
Albert-Ludwigs-Universität Freiburg
Technische Fakultät

Inexact methods for nonlinear
model predictive control
Stability, applications, and software

Andrea Zanelli

March 8, 2021

University of Freiburg, Faculty of Engineering
Department of Microsystems Engineering
Systems Control and Optimization Laboratory

Inexact methods for nonlinear model predictive
control
Stability, applications, and software

Andrea ZANELLI

Dean: Prof. Dr. Rolf Backofen

Examination committee:

Supervisor: Prof. Dr. Moritz Diehl
Second referee: Prof. Dr. James Rawlings
Observer: Prof. Dr. Lars Pastewka
Chair of committee: Prof. Dr. Joschka Boedecker

Dissertation zur Erlangung des Doktor-
grades der Technischen Fakultät der
Albert-Ludwigs-Universität Freiburg
im Breisgau

March 8, 2021

© 2021 University of Freiburg – Faculty of Engineering
Self-published, Andrea Zanelli, Georges-Köhler-Allee 102, DE-79110 Freiburg i. Br. (Germany)

Alle Rechte vorbehalten. Alle Inhalte dieses Werkes, insbesondere Texte, Fotografien und Grafiken, sind
urheberrechtlich geschützt. Das Urheberrecht liegt, soweit nicht ausdrücklich anders gekennzeichnet, bei der
Albert-Ludwigs-Universität Freiburg.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from Albert-Ludwigs-Universität Freiburg.

Acknowledgement

This thesis is the outcome of a long and exciting journey which would have not
been possible without the supervision, support and encouragement of a long
list of people.

First and foremost I would like to thank Moritz Diehl for giving me the
opportunity to pursue a PhD under his supervision in Freiburg. In these years,
he taught me not only about numerical optimization and model predictive
control, but also about mathematical thinking in general, scientific writing and
beyond. His genius and contagious excitement for research have shaped the way
I look at problems and I am truly honored to have had the chance to work in
his lab.

I am extremely grateful to Quoc Tran-Dinh for introducing me to generalized
equations and co-supervising with Moritz the work that led to one of the
publications I am proud of the most. A considerable part of this thesis owes to
Quoc’s sharp comments, availability to discuss at any time, and encouragement.
Similarly, Christoph Hackl has constantly supported and encouraged the project
on reluctance synchronous machines and hosted me several times at the Technical
University of Munich and the at the Munich University of Applied Sciences to
carry out experiments. Working with him, Julian Kullick and Hisham Eldeeb
has been incredibly exciting.

Taking a step back in time, I would like to thank Manfred Morari and Alexander
Domahidi for sparking in me the fascination for model predictive control and
embedded optimization during a class at ETH. That eventually led me to pursue
an internship at ABB, under the supervision of Joachim Ferreau, Helfried Peyrl
and Alessandro Zanarini and a master thesis at embotech under the supervision
of Alexander Domahidi, Juan Jerez and Manfred Morari. Joachim first, and
Alex and Juan later, played a fundamental role in the decision to pursue a PhD
in numerical optimization.

I am thankful to Rien Quirynen for his initial mentorship when I joined SYSCOP

i

ii ACKNOWLEDGEMENT

and for always being available to discuss even my most bizarre ideas. Rien’s
ability to connect the dots and to reason about a broad range of topics has been
a great source of inspiration. On top of this, he gets credit for having been,
until he left the lab, the driving force behind social life outside the office. Even
if I managed to digest only a fraction of his knowledge, Gianluca Frison has
taught me lots of exciting concepts in high-performance computing and low-
level programming. He also gets credit for creating BLASFEO and HPIPM, which
constitute the backbone of acados (in general giaf ’s hard-core programming
skills deserve a special mention). Moreover, Gianluca was always there when I
needed non strictly technical advice too. Per Rutquist, with whom I had the
pleasure to share an office, should be mentioned for being the most versatile
conversation partner. It’s probably not entirely an exaggeration to say that Per
can discuss anything ranging from optimal control to advanced programming
and again from quantum physics to machine learning.

Although not strictly related to my PhD, working with Matilde Gargiani was
a truly exciting and enriching experience. She taught me about numerical
optimization for deep learning and large-scale optimization in general. Her love
for the values of good science and determination to honor them will always be
a source of inspiration.

