes [Vukov et al., 2012].

Some applications use a receding horizon technique, e.g. model predictive
control (MPC). In [Van den Broeck et al., 2011], a two-level time-optimal MPC
method for linear systems is presented and experimentally validated, where
the upper level determines the optimal horizon length, and the lower level is
a tracking MPC with fixed horizon length. One drawback of this method is
that the horizon length can change from one problem to the next. In [Zhao
et al., 2004], a nonlinear MPC (NMPC) method for time-optimal control has
been proposed, based on a varying time scaling (the horizon length is a decision
variable). Close to the desired end point, the horizon is kept fixed and a standard
regulator NMPC is used to keep the system there. A different but related idea
is proposed in [Rösmann et al., 2015], where the continuous dynamics are scaled
with a constant factor, such that the horizon length becomes fixed. This scaling
factor then enters the objective function linearly, such that time-optimality is
recovered. One disadvantage of this method is that the underlying optimization
problem becomes nonlinear, even for linear systems. Furthermore, a stability
proof of an NMPC method using such time-scaled dynamics is not known to
the authors.

The main focus of this chapter is a novel NMPC method for time-optimal
point-to-point motions. We make two theoretical contributions: we show that
nominal stability of the end point holds (for simplicity of the exposition, the
end point is assumed to be the origin), and we prove that it is time-optimal,
if a certain tuning parameter is chosen sufficiently high. The method is based
on an optimal control problem (OCP) formulation employing an exponential
increase of the stage costs along the horizon, based on an idea as presented (but
not further developed) in [Van den Broeck et al., 2010]. The stage costs are
chosen to be the l1-norm of the difference between the end point and the state
at each stage. As such, exponentially increasing weights encourage the motion
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to arrive at the end point “as early as possible”, thus recovering time-optimality.
The resulting NMPC method inherits this property of time-optimality. The
practical usefulness of the method is illustrated with numerical experiments.

4.2 Problem formulation

We consider continuous-time time-optimal control problems as in (1.13), which
we briefly repeat here:

minimize
xp¨q,up¨q, T

T “

ż T

0
1 dt (4.1a)

subject to xp0q “ x (4.1b)

9xptq “ ψpxptq, uptqq, @t P r0, T s (4.1c)

cpxptq, uptqq ď 0, @t P r0, T s (4.1d)

xpT q “ 0 (4.1e)

0 ď T, (4.1f)

The final state is the origin, without loss of generality, as we can introduce
a different final steady state by a simple state transformation. It is well-
established in the literature that the solution of (4.1) for linear systems with
linear constraints gives rise to bang-bang solutions [Athans and Falb, 1966], and
uniqueness of the optimal solution, under some conditions, can be established
by the uniqueness of a boundary-value problem (BVP). In the case of nonlinear
systems, these properties cannot be guaranteed, but the solution is often still
found to be of bang-bang type.

In this chapter, we use a receding horizon formulation, more specifically time-
optimal nonlinear model predictive control (TONMPC), which consists in
repeatedly solving discretized versions of OCP (4.1). We treat two different
approaches; the first can be found in the literature [Rösmann et al., 2015], the
second one (presented in Section 4.4) is a new method.

4.3 Time-scaling approach

One straightforward approach to solve OCP (4.1) is to introduce a time
transformation as in (1.14). One advantage of doing so is that the horizon
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length T becomes independent of the pseudo-time τ over which we integrate the
continuous-time system. To discretize the continuous-time system, we choose
a multiple shooting discretization [Bock and Plitt, 1984]. Since τ is now the
independent variable, we choose a shooting interval length of ∆τ “ 1{N , with
N the number of shooting intervals. Discretizing OCP (4.1) becomes

minimize
x0,...,xN ,
u0,...,uN´1,
T0,...,TN´1

T “
N´1
ÿ

k“0

Tk
N

(4.2a)

subject to xk`1 “ rψd,kpxk, uk, Tkq, k “ 0, . . . , N ´ 1 (4.2b)

cpxk, ukq ď 0, k “ 0, . . . , N ´ 1 (4.2c)

x0 “ x (4.2d)

xN “ 0 (4.2e)

Tk “ Tk`1, k “ 0, . . . , N ´ 2 (4.2f)

0 ď Tk, k “ 0, . . . , N ´ 1, (4.2g)

where xk P Rnx , uk P Rnu are the vectors of states and controls, and we introduce
decision variables Tk on each shooting interval in order to preserve the problem
structure. Function rψd,k : Rnx`nu`1 Ñ Rnx is the discrete-time representation
of the time-scaled dynamic system (1.14), e.g. obtained by numerical integration.
The inequality constraints are denoted by c : Rnx`nu Ñ Rmineq,k . We would
like to point out that equality constraint (4.2f) is not strictly necessary, but it
is advisable to include it, as the optimizer might exploit the time warping to
“cut corners” as to accommodate the path constraints (4.2c).

In an NMPC setting, we repeatedly solve OCP (4.2), feeding back the optimal
control u‹0 to the system. However, we need to include one additional constraint,
such that the sampling time ∆t of the real control system matches that of the
first time interval in OCP (4.2), namely T0 “ N ¨∆t, while keeping all other
Tk, k “ 1, . . . , N ´ 1 free but equal.

Note that such a fixed first interval makes a possible proof of nominal stability
for the NMPC method more intricate, in particular because the property of
recursive feasibility is difficult to establish. Indeed, such a stability proof does
not yet exist, to the author’s knowledge.
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4.4 Exponentially increasing penalty

The second formulation, by contrast, does not employ a time-scaling and uses
the discrete-time dynamics

xk`1 “ ψdpxk, ukq, k “ 0, 1, . . . ,

obtained by e.g. numerically simulating the continuous-time dynamics
ψpxptq, uptqq over one sampling interval ∆t. We make the following standard
assumptions on the system.

Assumption 4.1. We assume that ψd is continuous, and that ψdp0, 0q “ 0.

The new time-optimal method is based on the following discrete time minimum-
time problem which is another discretization of continuous-time problem (4.1):

N‹pxq “
min

N,x0,...,xN ,
u0,...,uN´1

N

s.t. x0 “ x

xk`1 “ ψdpxk, ukq, k “ 0, . . . , N ´ 1

cpxk, ukq ď 0, k “ 0, . . . , N ´ 1

xN “ 0,

(4.3)

where N P N0 (the set of nonnegative integer numbers), and xk, uk, x as before.

If we found a solution such that the state arrives at the origin at stage N‹ (we
will sometimes use N‹ as a shorthand for N‹pxq in the following), we want to
keep it there, such that we make the following assumption:

Assumption 4.2. For the inequality constraints cpx, uq it holds that cp0, 0q ď 0.

The following definition will prove to be useful in the subsequent discussion.

Definition 4.1. We define a time-optimal solution subject to discrete dynamical
system xk`1 “ ψdpxk, ukq as any solution to (4.3) that brings the system from x
to the origin in N‹pxq steps, where N‹pxq is the solution to (4.3). Furthermore,
let XN‹ denote the set of states x such that the optimal value of (4.3) is smaller
than or equal to N‹pxq.

The fact that the horizon length is not fixed in OCP (4.3) is cumbersome in
an algorithmic setting, because the problem dimensions will change in each



EXPONENTIALLY INCREASING PENALTY 91

iteration of the solution method. By contrast, we introduce our time-optimal
formulation with fixed horizon length N (possibly much larger than N‹) as
follows:

V ‹N pxq “

min
x0,...,xN ,
u0,...,uN´1

N´1
ÿ

k“0
θk}xk}1 (4.4a)

s.t. x0 “ x (4.4b)

xk`1 “ ψdpxk, ukq, k “ 0, . . . , N ´ 1 (4.4c)

cpxk, ukq ď 0, k “ 0, . . . , N ´ 1 (4.4d)

xN “ 0, (4.4e)

where θ P R is a fixed parameter. Note that we fix x to zero at a later stage
than N‹. With that regard, an interesting connection between problems (4.3)
and (4.4) is stated in the following theorem.

Theorem 4.1. Assume OCP (4.3) is feasible and choose N ě N‹pxq. There
exists a number θ1 such that, for all θ ě θ1, the solution of (4.4) satisfies
x‹k “ 0, k “ N‹, . . . , N , i.e. the solution is time-optimal with respect to
Definition 4.1.

Naturally, this discrete-time time-optimal solution is a mere approximation of
the continuous-time problem (4.1) but the approximation gets better as the
fixed sampling time ∆t gets smaller and simultaneously N gets bigger. In order
to prove Theorem 4.1, we will first present a result for which we consider the
following related time-optimal problem with horizon length N‹pxq, where N‹pxq
is the optimal horizon length, obtained from (4.3). Furthermore, we introduce
the objective function

fpx0, . . . , xN‹´1q :“
N‹´1
ÿ

k“0
θk}xk}1,
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and we relax the terminal constraint to be xN‹ “ ε, such that the OCP becomes:

minimize
x0,...,xN‹ ,
u0,...,uN‹´1

N‹´1
ÿ

k“0
θk}xk}1 (4.5a)

subject to x0 “ x (4.5b)

xk`1 “ ψdpxk, ukq, k “ 0, . . . , N‹ ´ 1 (4.5c)

cpxk, ukq ď 0, k “ 0, . . . , N‹ ´ 1 (4.5d)

xN‹ “ ε, (4.5e)

with ε P Rnx . The optimal solution depends parametrically on ε, and we remark
that ε enters the OCP formulation linearly. With the terminal constraint
xN‹ “ 0 we associate the Lagrange multiplier λN‹pθq P Rnx , of which the value
depends on θ. In fact, the value of the Lagrange multipliers is nothing else than
(see [Nocedal and Wright, 2006]):

λN‹,ipθq “
dfpx‹pεi, θqq

dεi

ˇ

ˇ

ˇ

ˇ

εi“0

with i P t1, . . . , nxu and the ε-perturbed trajectory

x‹pεi, θq :“ rx‹0pεi, θq, . . . , x‹N‹pεi, θqs,

and εj “ 0, forj ‰ i. We make the following technical assumption on these
perturbed trajectories:

Assumption 4.3. The perturbation on the optimal trajectory with respect to
εi, i “ 1, . . . , nx is bounded, i.e. there exists a value L P R such that

ˇ

ˇ

ˇ

ˇ

Bx‹kp0, θq
Bεi

ˇ

ˇ

ˇ

ˇ

ď L, k “ 0, . . . , N‹,

for all i P t1, . . . , nxu, for k “ 0, . . . , N‹, for all x P XN‹ and all θ ě θ1.

We establish the following result with regard to the value of the Lagrange
multiplier λN‹pθq.

Lemma 4.1. For each x, there exists a number θ1 such that θN‹ ě }λN‹pθq}8,
for all θ ě θ1.
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Proof. Consider OCP (4.5) with relaxed constraint (4.5e). For the Lagrange
multipliers λN‹,ipθq, i “ 1, . . . , nx, it holds that:

|λN‹,ipθq| “

ˇ

ˇ

ˇ

ˇ

ˇ

dfpx‹pεi, θqq
dεi

ˇ

ˇ

ˇ

ˇ

εi“0

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bfpx‹p0, θqq
Bx‹p0, θq ¨

Bx‹p0, θq
Bεi

ˇ

ˇ

ˇ

ˇ

ď θ0
›

›

›

›

Bx‹0p0, θq
Bεi

›

›

›

›

1
` . . .

