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Abstract: In this paper, we propose an efficient zero-order algorithm that can be used to
compute an approximate solution to robust optimal control problems (OCP) and robustified
nonconvex programs in general. In particular, we focus on robustified OCPs that make use
of ellipsoidal uncertainty sets and show that, with the proposed zero-order method, we can
efficiently obtain suboptimal, but robustly feasible solutions. The main idea lies in leveraging an
inexact sequential quadratic programming (SQP) algorithm in which an advantageous sparsity
structure is enforced. The obtained sparsity allows one to eliminate the variables associated
with the propagation of the ellipsoidal uncertainty sets and to solve a reduced problem with
the same dimensionality and sparsity structure of a nominal OCP. The inexact algorithm can
drastically reduce the computational complexity of the SQP iterations (e.g., in the case where
a structure exploiting interior-point method is used to solve the underlying quadratic programs
(QPs), from O(N · (n6

x + n3
u)) to O(N · (n3

x + n3
u))). Moreover, standard embedded QP solvers

for nominal problems can be leveraged to solve the reduced QP.
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1. INTRODUCTION

Although the closed-loop application of nominal nonlinear
model predictive control (NMPC) allows it to react to
model-plant mismatch, uncertainty cannot be taken into
account explicitly in the prediction. This is especially prob-
lematic in the context of safety-critical applications, where
there can be constraints that should be violated under no
circumstance. Robust model predictive control (RMPC)
includes the uncertainty in the prediction model and –
under the assumption of finite uncertainty support – finds
a control trajectory such that the constraints are fulfilled
for any realization of the disturbances (see, e.g., (Morari,
1987; Rawlings et al., 2017)). Among other approaches,
RMPC can be implemented using the so-called tube-based
approach, in which a tube of trajectories is controlled
instead of only the nominal trajectory (Mayne et al., 2011,
2005). Ideally this tube contains exactly the set of all
possible trajectories and not more, but in practice it needs
to be approximated, e.g, by ellipsoidal sets around the
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nominal trajectory (Houska, 2011). Knowledge of this tube
can then be used to formulate a nominal NMPC problem
with tightened constraints to account for the uncertainty.
The tightening procedure is in general expensive and needs
to be performed off-line, though online tightening would
allow the solution to be less conservative (Köhler et al.,
2018). An alternative approach would be to assume an
ellipsoidal representation of the uncertainty sets over the
entire prediction horizon and include the dynamics that
describe their propagation – sometimes referred to as Lya-
punov dynamics – into the MPC problem. The resulting
ellipsoids can be defined by a symmetric and positive
semidefinite matrix Σ ∈ Snx×nx

+ , with dynamics derived
from the prediction model (Gillis and Diehl, 2013; Houska,
2011). If these dynamics are propagated alongside the
nominal dynamics, the dimension of the augmented state is
quadratic in nx. This is often incompatible with an efficient
online solution of the MPC problems. Furthermore, the
ellipsoid dynamics are usually defined using the sensi-
tivities of the prediction model, such that computation
of their Jacobian requires second-order derivatives of the
prediction model, and computation of their Hessian even
requires third-order derivatives.
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Abstract: In this paper, we propose an efficient zero-order algorithm that can be used to
compute an approximate solution to robust optimal control problems (OCP) and robustified
nonconvex programs in general. In particular, we focus on robustified OCPs that make use
of ellipsoidal uncertainty sets and show that, with the proposed zero-order method, we can
efficiently obtain suboptimal, but robustly feasible solutions. The main idea lies in leveraging an
inexact sequential quadratic programming (SQP) algorithm in which an advantageous sparsity
structure is enforced. The obtained sparsity allows one to eliminate the variables associated
with the propagation of the ellipsoidal uncertainty sets and to solve a reduced problem with
the same dimensionality and sparsity structure of a nominal OCP. The inexact algorithm can
drastically reduce the computational complexity of the SQP iterations (e.g., in the case where
a structure exploiting interior-point method is used to solve the underlying quadratic programs
(QPs), from O(N · (n6

x + n3
u)) to O(N · (n3

x + n3
u))). Moreover, standard embedded QP solvers

for nominal problems can be leveraged to solve the reduced QP.

Keywords: model predictive control, numerical optimization, robust optimization

1. INTRODUCTION

Although the closed-loop application of nominal nonlinear
model predictive control (NMPC) allows it to react to
model-plant mismatch, uncertainty cannot be taken into
account explicitly in the prediction. This is especially prob-
lematic in the context of safety-critical applications, where
there can be constraints that should be violated under no
circumstance. Robust model predictive control (RMPC)
includes the uncertainty in the prediction model and –
under the assumption of finite uncertainty support – finds
a control trajectory such that the constraints are fulfilled
for any realization of the disturbances (see, e.g., (Morari,
1987; Rawlings et al., 2017)). Among other approaches,
RMPC can be implemented using the so-called tube-based
approach, in which a tube of trajectories is controlled
instead of only the nominal trajectory (Mayne et al., 2011,
2005). Ideally this tube contains exactly the set of all
possible trajectories and not more, but in practice it needs
to be approximated, e.g, by ellipsoidal sets around the

� This research was supported by the German Federal Ministry for
Economic Affairs and Energy (BMWi) via DyConPV (0324166B),
by DFG and via Research Unit FOR 2401 and project 424107692
and by the EU via ITN-AWESCO (642 682).

nominal trajectory (Houska, 2011). Knowledge of this tube
can then be used to formulate a nominal NMPC problem
with tightened constraints to account for the uncertainty.
The tightening procedure is in general expensive and needs
to be performed off-line, though online tightening would
allow the solution to be less conservative (Köhler et al.,
2018). An alternative approach would be to assume an
ellipsoidal representation of the uncertainty sets over the
entire prediction horizon and include the dynamics that
describe their propagation – sometimes referred to as Lya-
punov dynamics – into the MPC problem. The resulting
ellipsoids can be defined by a symmetric and positive
semidefinite matrix Σ ∈ Snx×nx

