
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcon20

Download by: [Hacettepe University] Date: 12 April 2017, At: 05:20

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20

FORCES NLP: An efficient implementation of
interior-point methods for multistage nonlinear
nonconvex programs

A. Zanelli, A. Domahidi, J. Jerez & M. Morari

To cite this article: A. Zanelli, A. Domahidi, J. Jerez & M. Morari (2017): FORCES NLP: An
efficient implementation of interior-point methods for multistage nonlinear nonconvex programs,
International Journal of Control, DOI: 10.1080/00207179.2017.1316017

To link to this article: http://dx.doi.org/10.1080/00207179.2017.1316017

Accepted author version posted online: 10
Apr 2017.

Submit your article to this journal

Article views: 2

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcon20
http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2017.1316017
http://dx.doi.org/10.1080/00207179.2017.1316017
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2017.1316017
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2017.1316017
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2017.1316017&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2017.1316017&domain=pdf&date_stamp=2017-04-10

April 5, 2017 International Journal of Control TCON˙A˙1316017

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–25

Publisher: Taylor & Francis
Journal: International Journal of Control
DOI: https://doi.org/10.1080/00207179.2017.1316017

FORCES NLP: An efficient implementation of interior-point

methods for multistage nonlinear nonconvex programs

A. Zanellia, A. Domahidic,d, J. Jerezb,c and M. Morari∗b

aSystemtheorie, Regelungstechnik und Optimierung, Albert-Ludwigs-Universität, Freiburg, Germany
bAutomatic Control Laboratory, ETH Zurich, Zurich, Switzerland

c embotech GmbH, Zurich, Switzerland
d inspire AG, Zurich, Switzerland

(June 30, 2016)

Real-time implementation of optimization-based control and trajectory planning can be very challenging
for nonlinear systems. As a result, if an implementation based on a fixed linearization is not suitable,
the nonlinear problems are typically locally approximated online, in order to leverage the speed and
robustness of embedded convex quadratic programming (QP) solver technology developed during the last
decade. The purpose of this paper is to demonstrate that, using simple standard building blocks from
nonlinear programming (NLP), combined with a structure-exploiting linear system solver, it is possible
to achieve computation times in the range typical of solvers for QPs, while retaining nonlinearities
and solving the NLP to local optimality. The implemented algorithm is an interior-point method with
approximate Hessians and adaptive barrier rules, and is provided as an extension to the C code generator
FORCES. Three detailed examples are provided that illustrate a significant improvement in control
performance when solving NLPs, with computation times that are comparable with those achieved by
fast approximate schemes and up to an order of magnitude faster than the state-of-the-art interior-point
solver IPOPT.

Keywords: Predictive control, nonlinear systems, numerical optimization, interior-point methods,
embedded systems

1. Introduction

Model predictive control (MPC) has drawn a lot of attention in both academia and industry since
the late 1970s (Garcia, Prett, and Morari, 1988). The possibility of formulating an optimization
problem that directly encodes control objectives and constraints, together with its inherent multi-
variable nature, has made MPC a promising technology for the systematic design of control systems
in several fields (Qin and Badgwell, 2003). This has become possible thanks to both the availability
of reliable and efficient numerical methods and the increasing computational capabilities of em-
bedded computing units. Despite the increased complexity of the algorithms in comparison with
classical control techniques, considerable progress has been made in the last decade to make MPC

∗Corresponding author. Email: morari@control.ee.ethz.ch

April 5, 2017 International Journal of Control TCON˙A˙1316017

a viable technology in many challenging applications. For linear systems, fast implementations of
convex solvers running at millisecond and microsecond timescale (Domahidi, Zgraggen, Zeilinger,
Morari, and Jones, 2012; Ferreau, Kirches, Potschka, Bock, and Diehl, 2014; Frison, Sorensen,
Dammann, and Jørgensen, 2014; Jerez, Goulart, Richter, Constantinides, Kerrigan, and Morari,
2014; Richter, Jones, and Morari, 2012) have been developed and, for some methods, complexity
certifications have been derived (Giselsson, 2012; Richter et al., 2012), providing bounds on the
maximum number of iterations to guarantee convergence to a global optimum.
As a result, methods for the solution of convex quadratic programs (QPs) have become a reliable
technology. When handling nonlinear nonconvex problems, it is common practice to approximate
nonlinearities, potentially present in the system dynamics, constraints and objectives, in order to
rely on existing methods and implementations for linear-quadratic MPC. A common approach
to handle nonlinear models is to linearize the dynamics around the current approximation of the
optimal trajectories. This procedure provides a linear time-varying model that locally approxi-
mates the dynamics and can be readily used to formulate a linear time-varying MPC problem as
a convex QP. This strategy is employed, for example, in (Falcone, Borrelli, Asgari, Tseng, and
Hrovat, 2007), which addresses the problem of actively controlling the front steering system of
an autonomous vehicle. Alternatively, in (Kothare, Balakrishnan, and Morari, 1996) the effect of
the nonlinear dynamics is taken into account by formulating a robust optimization problem. The
original model is approximated by a polytopic uncertain linear time-varying system. Prior infor-
mation on the Jacobian of the dynamics is used to guarantee that the trajectories of the system are
confined inside polytopes. In this way a min-max problem is formulated that can be solved with
semidefinite programming methods. However, the resulting scheme is potentially highly conserva-
tive and still too computationally intensive for most practical purposes. Authors of (Bemporad and
Morari, 1999) propose instead to approximate the dynamics of a nonlinear system with a piecewise
affine function, requiring the introduction of integer variables into the optimization problem, which
greatly increases the computational complexity of the solution algorithms. Alternative approaches
based on feedback linearization are proposed, for example, in (Deng, Becerra, and Stobart, 2009;
Simon, Loefberg, and Glad, 2013). Feedback linearization results in problems with nonlinear and,
in general, nonconvex inequality constraints that require specific handling. Despite the satisfac-
tory results reported in some specific cases, these approaches, in general, result in formulations
that are computationally infeasible for real-time applications or degrade the control performance
significantly.
Including nonlinearity directly into the optimal control problem allows one to circumvent these
difficulties and provides a systematic approach for handling systems with nonlinear dynamics,
constraints and objectives. Following this path relies on the ability to efficiently and reliably solve
in real-time the nonlinear and nonconvex optimization problems arising from an optimal control
formulation. While there exist approaches in the literature that rely on dynamic programming
techniques or indirect methods (Diehl, Ferreau, and Haverbeke, 2009), most existing strategies
are nowadays based on the so-called direct methods (Diehl et al., 2009), which formulate a finite-
dimensional discrete time nonlinear program (NLP). State-of-the-art numerical solvers for nonlinear
programming can be used to solve the resulting discretized formulations.
Compared to the convex QPs arising in linear-quadratic MPC, optimization problems arising from
nonlinear MPC formulations present several additional challenges that can have a major impact on
both the reliability and efficiency of solvers. This is especially important for embedded systems that
have limited computational power and must run autonomously without user interaction. Firstly, the
discretization of the continuous-time problem requires the solution of nonlinear algebraic differential
equations and the computation of derivatives for the current predicted trajectories with respect
to the optimization variables, two operations that can be computationally demanding. Secondly,
the discretized problem is in general nonconvex and a number of additional factors must be taken
into account in order to guarantee convergence of the solver to a local minimum. This leads to a
significant increase in complexity of the methods.