` θN
‹
´1

›

›

›

›

Bx‹N‹´1p0, θq
Bεi

›

›

›

›

1

“ OpθN
‹
´1q, θ Ñ8, (4.6)

where the last step holds because of Assumption 4.3.

From (4.6) it follows that

}λN‹pθq}8 “ maxr|λN‹,1pθq|, . . . , |λN‹,nx
pθq|s

“ OpθN
‹
´1q, θ Ñ8.

The fact that }λN‹pθq}8 “ OpθN‹´1q and θN‹ “ OpθN‹q, directly leads to the
existence of a θ1 that satisfies θN‹ ě }λN‹}8, for all θ ě θ1, which proves the
lemma.

We are now ready to prove Theorem 4.1.

Proof. We can rewrite OCP (4.4) in terms of OCP (4.5) as follows:

minimize
x0,...,xN ,
u0,...,uN´1

fpx0, . . . , xN‹´1q `
N
ÿ

k“N‹

θk}xk}1

subject to x0 “ x

xk`1 “ ψdpxk, ukq, k “ 0, . . . , N ´ 1

cpxk, ukq ď 0, k “ 0, . . . , N ´ 1

xN “ 0.
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Take first N “ N‹; then, we have a terminal constraint xN‹ “ 0 such that the
theorem holds. For N ą N‹, for all θ ě θ1, the term θN

‹

}xN‹}1 represents an
exact penalty term for the constraint xN‹ “ ε “ 0 in (4.5), by Lemma (4.1) and
the fact that the 8-norm is the dual of the 1-norm, see [Nocedal and Wright,
2006]. As such, we have that xN‹ “ 0. For stages k “ N‹ ` 1, . . . , N , the
solution will stay at the origin, as it is feasible (by Assumption 4.2) and optimal
(because of the 1-norm in the objective). This proves the theorem.

4.5 NMPC formulation

The time-optimality of OCP (4.4) has been established in Theorem 4.1. Next,
we will use this in a receding horizon fashion, i.e. we formulate the NMPC
problem. The NMPC method consists of the following steps:

1q Estimate the state x at the current time tk, (4.7a)

2q Solve OCP (4.4) for u‹0, (4.7b)

3q Apply control κN pxq :“ u‹0 to ψd, (4.7c)

4q Proceed to the next time point tk`1. (4.7d)

Let XN be the set of states x for which (4.4) has a solution. We make the
following (standard) assumption, referring to [Rawlings and Mayne, 2009]:

Assumption 4.4. There exists a K8 function αp¨q such that V ‹N pxq ď αp|x|q.

The stability of the NMPC method is established in the next theorem.

Theorem 4.2. Take θ ą 1. Then, the origin is asymptotically stable for the
system xnext “ ψdpx, κN pxqq.

Proof. We follow a standard Lyapunov argument, using the notation as
in [Rawlings and Mayne, 2009]. We need to show that the optimal value
function in (4.4) satisfies:

V ‹N pxq ě α1p|x|q @x P XN (4.8a)

V ‹N pxq ď α2p|x|q @x P XN (4.8b)

V ‹N pψdpx, κN pxqqq ď V ‹N pxq ´ α1p|x|q, @x P XN , (4.8c)
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for K8 functions α1p¨q, α2p¨q. The optimal cost decrease (4.8c) is proven as
follows: consider the optimal value function

VN px,u‹q :“ V ‹N pxq “
N
ÿ

k“0
θk}x‹k}1,

with u‹ :“ ru‹0, . . . , u
‹
N´1s. Going to the next time step, with feasible but

suboptimal control sequence ũ :“ ru‹1, . . . , u‹N´1, ũs, with ũ to be determined,
it holds that

V ‹N pψdpx, κN pxqqq ď VN pψdpx, κN pxqq, ũq

“

N
ÿ

k“1
θk´1}x‹k}1 ` θ

N }ψdpx
‹
N , ũq}1

ď V ‹N pxq ´ α1p|x|q,

provided that there exists a K8 function α1p¨q, such that

α1p|x|q ď }x
‹
0}1 ´ θ

N }ψdpx
‹
N , 0q}1

ď }x}1, (4.9)

because from constraint (4.4e) we have that ψdpx
‹
N , 0q “ 0, as ũ “ 0 is the

optimal control at the origin. It follows that a function α1 satisfying (4.9)
always exists and (4.8c) holds.

Inequality (4.8a) follows from (4.9) and }x}1 “ θ0}x‹0}1 ď V ‹pxq, and
inequality (4.8b) holds because of Assumption 4.4.

Thus, the optimal value function V ‹N pxq is a Lyapunov function and the theorem
is proven.

Note that recursive feasibility is implied by the terminal constraint xN “ 0,
such that we can make the following statement with respect to time-optimality
for the nominal NMPC method.

Corollary 4.1. For x P XN‹ (see Definition 4.1) and θ ě θ1, the NMPC
method (4.7), started from x at t0, satisfies x “ 0 for tN‹ , tN‹`1, . . ., i.e. the
closed-loop trajectory is time-optimal with regard to Definition 4.1.

Proof. The proof follows from Theorem 4.1 (with θ ě θ1) and nominal stability
as established in Theorem 4.2.
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Apart from enabling stability, the terminal constraint (4.4e) yields another
advantage, namely that θ does not need to be as big as θ1. This can be seen
by considering the terminal constraint xN “ 0 as an implicit weighting on
state xN‹ , such that θ can be smaller than θ1, while still yielding time-optimal
trajectories.

4.6 Simulation results

We present simulation results on two dynamical systems; the first is a toy
example, the other one is a mechanical system, more specifically a hanging
pendulum with varying length in the presence of obstacles.

In all of the following, the non-smooth 1-norm is implemented by employing a
smooth standard reformulation with slack variables.

4.6.1 Toy example

As a first example to test our time-optimal NMPC method on, we take the
system from [Chen and Allgöwer, 1998]:

9p “ q ` upµ` p1´ µqpq,

9q “ p` upµ´ 4p1´ µqqq.

We define the state vector x :“ rp, qsJ, and we set µ “ 0.5. It is reported
in [Chen and Allgöwer, 1998] that for µ P p0, 1q the system is unstable and
its linearization is stabilizable. To obtain a discrete-time system ψdpx, uq, we
integrate above system with numerical code cvodes [Hindmarsh et al., 2005]
over ∆t “ 0.01 s. Furthermore, the calculation in each time step of the NMPC
is carried out in the CasADi [Andersson et al., 2018] framework for algorithmic
differentiation and dynamic optimization, using IPOPT [Wächter and Biegler,
2006] as optimization solver.

We then run NMPC method (4.7), with parameters N “ 50, θ “ 1.6, starting
from three different points at t0 “ 0 s. The inequality constraints are

cpx, uq “

„

u´ 10
´u´ 10



ď 0.

For each of the three scenarios, we also compute N‹, the minimum time. The
closed-loop trajectories are shown in Figure 4.1. Notice how all the state
trajectories go to the origin (and not earlier) at k “ N‹ and remain there,
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Figure 4.1: Closed-loop trajectories for the system of the toy example under
NMPC method (4.7).

which illustrates Corollary 4.1. Furthermore, it is interesting to look at the
control trajectories: the closed-loop control lies against its limits r´10, 10s
except for some points, which usually holds for discrete-time time-optimal
control (see [Desoer and Wing, 1961]).

4.6.2 Application: hanging pendulum

A second system we apply our time-optimal NMPC method on is a hanging
pendulum with varying length, that moves from start to end point, which are
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both equilibria for the system. The continuous-time equations of motion are

9xt “ vt, 9vt “ at, (4.10a)

9xc “ vc, 9vc “ ac, (4.10b)

9ϕ “ ω, (4.10c)

9ω “
´p2ωvc ` at cospϕq ` g sinpϕqq

xc
. (4.10d)

with xtrms, vtrm{ss, atrm{s2s the horizontal displacement, velocity and acceler-
ation, respectively. We assume that we can control the acceleration directly,
as in [Auernig and Troger, 1987]. The same holds for the cable length xcrms,
with corresponding cable (un)rolling velocity vcrm{ss and acceleration acrm{s2s.
The angle that the pendulum makes with the vertical is denoted by ϕrrads, its
angular velocity is ωrrad{ss. We define the state vector x “ rxt, vt, xc, vc, ϕ, ωsJ
and controls u “ rat, acsJ.

The height of the pendulum is H “ 0.5 m, and the following bounds apply on
states and controls:

´0.8 m{s ď vt ď 0.8 m{s

0 m ď xc ď 0.5 m

´0.5 m{s ď vc ď 0.5 m{s

´1 m{s2 ď at ď 1 m{s2

´1 m{s2 ď ac ď 1 m{s2.

(4.11)

Furthermore, we introduce a static obstacle that the pendulum should avoid
touching, of the form

H ´ xc cospϕq ě

0.4
3 parctanp200 ˚ pxt ` xc sinpϕq ´ 0.5q

´ arctanp200 ˚ pxt ` xc sinpϕq ´ 0.7qqq.

(4.12)

Optimal control problem We compare optimal control formulations (4.2)
and (4.4), with the following parameters: N “ 25, starting point is
x “ r0, 0, 0.4, 0, 0, 0s, end point xend “ r1, 0, 0.4, 0, 0, 0s, and for the
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exponential formulation we take θ “ 1.5, ∆t “ 0.1 s. Constraints (4.11) apply
to both formulations.

The results can be seen in Figure 4.2a. We note that both trajectories are
almost equal, as they should be (the difference arises from the general non-
uniqueness of time-optimal control in discrete time). The optimal time for the
time scaling method is T ‹ “ 2.219 s, which compares with the optimal time of
the exponential method, N‹ ¨∆t = 2.3 s: the difference in optimal value for the
time is smaller than one sampling time interval. Also the optimal state and
control trajectories look very similar, the only difference being the horizontal
acceleration at: the exponential weighting method decides to swing more when
going over the obstacle. Although the trajectories could be brought closer to
each other by additional control penalties, we show this result to illustrate the
non-uniqueness in the time-optimal controller.

Processor-in-the-loop simulations We now show hardware in the loop (HIL)
simulations of an efficient NMPC implementation. For this, we use the ACADO
Code Generation Tool [Houska et al., 2011] with qpOASES [Ferreau et al., 2014]
as QP solver. We then run this code on ABB’s high performance controller AC
800PEC, which is typically used for time- and safety-critical applications in
the power electronics domain. It features a dual-core CPU running at a clock
speed of up to 1200 MHz as well as a field-programmable gate array. In our
simulations, both the RTI method as well as the simulation model are running
on a single CPU core at a clock speed of 800 MHz. Simulation results are
obtained via Ethernet using a dedicated communication protocol.