+ , with dynamics derived
from the prediction model (Gillis and Diehl, 2013; Houska,
2011). If these dynamics are propagated alongside the
nominal dynamics, the dimension of the augmented state is
quadratic in nx. This is often incompatible with an efficient
online solution of the MPC problems. Furthermore, the
ellipsoid dynamics are usually defined using the sensi-
tivities of the prediction model, such that computation
of their Jacobian requires second-order derivatives of the
prediction model, and computation of their Hessian even
requires third-order derivatives.
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1.1 Contribution and related work

Following the ideas proposed in (Zanelli et al., 2016,
2019a), we present a zero-order approach, that we call
the zero-order robust optimization (zoRO) algorithm. The
strategy neglects the sensitivities of the ellipsoid dynamics
in order to reduce the computational complexity of the ro-
bustified NMPC problem to roughly the same complexity
of solving a nominal NMPC problem. This comes at the
cost of converging to a suboptimal, but feasible, solution
of the robustified NMPC problem. We corroborate our
findings on a nontrivial benchmark where large speedups
can be achieved with respect to a standard implementation
of RMPC with ellipsoidal uncertainty sets.

A similar approach to the one presented in this section, was
recently proposed in (Feng et al., 2020). With respect to
(Feng et al., 2020), we additionally present a convergence
proof for the zero-order iterates (which holds even at
points where strict complementarity does not hold) and
study the asymptotic behavior of the suboptimal solution
as the uncertainty shrinks to zero. In particular, we show
that the suboptimal solution deviates from the optimal
one as O(σ) with respect to the amount of uncertainty σ.
Finally, although in a stochastic rather than robust set-
ting, a related strategy is adopted in (Hewing et al., 2020,
Section V), where, at every sampling time, fixed back-offs
are computed by propagation of the Lyapunov dynamics
for fixed state and input trajectories associated with the
solution obtained at the previous sampling time. In the
present work, we update the back-offs in a similar fashion,
but across iterations of the optimizer, in order to recover
feasibility with respect to the robustified constraints.

1.2 Notation

Throughout the paper we will denote the Euclidean norm
by ‖ · ‖, when referring to vectors, and, with the same
notation, to the spectral norm

‖A‖ :=
√
λmax (A�A), (1)

when referring to a (real) matrix A. All vectors are column
vectors and we denote the concatenation of two vectors by

(x, y) :=

[
x
y

]
. (2)

We denote the derivative (gradient) of any function by

∇f(x) = ∂f
∂x (x)

� and the Euclidean ball of radius r
centered at x as B(x, r) := {y : ‖x − y‖ ≤ r}. For
a matrix Q ∈ Rn×m, we denote by q = vec(Q), with
q ∈ Rn·m, the vectorization of the matrix Q, i.e., the vector
containing its stacked columns. For some positive integer
n, we denote by Sn

++ (Sn
+) the set of symmetric positive

definite (semidefinite) matrices of dimension n. For any
Q ∈ Sn

+ and any vector q ∈ Rn, we denote by E(Q, q) the
ellipsoid defined as

E(Q, q) := {q +Q
1
2 v | ∃v ∈ Rn : v�v ≤ 1}. (3)

We sometimes use the shorthand E(Q) := E(Q, 0). We
denote the Minkowski sum of two sets by ⊕, i.e. A ⊕
B = {a+ b : a ∈ A, b ∈ B}. Finally, we denote the identity
matrix by I.

2. ROBUST OPTIMAL CONTROL WITH
ELLIPSOIDAL UNCERTAINTY SETS

We will be concerned with the problem of controlling the
discrete-time system

x+ = ψ(x, u, w), (4)

where x ∈ Rnx and u ∈ Rnu represent the states and
inputs of the system, respectively, and w ∈ E(W ), with
W ∈ Snw

++, is an uncertain disturbance. We assume that ψ :
Rnx ×Rnu ×Rnw is three times continuously differentiable.
Moreover, we assume that the initial state of the system
is contained in an ellipsoid, i.e., xtrue ∈ E(Σ̄, x), with
Σ̄ ∈ Snx

++, centered at x.

Since constructing computationally tractable robust pos-
itive invariant tubes for nonlinear systems is in general
a challenging task, we leverage the theory developed in
(Houska, 2011) in order to approximate the true reachable
sets with the ellipsoids obtained with a Lyapunov differ-
ence equation.

To this end, we regard the following robustified optimal
control problem with ellipsoidal uncertainty sets, which is
often used as an approximation to robust (Houska, 2011)
and stochastic (Gillis and Diehl, 2013; Hewing et al., 2020)
MPC problems:

min
s0,...,sN
Σ0,...,ΣN
u0,...,uN−1

N−1∑
i=0

l(si, ui) +m(sN )

s.t. s0 − x = 0,

Σ0 − Σ̄ = 0,

ψ(si, ui, 0)− si+1 = 0, i = 0, . . . , N − 1,

Σi+1 = Φ(Σi,Wi, si, ui), i = 0, . . . , N − 1,

πi(si, ui,Σi) ≤ 0, i = 0, . . . , N − 1,

πN (sN ,ΣN ) ≤ 0,

(5)

where s and u describe the nominal state and input
trajectory, respectively. The functions l : Rnx × Rnu → R
and m : Rnx → R denote the cost terms. We have
introduced the robustified constraints πi,j based on the
nominal constraints π̂i,j , for i = 0, . . . , N − 1, with
components, for j = 1, . . . , nπ,

πi,j(si,ui,Σi) := π̂i,j(si, ui)

+
√
∇sπ̂i,j(si, ui)�Σi∇sπ̂i,j(si, ui)

(6)

and, for j = 1, . . . , nπN
,

πN,j(sN ,ΣN ) := π̂N,j(sN )

+
√

∇sπ̂N,j(sN )�ΣN∇sπ̂N,j(sN ).
(7)

The matrices Σi, for i = 0, . . . , N , describe the uncertainty
sets obtained through the ellipsoidal dynamics defined by
the function Φ : Rnx×nx ×Rnw×nw ×Rnx ×Rnu → Rnx×nx

defined as follows:
Φ(Σ,W, s, u) :=

C(s, u) ΣC(s, u)� +B(s, u)W B(s, u)�.
(8)

Here we have introduced the Jacobians of the dynamics

C(s, u) :=
∂ψ

∂s
(s, u, 0) and B(s, u) :=

∂ψ

∂w
(s, u, 0).