2

April 5, 2017 International Journal of Control TCON˙A˙1316017

Due to the high computational burden associated with the solution of nonlinear optimization
problems, several approximate schemes have been proposed to trade control performance for speed
(Diehl et al., 2009). Among these schemes, the Real-Time Iteration (RTI) proposed in (Diehl, Bock,
Schloder, Findeisen, Nagy, and Allgöwer, 2002) is based on the idea of refining the solution while
the problem changes (Diehl et al., 2009). A single convex QP that locally approximates the original
optimization problem is solved per feedback step. If the iterates are initialized sufficiently close to a
local minimum, a solution is gradually approached, while controlling the system using the current
approximation of the solution. Local stability properties of such a scheme have been investigated
in (Diehl, Findeisen, and Allgöwer, 2007). A region of attraction can be defined such that, if
the combined system-optimizer state lies in it, the system can be stabilized using the mentioned
approximate feedback law. When using this method, stability problems can arise if, after a large
disturbance, the system leaves the region of attraction (Houska, Ferreau, and Diehl, 2011). A second
approximate scheme in the literature is the so called Continuation-GMRES (C-GMRES) method
in (Ohtsuka, 2004). As for the RTI, closed-loop stability of C-GMRES is in principle covered by
the considerations in (Diehl et al., 2007) and analogous issues can be encountered in the presence
of large disturbances or reference changes.
In order to avoid the eventual stability and suboptimality issues related to approximate schemes, it
is possible to solve the optimization problems to a local minimum. In this way, classical results on
nominal and robust stability (Nicolao, Magni, and Scattolini, 1998) can be applied. However, due
to long computation times, feedback delays can degrade control performance in practice. Practical
and theoretical issues have been discussed in the literature (Chen, Balance, and O’Reilly, 2000;
Findeisen and Allgöwer, 2004; Santos, Afonso, Castro, Oliveira, and Biegler, 2001). The authors of
(Zavala and Biegler, 2009) propose the so called advanced-step NMPC controller to overcome these
difficulties. The main idea is to predict the state of the system in order to solve the future optimal
control problem in advance, hence compensating for the computational delay. Before applying the
computed control input to the system, a linearization of the solution manifold is used to perform
a computationally cheap correction step based on the actual state estimate or measurement. This
approach has been proven to perform well if a good prediction of the state of the system is available,
while a considerable performance degradation is experienced in case of plant-model mismatch or
large disturbances (Zavala and Biegler, 2009).

Main Contribution and Outline

Ideally, one would not need to trade off control performance for computational delay. This paper
presents a software package that implements an efficient interior-point method for nonlinear and
nonconvex optimization problems arising from optimal control formulations. The main contribu-
tions are the following:

(1) The main features of the C code generator FORCES NLP (Domahidi and Jerez, 2016) are
presented. The multistage structure of the NLPs is exploited in order to efficiently build Hes-
sian approximations and solve the Karush-Kuhn-Tucker (KKT) systems to compute search
directions. In particular, a block-wise Cholesky factorization is used based on the approach
in (Domahidi et al., 2012). The class of problems solvable by the structure-exploiting QP
solver in (Domahidi et al., 2012) is extended to the more general class of smooth nonlinear
nonconvex programs.

(2) Most available methods and software packages capable of achieving fast feedback times rely
on approximate solution schemes. Despite the good control performance attainable in many
cases, the system is often operated suboptimally. The proposed approach solves each opti-
mization problem to a local minimum exploiting an efficient interior-point method in order
to reduce the computational burden. The numerical results in Section 4 show how the re-
sulting control performance can be considerably improved, especially for strongly nonlinear

3

April 5, 2017 International Journal of Control TCON˙A˙1316017

problems, with moderately higher computation times.
(3) Thanks to the structure-exploiting linear algebra, a considerable speedup can be achieved with

respect to state-of-the-art solvers for nonlinear programming. A comparison with the state-of-
the-art code IPOPT shows the large computational benefits of the proposed implementation
for multistage problems.

The remainder of this paper is organized as follows: in Section 2 a brief introduction to nonlinear
MPC is given and state-of-the-art numerical methods for the solution of the arising optimiza-
tion problems are outlined. Section 3 discusses the implementation details of the software package
presented and, in Section 4, numerical results are discussed that compare the solver with two dif-
ferent schemes: the fast and approximate RTI scheme and the exact, but generally computationally
demanding, interior-point solver IPOPT (Wächter and Biegler, 2006).

2. Preliminaries

2.1 Nonlinear Model Predictive Control

2.1.1 Problem Formulation

In this work the following continuous-time, infinite-dimensional optimization problem will be con-
sidered:

min
x(·),u(·)

∫ tf

t0

lc(t, x(t), u(t))dt+ e(x(tf))

s.t. x(t0) = x0

ẋ(t) = f(t, x(t), u(t))

g(t, x(t), u(t)) ≤ 0,

(1)

where x ∈ Rnx are the states of the system, u ∈ Rnu are its inputs and lc, e, f and g are potentially
nonlinear twice continuously differentiable functions. In order to recast the problem into a finite-
dimensional program that can be solved in practical computation times for large system dimensions,
the following reformulations are applied:

(1) As closed form solutions for nonlinear differential equations are generally not available, the
state trajectories need to be approximated numerically using an integration scheme;

(2) A piece-wise constant parametrization of the control trajectories is used that results in a
problem with a finite number of variables.

This so-called direct approach results in a formulation that can be solved with state-of-the-art
methods for nonlinear optimization that can handle large-scale problems and can deal with con-
straints directly, avoiding the main difficulties related to indirect methods and approaches based
on dynamic programming. Notice that these problems are in general nonconvex, hence computing
the global minimum with direct methods cab be a computationally intensive task. Most global
optimization algorithms require the solution of several local NLPs (Nocedal and Wright, 2006),
which is often not practical for embedded applications.
Among several approaches available to discretize problem (1), direct multiple shooting (Bock and
Plitt, 1984) will be considered in this work, due to the special structure present in the obtained
discretized problems. State trajectories at time t = t0, · · · , tN are approximated using a numerical

4

April 5, 2017 International Journal of Control TCON˙A˙1316017

integration scheme, obtaining the following discrete-time finite-dimensional problem

min
z0,z1,··· ,zN

N∑
i=0

li(zi)

s.t. ci(zi+1, zi) = 0, i = 0, · · · , N − 1

hi(zi) ≤ 0, i = 0, · · · , N,

(2)

with stage variables zi ∈ Rpi , stage cost functions li : Rpi → R, and equality constraints
ci : Rpi+pi+1 → Rri . General twice differentiable functions li and ci will be considered and only
simple bounds

hi :=

[
z̄i − zi
zi − zi

]
(3)

on the stage variables are present in the discretized formulation.
Notice that problems with general nonlinear inequalities can be recast into form (2) by introducing
additional variables and equality constraints. Hence, although problems with general inequalities
can be directly specified from the interface of FORCES NLP, in the following, formulation (2) will
be considered, without loss of generality. The structure of (2) is the same as in convex QPs arising
from linear-quadratic MPC formulations and it can be exploited in order to efficiently compute the
Newton search directions in an interior-point method, as outlined in Section 3.
The continuous time formulation (1) can be discretized using other schemes as well. The so-called
direct single shooting scheme provides a more compact formulation obtained by simulating the
dynamics in order to eliminate the state variables. The resulting problem has fewer variables than
the one obtained by applying multiple shooting. On the other hand, the favorable multistage spar-
sity structure is lost (Diehl et al., 2009). A different approach consists in formulating a problem
that embeds the nonlinear equations used to discretize the dynamics, for instance, the equations of
an implicit Runge-Kutta integration scheme including all intermediate variables. Such a scheme,
referred to as direct collocation, results in a larger optimization problem with an alternative struc-
ture that can be exploited using different approaches to the ones used in this paper (Kang, Cao,
Word, and Laird, 2014), (Quirynen, Gros, Houska, and Diehl, 2016). Further details on integration
schemes used to obtain formulation (2) from the continuous-time optimal control problem (1) are
given in Section 3.5.

2.2 Newton-type Approaches to Nonlinear Programming

Newton-type approaches to nonlinear programming can be interpreted as variations of the Newton
method applied to the KKT system associated with (2):

rS := ∇zL = 0 (4a)

rC := c(z) = 0 (4b)

rD := h(z) + s = 0 (4c)

rN := YDs = 0 (4d)

yd ≥ 0, s ≥ 0, (4e)

5

April 5, 2017 International Journal of Control TCON˙A˙1316017

where

L :=

N∑
i=0

li(zi) + yTc c(z) + yTd h(z) (5)

is the Lagrangian of the problem, yc and yd are the multipliers associated with equality and
inequality constraints respectively, s are slack variables and YD is the diagonal matrix having the
elements of yd on its diagonal.