For the HIL-simulation, we show one run on the pendulum without
constraint (4.12). We show the CPU times of the closed loop controller in
Figure 4.3. As we can see, in the beginning there are a lot of active set changes
in the active set QP solver (right hand axis), such that the CPU time taken
for one RTI step are relatively high (more than 700 ms). However, there is a
very steep drop afterwards. Ultimately, the number of QP iterations goes to
zero as the pendulum arrives at its end point. It should be noted that the
number of active set changes (and thus the CPU time spent in the QP solver)
at the beginning of the run could be drastically reduced by first executing a
few “warm-starting” NMPC runs, where the initial value is not updated.

4.6.3 Application: permanent magnet synchronous machines

As a second application, a very similar method as the one presented in this
chapter has been applied to permanent magnet synchronous machines in a
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(b) Optimal state and control trajectories.

Figure 4.2: Solution to the optimal control problem of pendulum with varying
length. In black, the exponential weighting method is plotted, in gray, the time
scaling method.

master thesis by [Graber, 2018]. There, the state of the system needs to
move time-optimally from one working point to another. Furthermore, the
voltage and current constraints are elliptical in nature. As such, this is an
interesting application, as it could combine two techniques presented in this
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Figure 4.3: CPU times and number of QP iterations against number of steps of
the NMPC.

thesis: the time-optimal NMPC technique from this chapter and the SCQP
Hessian approximation of the last chapter. The preliminary results are promising,
unfortunately no experimental results are available yet.

4.7 Summary

This chapter is the first of two on time-optimal NMPC. We introduced a stable
time-optimal NMPC scheme for point-to-point motions based on an increasing
exponential penalty. As an added benefit, the resulting cost function is convex
and is easily implemented with a slack reformulation. We showed the usefulness
of the method with an HIL simulation on an embedded platform.



Chapter 5

Time-optimal path following
for robotic manipulators

If you find a path with no obstacles, it probably doesn’t lead
anywhere.

Frank A. Clarke, politician

In the last chapter, we saw a time-optimal NMPC method for point-to-point
motions. Sometimes, a time-optimal control task is not about moving from
point to point but about following or staying near a path [Verscheure et al.,
2009], [Lipp and Boyd, 2014]. Examples include control of computer numerical
control (CNC) machines in manufacturing, welding robots, but also control
of autonomous aerial, land, underwater vehicles. The method presented in
this chapter makes use of a prescribed path that needs to be followed, with
some accuracy. Using a reformulation of the dynamics, our method is especially
useful in the presence of obstacles on the path. The work in this chapter was
presented at the Americal Control Conference [Verschueren et al., 2016b].

5.1 Introduction

We focus on time-optimal motion of robotic arms along predefined trajectories,
in order to maximize productivity. From previous work we learn that generating
time-optimal motion starting from a given geometric path can be beneficial.

102
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The operator can choose a path that ensures collision avoidance and satisfies
other geometric constraints in advance. Given a fixed path in the configuration
space of the robot (which may require an inverse kinematics step), the remainder
of the trajectory generation problem consists of the significantly simpler step
of choosing the optimal timing where to be when on the given path [Bobrow
et al., 1985; Shin and McKay, 1985]. We will call this the decoupled approach
to time-optimal motion generation. An example of this is [Dahl and Nielsen,
1990], an online two-level method, where the secondary level modifies a nominal
trajectory by performing a time scaling during motion. This idea is elaborated
in [Olofsson, 2015] with a decoupling between lateral and longitudinal control.
Other online approaches to path following go one step further and consider a
geometric path solely as reference and generate an optimal feedback law that
decides on both the timing and the distance to the reference using a nonlinear
model predictive control (NMPC) approach [Faulwasser et al., 2009; Lam et al.,
2010].

The geometric path in the workspace of the robot may not be completely strict
and, in fact, limited deviations may be perfectly acceptable, for instance in
tasks with a certain machining tolerance, or in orientation invariant tasks. The
work in [Debrouwere et al., 2014] presents a time-optimal approach which allows
deviation from the reference path, by projecting the robot dynamics on the
reference path and introducing constraints on the forward position kinematics.
As in [Debrouwere et al., 2014], we propose a trajectory generation methodology
closely related to the decoupled approach. The main difference is that we do not
project the robot dynamics onto a predefined path. Rather, we reformulate the
dynamics around it; by doing so, we allow the end-effector of the robot to deviate
from the path. This method relies on a so-called spatial reformulation (or time
transformation) previously proposed in [Gao et al., 2012], [Frasch et al., 2013]
for planar motions. The concept of this reformulation is to introduce a variable
s that measures the progress of the motion in the workspace of our system and
to transform the system dynamics to evolve with this progress instead of time.
This approach is appealing, since it allows all static geometric aspects in the
optimization problem to appear explicitly in the horizon of the optimal control
problem. The price to pay is a nonlinear transformation of the system dynamics
and the loss of the ability to explicitly define changing geometric properties
in time. Examples of implementations of the spatial reformulation include
research on driver assistance functions for high way driving of long heavy vehicle
combinations (LHVCs) [van Duijkeren et al., 2015], and time-optimal nonlinear
model predictive control (NMPC) on small-scale race cars [Verschueren et al.,
2014].

In this chapter, we present a generalization of the time-transformation for
paths in three-dimensional Euclidean space, applied to a reference path in the
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workspace of a serial-link robotic arm. The spatial reformulation enables us to
express a natural formulation of an optimal control problem (OCP) for time
and energy optimal motion, since travel time becomes a state variable of the
system equations.

This chapter is organized in the following way. First we introduce and derive
the so-called spatial reformulation for motion of the end-effector of a robotic
arm with respect to a reference curve in the Euclidean workspace of the robot.
Secondly, an OCP is introduced that is solved with two equivalent formulations;
the first approach uses the novel technique presented in this section, the second
takes the traditional approach of scaling the horizon and system dynamics
linearly by an optimization variable. We illustrate the efficacy of the method to
describe geometric constraints to facilitate e.g., collision avoidance. Thereafter
we briefly elaborate on the implementation and the tools that were employed.
The section is concluded with a discussion on the simulation results and a brief
preview of future work.

In the remainder of this chapter, we will make use of the notation p¨q1 “ dp¨q
ds

and 9p¨q “
dp¨q
dt .

5.2 Spatial reformulation of robot dynamics

To illustrate the spatial reformulation, we apply it to an optimal motion planning
task for a robotic arm. Let us consider a rigid-body n-DOF serial-link robotic
manipulator. Recall that the motion equations of this kind of systems can be
written in the form, cf. [Spong et al., 2006]:

dq
dt “ 9q (5.1a)

Mpqq
d 9q

dt “ u´ Copq, 9qq 9q ´Grpqq, (5.1b)

where q, 9q, u P Rn are the joint angles, joint velocities and actuation torques in
the joints, respectively. Mpqq, Copq, 9qq denote the mass matrix and a matrix
accounting for Coriolis and centrifugal effects, Grpqq is a vector of torques due
to gravitation. Note that Coulomb friction and viscous friction are neglected as
they are not readily taken into account in applying the spatial reformulation.

In this section, we will first present the way in which we represent the path and
establish a formula for the progress along the path. We then use this relation
to apply the spatial reformulation of the dynamics.
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5.2.1 Path representation

Let ζptq be a continuous, sufficiently often differentiable curve in three-
dimensional Euclidean space, assuming that the velocity vector 9ζptq ‰ 0. We
introduce the arc length sptq as the distance traveled along the path. The path
Θ “ tζpsq P R3 : s P r0, ls Ñ ζpsqu is parametrized by its arc length

sptq “

ż t

0
} 9ζpxq}2 dx. (5.2)

Local properties of the curve are characterized by the curvature κ and the torsion
σ. At each point s on Θ we define an orthonormal basis frame of three vectors
T , N and B, referred to as the tangent, normal and binormal unit vectors.
These unit vectors are defined by T psq :“ ζ 1psq, N psq :“ T 1psq{}κpsq}2 and
Bpsq :“ T psq ˆN psq and satisfy the Frenet-Serret formulas, cf. [Guggenheimer,
1977]:

T 1 “ κN , N 1 “ ´κT ` σB, B1 “ ´σN . (5.3)

Furthermore, let pptq be the vector of positional coordinates at fixed time t in the
inertial world frame (forward position kinematics of the robotic manipulator),
then the point on the path ζ closest to pptq is ζps‹q, where

eps, tq “ pptq ´ ζpsq (5.4)

s‹ “ arg min
s

1
2}eps, tq}

2
2. (5.5)

See Figure 5.1 for an illustration of the concept.

As is clear from (5.4)-(5.5), finding s‹ptq involves an optimization problem.
Since it is undesired to embed this into a higher-level optimization problem, we
attempt to find the temporal evolution of s‹ptq by looking at the optimality
conditions. Recall that for unconstrained optimization, the first order necessary
condition for optimality is:

0 “ d
ds

ˆ

1
2}eps, tq}

2
2

˙

(5.6a)

“ ´eps, tqJζ 1psq. (5.6b)

Consider that the position s‹ is known at an initial time-point, we can enforce
the solution to be optimal in time by setting the time derivative of the necessary
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Figure 5.1: Illustration of the position of the end-effector with respect to the
closest position of the path.

first order optimality condition (5.6) to zero, i.e.,

0 “ d
dt

`

eps, tqJζ 1psq
˘

(5.7a)

“
`

vptq ´ ζ 1psq 9sptq
˘J
ζ 1psq ` eps, tqJζ2psq 9sptq, (5.7b)

where vptq “ dpptq
dt . This ultimately gives us a closed formula for the velocity of

the point on the path closest to pptq,

9sptq “
vptqJT psq

1´ κpsqeps, tqJN psq
. (5.8)

For eps, tq sufficiently small, the denominator is positive and this expression is
well-defined.

5.2.2 Spatial reformulation

We augment the state vector with e “ rex, ey, ezs
J. Additionally, the state

tpsq is included to keep track of the evolution of time. The state vector then
reads x “

“

qJ, 9qJ, eJ, t
‰J
P Rnx . Using the established representation for the
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dynamics of the position of the end-effector pptq with respect to the path, we
perform a spatial transformation of the equations of motion:

x1 :“ dx
ds “

dx
dt

dt
ds , (5.9)

with the state vector x. For 9sptq ‰ 0, we have that dt
ds “

1
9sptq , and therefore

x1 “
1

9sptq
9x. (5.10)

The resulting equations of motion are:

dq
ds “

9q

9s
(5.11a)

Mpqq
d 9q

ds “
u´ Copq, 9qq 9q ´Grpqq

9s
(5.11b)

de
ds “

9p

9s
´ T psq (5.11c)

dt
ds “

1
9s
, (5.11d)

(5.11e)

where the velocity of the end-effector can be written as 9p “ Jpqq 9q, with Jpqq
the robot Jacobian, and 9s is obtained from (5.8).

The time transformation applied above is nonlinear, but is nevertheless appealing
for two reasons. First, with the newly obtained state variable tpsq and
the corresponding first-order differential equation dt

ds , time-optimal motion
is equivalent to minimizing t over the motion along the path. Secondly, the
required knowledge about the temporal evolution of the T , N and B vectors
describing the local Frenet-Serret frame and many other geometric properties
(such as obstacles) at time t become explicitly available in the integration
method for x1.