I would like to thank Tommaso Sartor, Per Rutquist and Gianluca Frison for
believing in prometeo since the beginning (even when I was uncertain myself
that it would be a feasible project) and for all the insightful discussion about it.
A big thank you also goes to the acados team which I had the pleasure to be
part of. Working with Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren
and Jonathan Frey gave me the chance to become a much better programmer
and to learn about the joy (and the struggles) of being part of a team of software
developers.

I want to express my gratitude to Greg Horn for hosting me for two months
at Kitty Hawk in Mountain View, California. Sitting next to his legendary
setup with six screens and running flight tests was a rather unique experience.
Although he left right before I joined the group, Mario Zanon has always
encouraged me and gave me advice at various key stages of my PhD.

I would like to thank all the people that I have encountered at SYSCOP, for
contributing to create a great atmosphere at the lab and a thriving scientific
environment. These are, in sparse order: Rachel Leuthold, Dang Doan, Per
Rutquist, Jörg Fischer, Gianluca Frison, Jonas Könemann, Giovanni Licitra,
Dimitris Kouzoupis, Robin Verschueren, Rien Quirynen, Jonathan Frey, Florian
Messerer, Katrin Baumgärtner, Fabian Girrbach, Jochem De Schutter, Tobias
Schöls, Mikhail Katliar, Armin Nurkanovic, Adrian Bürger, Jonas Schlagenhauf,
Jia-Jie Zhu, Yuning Jiang, Tommaso Sartor and Jesus Lago Garcia. I want to

ACKNOWLEDGEMENT iii

further express my gratitude to our secretaries Christine Paasch, Gaby Kieninger
and Kerstin Pfeiffer for their kindness, patience and help with administrative
matters. Likewise, I am grateful to all the people I have encountered through
AWESCO who shared with me the first three years of this journey.

A big thank you goes to all my friends around the world who helped me not to
forget that there is much more to life than work. Finally, and most importantly,
I want to say a special thank you to my girlfriend Matilde for the endless love,
support and patience in these years. At the same time I am infinitely grateful
to my parents Maurizio and Mariagrazia for teaching me to be curious and
follow my passions as well as to my sister Serena, for always supporting me and
always having been there when I most needed her.

Abstract

This thesis is about numerical methods for nonlinear model predictive control
(NMPC) with a focus on system theoretic guarantees. Although considerable
progress has been made since its early application in the late 1970s in the
process industry, NMPC still requires a computational effort that is prohibitive
for many applications due to fast dynamics or the low computational power
available. For this reason, despite NMPC being nowadays the state-of-the-art
control strategy in many applications, its applicability to a broader range of
systems, still hinges on the development of efficient methods for numerical
optimization.

In particular, we propose inexact methods that can speed up the computations
associated with the solution of the underlying nonconvex programs. Although
drawing from rather diverse areas, from an abstract point of view, such methods
exploit a common idea. In fact, in many cases, carefully chosen perturbations
to exact solutions and formulations do not jeopardize stability properties and
can be leveraged to alleviate the computational burden of NMPC.

The algorithmic contributions of the thesis revolve around three main ideas.
First, we analyze and extend a class of inexact methods, the so-called real-time
methods. These strategies take inspiration from the popular real-time iteration
(RTI) and rely on a limited number of iterations of the optimizer in order to
compute an approximate solution to the underlying nonconvex programs. By
warmstarting the iterates it is possible to “track” a parametric solution as
the state of the system evolves. We prove asymptotic stability of the system-
optimizer dynamics for a class of RTI-like methods that need not be based on
standard sequential quadratic programming. This class of methods encompasses
different strategies proposed in the thesis.

Second, we propose and analyze numerical methods that exploit inexact first-
and second-order derivatives in order to efficiently compute suboptimal, but
feasible solutions to nonconvex programs. These methods, which have strong ties

v

vi ABSTRACT

with the celebrated second-order corrections in numerical optimization, can be
used to reduce the computational cost associated with derivative computation
and linear algebra. We show that the feedback policy resulting from such
methods is locally stabilizing and enjoys favorable asymptotic suboptimality
bounds.