2.2.1 Sequential Quadratic Programming

A first approach that can be used in order to numerically solve problem (2) is sequential quadratic
programming (SQP). The main idea consists in iteratively approximating the nonlinear problem
with QPs. Given a candidate solution zk the local quadratic approximation takes the form

min
∆z0,∆z1,··· ,∆zN

N∑
i=0

(
1

2
∆zTi Hi∆zi +∇li(zki)T∆zi

)
s.t. ci(z

k
i+1, z

k
i) +∇ci(zki+1, z

k
i)T [∆zTi ∆zTi+1]T = 0, i = 0, · · · , N − 1

hi(z
k
i) +∇hi(zki)T∆zi ≤ 0, i = 0, · · · , N,

(6)

where Hi is an approximation of the block of the Hessian of the Lagrangian associated with zi.
After solving (6), the solution is updated

zk+1 = zk + ∆z (7)

and it can be shown that, under mild assumptions, the iterates converge to a local solution of the
discretized optimization problem (Nocedal and Wright, 2006).
Due to the potentially high computational burden associated with the solution of several QPs
and the computation of several linearizations, there exist approaches in the literature that rely
on a limited number iterations. The RTI scheme is based on this idea. It only performs a single
step of an SQP-based method at each sampling instant and the resulting approximate solution
is used to control the system. Although performance degradation can be experienced due to the
suboptimality of the approximate solution, this approach has been proven to work well in several
practical cases (Ferreau, Houska, Geebelen, and Diehl, 2011), (Quirynen, Gros, and Diehl, 2013a).

2.2.2 Interior Point Methods

An alternative approach consists in applying the Newton method directly to the set of nonlinear
equations (4). In order to do so, the nonsmooth condition (4d) is relaxed, such that a set of
smooth nonlinear equations is obtained to which the Newton method can be applied directly. Once
a solution to the relaxed KKT system is obtained, the relaxation parameter τ is decreased and,
as τ → 0, a local optimum is approached (Nocedal and Wright, 2006). The main computational
cost is associated with evaluating functions and their derivatives, and computing search directions.
At every iteration of the interior-point algorithm the KKT system is linearized at the current
iterate and a linear system is solved to obtain a search direction. For stiff differential equations
and differential algebraic equations, a high computational burden can be associated with function
evaluations and derivative generation. Recent results on the efficient implementation of numerical
methods for the integration of such problems (Quirynen, Vukov, and Diehl, 2012), (Quirynen et al.,
2013a), (Quirynen, Gros, and Diehl, 2013b), can be exploited in order to considerably reduce

6

April 5, 2017 International Journal of Control TCON˙A˙1316017

computation times required for linearization. In the following section the problem of efficiently
computing the search directions is addressed.

3. Implementation

3.1 Structure-Exploiting Linear System Solver

An efficient interior-point method is used to solve (4) based on the implementation proposed
in (Domahidi et al., 2012). While the KKT solver in (Domahidi et al., 2012) targets convex QPs
and convex quadratically constrained quadratic problems (QCQPs), in this work an extension that
can handle general nonlinear and nonconvex multistage problems is presented.
The linearized KKT version of (4) for problem (2) is

H(z, yc, yd) Jeq(z)T Jineq(z)T

Jeq(z)
Jineq(z) I

S YD

∆z
∆yc
∆yd
∆s

 = −

rS
rC
rD
rN

 , (8)

where H(z, yc, yd) is block-diagonal with blocks given by

Hi := ∇2
zi li(zi) +

ri−1∑
k=1

yc,i−1[k]∇2
zici−1[k](zi, zi−1) +

ri∑
k=1

yc,i[k]∇2
zici[k](zi+1, zi) +

qi∑
k=1

yd,i[k]∇2
zihi[k](zi),

where ri and qi are the number of equality and inequality constraints in stage i, respectively, and
[k] denoting the k-th entry or constraint. Jineq is also block diagonal with blocks consisting of
∇hi(zi), while Jeq is block banded with rows consisting of ∇ci(zi+1, zi) in the appropriate position.
Moreover, YD ∈ Rq×q and S ∈ Rq×q have been introduced to denote the diagonal matrices having
yd and s on their diagonals, respectively.
When dealing with nonlinear problems instead of convex QPs, H is a function of the primal
variables z, but also of the equality and inequality constraint multipliers yc and yd, due to the
potential nonlinearity in the dynamics and constraints. The Jacobians of the equality and inequality
constraints, for the same reason, are functions of z rather than being constant as in QPs and
QCQPs. Moreover, it is important to mention that it is in general difficult to ensure that the KKT
matrix in (8) has the desired inertia, i.e the right number of positive, negative and zero eigenvalues,
which is required to guarantee certain descent properties (Wächter and Biegler, 2006). With the
Hessian of the Lagrangian potentially being indefinite, additional care has to be taken when solving
system (8) as outlined in the following subsection.
The search direction (8) is computed with a direct structure-exploiting factorization method. In
particular, the linear system is first reduced by eliminating ∆s:

∆s = Y −1
D (−rN − S∆yd) (9)

and successively ∆yd:

∆yd = S−1YD(rD + Jineq(z)∆z)− S−1rN , (10)

obtaining the following symmetric indefinite system:[
Φ Jeq(z)T

Jeq(z) 0

] [
∆z
∆yc

]
= −

[
rd
rC

]
, (11)

7

April 5, 2017 International Journal of Control TCON˙A˙1316017

where

Φ := H(z, yc, yd) + Jineq(z)TS−1YDJineq(z)

rd := rS + Jineq(z)TS−1YDrD − Jineq(z)TS−1rN .
(12)

This is the form of the KKT system used for example in (Wächter and Biegler, 2006), which
will be referred to as the symmetric indefinite form. As done in (Domahidi et al., 2012), a more
compact and symmetric system can be obtained by forming the Schur complement of the iteration
matrix (11):

Y∆yc = β, (13)

where

Y := Jeq(z)Φ−1Jeq(z)T

β := rC − Jeq(z)Φ−1rd

∆z = Φ−1(−rd − Jeq(z)T∆yc).

(14)

This form of the KKT system is also referred to as the normal equations form.
Another additional complication with respect to QPs arises because the Hessian and Jacobian
matrices forming the linearized KKT matrix (8) are functions of the current iterate. As a result,
matrices Φ and Jeq(z) can become rank deficient. In general, it is necessary to add regularization
terms to the Hessian and equality constraint Jacobian to be able to compute approximate search
directions reliably.
FORCES NLP provides different linear solvers to solve the symmetric indefinite form (11) and
the normal equations form (13). In both cases a tailored structure-exploiting, block-wise Cholesky
decomposition (Wright, 1993) with complexity O(N) can be used under the assumption that Φ
and Y are positive-definite. While in the quadratic convex case this assumption always holds for
well-posed problems, the same does not hold for general nonlinear nonconvex problems. In the
latter case, the Hessian of the Lagrangian is potentially indefinite and Y cannot be factorized with
a Cholesky decomposition. Inertia correction techniques are used, for example in (Wächter and
Biegler, 2006), to guarantee positive-definiteness of the Hessian projected onto the null space of
the constraint Jacobian. However, this approach requires several successive factorizations and regu-
larizations of the KKT matrix (8), which lead to considerably increased computational demands. A
common workaround used in nonconvex optimization consists in approximating H(z, yc, yd) in or-
der to guarantee its positive-definiteness. In the following subsection several customized approaches
for multistage programs implemented in the FORCES NLP package are presented and discussed.

3.2 Hessian Approximation

3.2.1 Gauss-Newton

Consider a constrained nonlinear least-squares problem with cost function terms

li(zi) :=
1

2
‖ηi(zi)‖22 . (15)

8

April 5, 2017 International Journal of Control TCON˙A˙1316017

This is a rather common formulation which, in the MPC context, can encode, for example, regu-
lation and tracking control objectives. The blocks of the Hessian of the Lagrangian become

Hi(zi+1, zi, yc,i, yd,i) :=

ri−1∑
k=1

yc,i−1[k]∇2
zici−1[k](zi, zi−1) +

ri∑
k=1

yc,i[k]∇2
zici[k](zi+1, zi)+

qi∑
k=1

yd,i[k]∇2
zihi[k](zi) +∇ziηi(zi)∇ziηi(zi)T +

vi∑
k=1

(
ηi[k](zi)∇2

ziηi[k](zi)
)
,

(16)
where vi is the dimension of the residual ηi. Under the assumption of sufficiently small curvature
of the functions ηi, hi and ci and small residuals ηi(zi), it is possible to neglect all the terms in (16)
containing second order derivatives, obtaining the following positive-semidefinite approximation:

Hi(z, yc, yd) ≈ ∇ηi(zi)∇ηi(zi)T � 0 (17)

and, assuming that the Jacobian of the residuals ∇ηTi has full rank, a positive-definite approxima-
tion ∇ηi(zi)∇ηi(zi)T � 0 is obtained. This approach has been proven to work very well in practice
in many cases (Diehl et al., 2009). The fact that the approximation is always positive-semidefinite
allows one to exploit the efficient Cholesky decomposition proposed in (Domahidi et al., 2012),
while avoiding the evaluation of second order derivatives for the Lagrangian, an operation that is
potentially computationally demanding.