5.3 Optimal control problem formulation

In order to illustrate the benefits of the spatial reformulation of the robot
dynamics, we formulate a time-optimal trajectory generation problem. The
OCP we intend to solve is stated as
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minimize
xp¨qPRnx ,
up¨qPRnu

T “

ż T

t“0
dt (5.12a)

subject to 9xptq “ ψpxptq, uptqq @t P r0, T s (5.12b)

gppptqq ď 0 @t P r0, T s (5.12c)

uptq ď uptq ď uptq @t P r0, T s, (5.12d)

with system dynamics, path constraints and torque bounds as constraints,
respectively. This formulation is not readily passed to an optimization routine,
as the time interval r0, T s on which we solve the OCP is not independent of the
optimization variables. Therefore, we proceed to pose two reformulations of the
above OCP, which we will compare in the subsequent sections. The first is a
time-optimal formulation using a rescaling of the time variable, with geometric
constraints as nonlinear constraints. The second one makes use of our proposed
spatial reformulation.

For both formulations, x “ rqJ, 9qJ, eJ, tsJ is the state vector and u are the
controls.

5.3.1 Time-scaled time-optimal control problem

We introduce τ “ t{T as a scaling of the time variable, as in (1.14). Furthermore,
for the formulation in time, we do not make use of a predefined path, so we
take ζpsq “ 0; this results in e “ p. In this way, notation is consistent with the
spatial formulation. Using the scaled time τ , the OCP in (5.12) becomes

minimize
xp¨q,up¨q

T “

ż 1

τ“0
T dτ (5.13a)

subject to dxpτq
dτ “ T ¨ ψpxpτq, upτqq @τ P r0, 1s (5.13b)

gτ pepτqq ď 0 @τ P r0, 1s (5.13c)

upτq ď upτq ď upτq @τ P r0, 1s. (5.13d)

Using the above linear rescaling, we are indeed capable of making the integration
interval r0, 1s independent of the decision variables x, u.
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5.3.2 Spatial time-optimal control problem

From (5.10), we get the spatial dynamics as ψspxpsq, upsqq{ 9s. The optimal
control formulation then reads as

minimize
xp¨q,up¨q

T “

ż sf

s“0

dt
ds ds (5.14a)

subject to x1psq “
ψspxpsq, upsqq

9s
@s P r0, sfs (5.14b)

gspepsqq ď 0 @s P r0, sfs (5.14c)

upsq ď upsq ď upsq @s P r0, sfs, (5.14d)

where we obtain 9s from (5.8).

Note that both OCPs (5.13) and (5.14) are equivalent to (5.12), as the objective
function and the constraints remain equivalent after transformation of variables.

5.4 Simulation results

We show the performance of our time-optimal OCP with spatial reformulation
of the dynamics on a simple three link robot manipulator of which the Denavit-
Hartenberg parameters are shown in Table 5.1. We consider two different
motion experiments: the first is a time-optimal point-to-point motion, where
we compare the results of both the spatial reformulation and the linear time
scaling. The second is a problem where no end effector position is specified,
and we introduce a static obstacle.

Note that in the following, a small control regularization of the form 10´4 ř
i u

2
i

is added to the objective function in order to obtain smooth control trajectories.

5.4.1 Numerical algorithms

To numerically solve the optimal control problems of the previous section,
we adopt the open-source CasADi [Andersson et al., 2018] framework. More
specifically, we use the Python front-end to formulate the OCP as a nonlinear
program (NLP) using Bock’s multiple shooting method [Bock and Plitt, 1984]
as a discretization method. To this end, we relied on the integrators cvodes
and idas inside the SUNDIALS suite [Hindmarsh et al., 2005].The resulting
NLP is passed to the open-source solver IPOPT [Wächter and Biegler, 2006].
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Table 5.1: Denavit-Hartenberg parameters for the
three-link robot used in simulation

d rms θ rrads a rms α rrads
Link 1 0.1 0 0 π{2
Link 2 0 π{2 1 0
Link 3 0 ´π{2 0.7 0

The linear algebra subroutine calls were passed to the sparse solver ma57 from
the HSL library [HSL, 2011].

For the second part of the simulations, we use a 6-DOF robot model, which is
constructed with the Python-based toolbox SympyBotics [Sousa, 2014].

5.4.2 Time-optimal point-to-point motion along a path

To illustrate the equivalence of both methods discussed in Section 5.3, we solve
the OCPs (5.13)-(5.14) for a simple time-optimal motion planning task. The
robot end-effector travels from a starting point p0 to a fixed final position pf ,
staying inside a certain space, defined as the space between two cylinders, see
Figure 5.2.

This constraint might be posed for the time-dependent formulation as

E ď }rexpθq, eypθqs
J}2 ď E, @τ P r0, 1s, (5.15a)

Z ď ezpθq ď Z, @τ P r0, 1s. (5.15b)

Recall that, for the time-domain formulation, e denotes the vector from the
origin to the end-effector. For the spatial formulation the constraints read as

Es ď eJN psq ď Es, @s P r0, π{2s, (5.16a)

Z ď ezpθq ď Z, @s P r0, π{2s, (5.16b)
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with

T psq “ r´ sinpsq, cospsq, 0sJ,

N psq “ r´ cospsq,´ sinpsq, 0sJ,

Bpsq “ r0, 0, 1sJ,

κ “ 1.0 m´1,

σ “ 0.0 m´1.

The graph in Figure 5.2 corresponds with the values E “ 0.8 m, E “ 1.2 m,
Es “ 0.2 m, Es “ 0.2 m, Z “ ´0.1 m, Z “ 0.1 m.

One advantage of the spatial reformulation follows from the comparison of
(5.16a) and (5.15a): in the latter case, the path constraint is convex, in the first
it is not. If convexity holds for the constraint functions, convergence of the
NLP solver is often accelerated.

We compare the solution of the two different formulations in Figure 5.3-5.4. The
solution trajectories of both methods are shown as a function of time. The torque
trajectories clearly show that the methods result in different discretizations. The
spatial formulation yields a solution that takes longer time-steps in the beginning
of the interval than the time-based formulation, which takes equidistant steps.
It is clear from the figure that the resulting trajectories for the lateral and
vertical deviation from the centerline of the cylindrical path are the same, up
to the different discretizations. For a finer discretization grid, these differences
vanish.

Another interesting remark is that the constraint on the first joint torque is
active throughout the entire interval, as we would expect in a time-optimal
motion. In addition, the path constraints are seen to be active most of the
times as well, except to meet the initial and end point constraints. To conclude
the comparison, we examine the NLP solver convergence. In this particular
example, the time-optimal OCP was solved faster with the spatial formulation
than the time formulation: the interior point solver needed 36 iterations (0.094 s)
instead of 57 (0.191 s). More experiments need to be carried out to confirm this
as a general rule.
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Figure 5.2: Time-optimal solution (red) of optimal control problems (5.13) and
(5.14) with cylindrical path constraints. The constraint space is delimited with
dark blue faces, the centerline is shown in black.

5.4.3 Time-optimal obstacle avoidance

A major advantage of employing the time transformation instead of the
conventional formulation, is the natural way to insert geometric constraints.
Also, this method is suited for arbitrary paths in space, not just analytical ones
as in the above example. Both properties are made apparent in the following
simulation result, where we consider a 6-DOF ABB IRB120 industrial robot
(Figure 5.5) [ABB, 2015]. The simulation experiments are based on a dynamic
model of this robot that was made available by ABB, albeit without taking
friction into account.

In the following example, we perform a time-optimal motion planning task.
The robot has to follow a given path within given tolerances as fast as possible,
avoiding a static cylindrical obstacle at the end of the path. Additionally,
we constrain the end-effector to point vertically down by imposing additional
constraints on the forward orientation kinematics. The path specified (cf. dotted
line in Figure 5.6a) is a planar path with piecewise constant curvature and
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Figure 5.3: The lateral and vertical deviation are taken with respect to the
centerline between the two cylinders.



114 TIME-OPTIMAL PATH FOLLOWING FOR ROBOTIC MANIPULATORS

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 1 TORQUE [Nm]

spatial
time

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 2 TORQUE [Nm]

spatial
time

time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-50

0

50
JOINT 3 TORQUE [Nm]

spatial
time

Figure 5.4: Comparison of the solution of the two OCP formulations (5.13) and
(5.14). The torques in the robot joints are shown. The joint torque bounds are
taken to be ´50 Nm ď τ ď 50 Nm for both formulations.
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Figure 5.5: Sketch of the ABB IRB120 industrial robot. During the simulation,
the end-effector points down (as shown).

given initial tangent and normal vectors, both normalized. The binormal, which
is vertical at all points, is taken arbitrarily as B0 “ r0, 0, 1s. The cartesian
coordinates of the path can be retrieved by integrating the Frenet-Serret formulas
(5.3) forward in the path coordinate s, starting at s0 “ 0 m. Note that this
integration can be incorporated in the state equations (which are already in
function of s) by augmenting the dynamics with (5.3).

At the end of the pre-specified path, there is a static cylindrical obstacle
narrowing down the maneuvering possibilities of the end-effector. In the spatial
formulation, this constraint will amount to increasing the lower bound of the
constraint (5.16a); it remains a simple bound. The resulting time-optimal path
can be seen in Figure 5.6a. Again, we see that the path touches the inner path
constraint as we expect for time-optimal trajectories. Note that in this case, the
final position of the end effector is not completely specified, only constrained
to lie in the plane spanned by N and B. The vertical deviation is depicted in
Figure 5.6b. Also here the constraints on the vertical deviation become active
at some point in the motion.

Note that the time-domain formulation (5.13) is not readily applicable in this
example, because the path constraints are not straightforward to compute in
the time domain for arbitrary paths, in contrast with paths with an analytical
description, as in the first example. This shortcoming originates from the fact
that we do not know beforehand where in the configuration space the end
effector will be at which point in time, i.e. the relation between t and s is not
stated explicitly. An expression of the path constraints in the time domain
results in possibly very nonlinear constraints; this holds even more so for static
obstacles as in the above example.
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Figure 5.6: Time-optimal optimal control problem with obstacle avoidance
around an arbitrary central path with piecewise constant curvature.
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5.5 Summary

The main contribution of this chapter is a path-parametric system reformulation
for robotic manipulators. It is aimed at convenience for path specification,
and exhibits a natural way to impose geometric constraints. These advantages
have been shown in simulations in relation to time-optimal control using a
time-scaling approach, which does not possess these properties.



Chapter 6

acados – a modular
open-source framework for
fast embedded optimal
control problem solvers

Premature optimization is the root of all evil.

Donald Knuth, computer scientist

Software development and numerical optimization share a long and interesting
history. In fact, the first electronic computers were used to solve LP problems.
Throughout the years, software for a wide variety of optimization problems has
been produced, both in industry and academia. A general overview of software
for solving optimization problems would be extensive, and calls for its own
monograph.