We will refer to the square root terms in (2) and (6) as
“back-off” terms. Finally, x ∈ Rnx is a parameter that
represents the initial state of the system.
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2.1 Approximate robustness

It is well known that the reachable set of linear and nonlin-
ear systems with ellipsoidal uncertainty is not an ellipsoid
(see, e.g., Houska (2011)). However, problem (5) provides a
reasonable trade-off between accuracy and computational
effort. In particular, the Lyapunov difference equation (8)
would provide the true reachable set for the linearized
dynamics under the assumption that the uncertainty sat-
isfies an L2 bound (cf. (Houska, 2011, Assumption 5.1)).
Alternatively, we can compute an ellipsoidal outer approxi-
mation to the true reachable set by exploiting the fact (see,
e.g., (Houska, 2011, Theorem 2.4)) that, for any α1, α2 > 0
such that α1 + α2 ≤ 1 and any W1,W2 ∈ Sn

+ it holds that

E(W1) ⊕ E(W1) ⊆ E(α−1
1 W1 + α−1

2 W2). Exploiting this
fact, we can modify (8) into

Φ(Σ,W, s, u) :=

α−1
1 C(s, u) ΣC(s, u)� + α−1

2 B(s, u)W B(s, u)�.

This tailored Lyapunov difference equation (for which we
could easily modify the algorithm proposed in this paper)
would provide an outer approximation to the reachable set
associated with the linearized dynamics.

Similarly, following (Houska, 2011, Lemma 5.1), we can
construct an outer approximation of the reachable sets
(again to be interpreted in a “linearized” sense), which
requires the integration of a Lyapunov ordinary differential
equation (ODE). Choosing Ωτ (λ) = E(W ), µ = 1 in
(Houska, 2011, Lemma 5.1) we can interpret (8) as a
discretization of the resulting Lyapunov ODE. Yet another
useful interpretation of (8) is the one associated with an
approximate propagation of a Gaussian distribution based
on the linearized dynamics. This is the point of view taken
in (Hewing et al., 2020) and (Feng et al., 2020) and it leads
to an interpretation of the robustified constraints as single
chance constraints.

Finally, it is worth noticing that exact robust tubes can be
computed by integrating the Lyapunov ODE in (Houska,
2011, Theorem 5.3), which requires however lumping the
nonlinearity in the dynamics into an ellipsoidal term,
which is less practical from a computational point of view.

In all the above approaches, the approximate ellipsoidal
robust tubes are used to compute a “back-off” terms in (2)
and (6). However, the support of the ellipsoids is computed
in the direction of the gradient of the constraints, such
that the robustification (even in the case where true outer
approximations to the reachable sets would be available)
is again to be intended in a “linearized” sense.

3. THE ZERO-ORDER ALGORITHM FOR ROBUST
OPTIMIZATION

Problem (5) can be solved with standard nonlinear pro-
gramming techniques which can be substantially faster and
easier to implement than the algorithms needed to solve
min-max formulations. However, the number of optimiza-
tion variables is far larger than the one associated with the
nominal problem. In particular, notice that using a naive
state augmentation, the number of states involved would

grow from nx to nx + nx(nx+1)
2 , in the case where we can

exploit symmetry of the uncertainty matrices and nx+n2
x

otherwise.

In the following, we outline the proposed zero-order al-
gorithm and show that it can efficiently obtain subop-
timal, but feasible solutions to (5). The main idea lies
in exploiting an approximation of the robustified OCP,
where the first-order derivatives of Φ with respect to
states and control are set to zero in order to enforce an
advantageous sparsity structure. In this way, the obtained
sparsity allows one to eliminate the variables associated
with the propagation of the ellipsoidal uncertainty sets and
to solve a reduced problem with the same dimensionality
and sparsity structure of a nominal OCP.

In order to outline the algorithm and its properties, we
utilize the vectorized uncertainty P = vec(P), with P ∈
Rn2

v and P ∈ Rnv×nv , and reformulate (5) into the compact
formulation

min
y,P

f(y)

s.t. g(y) = 0,

h(y) ≤ 0,

A(y)P − σ2 · b(y) = 0,

ĥk(y, 0) + ĥback,k(y, P ) ≤ 0, k = 1, . . . , nĥ,

(9)

where y ∈ Rny , f : Rny → R and g : Rny → Rng

and h : Rny → Rnh are non-robustified constraints.
The functions ĥ : Rny × Rnv → Rnĥ and the back-

off terms ĥback,k(y, P ) :=

√
∇vĥk(y, 0)�P∇vĥk(y, 0), for

k = 1, . . . , nĥ, define instead the robustified constraints.

We have introduced the functions A : Rny → Rn2
v×n2

v

and b : Rny → Rn2
v . Finally, σ ∈ R++ is a parameter

that scales the amount of uncertainty (loosely speaking, it
could be interpreted as a standard deviation if the matrix
P actually represented a covariance matrix). For simplicity
of notation, we will sometimes refer to the vectorized forms

ĥ(y, 0) :=



ĥ1(y, 0)

. . .

ĥnĥ
(y, 0)


 , ĥback(y, P ) :=



ĥback,1(y, P )

. . .

ĥback,nĥ
(y, P )


 .