3.2.2 Block-wise Broyden-Fletcher-Goldfarb-Shanno Hessian updates

Whenever the problem does not take the form of a constrained nonlinear least-squares problem,
or in case of highly nonlinear problems where the second derivatives cannot be neglected, it is
necessary to use a different approximation.
A different approach is to use the high-rank block updates proposed in (Bock and Plitt, 1984).
This second method consists in applying the low-rank Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update for each stage i = 0, . . . , N separately. Given the updated primal and dual variables z+

i , y+
c,i

and y+
d,i, and the previous primal iterate zi, the Hessian approximation Bi of the i -th block (3.1)

is updated as follows:

Bi ← Bi −
Biδδ

TBi
δTBiδ

+
γγT

δTγ
, (18)

where

δ = z+
i − zi

γ = ∇L(z+
i , y

+
c,i, y

+
d,i)−∇L(zi, y

+
c,i, y

+
d,i).

(19)

The update (18) is guaranteed to preserve positive-definiteness of Bi if the condition δTγ > 0
holds. In order to guarantee a positive-definite Hessian, it is possible to proceed in different ways.
A first workaround is to skip the Hessian update whenever δTγ ≤ 0 and re-initialize the estimate
whenever the update is skipped several times in succession. Such an approach is for example used
in the IPOPT software package (Wächter and Biegler, 2006) and is also an option in FORCES
NLP.

9

April 5, 2017 International Journal of Control TCON˙A˙1316017

An alternative method is based on the modified update proposed by Powell in (Powell, 1978)

Bi ← Bi −
Biδδ

TBi
δTBiδ

+
ωωT

δTω
, (20)

with

ω := θγ + (1− θ)Bδ

θ :=

{
1 if δTγ ≥ 0.2δBδ

0.8δTBδ
δTBδ−δT γ if δTγ < 0.2δBδ.

(21)

It can be proved that the above update gives rise to superlinear convergence (Powell, 1978).
The initialization of Hessian estimates Bi significantly affects the performance of the algorithm.
For example, the common initialization Bi = ρI with some a-priori chosen scalar ρ > 0 can be
used. Alternatively, a user-defined initialization can be provided.

3.3 Barrier Strategy

In order to guarantee quick progress towards a local minimum, the KKT system (8) needs to be
relaxed according to a given policy, commonly referred to as the barrier strategy which adjusts the
barrier parameter τ in

rS = 0

rC = 0

rD = 0

rN = τ1.

(22)

While a Mehrotra predictor-corrector approach is used in (Domahidi et al., 2012), due to its good
empirical performance for convex quadratic problems, for nonlinear problems this heuristic can
perform poorly in certain circumstances (Nocedal, Wächter, and Waltz, 2006).
A more robust approach is to monotonically decrease τ (Nocedal and Wright, 2006). Starting from
a fixed initial value τ0, the relaxation is tightened whenever a solution that satisfies (22) to a given
accuracy is found. In particular, given the current values of primal and dual variables and the
barrier parameter, the optimality error is defined taking into account the maximum residuals in
(8):

Eτ := max {‖rS‖∞ , ‖rC‖∞ , ‖rD‖∞ , ‖rN − τ1‖∞} (23)

and the barrier parameter is decreased whenever

Eτ ≤ κετ (24)

for a given κε > 0. When condition (24) holds, the relaxation is updated according to

τ ← max
{εtol

5
, κττ

}
, (25)

with constants κτ ∈ (0, 1) and εtol. When using such a barrier strategy, global convergence can
be ensured, but slow convergence might be experienced (Nocedal et al., 2006). For this reason
several accelerating adaptive strategies have been proposed in (Nocedal et al., 2006), while global

10

April 5, 2017 International Journal of Control TCON˙A˙1316017

convergence is ensured by switching back to the monotone strategy when sufficient progress towards
a solution cannot be made.
Different strategies have been analyzed and compared in (Nocedal et al., 2006), based on variants
of the Mehrotra predictor corrector and other heuristics. In the following, an efficient approach
(Vanderbei and Shanno, 1999) is reported that requires neglectable additional computational effort.
This rule, used in the software package LOQO, determines the so called centering parameter σ as

σ = 0.1 min

{
0.05

1− ξ
ξ

, 2

}3

with ξ = min
i

{
siyd,i

yTd s/q

}
(26)

and the KKT relaxation is updated as follows:

τ = σ
sT yd
q

. (27)

The interested reader is referred to (Nocedal et al., 2006) for more details on adaptive barrier
strategies and their comparison. The FORCES NLP package implements several monotone and
adaptive barrier strategies, including the ones described above.

3.4 Line-Search Filter Method

In order to ensure convergence of the iterations, a backtracking line-search has been used based on
the successful algorithm described in (Wächter and Biegler, 2006). Once the search direction has
been computed, the maximum step lengths that maintain positivity in the slacks and multipliers
are computed according to

αmax := max{α ∈ (0, 1] : s+ α∆s ≥ τs} , (28)

αl := max{α ∈ (0, 1] : yd + α∆yd ≥ τyd} . (29)

Then, a bactracking procedure is invoked, which iteratively reduces the primal step length from
αmax until a point is found that either improves feasibility or improves the barrier objective function:

l̃(αp) :=

N∑
i=0

li(zi + αp∆zi)− τ
N∑
i=0

ri∑
k=1

log(si[k] + αp∆si[k]).

For more details, see (Wächter and Biegler, 2006).

3.5 Integration and sensitivity generation

Building the linear system (8) associated with the computation of the Newton steps requires inte-
gration of differential equations and computation of the sensitivities associated with the obtained
trajectories. In order to do so, explicit or implicit integration methods can be chosen depending on
several parameters such as stiffness of the differential equation, computational burden associated
with function evaluations and number of states.
Integration and sensitivity generation routines can be computationally expensive and their careful
implementation is of crucial importance in order to reduce computation times. While explicit
schemes might be appropriate for non-stiff systems and when function evaluations can be carried
out cheaply, in the presence of stiff dynamics or expensive function evaluations it is generally

11

April 5, 2017 International Journal of Control TCON˙A˙1316017

necessary to use implicit schemes. The latter require the solution of implicit nonlinear equations
that can be rather expensive.
FORCES NLP implements both explicit integrators and the state-of-the-art algorithms for implicit
Runge-Kutta schemes introduced in (Quirynen, Vukov, Zanon, and Diehl, 2014), that have been
proven to be orders of magnitude faster than commercial packages for problems of small to medium
size. Such schemes exploit Newton-type iterations with a fixed Jacobian of the Runge-Kutta equa-
tions. In this way, a single factorization is carried out per integration step for both integration and
sensitivity generation resulting in a highly efficient algorithm. A detailed description and bench-
marking of the scheme can be found in (Quirynen et al., 2014).