Also in embedded optimization, software plays a central role of making
algorithms usable in the real world. In this chapter, we present a new software
package, called acados, which has been in development for approximately two
years. People that played a role in its conception and realization are, apart from
the author and his supervisor, Rien Quirynen, Dimitris Kouzoupis, Gianluca
Frison, Niels van Duijkeren, Andrea Zanelli, Dang Doan, Jonathan Frey and
Branimir Novoselnik. Throughout the chapter, we will mention some important
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(embedded) optimization packages. A brief, non-exhaustive list can be found
in Table 6.1. Please note that not all of these packages are still under active
development.

Table 6.1: Software packages for embedded optimization.

Software Year Latest Reference Targets License
MUSCOD-II 1997 [Leineweber et al., 2003] NMPC proprietary

MPC Toolbox 1998 [MathWorks, 2005] LQMPC proprietary
AutoGenU 2000 [Ohtsuka, 2004] NMPC propietary

OOQP 2001 [Gertz and Wright, 2003] QP propietary
MPT3 2003 [Herceg et al., 2013] expl. MPC GPL

Hybrid toolbox 2003 [Bemporad, 2003] expl. MPC proprietary
qpOASES 2006 [Ferreau et al., 2014] QP LGPL v2.1

PQP 2008 [Di Cairano et al., 2013] QP proprietary
CVXGEN 2009 [Mattingley and Boyd, 2012] LP, QP proprietary

ACADO Codegen 2009 [Houska et al., 2011] NMPC LGPL v3
FiOrdOs 2011 [Ullmann, 2011] QP GPL v3
FORCES 2011 [Domahidi et al., 2012] QP, QCQP proprietary

ECOS 2013 [Domahidi et al., 2013] SOCP GPL v3
GRAMPC 1.0 2014 [Käpernick and Graichen, 2014] NMPC LGPL v3

qpDUNES 2014 [Frasch et al., 2015] LQMPC LGPL v3
DuQuad 2014 [Kvamme, 2014] QP unknown
HPMPC 2014 [Frison et al., 2014] LQMPC LGPL v2.1

VIATOC 2015 [Kalmari et al., 2015] NMPC GPL v3 and LGPL v3
PIPS-NLP 2016 [Chiang et al., 2017] NLP 3-clause BSD

Forces NLP 2017 [Zanelli et al., 2017a] NMPC proprietary
OSQP 2017 [Stellato et al., 2017a] QP Apache v2.0

FalcOpt 2017 [Torrisi et al., 2017] NMPC MIT
HPIPM 2017 [Frison, 2017] LQMPC, QP GPL v3 (CE)
ODYS 2017 [Cimini and Bemporad, 2017] QP proprietary

protoip 2017 [Khusainov et al., 2017] NMPC unknown
SPLIT toolbox 2017 [Shukla et al., 2017] LQMPC unknown

GRAMPC 2.0 2018 [Englert et al., 2018] NMPC LGPL v3
PANOC.jl 2018 [Sathya et al., 2018] NMPC unknown

nmpc-codegen 2018 [Melis and Patrinos, 2018] NMPC LGPL v3
PRESAS 2018 [Quirynen et al., 2018] QP proprietary

ParNMPC 2018 [Deng and Ohtsuka, 2018] NMPC unknown
qrqp 2018 [Andersson and Rawlings, 2018] QP LGPL v3

acados 2018 [Verschueren et al., 2018] NMPC LGPL v3

6.1 Introduction

Embedded optimization, according to the definition in [Ferreau et al., 2017], is
solving optimization problems autonomously and with limited resources. A big
role in bringing MPC to embedded applications is played by the implementation
of efficient embedded optimal control methods, such as MPT [Herceg et al., 2013]
(explicit MPC), FORCES [Domahidi and Perez, 2013], qpOASES [Ferreau et al.,
2014] and the ACADO Code Generation Tool [Houska et al., 2011]. Software
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development for embedded optimization is a very active field (see Table 6.1) and
many software packages were successfully applied on real-time and embedded
systems [Ferreau et al., 2006; Kraus et al., 2013; Liniger et al., 2015; Zanelli
et al., 2018]. For an overview please consult [Ferreau et al., 2017].

The challenge in developing software for embedded optimal control lies in the
trade-off between flexibility, memory usage and speed. Many of the above
software packages are based on automatic code generation. They successfully
achieve flexibility from a high-level perspective, for the user to design their
algorithm in a high-level language like Matlab or Python. If there is a need to
run the control algorithm on embedded hardware, it can be readily translated
to a more embeddable language, often C or C++.

Let us focus on a particular tool, namely the ACADO Code Generation Tool. One
advantage of ACADO code generation is the possibility to have tailored code: it is
written by the software tool for one specific application only. This often incurs
lower memory usage and/or lower running times. One disadvantage is the loss
of flexibility: the code is generated for the fixed dimensions of the problem only.
Any conceptual change requires regeneration and recompilation of the solver.
Another disadvantage of code generation is that the resulting code is often
hard to read by humans, which makes the process of debugging the embedded
code challenging or impossible. Furthermore, it can be hard to predict if an
automatic code optimization strategy, like loop unrolling, is beneficial in general
or if it is perhaps counterproductive for some types of problems. In some cases,
a compiler could do better. Lastly, performing automatic code generation is
most effective for the most heavily utilized subroutines, typically a small number
of linear algebra operations. The contribution of code generating other parts of
the algorithm is less obvious, and is not always justified.

For the above reasons, acados does not rely on automatic code generation.
Instead, for the linear algebra operations, we make use of the recently developed
linear algebra package BLASFEO [Frison et al., 2018] which can outperform
triple-loop C implementations by one order of magnitude. Furthermore, we
perform no a priori automatic code optimizations, we delegate that task to the
optimizing compiler.

Another challenge for embedded optimal control software is related to the
process of software development. Often, to not sacrifice speed of execution
and/or memory footprint, embedded optimal control software uses global data
and suffers from tight coupling between algorithmic components. This might lead
to a codebase that is difficult to understand, maintain, and extend. We choose,
as opposed to other embedded optimal control software packages, to avoid these
pitfalls by not unnecessarily sacrificing maintainability and readability of the
codebase for a small gain in efficiency and/or a reduction of memory footprint.
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Furthermore, we organize our code in a modular fashion, with formal interfaces
between the different algorithmic components. This allows for a straightforward
way of interchanging solvers, routines, and libraries needed for the embedded
control algorithm.

A final aspect of embedded optimal control software that affects flexibility,
memory and runtime is the choice of modeling language and derivative generation
tool. A myriad of modeling languages exist, e.g. Mathematica, sympy or the
MATLAB Symbolic Toolbox. Many of these languages make use of expression
trees to represent mathematical functions, which potentially leads to a large code
size, high memory usage and slow evaluation of higher-order derivatives for non-
trivial models. On the contrary, the CasADi [Andersson et al., 2018] modeling
language is based on expression graphs. This leads to shorter instruction
sequences, and therefore to smaller, typically faster code, and thus is more
usable in embedded applications. Also, it is free and open-source software. For
these reasons, we choose CasADi for modeling nonlinear functions and system
models. Additionally, we allow the use of hand-written (or code-generated)
models as C source files.

The contribution of this chapter is a new software package, called acados. It
offers the following features:

• efficient optimal control algorithms written in C,

• modular architecture enabling rapid prototyping,

• interfaces to Python and Matlab,

• linear algebra based on BLASFEO [Frison et al., 2018],

• compatible with CasADi [Andersson et al., 2018],

• deployable on a wide variety of embedded devices.

The remainder of this chapter is organized as follows. The software package
acados is introduced in Section 6.2. Various numerical experiments and
comparisons are carried out and presented in Section 6.3.

6.2 The acados software package

acados implements some of the optimization methods mentioned in the previous
sections. It is meant to be user-friendly at a high level, and efficient at a low
level. In order to balance these properties, we developed a core library written
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in C which exposes functionality to the Python and Matlab interfaces. In this
section, we first discuss the inner workings of this core module, we then describe
internal and external interfaces that are crucial for usability, and we conclude
with some example of the syntax in both Python and Matlab.

6.2.1 The acados core library

Typically, embedded optimization algorithms (e.g. as presented in Chapter 1)
are built up in a modular fashion. For example, there is a clear contract between
an NLP solver and an integrator. The integrator expects a linearization point wi,
and returns a simulated trajectory, along with first/second-order sensitivities:

NLP solver integrator
lin. point

sim.,sens.

Similar diagrams can be drawn for all other algorithmic components, including
(partial) condensing, QP solver, function evaluations etc. Each of these
algorithmic components are modeled within acados as modules. Some modules
can be used as standalone modules, or in combination with others, for instance,
depending on the choice of algorithm, an NLP solver will make use of some or
all of the other modules.

In Table 6.2, we see an overview of all modules currently present in acados,
together with the implemented variants. The underlying design principle is
that each module has an interface that is general enough to be extended by
implementing a new variant of the module.

Moreover, it is an important design choice that all modules are identical in
their signature. That way, all modules look similar to the users of acados. For
developers, it should be straightforward to extend acados with another module.
The signature is as follows (in C syntax):

int <solver>(void *config,
<module>_dims *dims,
<module>_in *in,
<module>_out *out,
void *opts,
void *mem,
void *work);
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Table 6.2: Overview of the software modules present in acados.

Module Variants

OCP QP

qpDUNES
HPMPC
HPIPM
OOQP

Dense QP
qpOASES
HPIPM
OOQP

Condensing Full condensing
Partial condensing

Integrator Explicit Runge-Kutta
Implicit Runge-Kutta (Gauss-Legendre)

OCP NLP

Gauss-Newton SQP
SCQP

Exact-Hessian based SQP
RTI

Nonlinear function CasADi code-generated functions
Hand-written C-code

Here, <module> stands for the name of the module at hand, for example ocp_qp
for QP problems with optimal control structure or sim for integration problems,
and <solver> is a placeholder for a function implementing the specific solver for
problems corresponding to this module, e.g. ocp_qp_hpipm (interface to HPIPM
solver) or sim_erk (explicit Runge-Kutta method), etc. Each module returns
an int which denotes a solver-specific error status – zero means successful
completion in this context. All of the input arguments are pointers, where the
use of a null pointer denotes that the argument is not used in this module. Each
of the arguments comes with a set of helper functions, called *_calculate_size,
computing the size (in bytes) of the struct pointed to, as well as a set of
functions, called *_assign, to initialize a block of memory. The usual workflow
is as follows:

int num_bytes = <module>_solver_config_calculate_size();
void *mem_ptr = malloc(num_bytes);
void *<module>_config = <module>_solver_config_assign(mem_ptr);

By making this design choice, all memory allocations happen before execution
of any of the acados solvers and no dynamic memory allocation is needed. This
eliminates the risk of leaking memory, as the user of (or the interface to) the
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core library is fully responsible for allocating and deallocating the memory used
by acados.