Problem (5) can be reformulated into (9) by observing
that, e.g., for N = 1, the uncertainty dynamics can be
rewritten as
[

I 0
−Γ0(s0, u0) I

] [
Σ0

Σ1

]
=

[
Σ̄

B(s0, u0)W0B(s0, u0)
�

]
. (10)

Here, for any s0, u0, Γ0(s0, u0) ∈ Rnx×nx is the matrix rep-
resentation of the linear map X → C(s0, u0)XC(s0, u0)

�,
i.e.,

Γ0(s0, u0)Σ0 = C(s0, u0)Σ0C(s0, u0)
�. (11)

Remark 1. Notice that the zoRO algorithm introduced in
the following can be applied to any robustified program
of the form in (9) that need not be associated with a
robustified OCP of the form in (5).

Referring to (9) will both simplify the notation and make
it possible to apply the results to a more general class of
robust optimization problems. We are interested in solving
(9) with sequential quadratic programming (SQP). The
QP subproblems to be solved at every iteration take the
form



 Andrea Zanelli  et al. / IFAC PapersOnLine 54-6 (2021) 50–57 53

2.1 Approximate robustness

It is well known that the reachable set of linear and nonlin-
ear systems with ellipsoidal uncertainty is not an ellipsoid
(see, e.g., Houska (2011)). However, problem (5) provides a
reasonable trade-off between accuracy and computational
effort. In particular, the Lyapunov difference equation (8)
would provide the true reachable set for the linearized
dynamics under the assumption that the uncertainty sat-
isfies an L2 bound (cf. (Houska, 2011, Assumption 5.1)).
Alternatively, we can compute an ellipsoidal outer approxi-
mation to the true reachable set by exploiting the fact (see,
e.g., (Houska, 2011, Theorem 2.4)) that, for any α1, α2 > 0
such that α1 + α2 ≤ 1 and any W1,W2 ∈ Sn

+ it holds that

E(W1) ⊕ E(W1) ⊆ E(α−1
1 W1 + α−1

2 W2). Exploiting this
fact, we can modify (8) into

Φ(Σ,W, s, u) :=

α−1
1 C(s, u) ΣC(s, u)� + α−1

2 B(s, u)W B(s, u)�.

This tailored Lyapunov difference equation (for which we
could easily modify the algorithm proposed in this paper)
would provide an outer approximation to the reachable set
associated with the linearized dynamics.

Similarly, following (Houska, 2011, Lemma 5.1), we can
construct an outer approximation of the reachable sets
(again to be interpreted in a “linearized” sense), which
requires the integration of a Lyapunov ordinary differential
equation (ODE). Choosing Ωτ (λ) = E(W ), µ = 1 in
(Houska, 2011, Lemma 5.1) we can interpret (8) as a
discretization of the resulting Lyapunov ODE. Yet another
useful interpretation of (8) is the one associated with an
approximate propagation of a Gaussian distribution based
on the linearized dynamics. This is the point of view taken
in (Hewing et al., 2020) and (Feng et al., 2020) and it leads
to an interpretation of the robustified constraints as single
chance constraints.
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tion variables is far larger than the one associated with the
nominal problem. In particular, notice that using a naive
state augmentation, the number of states involved would

grow from nx to nx + nx(nx+1)
2 , in the case where we can

exploit symmetry of the uncertainty matrices and nx+n2
x

otherwise.

In the following, we outline the proposed zero-order al-
gorithm and show that it can efficiently obtain subop-
timal, but feasible solutions to (5). The main idea lies
in exploiting an approximation of the robustified OCP,
where the first-order derivatives of Φ with respect to
states and control are set to zero in order to enforce an
advantageous sparsity structure. In this way, the obtained
sparsity allows one to eliminate the variables associated
with the propagation of the ellipsoidal uncertainty sets and
to solve a reduced problem with the same dimensionality
and sparsity structure of a nominal OCP.

In order to outline the algorithm and its properties, we
utilize the vectorized uncertainty P = vec(P), with P ∈
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v and P ∈ Rnv×nv , and reformulate (5) into the compact
formulation
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A(y)P − σ2 · b(y) = 0,

ĥk(y, 0) + ĥback,k(y, P ) ≤ 0, k = 1, . . . , nĥ,

(9)

where y ∈ Rny , f : Rny → R and g : Rny → Rng
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The functions ĥ : Rny × Rnv → Rnĥ and the back-

off terms ĥback,k(y, P ) :=

√
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We have introduced the functions A : Rny → Rn2
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v . Finally, σ ∈ R++ is a parameter

that scales the amount of uncertainty (loosely speaking, it
could be interpreted as a standard deviation if the matrix
P actually represented a covariance matrix). For simplicity
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ĥ(y, 0) :=
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. . .

ĥnĥ
(y, 0)


 , ĥback(y, P ) :=



ĥback,1(y, P )

. . .

ĥback,nĥ
(y, P )


 .

Problem (5) can be reformulated into (9) by observing
that, e.g., for N = 1, the uncertainty dynamics can be
rewritten as
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I 0
−Γ0(s0, u0) I

] [
Σ0

Σ1

]
=

[
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B(s0, u0)W0B(s0, u0)
�
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. (10)

Here, for any s0, u0, Γ0(s0, u0) ∈ Rnx×nx is the matrix rep-
resentation of the linear map X → C(s0, u0)XC(s0, u0)

�,
i.e.,

Γ0(s0, u0)Σ0 = C(s0, u0)Σ0C(s0, u0)
�. (11)

Remark 1. Notice that the zoRO algorithm introduced in
the following can be applied to any robustified program
of the form in (9) that need not be associated with a
robustified OCP of the form in (5).