3.6 Initialization and Warm-start

In order to initialize the algorithm, the user-provided initial point z0 is modified such that it is
feasible, i.e. ensuring that bounds on the primal variables are satisfied and that positivity con-
straints on slacks and bounds multipliers are satisfied. The multipliers yc,i associated with bounds
are initialized to one componentwise and a least-squares estimate for the equality multipliers yd,i
is computed using the possibly modified initial point (Wächter and Biegler, 2006).
Notice that, in the context of nonlinear MPC, where a series of neighbouring problems have to be
solved as the initial conditions change, SQP methods can exploit warm-starts available from the
solution of previous instances. This feature can lead to a significant reduction in the number of
iterations required. In particular, for the RTI scheme theoretical results are present in the literature
that guarantee local convergence if an initial guess that is “sufficiently” close to the optimal solution
is available Diehl et al. (2007).
Warm-start of interior-point methods is less straightforward. Issues and potential solutions as-
sociated with the warm-start of interior-point methods are discussed in the literature for linear
(Yildirim and Wright, 2002), quadratic (Gondzio and Grothey, 2006) and nonlinear nonconvex
programs (Benson and Shanno, 2008), (Forsgren, 2006). Moreover, algorithms tailored to MPC
applications have been proposed in (Shahzad and Goulart, 2011), (Shahzad, Kerrigan, and Con-
stantinides, 2010) and (Zanelli, Quirynen, Jerez, and Diehl, 2017). The current implementation
of FORCES NLP does not exploit warm-starts, but the warm-starting techniques available in the
literature can be in principle applied to the algorithm implemented.

4. Numerical Results

The algorithm described has been implemented in the software package for embedded optimization
FORCES NLP as an extension of the previously existing primal-dual interior-point solver for convex
QCQPs (Domahidi et al., 2012). The tool consists of a code generation engine capable of providing
efficient, statically-allocated, standalone C code with a small memory footprint.
In this section, the performance achieved with FORCES NLP (Domahidi and Jerez, 2016) is com-
pared with IPOPT (Wächter and Biegler, 2006) and the solvers generated with the ACADO Toolkit
(Houska et al., 2011). ACADO is a software environment for automatic control and dynamic op-
timization that provides code generation functionalities to export C code that implements the
RTI algorithm (Diehl, Bock, and Schlöder, 2005). While IPOPT can, in general, more reliably
solve NLPs to local optimality, it often leads to long computation times, the RTI-based solver in
ACADO has been designed to provide approximate solutions within shorter computation times.
By using FORCES NLP it is possible, for the examples presented in the following, to combine
the same closed-loop performance as the one obtained by IPOPT, with computation times in the
range of the ones achievable with the RTI scheme, hence offering a better trade-off between control
performance and computational delay.
In order to compare the three solvers, tracking nonlinear optimal control problems of the form

12

April 5, 2017 International Journal of Control TCON˙A˙1316017

min
x0,··· ,xN
u0,··· ,uN−1

N−1∑
i=0

li(xi, ui) + lN (xN)

s.t. xi+1 = c(xi, ui) ∀ i = 0, · · · , N − 1

xmin ≤ xi ≤ umax ∀ i = 0, · · · , N
umin ≤ ui ≤ umax ∀ i = 0, · · · , N − 1,

will be formulated and solved for three different nonlinear systems. The function c describes the
discretized dynamics obtained using an explicit Runge-Kutta integrator of order four (RK4). The
simulations in the following have been done using Gauss-Newton RTI solvers code-generated with
ACADO using two different QP solvers: the active-set solver qpOASES (Ferreau et al., 2014) and
the interior-point solver FORCES PRO (Domahidi et al., 2012). FORCES NLP has been con-
figured to use block-wise BFGS Hessian approximations and a LOQO adaptive barrier strategy
(Nocedal et al., 2006). Routines that evaluate functions and their derivatives required for inte-
gration, sensitivity generation and the BFGS updates have been code generated using CasADi
(Andersson, Akesson, and Diehl, 2012). For IPOPT, the CasADi interface has been used to set
up the optimal control formulations. As compiling the code generated by CasADi for functions,
Jacobians and Hessians evaluations resulted in out-of-memory errors for some of the examples,
the routines have been compiled and timed separately in order to have a fair estimate of the total
execution time for IPOPT. Results with both exact and BFGS approximate Hessians are reported
and the sparse direct linear solver MA57 (Duff, 2004) is used. For FORCES NLP and IPOPT the
default termination conditions have been used. All the benchmarks have been run on a laptop
XPS13 9350 with an Intel i7-6500U CPU (maximum boost frequency of 3.10 GHz) and Ubuntu
15.10 as operating system. All the examples described in the next sections are available online at
https://github.com/embotech/forcesnlp/examples.

4.1 Robotic manipulator

Consider the robotic manipulator with two links and two revolute joints (Siciliano, Sciavicco,
Villani, and Oriolo, 2009) illustrated in Figure 1. Two electric drives apply torques to the joints in
order to steer the end-effector to the desired position.
The dynamical model of such a system can be derived with the Lagrangian approach:

θ̈1 = γ1

θ̈2 = γ2

τ̇1 = τ1r

τ̇2 = τ2r,

(30)

with

γ1 =
1

(α1 − α2
β1

β2
)

α2

β2
(β4 + β3θ̇

2
1 − τ2)− α3θ̇1θ̇2 + −α4θ̇2 − α5 + τ1)

γ2 =
1

β2
(τ2 − β1γ − β3θ̇

2
1 − β4),

13

https://github.com/embotech/forcesnlp/examples

April 5, 2017 International Journal of Control TCON˙A˙1316017

and

α1 = Il1 +ml1 l
2
1 + k2

r1Im1
+ Il2 +ml2(a

2
1 + l22 + 2a1l2 cos(θ2) + Im2

+mM2
a2

1)

α2 = Il2 +ml2(l
2
2 + a1l2 cos(θ2)) + kr2Im2

α3 = −2.0ml2a1l2 sin(θ2)

α4 = −ml2a1l2 sin(θ2)

α5 = (ml1 l1 +mM2
a1 +ml2a1)g cos(θ1) +ml2 l2g cos(θ1 + θ2)

β1 = Il2 +ml2(l
2
2 + a1l2 cos(θ2)) + kr2Im2

β2 = Il2 +m2
l2 + kr2kr2Im2

β3 = ml2a1l2 sin(θ2)

β4 = ml2 l2g cos(θ1 + θ2),

where θ1, θ2 are the angles describing the configurations of the manipulator and τ1, τ2 are the
torques applied to the joints. The numerical values of the fixed geometrical and mechanical param-
eters used for the simulations are reported in Table 1.
In order to formulate the optimal control problem, states x :=[θ1, θ̇1, θ2, θ̇2, τ1, τ2]T and controls
u :=[τ1r, τ2r]

T are defined and the following constraints are imposed:

−100 Nm ≤ τ1 ≤ 70 Nm

−100 Nm ≤ τ2 ≤ 70 Nm

−200 Nm/s ≤ τ1r ≤ 200 Nm/s

−200 Nm/s ≤ τ2r ≤ 200 Nm/s

A quadratic cost function is used that penalizes the deviation of states and inputs from a reference:

li := (x− xr)TQ(x− xr) + uTRu

lN := (xN − xr)TQN (xN − xr),

with

Q = QN := diag(103, 10−1, 103, 10−1, 10−2, 10−2)

R := diag(10−2, 10−2)

and reference defined as

xr =

{
t < 10s [1.2, 0,−1.2, 0, 0, 0]

t ≥ 10s −[1.2, 0,−1.2, 0, 0, 0].
(31)

A prediction horizon of Tf = 2s over N = 20 shooting nodes is used with two intermediate RK4
integration steps per shooting interval.
Figure 2 shows the closed-loop trajectories obtained. In this case the difference between performance
achieved by ACADO and FORCES NLP is minor and the relative closed-loop suboptimality is
0.85%. The same local minima are obtained with both FORCES NLP and IPOPT at each sampling

14

April 5, 2017 International Journal of Control TCON˙A˙1316017

instant. The same holds for the two QP solvers used, FORCES PRO and qpOASES. For this reason,
only the trajectories obtained with qpOASES are shown in the plots.
Figure 3 compares the number of iterations and computation times for the three solvers. ACADO
and FORCES NLP achieve the fastest computation times, with FORCES NLP being only about two
to three times slower than ACADO with FORCES PRO as QP solver. In FORCES NLP 0.0286ms
per iteration are spent in the integrators on average, in order to compute state trajectories and
sensitivities.
It was not possible to compile the generated C code for the evaluations of functions, Jacobians
and Hessians for CasADi-IPOPT, due to out-of-memory errors. For this reason, these routines
have been code-generated, compiled and timed separately and the total execution time has been
estimated.