We will now look into the different arguments in a bit more detail.

config - a pointer to struct containing function pointers to the above-
mentioned helper functions *_calculate_size and *_assign, among
others.

dims - a pointer to struct with the data pertaining to the dimensions of the
problem.

in - a pointer to struct with the input data to the specific solver. For a given
module, this struct is identical for all variants.

out - a pointer to struct with the solution data from the solver. Identical for
all solvers for this module.

opts - a void pointer that can be cast to a pointer to struct containing
algorithmic options needed by the solver, and thus solver-specific.

mem - a void pointer that can be cast to a pointer to struct with additional
memory used by the solver. This memory is to be preserved between calls
to the solver.

work - a void pointer that points to a block of memory that functions as ‘scrap’
space, i.e. this memory does not have to be preserved between calls to
the solver.

We remark that the first four arguments are absolutely necessary for all solver
variants of a module, the last three are optional, i.e. when they are not needed
by a specific solver, they can be NULL. Note that the layout of the mem and work
elements may depend on which solver options the user chooses.

Some modules comprise other modules. For example, an SQP solver for optimal
control problems might need an integrator, which is on its own a proper acados
module. In this context, we call the integrator a submodule. Each of the
arguments above, dims, in etc., have fields corresponding to submodules. For
an NLP solver, the relation between it and the submodules are depicted in
Figure 6.1. We remark that the calculation of the memory size of a module
with submodules is done recursively, i.e. calling the calculate_size function
on the top module returns the required memory size of the top module and all
of its submodules, and submodules of submodules, etc. This allows users to
allocate all the memory outside of acados, by design.
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dynamics
(continuous)

integrator
(RK4) external

function

cost
(nonlinear)

external
function

constraints
(nonlinear)

external
function

OCP QP solver
(HPIPM)

OCP NLP solver
(SQP)

Figure 6.1: Example of the relation between modules and submodules in acados
for one specific algorithm.

The core library of acados contains mostly what has been described in this
section: a collection of modules, each with corresponding data types and variants
of solvers, as well as helper functions for memory management. Using the core
library directly can be cumbersome and error-prone, as many details need to
be taken into account: it is designed to be as flexible as possible. To cater to
the needs of the end user, we offer high-level interfaces, which are described
next. The connection between the core library and its interfaces is depicted in
Figure 6.1.

6.2.2 The C interface

The C interface is mainly responsible for two things: passing options to solvers
and memory management.

Choosing solvers When working with the core library, all functions are specific
to one variant of a module: when solving a QP with, say, qpOASES, the code will
refer to structs like dense_qp_qpoases_memory, dense_qp_qpoases_opts,
etc. We want to make abstraction of this to facilitate switching solvers easily.
To this end, for each module we define a ‘plan’. A plan is a struct that contains
a number of fields representing the choice of a particular combination of solvers.
For example, the plan for an SQP-type method with Gauss-Newton Hessian
approximation, for a problem discretized with the RK4 integrator using HPIPM
as an underlying QP solver, reads as
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Figure 6.2: The interplay between the acados dependencies, the ‘core’ C library
and its interfaces.

ocp_nlp_solver_plan plan = {
{PARTIAL_CONDENSING_HPIPM},
{ERK, ERK, ERK, ...},
SQP_GN,
{LINEAR_LS, ...},
{CONTINUOUS_MODEL, ...},
{BGH, ...},

};

Here, the arrays should be of the correct length (omitted for brevity, with a
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slight abuse of notation). As a general rule, solvers that make use of other
modules should include them in their plan.

Passing options Ideally, options are passed as associative arrays (sometimes
called dictionaries). Unfortunately, in C we do not have those at our disposal.
For this reason, we manipulate a specific options struct with functions taking
a textual representation of the option via a string. The string encodes both
the module that the option belongs to, as well as the name of the option. For
example,

options_set_int(void *opts, "qpoases.warm_start", 1);

A similar function options_set_double exists for passing options that take a
floating-point value, such as solver tolerances.

Memory management Allocating memory ‘manually’ as described above can
quickly become cumbersome. For this reason, we make available a few routines
that automate that process. To this end, in the C interface each module from
the core library is mirrored by an additional function with signature

<module>_solve(<module>_solver *solver,
<module>_in *in,
<module>_out *out);

solver is a pointer to an object that encapsulates the data needed other than
input and output. By doing so, we reduce the amount of boilerplate code.
Pseudocode for a typical workflow could look as follows:
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<module>_config *config = <module>_config_create(plan);
<module>_dims *dims = <module>_dims_create(N);
<module>_opts *opts = <module>_opts_create();

// ...
// setup options in opts
// ...

<module>_solver *solver = <module>_create(config, dims, opts);

int status = <module>_solve(solver, in, out);

6.2.3 The C++ interface

For non-expert users of embedded NMPC software, writing C code manually
can be error-prone and tedious. Therefore, we offer interfaces to two popular
languages for technical computing: Python and Matlab. As such, we created
a small domain-specific language within each of these frameworks. To keep
maintenance work to a minimum, we automatically generate these interfaces
using SWIG [Beazley, 2003]. To this end, a relatively small C++ wrapper around
the C interface of acados has been developed. This C++ wrapper relies heavily
on the C++ Standard Library, most notably on std::string, std::vector and
std::map. These are all readily interfaced with Python and Matlab via SWIG.
Each module of acados is modeled by its own C++ class. As is depicted in
Figure 6.2, each class makes use of the C interface of acados.

Passing options In C++, solver options are defined to be

std::map<std::string, option_t *> solver_options;

where option_t is a pure virtual base class. It is subclassed by the template
class option<T> with T the underlying type, for example option<int>,
option<double>, or option<std::map<std::string, option_t *>. The
latter allows us to define options for submodules, for example when passing
options to a QP solver used within an SQP-type solver.
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Modeling language The C++ (and Matlab, Python) interfaces of acados use
CasADi as a modeling language, which is itself a C++ code. As such, it is readily
interfaced with acados. Moreover, the C++ interface of acados directly calls
the code generator of CasADi in C++ and compiles/links the model code into
a shared library, ready to be used by the Matlab or Python interface. An
additional benefit of using CasADi is that the solution behavior of acados can
be easily compared with the solutions coming from the numerous optimization
tools interfaced with CasADi.

We remark that model equations and other nonlinear functions are called from
acados in a completely language-agnostic way: acados is at no point aware
of which modeling tool is being used. One benefit is that this facilitates self-
written models (in C/C++), which are also completely compatible with acados.
However, they should conform to a certain calling convention similar to the
ones of CasADi functions.

6.2.4 The Python and Matlab interfaces

In Figure 6.3, we see an example of the acados syntax from Python and Matlab,
in which we describe how to formulate a linear MPC problem. We note that the
Python and Matlab syntax are almost identical, where the differences arise
from formatting and from language-specific constructs like lists and dictionaries
in Python and cell arrays and structures in Matlab. In either language, an
acados module is modeled as an object which you can construct by passing
the dimensions. On this object, (e.g. qp), different operations can be invoked
in order to build up the optimization problem formulation with the correct
weighting matrices, dynamics and bounds. After initialization of the solver (by
passing the name of the variant – in this case qpoases), the solver is ready to
be used in an MPC loop. The syntax is meant to be easy to read and remember.
One additional benefit of operating on objects (instead of following an approach
with functions), is that the user can use tab-completion on the objects to get a
quick overview of the available functionality.

6.3 Numerical results

This section consists of a few numerical experiments with acados and
comparisons to other embedded optimization software packages. We discuss
performance on the nonlinear chain-of-masses problem, and show one closed-loop
experiment on an embedded platform.
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Figure 6.3: Listing of a simple linear MPC example using the Python interface
to acados.

------------------------------------------
from numpy import array, diag, inf

from acados import ocp_qp

qp = ocp_qp(N=5, nx=2, nu=1)

# specify OCP
qp.set_field(’A’, array([[1, 1], [0, 1]]))
qp.set_field(’B’, array([[0], [1]]))
qp.set_field(’Q’, diag([1, 1]))
qp.set_field(’R’, diag([1]))
qp.set_field(’Q’, N, diag([10, 20]))

# specify bounds
qp.set_field(’lbx’, array([0.5, -inf]))
qp.set_field(’ubx’, array([3.0, +inf]))

# specify initial condition
x0 = array([1.1, 1.1])
qp.set_field(’lbx’, 0, x0)
qp.set_field(’ubx’, 0, x0)

# initialize solver
qp.initialize_solver(’qpoases’)

# simulate MPC loop
while True:

qp.set_field(’lbx’, 0, x0)
qp.set_field(’ubx’, 0, x0)

output = qp.solve()
u_opt = output.controls()

x0 = measurement(u_opt[0])

------------------------------------------
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Figure 6.4: Forces in the springs between the masses in the example of Case
Study 1. Replicated from [Wirsching et al., 2006].

6.3.1 Case study 1: Chain of Masses

As a benchmarking problem, we take the chain-of-masses problem as presented
in [Wirsching et al., 2006]. It is useful in the sense that the problem is simple
enough to understand intuitively, yet complicated enough to get non-trivial
results from a range of different solvers. Also, by increasing the number of
masses, one could easily compare behavior for different numbers of states,
without changing much code.

System description

The control objective in this example is to stabilize the motion of a chain of
M “ 5 balls with mass m connected by springs to an equilibrium position. The
mass on one end of the string is fixed at p0, 0, 0q. We can freely move the spring
on the other end.

Let pi be the position of mass i, for i “ 1, . . . ,M . The model equations can
then be derived as follows. From Hooke’s law, we know that (see Figure 6.4)

Fi,i`1 “ D

ˆ

1´ L

}pi`1 ´ pi}

˙

ppi`1 ´ piq,

with each spring having spring constant D and rest length L.

This allows us to write the equations of motion for the middle balls, which read
as

:pi “
1
m
pFi,i`1 ´ Fi´1,iq ` gz, i “ 2, . . . ,M ´ 1,

with gz the gravitational acceleration vector. For the free ball, we assume we
control the velocity directly:

9pM “ u,
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with u P R3.

We now introduce a state space formulation with states

x “ rpJ2 , p
J
3 , . . . , p

J
M´1, p

J
M , v

J
2 , v

J
3 , . . . , v

J
M´1s

J

where x P Rnx with nx “ 3 ¨ p2 ¨ pM ´ 2q ` 1q, which results in the following set
of ODEs:

9x “ fpx, uq “

»

—

—

—

—

—

—

—

—

—

—

–

v2
...

vM´1
u

1
m pF2,3 ´ F1,2q ` gz

...
1
m pFM´2,M´1 ´ FM´3,M´2q ` gz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.1)

We remark that the only nonlinearity is introduced in the calculation of the forces.
The steady state pxss, ussq of the system can be found by setting fpxss, ussq “ 0
for any given pM,ss. In all the following, we take pM,ss “ r7.5, 0, 0sJ.