Referring to (9) will both simplify the notation and make
it possible to apply the results to a more general class of
robust optimization problems. We are interested in solving
(9) with sequential quadratic programming (SQP). The
QP subproblems to be solved at every iteration take the
form

min
∆y,∆P

∇yf(ŷ)
�∆y +

1

2

[
∆y
∆P

]� [
Myy M�

Py

MPy MPP

] [
∆y
∆P

]

s.t. glin(ŷ,∆y) = 0,

hlin(ŷ,∆y) ≤ 0,

Φlin(σ; ŷ, P̂ ,∆y,∆P ) = 0,

ĥlin(ŷ, P̂ ,∆y,∆P ),
(12)

where

glin(ŷ,∆y) := g(ŷ) +∇g(ŷ)�∆y,

hlin(ŷ,∆y) := h(ŷ) +∇h(ŷ)�∆y,

Φlin(σ; ŷ, P̂ ,∆y,∆P ) := A(ŷ)P̂ − σ2 · b(ŷ)

+
∂

∂y

(
A(ŷ)P̂

)
∆y +A(ŷ)∆P

− σ2 · ∇b(ŷ)�∆y

(13)

and

ĥlin(ŷ,P̂ ,∆y,∆P ) := ĥ(ŷ, 0) + ĥback(ŷ, P̂ )

+∇yĥ(ŷ, 0)
�∆y +∇yĥback(ŷ, P̂ )�∆y

+∇P ĥback(ŷ, P̂ )�∆P.

(14)

Finally,

M =

[
Myy M�

Py

MPy MPP

]
(15)

represents the chosen symmetric and positive definite Hes-
sian approximation. Due to the introduction of the vector-
ized uncertainty matrix P , solving the subproblems in (12)
can be substantially more computationally demanding
than solving their nominal counterpart. For this reason,
we propose to instead solve modified subproblems of the
form

min
∆y,∆P

∇f(ŷ)�∆y +
1

2

[
∆y
∆P

]� [
Myy M�

Py

MPy MPP

] [
∆y
∆P

]

s.t. glin(ŷ,∆y) = 0,

hlin(ŷ,∆y) ≤ 0,

Φ̃lin(σ; ŷ, P̂ ,∆P ) = 0,

ĥlin(ŷ, P̂ ,∆y,∆P ),
(16)

where Φlin has been replaced by

Φ̃lin(ŷ, P̂ ,∆P ) := A(ŷ)P̂ − σ2 · b(ŷ) +A(ŷ)∆P. (17)

Remark 2. The approximation of the first-order deriva-
tives in (17) is in line with the zero-order strategies an-
alyzed in (Bock et al., 2007; Zanelli et al., 2016, 2019b).
Notice however, that in the zoRO algorithm we do evaluate
exactly part of the derivatives.

Under the assumption that A(ŷ) is invertible, we can then
eliminate ∆P as

∆P̃ := −P̂ +A(ŷ)−1σ2 · b(ŷ) (18)

such that the QP subproblems take the form

min
∆y

(∇f(ŷ)� +∆P̃�MPy)∆y +
1

2
∆y�Myy∆y

s.t. glin(ŷ,∆y) = 0,

hlin(ŷ,∆y) ≤ 0,

ĥlin(ŷ, P̂ ,∆y,∆P̃ ) ≤ 0.

(19)

The elimination of ∆P described in (18) together with the
solution of the reduced problem (18) can be considerably

less computationally demanding than solving the original
problem (9). In particular, in the context of NMPC, ∆P
can be eliminated through the recursion

∆Σi+1 = Γi(ŝi, ûi)Σ̂i +BiWiB
�
i − Σ̂i, (20)

for i = 0, . . . , N − 1, and the reduced problem takes the
form of a nominal OCP, hence with a drastically decreased
number of states.

3.1 Asymptotic analysis of the zoRO solution

In order to be able to leverage the results on strongly reg-
ular generalized equations, which, in their standard form,
require Lipschitz continuity of the underlying functions,
we reformulate (9) as

min
y,Q

f(y)

s.t. g(y) = 0,

h(y) ≤ 0,

A(y)Q− b(y) = 0,

ĥ(y, 0) + σ · ĥback(y,Q) ≤ 0,

(21)

where we have used the substitution P = σ2·Q. In this was,
the back-off terms are not necessarily evaluated at 0 for
σ → 0. Let λ, µ, ν and η denote the Lagrange multipliers
associated with the constraints in (16) and define

∇(y,Q)L̃(σ; y,Q, λ, µ, ν, η) :=

+

[
∇f(y)

0

]
+

[
∇g(y)

0

]
λ

+

[
∇h(y)

0

]
µ+

[
0

A(y)�

]
ν

+

[
∇yĥ(y, 0) + σ · ∇yĥback(y,Q)

σ · ∇Qĥback(y,Q)

]
η,

(22)

where, with respect to the exact gradient of the La-

grangian, we have omitted the term ∂
∂y (A(y)Q)

�
. If the

zoRO iterates achieve convergence, i.e., ∆y = 0 and
∆P = 0, from the first-order optimality conditions of (16)
we obtain, after the substitution P = σ2 · Q, that the
solution must satisfy the following system:

∇(y,Q)L̃(σ; y,Q, λ, µ, ν, η) = 0,

g(y) = 0,

h(y) ≤ 0,

A(y)Q− b(y) = 0,

ĥ(y, 0) + σ · ĥback(y,Q) ≤ 0,

(23)

together with µ, η ≥ 0 and the associated complementarity
constraints. The first-order optimality conditions of the
original problem (9) would instead read

∇(y,Q)L(σ; y,Q, λ, µ, ν, η) = 0,

g(y) = 0,

h(y) ≤ 0,

A(y)Q− b(y) = 0,

ĥ(y, 0) + σ · ĥback(y,Q) ≤ 0,

(24)

with
∇L(y,Q)(σ; y,Q, λ, µ, ν, η) =

∇L̃(σ; y,Q, λ, µ, ν, η) +

[
∂
∂y (A(y)Q)

� −∇b(y)

0

]
ν.
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Remark 3. Notice that, as observed in (Feng et al., 2020),
it is in principle possible to compensate the deviation
between the exact and approximate gradients of the La-
grangian using “adjoint” corrections as initially proposed
in (Bock et al., 2007). In this fashion it is possible to obtain
an algorithm that converges to locally optimal solutions.
In this work, we are however interested in the properties of
the approximate solution recovered by the zoRO algorithm
without such corrections.