4.2 Quadcopter

In this section, a tracking formulation is considered with the goal of stabilizing a quadcopter around
its hover state. The control of such a system with nonlinear MPC has been previously addressed in
(Quirynen et al., 2013a), where the RTI algorithm is used to obtain approximate solutions. In the
following, it will be shown how the performance can be significantly improved when solving the
problems to a local minimum at every sampling instant with moderate additional computational
burden using the solver introduced. Consider the following model of a quadcopter adapted from
(Quirynen et al., 2013a):

ṗ = v

q̇ =
1

2
ETΩ

v̇ =
1

m
RF − g1z

Ω̇ = J−1(T + Ω× JΩ)

ω̇ = ωr,

(32)

where p and v represent position and velocity of the quadcopter respectively and q and Ω are
its orientation expressed in quaternion representation and its angular velocity. It is assumed that
angular accelerations of the propellers ωr can be tracked instantaneously, hence they are considered
as inputs to the system. The constants J and m are the inertia matrix of the vehicle and mass,
respectively, while the forces and torques applied to the system are described by

F =

4∑
k=1

1

2
ρACLω

2
k1z

T = [T1 T2 T3]T ,

(33)

with

T1 :=
AClLρ(ω2

2 − ω2
4)

2
, T2 :=

AClLρ(ω2
1 − ω2

3)

2
, T3 :=

ACdLρ(ω2
1 − ω2

2 + ω2
3 − ω2

4)

2
,

where ρ is the air density, CD and CL are the drag and lift coefficients and A is the area of the
propellers. The values of the parameters appearing in the model are listed in Table 2.
States and controls are defined as x :=[pT , qT , vT ,ΩT , ωT]T and u := ωr and the following con-

15

April 5, 2017 International Journal of Control TCON˙A˙1316017

straints are imposed:

20 rad/s ≤ ωk ≤ 50 rad/s, ∀k = 1, · · · , 4
−40 rad/s2 ≤ ωrk ≤ 40 rad/s2, ∀k = 1, · · · , 4
−40 rad/s ≤ Ωk ≤ 40 rad/s, ∀k = 1, · · · , 3
−10 m ≤ pk ≤ 10 m, ∀k = 1, · · · , 3

−100 m/s ≤ vk ≤ 100 m/s, ∀k = 1, · · · , 3.

A prediction horizon of Tf = 1s over N = 30 shooting nodes is used with a single RK4 integration
step per shooting interval. A strictly convex quadratic cost function and terminal cost have been
used to penalize deviation of states and inputs from a given reference

li := (xi − xr)TQ(xi − xr) + (ui − ur)TR(ui − ur)
lN := (xN − xrN)TQT (xN − xrN),

(34)

QN = Q = diag(1T3 · 50, 1T4 · 20, 1T3 · 5, 1T3 · 5, 1T4 · 0.01)

R = diag(13 · 5)

and constant references xr := [0T3 , 1, 0, 0, 0,0
T
3 ,0

T
3 , ω̄1

T
4] and ur := [0, 0, 0, 0], with

ω̄ = 39.939 rad/s.

Figure 4 shows the resulting closed loop trajectories when using N = 30 shooting nodes. Both
controllers manage to stabilize the system, steering the states to the specified reference. However,
by computing a local minimum at every feedback step, the nonlinear interior-point solver achieves
better control performance. The closed-loop trajectories obtained with IPOPT differ from the one
obtained with FORCES NLP, due to the fact that the solver computes different local minima.
However, the trajectories computed by IPOPT are not reported for clarity of the plots and are not
taken into account in the suboptimality comparison in Table 3 as both solvers find locally optimal
trajectories. The closed-loop cost achieved with FORCES NLP is taken as a reference to compute
the suboptimality of the RTI scheme.
In order to improve the closed-loop performance obtained with the RTI, it is possible to perform
multiple SQP steps per OCP instance. Every iteration would require an additional linearization and
QP solution. Table 3 shows the obtained computation times and suboptimality for the OCP with
an increasing number of shooting nodes. When applying several iterations to the same instance,
shifts are applied only when updating the initial condition.
ACADO is always faster than FORCES NLP, but, especially for problems with longer horizons, the
worst-case execution time is only moderately increased. A possible reason for this is that, for this
example, the time spent in solving the ODE and computing sensitivities is a rather small fraction
of the time required to carry out an interior-point iteration.
As it was not possible to compile the code generated by the interface to IPOPT in CasADi for
function evaluations, the computation times reported in Table 3 are estimates computed based
on separate timings for function evaluations. Routines for the evaluation of functions, Jacobians
and Hessians have been code-generated in CasADi, compiled and timed separately. When using
FORCES NLP, a considerable speedup can be achieved with respect to timings estimated for
IPOPT.

16

April 5, 2017 International Journal of Control TCON˙A˙1316017

4.3 Vehicle path planning

Real-time trajectory generation is an ubiquitous task for next generation robotics and autonomous
driving applications. An optimization-based approach provides a systematic way for computing
optimal trajectories with respect to the performance goals of the application. However, the resulting
optimization problems are often challenging due to nonlinear models and nonconvex constraints,
for instance, when avoiding obstacles.
Consider the following simple nonlinear vehicle model

ẏ = v cos(θ)

ż = v sin(θ)

v̇ =F/m

θ̇ = s/I.

(35)

where y and z are the Cartesian coordinates of the vehicle, v is the linear velocity and θ is the
heading angle. There are two control inputs to the model: the acceleration force F and the steering
torque s. The vehicle mass is m = 1 kg and its moment of inertia is I = 1 kgm2.
For this example we formulate a trajectory generation problem where the objective is to maximize
progress on the z direction, while minimizing the applied force and torque, i.e.

li := −100z + 0.1F 2 + 0.001s2

The dynamics (35) are discretized with the explicit RK4 integrator using N = 50 shooting nodes
over a prediction horizon of 5s. The maneuver is subject to a set of constraints, involving both the
simple bounds

−5 N ≤ F ≤ 5 N,

−1 Nm ≤ s ≤ 1 Nm,

−3 m ≤ y ≤ 0 m,

0 m ≤ z ≤ 3 m,

0 m/s ≤ v ≤ 2 m/s,

0 rad ≤ θ ≤ π rad,

(36)

as well the nonlinear nonconvex constraints representing obstacles

1 m2 ≤ y2 + z2 ≤ 9 m2

0.9025 m2 ≤ (y + 2)2 + (z − 2.5)2.
(37)

In addition, the vehicle should be at standstill and with a heading angle of 0 degrees at the end of
the maneuver. The simulation using IPOPT exploits code-generated C routines for the evaluations
of functions and their first and second order derivatives. The generated code has been compiled
with optimization flag -O3. Figure 5 shows the computed optimal trajectories, which are the same
for FORCES NLP and IPOPT. However, there is a large difference in the time required to compute
the solution with the two solvers. Table 4 shows that FORCES NLP is more than one order of
magnitude faster than IPOPT for this trajectory generation problem.

17

April 5, 2017 International Journal of Control TCON˙A˙1316017

5. Conclusions

The software package FORCES NLP that provides an efficient tailored implementation of an
NLP solver for nonlinear nonconvex multistage problems has been presented. The package im-
plements a structure-exploiting nonlinear interior-point method with approximate Hessians, and
generates standalone efficient C code that can be readily deployed on any embedded platform.
The performance of the solver has been assessed on three optimal control and trajectory gener-
ation examples. It has been shown that, for examples for which it makes a difference to solve
NLPs to local optimality, computation times in the same range as with fast approximate schemes
can be achieved, while considerable improvements in the control performance can be attained.
Moreover, the presented software has been compared to the state-of-the-art code for nonlinear
optimization IPOPT, achieving speedups of up to an order of magnitude. The numerical ex-
amples comparing FORCES NLP, ACADO and IPOPT used in this paper are all available on
https://github.com/embotech/forcesnlp/examples.

References

Andersson, J., Akesson, J., and Diehl, M. (2012). CasADi – A symbolic package for automatic differentiation
and optimal control. In Recent Advances in Algorithmic Differentiation, volume 87 of Lecture Notes in
Computational Science and Engineering, 297–307. Springer.

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints.
Automatica, 35(3), 407–427.