Optimal control problem formulation

In order to stabilize the motion of the string of balls to the steady state,
we propose the following optimal control problem, obtained by performing a
multiple shooting discretization of ODE (6.1):

minimize
x0,...,xN
u0,...,uN´1

N´1
ÿ

k“0

„

xk ´ xref
uk ´ uref

J „

Q 0
0 R

 „

xk ´ xref
uk ´ uref



` pxN ´ xrefq
JQN pxN ´ xrefq

subject to x0 “ x0

xk`1 “ fdpxk, ukq, k “ 0, . . . , N ´ 1

´ 1 ď uk ď 1, k “ 0, . . . , N ´ 1,

(6.2)

where the initial state x0 is the current estimate of the state vector, fd :
Rnx ˆR3 Ñ Rnx is obtained by performing a single RK4 step of length 0.2 s on
ODE (6.1). Furthermore, we choose a horizon length N “ 40 and the weighting
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Table 6.3: Design parameters for the chain of masses case study

Quantity Description Value
m mass of one ball 0.1125 kg
D spring constant 0.4 N{m
L rest length of the springs 0.1375 m
gz gravitational acceleration vector r0, 0,´9.81sJm{s2

N horizon length 40
∆t discretization step 0.2 s

pM,ref reference position of free ball r7.5, 0, 0sJm

matrices

Q “ diagp 0, . . . , 0,
looomooon

p2,...,pM´1

2.5, 2.5, 2.5,
looooomooooon

pM

25, . . . , 25
loooomoooon

v2,...,vM´1

q,

QN “ diagp 0, . . . , 0,
looomooon

p2,...,pM´1

10, 10, 10,
loooomoooon

pM

0, . . . , 0
loomoon

v2,...,vM´1

q,

R “ diagp0.1, 0.1, 0.1q,

and corresponding reference values

xref “ r 0, . . . , 0
loomoon

p2,...,pM´1

, 7.5, 0, 0
loomoon

pM

, 0, . . . , 0
loomoon

v2,...,vM´1

sJ,

uref “ r0, 0, 0sJ.

The design parameters are chosen as in [Englert et al., 2018] and are summarized
in Table 6.3. Note that we did not introduce path constraints or state bounds,
since these are not supported by all solvers that we compare to below.

Closed-loop experiments

In closed-loop, an MPC controller repeatedly (approximately) solves OCP (6.2).
The first control u0 is passed to the dynamic system under control and a new
initial state x0 is obtained. Here, we simulate the system by using a more
accurate integrator than the one in OCP (6.2), namely the Dormand-Prince
method, as implemented in the Matlab routine ode45.

We introduce one disturbance into the closed-loop system, similar as
in [Wirsching et al., 2006]: in the beginning of the simulation, we start from a
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horizontal configuration of the chain of masses. Around the midpoint of the
simulation, we override the closed loop control with a constant ud “ r´1, 1, 1sJ.
After one second of simulation time, the controller takes over again. We compare
the following solvers with each other for this particular closed-loop setup:

IPOPT [Wächter and Biegler, 2006]. As a solver not targeting embedded devices
specifically, we use it as a baseline to compare against.

FalcOPT [Torrisi et al., 2016]. A projected gradient descent method tailored for
NMPC.

VIATOC [Kalmari et al., 2015]. A gradient projection method for MPC that only
allows linear inequality constraints.

ACADO [Houska et al., 2011]. Code Generation Tool. Generates SQP-based
solvers.

GRAMPC [Englert et al., 2018]. An embedded Augmented Lagrangian-based solver.

acados Framework presented currently.

The tuning parameters for the different solvers are listed in Table 6.4. This
benchmarking problem and accompanying Matlab scripts have been published
online, see [Verschueren, 2018].

Table 6.4: Tuning parameters for the different solvers in Case
Study 1.

Solver Tuning parameters
IPOPT Called through CasADi, default parameters

FalcOPT eps: 0.1, maxIt: 100
VIATOC Maximum number of iterations: 20
ACADO RTI solver, Full condensing, QP solver qpOASES
GRAMPC Parameters chosen as in [Englert et al., 2018]
acados SQP_RTI solver, QP solver HPIPM, partial condg. horizon of 5

In order to compare the quality of the closed-loop solutions, we use the notion of
cumulative sub-optimality (CSO), which is an approximation of the integrated
cost along closed-loop trajectories:

CSOp¨q,n “
n
ÿ

i“0

„

xp¨q,i ´ xref
up¨q,i ´ uref

J „

Q 0
0 R

 „

xp¨q,i ´ xref
up¨q,i ´ uref



.
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Figure 6.5: Relative cumulative suboptimality (RCSO) in each step of the
simulation of the hanging chain with M “ 5 and N “ 40, for the different
solvers. The baseline for comparison is the IPOPT solution.

To compare the different solvers, we plot the relative cumulative sub-optimality
(RCSO), relative to a fully converged solution, in this case, the IPOPT solution,
which reads as

RCSOp¨q,n “
ˇ

ˇ

ˇ

ˇ

CSOp¨q,n ´ CSOipopt,n

CSOipopt,n

ˇ

ˇ

ˇ

ˇ

,

for n going from 0 to 300, the number of time steps in our simulation. We plot
a comparison in Figure 6.5. The trajectories of ACADO and acados are exactly
the same, as they implement the same real-time algorithm, with both being
very close to the reference solution from IPOPT. The solvers GRAMPC, VIATOC
and FalcOPT, being based on first-order methods, are further away from the
IPOPT solution. These findings are consistent with previously published work
by other authors, see [Englert et al., 2018].

We have a look at the numerical performance along the closed-loop trajectories
in Figure 6.6. GRAMPC, ACADO, VIATOC and acados produce consistent timings
throughout the entire experiment, even when the disturbance occurs. This is
a beneficial property for embedded solvers, as they often have a fixed time
deadline, being part of a larger control application. GRAMPC and acados produce
solutions at almost the same speed, both approximately a factor 2 faster than
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Figure 6.6: Computational time for each iteration of the closed loop simulation,
averaged over 10 runs.

Table 6.5: Computation times for a closed-loop experiments on a
chain of masses (cf. Figure 6.6)

comp. time per iteration pmsq median minimum maximum
IPOPT 59.84 49.06 384.90

FalcOPT 4.36 0.44 11.10
VIATOC 5.63 5.27 6.68
ACADO 1.97 1.90 3.45
GRAMPC 1.06 0.81 1.31
acados 1.05 0.87 2.23

ACADO which is in turn a factor 2-3 faster than VIATOC. Near the equilibrium,
FalcOPT takes the shortest computation time, as it is performing only a few
gradient steps per iteration. IPOPT is included as a baseline for comparison to
non-embedded solvers. The timings are summarized in Table 6.5.

Of course, an optimization solver can always trade off sub-optimality with
computation time. To get the full picture, we plot both measures against
each other in Figure 6.7: we look at relative cumulative sub-optimality over
the entire length of the experiment, versus worst-case computation times. By
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Figure 6.7: Trade-off between sub-optimality (Figure 6.5) and computation
time (Figure 6.6). We see that acados and GRAMPC lie on the Pareto-optimal
front.

this comparison, we see that acados and GRAMPC are on the Pareto-optimal
front: although acados is a factor 1000 times less suboptimal than GRAMPC, the
computational cost is higher. By the median computation times, acados is
faster (see Table 6.5).

6.3.2 Case study 2: Regularization

In Chapter 2, we discussed the impact of Hessian regularization on SQP methods.
In this case study, we compare the convergence of exact Hessian based SQP with
three different Hessian regularizations, including the convexification method
of Chapter 2, on a simple control problem. We control a mass on a rod (a
pendulum), balanced on a horizontally moving cart, see Section 2.5.

Exact-Hessian based SQP

We solve OCP (2.65) with SQP, where we use the exact Hessian of the
Lagrangian. We choose N “ 100 shooting intervals of length 0.01 s. The
blocks of the Hessian matrix are identified as
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Table 6.6: Exact-Hessian based SQP: computation times

regularization convexification project mirror
avg iteration (ms) 2.540 2.303 2.264
total time (ms) 66.034 103.65 174.32

Hk “

„

Q
R



`

nx
ÿ

i“0
λk,i∇2

px,uqψd,ipxk, ukq, k “ 0, . . . , N ´ 1,

HN “ Q,

where λk are the Lagrange multipliers associated with the dynamic equality
constraints.

In some cases, the non-convexity of the dynamic equations gives rise to an
indefinite Hessian matrix. We apply the projectp¨q and mirrorp¨q regularizations,
as well as the structure-exploiting regularization from Algorithm 2.2, which we
will call ‘convexification’. These regularizations are implemented as modules in
the acados framework.

We now compare the convergence behavior of all three regularization methods.
For each SQP variant, we start the SQP iterations from the point z0 “ p0, 0, 0q.
The result can be seen in Figure 6.8. The structure-exploiting convexification
converges almost twice as fast as the projection regularization, and is in turn
much faster than the mirroring regularization. Intuitively, this makes sense, as
mirroring is ‘blocking’ directions associated with large negative eigenvalues, by
introducing large positive eigenvalues in those directions. This prevents the
solver from taking larger steps1. In turn, the structure-exploiting regularization
is faster than merely projecting the eigenvalues on the positive definite cone,
because it is redistributing convexity among all stages, and thus needs less
regularization overall.

It must be said that the convexification of Algorithm (2.2) is quite a bit more
involved than the other two regularization schemes. However, by using the
optimized linear algebra kernels of BLASFEO, we implemented the convexification
method such that it is only slightly more expensive per iteration than the basic
regularization schemes, see Table 6.6, but much more computationally cheap
overall.

1This is also the approach followed by the algorithms obtained with the ACADO Code
Generation Tool.
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Figure 6.8: Convergence comparison of exact Hessian based SQP with three
different regularization strategies.

6.3.3 Case study 3: SCQP

In this case study, we showcase the SCQP method of Chapter 3 with an efficient
implementation in acados. For this, we use the inverted pendulum model and
the problem formulation in (3.24) with N “ 40.

We briefly study the numerical performance of the acados SCQP implementa-
tion. No comparison with ACADO is possible here, because SCQP did not exist
as a feature in ACADO and would be cumbersome to implement. For different
values of the radius of the circular constraint, Re in (3.24), we have different
Hessian approximations for SCQP, as the optimal Lagrange multiplier µ‹ varies.
By contrast, a Gauss-Newton approximation would be constant for all values of
Re.

For some Re, the Gauss-Newton Hessian approximation is not sufficiently good
for a full-step SQP method to converge, not even when initialized close to
a local minimizer, as we saw in Section 3.5. In contrast, SCQP converges
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Figure 6.9: SCQP on the pendulum example (cf. OCP (3.24)).

for all Re, depending where the solver is initialized. As an example, look at
Re “ 0.04 m. We initialize the full-step SCQP method at x0

k “ 0, k “ 0, . . . , N
and u0

k “ 0, k “ 0, . . . , N ´ 1. SCQP converges in 38 iterations, with a
total computation time of 5.5 ms. The optimal control trajectory is shown in
Figure 6.9. Note that we used a different radius and initialization point as in
Figure 3.4a, and hence the trajectory looks different. Full-step SQP with a
Gauss-Newton Hessian approximation, however, would not converge, regardless
of where it is initialized (except the solution).