Comparing (23) and (24), we see that the solution recov-
ered by the zoRO iterates satisfies a perturbed version of
(24) which however enforces feasibility with respect to the
original constraints.

In order to study the asymptotic behavior of the solution
to (23) as σ → 0, we will reformulate the above first-
order optimality conditions as generalized equations. To
this end, let z := (y,Q, λ, µ, ν, η) represent the primal-dual

variables and define K := Rny+nQ×Rng ×Rnh
+ ×Rn2

v ×R
nĥ
+ .

Following the formulation from (Robinson, 1980), we can
write (24) as

0 ∈ F (σ; z) +NK(z), (25)

where we have introduced

F (σ; z) :=




∇(y,Q)L(σ; y,Q, λ, µ, ν, η)
−g(y)
−h(y)

−A(y)Q+ b(y)

−ĥ(y, 0)− σ · ĥback(y,Q)


 . (26)

Here NK(z) denotes the normal cone to the set K at z. It
is easy to verify that a solution recovered by the zoRO
algorithm, which we will refer to as z̃(σ), satisfies the
following inclusion

0 ∈ F (σ; z) + ε(z) +NK(z) (27)

with

ε(z) :=

[
− ∂

∂y (A(y)Q)
�
+∇b(y)

0

]
ν. (28)

Assumption 4. Let z̄ : R → Rnz ; σ → z̄(σ) be a single-
valued localization of the solution map of (25). Assume
that (25) is strongly regular at z̄(0) with Lipschitz constant
γ.

Theorem 5. Let Assumption 4 hold. Then there exists a
single-valued and Lipschitz localization z̃ : R → Rnz ; σ →
z̃(σ) of the solution map of (27) that satisfies

‖z̃(σ)− z̄(σ)‖ = O(σ). (29)

Proof. Regard the auxiliary generalized equation

0 ∈ F (σ; z) + εp +NK(z). (30)

Due to Assumption 4, there exists a locally unique single-
valued and Lipschitz continuous localization z̄a : R ×
Rnz → Rnz ; (σ, εp) → z̄a(σ, εp) of its solution map. Notice
that a solution z̃(σ) to (27) is also a solution to

0 ∈ F (σ; z) + ε(z̃(σ)) +NK(z), (31)

such that, due to local uniqueness, for sufficiently small
perturbations, z̄a(σ, ε(z̃(σ))) = z̃(σ) and that z̄a(σ, 0) =
z̄(σ). Moreover, due to strong regularity, we have

‖z̄a(σ, εp)− z̄a(0, 0)‖ ≤ γ ·
∥∥∥σεp

∥∥∥ (32)

and
‖z̄a(σ, 0)− z̄a(0, 0)‖ ≤ γ · ‖σ‖. (33)
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Fig. 1. Illustrative example. The complement of the feasi-
ble region is coloured in green and the level lines of the
objective are reported. The solution the zoRO iterates
converge to is robustly feasible and the deviation from
the exact solution to (43) is proportional to σ.

This implies

‖z̄a(σ, εp)− z̄a(σ, 0)‖ ≤ γ ·
(∥∥∥σεp

∥∥∥+ ‖σ‖
)
. (34)

Exploiting the easily verifiable fact that ν̃(0) = 0 and that,
due to strong regularity we have that ‖ν̃(σ)‖ = O(σ), we
can write ‖ε(z̃(σ))‖ = O(σ). Finally, we obtain

‖z̃(σ)− z̄(σ)‖ = ‖z̄a(σ, ε(z̃(σ)))− z̄a(σ, 0)‖

≤ γ ·
(∥∥∥ σ

ε(z̃(σ))

∥∥∥+ ‖σ‖
)

= O(σ),
(35)

which concludes the proof. �

Theorem 5 shows that, if convergence is achieved, the
asymptotic deviation of the primal-dual solution z̃(σ)
recovered by the zoRO iterates from the optimal solution
z̄(σ) is of order O(σ). In the following, we show that under
suitable assumptions the zoRO iterates actually converge
to z̃(σ).

3.2 Convergence of the zoRO iterates

In order to analyze the convergence properties of the
proposed numerical strategy, we observe that the inexact
SQP iterates can be interpreted as the ones generated by
a generalized Newton-type method applied to a specific
generalized equation. To this end, we will refer to the
iterates in the original space: since we are interested in
the convergence for any strictly positive σ, non-Lipschitz
behaviour of the back-off term will not affect our analysis.
Let z = (y, P, λ, µ, ν, η) and

F̃ (σ; z) :=




∇(y,P )L̃(σ; y, P, λ, µ, ν, η)
−g(y)
−h(y)

−A(y)P + σ2 · b(y)
−ĥ(y, 0)− ĥback(y, P )



. (36)

We regard the generalized equation

0 ∈ F̃ (σ; z) +NK(z), (37)

where K is defined as in (25).
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This implies
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)
. (34)
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≤ γ ·
(∥∥∥ σ

ε(z̃(σ))

∥∥∥+ ‖σ‖
)

= O(σ),
(35)

which concludes the proof. �

Theorem 5 shows that, if convergence is achieved, the
asymptotic deviation of the primal-dual solution z̃(σ)
recovered by the zoRO iterates from the optimal solution
z̄(σ) is of order O(σ). In the following, we show that under
suitable assumptions the zoRO iterates actually converge
to z̃(σ).