Benson, H. and Shanno, D. (2008). Interior-point methods for nonconvex nonlinear programming: regular-
ization and warmstarts. Computational Optimization and Applications, 40(143), 143–189.

Bock, H. and Plitt, K. (1984). A multiple shooting algorithm for direct solution of optimal control problems.
In Proceedings of the 9th IFAC World Congress, 242–247. Pergamon Press, Budapest, Hungary.

Chen, W., Balance, D., and O’Reilly, J. (2000). Model predictive control of nonlinear systems: computational
burden and stability. IEEE Proc. Control Theory Appl., 147(4), 387–394.

Deng, J., Becerra, V.M., and Stobart, R. (2009). Input constrained handling in an MPC/feedback lineariza-
tion scheme. Int. J. Appl. Math. Comput. Sci., 19(2), 219–232.

Diehl, M., Bock, H.G., and Schlöder, J.P. (2005). A real-time iteration scheme for nonlinear optimization
in optimal feedback control. SIAM Journal on Control and Optimization, 43(5), 1714–1736. .

Diehl, M., Bock, H.G., Schloder, J.P., Findeisen, R., Nagy, Z., and Allgöwer, F. (2002). Real-time opti-
mization and nonlinear model predictive control of processes governed by differential-algebraic equations.
Journal of Process Control, 12(4), 577–585.

Diehl, M., Ferreau, H., and Haverbeke, N. (2009). Nonlinear model predictive control, efficient numerical
methods for nonlinear MPC and moving horizon estimation. Lecture notes in control and information
sciences, 384, 391–417.

Diehl, M., Findeisen, R., and Allgöwer, F. (2007). A stabilizing real-time implementation of nonlinear model
predictive control. Real-Time and Online PDE-Constrained Optimization, 23–52.

Domahidi, A. and Jerez, J. (2016). FORCES Nonlinear Programming Solver. embotech GmbH. URL
https://www.embotech.com/FORCES-Pro/User-Manual/High-level-Interface.

Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M., and Jones, C. (2012). Efficient interior point methods
for multistage problems arising in receding horizon control. In IEEE Conference on Decision and Control,
668–674. Maui, HI, USA.

Duff, I. (2004). Ma57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Transactions on Mathematical Software, 30(2), 118–144.

Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., and Hrovat, D. (2007). Predictive active steering control
for autonomous vehicle systems. IEEE Transactions on Control Systems Technology, 15(3), 566 – 580.

Ferreau, H., Houska, B., Geebelen, K., and Diehl, M. (2011). Real-time control of a kite-model using an
auto-generated nonlinear MPC algorithm. 18th IFAC World Congress, 44(1), 2488–2493.

Ferreau, H., Kirches, C., Potschka, A., Bock, H., and Diehl, M. (2014). qpOASES: a parametric active-set
algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.

18

https://github.com/embotech/forcesnlp/examples
https://www.embotech.com/FORCES-Pro/User-Manual/High-level-Interface

April 5, 2017 International Journal of Control TCON˙A˙1316017

Findeisen, R. and Allgöwer, F. (2004). Computational delay in nonlinear model predictive control. In Proc.
Int. Symp. Adv. Control of Chemical Processes, 427–432. Hong Kong.

Forsgren, A. (2006). On Warm Starts for Interior Methods, 51–66. Springer US, Boston MA.
Frison, G., Sorensen, H.B., Dammann, B., and Jørgensen, J.B. (2014). High-performance small-scale solvers

for linear model predictive control. In ECC, 128–133.
Garcia, C., Prett, D., and Morari, M. (1988). Model predictive control: theory and practice – A survey.

Automatica, 25(3), 335–348.
Giselsson, P. (2012). Execution time certification for gradient-based optimization in model predictive control.

In 51st IEEE Conference on Decision and Control, 3165–3170. Maui, Hawaii, USA.
Gondzio, J. and Grothey, A. (2006). A new unblocking technique to warmstart interior point methods based

on sensitivity analysis. Siam J. Control Optim., 19(3), 1184–1210.
Houska, B., Ferreau, H., and Diehl, M. (2011). An auto-generated real-time iteration algorithm for nonlinear

MPC in the microsecond range. Automatica, 47(10), 2279–2285.
Jerez, J., Goulart, P., Richter, S., Constantinides, G., Kerrigan, E., and Morari, M. (2014). Embedded online

optimization for model predictive control at megahertz rates. IEEE Transactions on Automatic Control,
59(12), 3238–3251.

Kang, J., Cao, Y., Word, D., and Laird, C. (2014). An interior-point method for efficient solution of block-
structured NLP problems using an implicit Schur-complement decomposition. Computers & Chemical
Engineering, 71, 563–573.

Kothare, M.V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model predictive control using
linear matrix inequalities. Automatica, 32(10), 1361–1379.

Nicolao, G.D., Magni, L., and Scattolini, R. (1998). Nonlinear model predictive control, Stability and
robustness of nonlinear receding horizon control. Progress in Systems and Control Theory, 3–22.

Nocedal, J., Wächter, A., and Waltz, R. (2006). Adaptive barrier update strategies for nonlinear interior
methods. SIAM Journal on Optimization, 19(4), 1674–1693.

Nocedal, J. and Wright, S.J. (2006). Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition.

Ohtsuka, T. (2004). A continuation/GMRES method for fast computation of nonlinear receding horizon
control. Automatica, 4(40), 563–574.

Powell, M. (1978). A fast algorithm for nonlinearly constrained optimization calculations. Watson, G.A.
(ed.) Numerical Analysis, 144–157.

Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial model predictive control technology. Control
Engineering Practice, 11(7), 733–764.

Quirynen, R., Gros, S., and Diehl, M. (2013a). Efficient NMPC for nonlinear models with linear subsystems.
In IEEE Conference on Decision and Control, 5101–5106. Florence, Italy.

Quirynen, R., Gros, S., and Diehl, M. (2013b). Fast auto generated ACADO integrators and application to
MHE with multi-rate measurements. In European Control Conference, 3077–3082. Zurich, Switzerland.

Quirynen, R., Gros, S., Houska, B., and Diehl, M. (2016). Lifted collocation integrators for direct optimal
control in ACADO toolkit. Mathematical Programming Computation (under review, preprint available at
Optimization Online).

Quirynen, R., Vukov, M., and Diehl, M. (2012). Auto generation of implicit integrators for embedded
NMPC with microsecond sampling times. In IFAC Nonlinear Model Predictive Control Conference, 175–
180. Noordwijkerhout, The Netherlands.

Quirynen, R., Vukov, M., Zanon, M., and Diehl, M. (2014). Autogenerating microsecond solvers for nonlinear
MPC: a tutorial using ACADO integrators. Optimal Control Applications and Methods, 36, 685–704.

Richter, S., Jones, C., and Morari, M. (2012). Computational complexity certification for real-time MPC
with input constraints based on the fast gradient method. IEEE Transactions on Automatic Control,
57(6), 1391–1403.

Santos, L.O., Afonso, P., Castro, J., Oliveira, N., and Biegler, L.T. (2001). On-line implementation of
nonlinear MPC: An experimental case study. Control Engineering Practice, 9(8), 847–857.

Shahzad, A. and Goulart, P. (2011). A new hot-start interior-point method for model predictive control. In
Proceedings of the IFAC World Congress.

Shahzad, A., Kerrigan, E., and Constantinides, G. (2010). A warm-start interior-point method for predictive
control. Technical report, Imperial College London.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics: Modelling, Planning and Control.

19

April 5, 2017 International Journal of Control TCON˙A˙1316017

Springer.
Simon, D., Loefberg, J., and Glad, T. (2013). Nonlinear model predictive control using feedback linearization

and local inner convex constraint approximations. In European Control Conference, 2056–2061. Zurich,
Switzerland.

Vanderbei, R. and Shanno, D. (1999). An interior point algorithm for nonconvex nonlinear programming.
Computational Optimization and Applications, 13, 231–252.

Wächter, A. and Biegler, L. (2006). On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106(25), 25–57.

Wright, S.J. (1993). Interior point methods for optimal control of discrete time systems. Journal of Opti-
mization Theory and Applications, 77(1), 161–187.

Yildirim, E. and Wright, S.J. (2002). Warm-start strategies in interior-point methods for linear programming.
SIAM Journal on Optimization, 12(3), 782–810.