6.3.4 Case study 4: Processor-in-the-loop experiments

As a last case study, we discuss the performance of acados on an embedded
platform, namely the dSPACE MicroAutoboxII [dSPACE, 2006], depicted in
Figure 6.10. It is an industrial computing platform that is used in the car
industry. It features a 900 MHz PowerPC processor (IBM PPC 750GL) with
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Figure 6.10: dSPACE MicroAutoboxII [dSPACE, 2006] embedded PC with a
900 MHz PowerPC processor. Courtesy of dSPACE GmbH.

16MB of main memory. The control application that we focus on is engine
control, with the engine model as presented in [Albin et al., 2017], which we
will briefly reproduce here.

Two-stage turbocharging gasoline engines have been introduced as a flexible
alternative to conventional turbocharged engines. The main advantage they
offer is a better trade-off between short transient times after load changes
and a high specific power. However, the two-stage architecture puts a higher
burden on the engine controller. NMPC has been proposed as a viable control
strategy [Albin et al., 2017].

In Figure 6.11, a sketch of the two-stage turbocharged engine is depicted. The
high-pressure (HP) stage is able to realize fast transients, the low-pressure (LP)
stage produces a higher specific power, but with slower dynamics. The control
challenge lies in accurately tracking the boost pressure pboost, given the highly
nonlinear coupling between both stages.

For reasons of brevity, we directly present the engine model of [Albin et al.,
2017] and refer the interested reader to that work for a derivation. We model
the engine with a set of semi-explicit DAEs. The differential states consist of
Πc,lp,Πc,hp the pressure ratios between input and output of the compressor in
the low pressure and high pressure stage, respectively. The algebraic states are
Πt,lp,Πt,hp, the pressure ratios on the turbine. The inputs are the wastegate
actuation pulse-width modulated signals uwg,lp, uwg,hp, which take on values
between 0% (fully open) and 100% (fully closed).
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Figure 6.11: Schematic drawing of the two-stage turbocharging concept.
From [Albin et al., 2017].

The resulting DAE system reads as

9Πc,lp “ c1pΠ1.5
t,lp ´Π1.25

t,lp q
b

Π´1.5
t,lp ´Π´1.75

t,lp (6.3)

´ c2nengΠc,hppΠ1.29
c,lp ´Πc,lpq (6.4)

0 “ Πc,lpΠc,hp (6.5)

´
c3
neng

b

Π0.5
t,lp ´Π0.25

t,lp

´

a

Πt,lp ` c4ApΠc,lp ¨Πc,hp, uwg,lpq
¯

(6.6)

9Πc,hp “ c5pΠ1.5
t,hp ´Π1.25

t,hpq
b

Π´1.5
t,hp ´Π´1.75

t,hp (6.7)

´ c6nengΠc,lppΠ1.29
c,hp ´Πc,hpq (6.8)

0 “ Πc,lpΠc,hp (6.9)

´
c7
neng

b

Π0.5
t,hp ´Π0.25

t,hp

´

a

Πt,hp ` c8p1´ uwg,hp{100q
¯

, (6.10)

with, additionally, neng “ 2000 min´1 the engine speed and A : Rˆ RÑ R is
defined by

Apu, vq “ γ1puq ¨ γ2pvq,
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Table 6.7: Parameter values for the two-stage turbocharged engine
model

Parameter Unit Value Parameter Unit Value
c1 ´ 25.3 b1,1 ´ 0
c2 min 0.0034 b2,1 ´ 1
c3 min´1 7700 b3,1 ´ 1.49
c4 ´ 0.6 b4,1 ´ 0.0377
c5 ´ 43,6 b1,2 ´ 67.5
c6 min 0.0092 b2,2 ´ 4.712
c7 min´1 3600 b3,2 ´ 1
c8 ´ 0.9 b4,2 ´ -1

with γi : RÑ R:

γipuq “ b1,i ` b2,i

ˆ

1` e
´u`b3,i

b4,i

˙´1
.

The values of all model parameters can be found in Table 6.7.

In order to obtain a smooth control behavior, we include the time derivative
of the controls in the optimization formulation, as follows: 9uwg,lp “ du,lp,
9uwg,hp “ du,hp, and we collect these rates in

d “

„

du,lp
du,hp



.

We then define the vector of differential states, algebraic states and controls,
respectively, as follows:

x “

»

—

—

–

Πc,lp
Πc,hp
uwg,lp
uwg,hp

fi

ffi

ffi

fl

, z “

„

Πt,lp
Πt,hp



, u “

„

du,lp
du,hp



.

The control objective is to track a boost pressure signal, where the boost pressure
is given by yppxq “ Πc,lp ¨Πc,hp. To this end, we solve an OCP arising from a
multiple shooting formulation with an implicit Runge-Kutta (GL3) integrator
with sampling time 0.05 s and N “ 20 shooting intervals. The DAE simulation
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functions are denoted by ψd (differential part) and νd (algebraic part). Let

rpx, uq “

»

–

yppxq
x
u

fi

fl´

»

—

—

—

—

—

—

—

—

–

yp,ref
1.14
1.54
50
50
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rN pxq “

„

yppxq
x



´

»

—

—

—

—

–

yp,ref
1.14
1.54
50
50

fi

ffi

ffi

ffi

ffi

fl

.

The OCP then reads as

minimize
x0,...,xN ,
z0,...,zN´1
u0,...,uN´1

N´1
ÿ

k“0
}rpxk, ukq}

2
W ` }rN pxN q}

2
WN

subject to x0 “ x0,

xk`1 “ ψdpxk, zk, ukq, k “ 0, . . . , N ´ 1,

0 “ νdpxk, zk, ukq, k “ 0, . . . , N ´ 1,

0 ď uk ď 100, k “ 0, . . . , N ´ 1,

0.5 ď Πc,lp,k ď 1.757, k “ 1, . . . , N,

0.5 ď Πc,hp,k ď 2.125, k “ 1, . . . , N,

(6.11)

with

W “ diagpr103, 10´3, 10´3, 10´3, 10´3, 10´4, 10´4sq,

WN “ diagpr103, 10´3, 10´3, 10´3, 10´3sq.

We repeatedly solve this OCP approximately by performing real time iterations.
As an underlying QP solver, we use HPIPM. When ran in closed loop on the
dSPACE MicroAutoboxII, the results can be seen in Figure 6.12. Control
bounds and state bounds become active at some point in the simulation, for the
high-pressure stage. The reference is tracked closely and without oscillations,
which have been observed when linear-quadratic MPC is used [Albin et al.,
2017]. As for the computation times, it is interesting to note that there are
spikes everywhere where a jump occurs or a constraint becomes (in)active. The
computation times close to the solution (i.e. at the beginning of the simulation)
drop to almost zero. In any case, the maximum computation times remains
under 10 ms, which is 5x faster than the sampling time of the system (50 ms). We
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Figure 6.12: Closed-loop simulation of the engine model with steps in
the reference boost pressure. Simulations are carried out on the dSPACE
MicroAutoboxII platform at a clock speed of 900 MHz.

remark that the computation times obtained with the dSPACE MicroAutoboxII,
for this experiment, are more or less 3x slower than a desktop computer with a
2.5GHz Intel Core i7-4870HQ processor.

6.4 Summary

In this chapter, we presented a novel software package, called acados. Compared
to e.g. the ACADO Code Generation Tool, it has the following new features:

• different dynamics for each stage,
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• new QP solver interfaces,

• new linear algebra (BLASFEO)

• new AD code (CasADi),

• SCQP and Hessian convexification,

• Python interface (as well as Matlab),

• modular algorithmic components.

Even though acados is a more flexible tool than ACADO, it still results in better
numerical performance than ACADO, as was shown with some numerical and HIL
simulations.



Chapter 7

Conclusions & Outlook

Hofstadter’s Law: It always takes longer than you expect, even when
you take into account Hofstadter’s Law.

Douglas R. Hofstadter, cognitive scientist

Making smart decisions will keep becoming more important for autonomous
systems. Optimization-based control is one way of doing that. In this thesis,
we presented a couple of techniques targeted at embedded optimization. More
specifically, we made various convex approximations to non-convex problems,
as there exist reliable and efficient solvers for this type of problems.

The methods have been presented from a theoretical point of view, and an
efficient implementation for each of them is freely available online, as part of
a new software framework. A few simulation studies were presented here to
illustrate the efficiency and the usability of the software. These properties
will hopefully enable control designers in continuously bringing increasingly
advanced optimization methods to real-world applications. We will conclude
each chapter separately, and offer an outlook to future research directions.

Chapter 2 : Convexification for optimal control. Motivated by an
equivalence result concerning convexity of QP problems, we presented a
convexification method for indefinite QP problems as they arise in SQP-
type methods for NMPC. It enables local quadratic convergence, under some
assumptions, as was illustrated on a nonlinear control problem. Future research
directions include:

147
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• The automatic selection of the δ, γ, ε parameters, and a deeper
understanding of the relation between them,

• A comparison study between our convexification method and (partial)
condensing-based solvers.

Chapter 3 : Sequential convex quadratic programming. A new Hessian
approximation for SQP-type methods was proposed. This approximation
is applicable for general NLP problems with convex substructure, but are
particularly useful in an embedded context, because of the low computational
cost. A comparison between SCQP and GGN was made. Future work might
comprise

• A convergence result stating that SCP and SCQP exhibit the same linear
contraction rate,

• A more detailed comparison between SCP, SCQP, the method by [Martens
and Sutskever, 2011] and GGN,

• An experimental study for comparing GGN and SCQP.

Chapter 4 : Time-optimal point-to-point motions. We proposed a new
stability result for time-optimal NMPC for point-to-point motions. It is based
on a new optimization formulation based on convex l1 penalties and increasing
weights. An HIL study shows that it is straightforward to implement and use.
Motivated by the simulation study, we see the experimental application of the
algorithm to a real plant, in combination with SCQP, as a promising direction.

Chapter 5 : Time-optimal path following for robotic manipulators. A
spatial reformulation of the dynamics, as presented, has the following benefits:
it ‘frees’ the time variable and parametrizes the optimal control problem with
the path parameter instead; doing so, some difficult path constraints become
trivial. The following points could be interesting follow-up activities:

• A generalization of the method to paths in Rn,

• The practical application of it to a real robot system, some preliminary
results are available in [van Duijkeren et al., 2016].
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Chapter 6 : The acados software framework. We presented the new acados
software framework. It is supposed to offer a more flexible experience than
the ACADO Code Generation Tool. Although development is still ongoing, some
preliminary computational results seem promising. Moreover, the ease of use is
illustrated by the rapid development of the methods of Chapter 2 and Chapter 3
within acados. Many questions remain open, such as:

• integration with other ‘external’ NLP solvers,

• code generation of Simulink blocks for drag-and-drop functionality (some
preliminary facilities are present already),

• interfaces to Julia and Octave,

• provision of ‘template’ files implementing a bare bones NMPC controller,
to be tweaked by the control practitioner.

A corollary of Hofstadter’s Law (see beginning of the chapter) is that given an
amount of time, you will always achieve less than you presumed at the outset.
Nevertheless, looking back on the thesis text, I’m happy and proud with what
I did achieve, and I’m looking forward to future cooperations with the many
people I was lucky to meet during the last four years. Thanks for reading!
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