3.2 Convergence of the zoRO iterates

In order to analyze the convergence properties of the
proposed numerical strategy, we observe that the inexact
SQP iterates can be interpreted as the ones generated by
a generalized Newton-type method applied to a specific
generalized equation. To this end, we will refer to the
iterates in the original space: since we are interested in
the convergence for any strictly positive σ, non-Lipschitz
behaviour of the back-off term will not affect our analysis.
Let z = (y, P, λ, µ, ν, η) and

F̃ (σ; z) :=




∇(y,P )L̃(σ; y, P, λ, µ, ν, η)
−g(y)
−h(y)

−A(y)P + σ2 · b(y)
−ĥ(y, 0)− ĥback(y, P )



. (36)

We regard the generalized equation

0 ∈ F̃ (σ; z) +NK(z), (37)

where K is defined as in (25).

Every zoRO iteration solves the linear generalized equa-
tion

0 ∈ F̃ (σ; ẑ) + J(ẑ)(z − ẑ) +NK(z), (38)

with linearization point ẑ and

J(ẑ) ≈ ∂F̃

∂z
(σ; ẑ). (39)

In particular, it is easy to check that, according to the
definition of the zoRO iterates, the following holds:

J(ẑ)− ∂F̃

∂z
(σ; ẑ) =




M − ∂F̃
∂(y,P ) (σ; ẑ) 0

0 0
∂
∂y

(
A(ŷ)P̂

)
− σ2∇b(ŷ)� 0

0 0


 . (40)

We make the following assumption.

Assumption 6. Let z̄ be a solution to (37). Assume that
(37) is strongly regular at z̄ with Lipschitz constant γ over
the neighborhood B(z̄, r̃z), with r̃z > 0.

Assumption 7. Assume that there exist a non-empty
neighborhood B(z̄, r̂z), with r̂z < r̃z, and a positive con-
stant κ̃, with γκ̃ < 1

2 such that, for any ẑ ∈ B(z̄, r̂z), the
following holds: ∥∥∥∥

∂F̃

∂z
(ẑ)− J(ẑ)

∥∥∥∥ ≤ κ̃. (41)

Remark 8. Under Assumption 6, for the subcomponent
P̄ (σ) of a solution to (37), we can write P̄ (σ) = O(σ).
Hence, if M is a “sufficiently” good approximation of

∂F̃
∂(y,P ) (σ; ẑ), Assumption 7 can be expected to be satisfied

for σ sufficiently small.

Theorem 9. Let Assumptions 6 and 7 hold and let z+
denote the solution to (38) constructed at the linearization
point ẑ. Then, there exist a strictly positive constant rz
and a positive constant κ < 1, such that, for any ẑ in
B(z̄, rz), the following holds:

‖z+ − z̄‖ ≤ κ‖ẑ − z̄‖. (42)

Proof. The proof follows standard arguments for gen-
eralized Newton-type methods (see, e.g., (Zanelli et al.,
2019b)).

3.3 Illustrative example

In order to illustrate the properties of the proposed zoRO
algorithm, we regard the following simple robustified non-
linear program:

min
y,P

f(y)

s.t. A(y)P − σ2 · b(y) = 0,

ĥ(y, 0) + ĥback(y, P ) ≤ 0.

(43)

Here y, v ∈ R2, f(y) := 1
2y

�My and ĥ(y, v) :=√
(y1 + v1 − 1)2 + (y2 + v2 − 1)2. The function A(y) and

b(y) have been defined as A(y) :=


1 + α · sin(y1) 0 0 0
0 1 + α · cos(y2) 0 0
0 0.1 + sin(y2) 1 + α · sin(y22) 0
0 0 0 1


 ,

where α ∈ R is a tuning parameter, and b(y) := (1, 0, 0, 1).

The zoRO algorithm has been prototyped (code avail-
able at https://github.com/FreyJo/zoro-NMPC-2021)
in Python using CasADi (Andersson et al., 2018) and its
interfaces to qpOASES (Ferreau et al., 2014) and Ipopt
(Wächter and Biegler, 2006). Problem (43) has been solved

for different values of σ ∈ (0, 3
2

√
5] and α = 0.6 with

both the zoRO algorithm and Ipopt applied directly to
the original formulation. Notice that the values for σ and
α have been picked for satisfactory visualization.

The obtained optimal solution is reported in Figure 1,
where we see that the zoRO solution is suboptimal, but
still satisfies the constraints in (43). For each value of
σ considered we plot a dot and the associated ellipsoid
defined by P . Notice that, for the sake of clarity of
visualization, we use a definition of the constraints that
ensures an exact robustification, i.e., the ellipsoids are
“touching” the boundaries of the feasible set. This is
generally not the case as the direction along which the
support of the uncertainty sets is evaluated is the one of
the gradient of the constraints and only provides a linear
approximation. This would however affect both the exact
and the zoRO solution to (9).

4. NUMERICAL EXAMPLE

In this section, we consider the task of controlling a non-
linear hanging chain model, following (Wirsching et al.,
2006; Kouzoupis et al., 2018).
The system of interest consists of nmass masses connected
by springs. The mass on the one end of the chain is fixed,
while the velocity of the mass on the other end is the
control input. The model has nx = 6(nmass − 2)+ 3 states
that correspond to the velocity and position vectors of the
intermediate masses and the position of the actuated mass.
The chain is moved from its rest position by applying the
control input [−1, 1, 1] for 1 s. The controller is required to
stabilize the chain at its rest position, while respecting a
constraint that describes a wall at y = −0.05. The system
is disturbed in each time step by adding disturbances to
the velocities of the masses, which are randomly sampled
from the ellipsoid E(102 · I).
All variants are implemented using the Python interface of
the open-source software package acados, which provides
high-performance SQP-type methods for NMPC appli-
cations (Verschueren et al., 2019). The QPs are solved
using the high-performance QP solver HPIPM (Frison and
Diehl, 2020) without condensing and BLASFEO (Frison
et al., 2018) with the dedicated linear algebra target.
The code is available at https://github.com/FreyJo/
zoro-NMPC-2021.

Variants: We regard the following controller variants
that are compared with respect to constraint satisfaction
and computational complexity:

• nominal: The wall constraint is imposed without the
uncertainty back-off in equation (2).