Zanelli, A., Quirynen, R., Jerez, J., and Diehl, M. (2017). A homotopy-based nonlinear interior-point method
for NMPC applications. In Proceedings of 20th IFAC World Congress. Toulouse, France.

Zavala, V.M. and Biegler, L.T. (2009). The advanced step NMPC controller: Optimality, stability and
robustness. Automatica, 45(1), 86–93.

20

April 5, 2017 International Journal of Control TCON˙A˙1316017

Figure 1.: Robotic manipulator with two links and two joints (Siciliano et al., 2009).

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

jo
in
t
an

gl
es

[r
ad

]

0 2 4 6 8 10 12 14 16 18 20

0

50

to
rq
u
es

[N
m
]

0 2 4 6 8 10 12 14 16 18 20
−200
−100

0
100
200

τ
1
r

0 2 4 6 8 10 12 14 16 18 20
−200
−100

0
100
200

time [s]

τ
2
r

Figure 2.: Robotic manipulator tracking a time-varying reference. The figures compare the closed-
loop trajectories obtained with the RTI scheme with shifts (’shifting.strategy=1’) (dashed)
and FORCES NLP (solid). ACADO uses qpOASES (with warm-starting) as QP solver. In this
case, there is a minor deviation in the closed-loop trajectories and the relative suboptimality is
0.85%. The trajectories obtained with IPOPT and ACADO with FORCES PRO as QP solver are
not shown in the plot as they are identical to the ones obtained with FORCES NLP and ACADO
with qpOASES respectively.

21

April 5, 2017 International Journal of Control TCON˙A˙1316017

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

time [s]

it
er
a
ti
on

s
[s
]

FORCES NLP

ACADO - FORCES (QP it.)

ACADO - qpOASES (QP it.)
IPOPT †

0 2 4 6 8 10 12 14 16 18 20
10−4

10−3

10−2

time [s]

C
P
U

ti
m
e
[s
]

Figure 3.: Number of iterations and computation times for all solvers. Interior-point iterations are
reported for IPOPT and FORCES NLP, while the number of QP iterations to solve every QP
are reported for ACADO. ACADO exploits shifting (’shifting.strategy=1’) and qpOASES is
warm-started. ACADO is always faster than FORCES NLP and it achieves a worst-case execution
time that is less than two to three times shorter. While both nonlinear interior-point solvers solve
the OCPs to a local minimum, FORCES NLP has a worst-case execution time that is about 8 times
shorter than the one obtained with IPOPT. Integration and sensitivity generation in FORCES NLP
requires, for this example, 0.0286ms per iteration on average. † It was not possible to compile the
code generated by CasADi-IPOPT for functions, Jacobians and Hessians evaluations, due to out-of-
memory errors. These routines have been code-generated, compiled and timed separately in order
to estimate CPU time spent in function evaluations (total estimated execution time in dash-dot
style).

22

April 5, 2017 International Journal of Control TCON˙A˙1316017

0 1 2 3 4 5 6 7 8

−10
−5
0

p
o
si
ti
on

[m
]

x
y
z

0 1 2 3 4 5 6 7 8

0

2

time [s]

E
u
le
r
a
n
gl
es

[r
a
d
]

roll
pitch
yaw

0 1 2 3 4 5 6 7 8
20

30

40

50 ω1

0 1 2 3 4 5 6 7 8
20

30

40

50 ω2

0 1 2 3 4 5 6 7 8
20

30

40

50

time [s]

ω3

0 1 2 3 4 5 6 7 8
20

30

40

50

time [s]

ω4

Figure 4.: Stabilization of the quadcopter around hovering state: closed-loop trajectories obtained
with FORCES NLP (solid) and ACADO with qpOASES (dashed) for N = 30. Although different
trajectories are obtained with IPOPT, the latter are not reported for clarity of the plots. ACADO
uses warm-starts and shifts to initialize subsequent subproblems. The nonlinear interior-point solver
computes a local minimum at every feedback step resulting in an improved performance. Relative
closed-loop suboptimality associated with the approximate scheme is 69.07%.

23

April 5, 2017 International Journal of Control TCON˙A˙1316017

-2.5 -2 -1.5 -1 -0.5 0

y

0

0.5

1

1.5

2

2.5

3
z

position

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2
velocity

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

heading angle

0 5 10 15 20 25 30 35 40 45 50
−5

0

5
acceleration force

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1
delta steering

Figure 5.: Trajectory of the vehicle on a 2D space (top), vehicle’s velocity and heading angle
(left), and actuators (right). Constraints are represented with dotted red lines. The vehicle starts
at position (-2,0) and should maximize progress in y direction, while being at standstill and at
heading angle of zero degrees at its final position after 50 integration steps.

24

April 5, 2017 International Journal of Control TCON˙A˙1316017

Table 1.: Robotic manipulator: parameter values

Parameter Value Description

mM1
= mM2

0.3 kg motor mass

kr1 = kr2 1.0 gear reduction ratio

rM1
= rM2

0.05 m motor radius

IM1
= IM2

1
2mM1

r2
M1

motor moment of inertia

ml1 = ml2 3.0 kg link mass

Il1 = Il2
1
12ml1 l

2
1 link moment of inertia

a1 = a2
1
2 l1 link center of mass relative position

l1 = l2 1 m link length

g 9.81m/s2 gravitational acceleration

Table 2.: Quadcopter: parameter values

Parameter Value Description

ρ 1.225 kg/m3 air density

A 0.1m2 propeller area

Cl 0.25 lift coefficient

Cd 0.3 · Cl drag coefficient

m 10Kg quadcopter mass

g 9.81m/22 gravitational acceleration

J1 = J2 = J3 0.25Kg ·m/s2 link length

25

April 5, 2017 International Journal of Control TCON˙A˙1316017

N = 10 N = 20 N = 30

time [ms] (it.) sub. % time [ms] (it.) sub. % time [ms] (it.) sub. %

RTI - qpOASES 5.09 (3) 11.86 24.43 (2) 41.19 42.72(1) 69.07
RTI - FORCES 15.52(3)∗ 20.27 35.76(3)∗ 11.13 44.57(2)∗ 10.47
FORCES NLP 18.17 - 45.18 - 51.71 -

IPOPT 109.7† - 283.1† - 494.6† -

Table 3.: Quadcopter example: worst-case CPU time and closed-loop relative suboptimality for
increasing horizon lengths. For ACADO, the minimum number of SQP iterations required to
stabilize the system is taken into account (in brackets next to timings). For small problems,
ACADO - qpOASES can achieve moderate suboptimality with considerably shorter computation
times. Although FORCES NLP is always slower than ACADO, when increasing the horizon length,
rather competitive computation times can be achieved with improved performance with respect to
the RTI algorithm. ∗Notice that, when using FORCES as QP solver, it is necessary to damp the
Newton steps in order to avoid ill-conditioned QPs which would make the solver fail. This justifies
the different suboptimality incurred with respect to ACADO - qpOASES. † Computation times for
IPOPT are estimated based on separate timings of code-generated function evaluations.

Time w/o f. evals Total solution time Iterations
FORCES NLP - BFGS 7.0 ms 8.0 ms 74
IPOPT - BFGS 95 ms 140 ms 70
IPOPT - exact Hessian 105 ms 258 ms 117

Table 4.: Solve times and number of iterations for the vehicle path planning problem. Timings
with and without function evaluations are reported. The routines evaluating functions and their
first and second order derivatives have been code generated using the CasADi interface to IPOPT.
Notice that, especially when computing exact Hessians, the time spent in function evaluations can
be significant.

26

	Introduction
	Preliminaries
	Nonlinear Model Predictive Control
	Problem Formulation

	Newton-type Approaches to Nonlinear Programming
	Sequential Quadratic Programming
	Interior Point Methods

	Implementation
	Structure-Exploiting Linear System Solver
	Hessian Approximation
	Gauss-Newton
	Block-wise Broyden-Fletcher-Goldfarb-Shanno Hessian updates

	Barrier Strategy
	Line-Search Filter Method
	Integration and sensitivity generation
	Initialization and Warm-start

	Numerical Results
	Robotic manipulator
	Quadcopter
	Vehicle path planning

	Conclusions