• robust: The wall constraint is imposed with the
uncertainty back-off in equation (2). The uncertainty
matrices Σi are propagated within the integrator
by augmenting the model with the continuous-time
Lyapunov dynamics

Σ̇(t) = C(t)Σ(t)+Σ(t)C(t)�+B(t)W (t)B(t)� (44)
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Fig. 2. Closest distance to the wall over a scenario of dis-
turbances. Boxplot obtained over a variety of random
sampled uncertainties. Converged SQP with nmass =
5

exploiting only the symmetry of Σ.
• zoRO: The wall constraint is imposed with the un-
certainty back-off in equation (2) using the zero-order
algorithm proposed in Section 3. The propagation
of Σi is carried out in native Python in between
subsequent SQP iterations.

Timings In order to validate the computational effi-
ciency of the proposed strategy, we use the MPC con-
trollers based on the three variants in a closed-loop sim-
ulation. In Figure 2, the minimal distance of the chain
to the wall over a variety of scenarios is visualized as a
boxplot. It can be observed, that while the wall constraint
is violated at some point in all scenarios for the nominal
controller, the two robust controllers never violate the
constraint in any of the scenarios. The minor difference
between the zoRO and the robust variants is due to i)
the zero-order version converging to a slightly suboptimal
solution and ii) the disturbances entering the simulation
slightly differently. More precisely, the disturbances enter
in continuous-time via the integrator for the robust version
and in a discrete-time fashion in the ZOro version.

Remark 10. Notice that, since the formulation in (5) is
based on an approximate propagation of the uncertainty,
we cannot claim that the proposed strategy is robust with
respect to disturbances drawn from a specific (bounded)
set. The goal of this numerical study is instead to compare
the computation times associated with different algorithms
used to solve (5).

All computations were carried out on a Lenovo Carbon-
X1 (7gen) Laptop with Intel i7-8565U CPU, 16 GB RAM,
1TB SSD running Ubuntu 20.04.
In Figure 3, the computation times for the different vari-
ants are visualized for nmass = 7. One can observe that
the zero-order robust controller requires a slightly higher
CPU time to evaluate the feedback policy compared to
the nominal MPC controller, but these computation times
are of a similar magnitude. In contrast to that, the exact
robust controller, needs a lot more computation time,

nominal zoRO robust

10−1

100

101

102

C
P
U

ti
m
e
p
er

O
C
P
in

[s
]

CPU times for 7 masses

Fig. 3. CPU time per OCP. The lower and upper end
show the minimum, respectively maximum CPU time
over all solver calls. The black line shows the mean
value of the CPU times. The proposed zero-order
strategy drastically reduces the computation times
and achieves, for this scenario, a speedup of about
three orders of magnitude with respect to a standard
implementation of robust NMPC.

namely roughly a factor of 1000 more than the other
controllers.

Figure 4 shows how the CPU time of the controller variants
scales with the number of masses nmass, respectively the
state dimension nx. As an orientation, level lines cor-
responding to O(n3

x) and O(n6
x) are included. One can

observe that the CPU time for the nominal and the zoRO
controllers scales roughly as O(n3

x), while for the exact ro-
bust implementation, the computation time scales similar
to O(n6

x).

Notice that, although in this context we use the feedback
policy associated with “converged” solutions, i.e. obtained
with a sufficiently high number of iterations, the zoRO al-
gorithm could be in principle used in its real-time variant.
In this case, in order to reduce the computation times, a
single SQP iteration is carried out per sampling time and
the approximate solution is used to control the system in
the spirit of the real-time iteration (RTI) strategy (Diehl,
2001). Although this would further approximate the un-
derlying feedback policy, under the assumptions in (Zanelli
et al., 2020) it would still be possible to show asymptotic
stability of the combined system-optimizer dynamics.

5. CONCLUSIONS

In this paper, we proposed an efficient inexact numerical
strategy for the solution of nonconvex programs arising
from robustified nonlinear model predictive control with
ellipsoidal uncertainty sets. In particular, the presented
strategy leverages concepts of zero-order methods that
allow one to approximate first- and second-order infor-
mation in the underlying numerical algorithms in order
to obtain suboptimal, but feasible solutions to nonconvex
programs. We showed how, in the setting of robust MPC
with ellipsoidal uncertainty sets, this can be used to dras-
tically decrease the computational complexity of the QP
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policy associated with “converged” solutions, i.e. obtained
with a sufficiently high number of iterations, the zoRO al-
gorithm could be in principle used in its real-time variant.
In this case, in order to reduce the computation times, a
single SQP iteration is carried out per sampling time and
the approximate solution is used to control the system in
the spirit of the real-time iteration (RTI) strategy (Diehl,
2001). Although this would further approximate the un-
derlying feedback policy, under the assumptions in (Zanelli
et al., 2020) it would still be possible to show asymptotic
stability of the combined system-optimizer dynamics.
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strategy leverages concepts of zero-order methods that
allow one to approximate first- and second-order infor-
mation in the underlying numerical algorithms in order
to obtain suboptimal, but feasible solutions to nonconvex
programs. We showed how, in the setting of robust MPC
with ellipsoidal uncertainty sets, this can be used to dras-
tically decrease the computational complexity of the QP
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Fig. 4. Mean CPU time of an OCP solver call as a function
of the number of masses. The improved asymptotic
complexity of O(n3

x) is approximately matched by the
measured timings.

solutions within an SQP-type algorithm. A convergence
proof of the inexact iterates and a suboptimality bound
for the converged solution are provided. The theoretical
results were validated on a nontrivial numerical example
where large speedups can be achieved with respect to a
standard implementation of robust NMPC with ellipsoidal
uncertainty sets.

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2018). CasADi: a software framework for non-
linear optimization and optimal control. Mathematical
Programming Computation.

Bock, H.G., Diehl, M., Kostina, E.A., and Schlöder, J.P.
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