The third class that we analyze is the one of progressive tightening methods. In
this case, the main idea lies in exploiting stage-varying constraints and costs
that give rise to increasingly conservative predictions the farther we look into
the future. We prove asymptotic stability of progressive tightening NMPC and
propose a numerical method that can exploit a specific barrier-based tightening
in order to reduce the computational burden.

Finally, real-time variants of the second and third class of methods are proposed
and analyzed from a system theoretic point of view and numerically validated.

In addition to the proposed algorithms and system theoretic results, we
experimentally validate the classical RTI strategy as implemented in the software
package acados on the task of controlling a reluctance synchronous machine.
We present the experimental results of a current controller based on indirect
NMPC running with a sampling time of 250 µs.

Lastly, motivated by the high degree of interaction between software components
involved in the implementation of complex numerical strategies, we propose a
high-level software framework for embedded high-performance computing. This
framework, named prometeo, provides a Python-to-C transpiler and a static
analysis tool that allows one to combine the performance of low-level languages
(such as C) with the user-friendliness of high-level ones.

Kurze Zusammenfassung

In dieser Arbeit geht es um numerische Methoden für nichtlineare modellbasierte
prädiktive Regelung (NMPC) mit Schwerpunkt auf systemtheoretischen Stabi-
litätsgarantien. Obwohl seit ihrer frühen Anwendung in der Prozessindustrie
Ende der 1970er Jahre erhebliche Fortschritte erzielt wurden, erfordert NMPC
immer noch einen Rechenaufwand, der für viele Anwendungen aufgrund der
schnellen Dynamik oder der geringen verfügbaren Rechenleistung Prohibitiv ist.
Obwohl NMPC heute in vielen Anwendungen die modernste Regelungsstrategie
ist, hängt ihre Anwendbarkeit auf ein breiteres Spektrum von Systemen immer
noch von der Entwicklung effizienter Methoden zur numerischen Optimierung
ab.

Insbesondere schlagen wir ungenaue Methoden vor, welche die mit der Lösung
der zugrundeliegenden nichtkonvexen Probleme verbundenen Berechnungen
beschleunigen können. Obwohl die Ansätze aus recht unterschiedlichen Bereichen
stammen, nutzen die Methoden aus abstrakter Sicht eine gemeinsame Idee.
Tatsächlich gefährden in vielen Fällen sorgfältig ausgewählte Störeinflüsse auf
exakte Lösungen und Formulierungen die Stabilitätseigenschaften nicht und
können dazu genutzt werden, die rechnerische Belastung durch die prädiktive
Steuerung nichtlinearer Modelle zu verringern.

Die algorithmischen Beiträge der Arbeit drehen sich um drei Hauptideen.
Erstens analysieren und erweitern wir eine Klasse von ungenauen Methoden,
die so genannten Echtzeit-Methoden. Diese Strategien lassen sich von der
populären Echtzeit-Iteration (RTI) inspirieren und stützen sich auf eine
begrenzte Anzahl von Iterationen des Optimierers, um eine approximative
Lösung für die zugrundeliegenden nichtkonvexen Optimierungsprobleme zu
berechnen. Durch günstige Initialisierungen (Warmstart) der Iterationen ist es
möglich, eine parametrische Lösung zu “verfolgen”, während sich der Zustand
des Systems entwickelt. Wir beweisen die asymptotische Stabilität der System-
Optimierer-Dynamik für eine Klasse von RTI-ähnlichen Methoden, die nicht
auf standardmäßiger sequentieller quadratischer Programmierung basieren

vii

viii KURZE ZUSAMMENFASSUNG

müssen. Diese Klasse von Methoden umfasst verschiedene in dieser Dissertation
vorgeschlagene Ansätze.

Zweitens präsentieren und analysieren wir numerische Methoden, die ungenaue
Ableitungen erster und zweiter Ordnung nutzen, um suboptimale, aber zulässige
Lösungen für nicht-konvexe Probleme effizient zu berechnen. Diese Methoden,
die eng mit den klassischen Korrekturen zweiter Ordnung in der numerischen
Optimierung verbunden sind, können zur Reduzierung der Rechenkomplexität
für die Berechnung von Ableitungen und linearer Algebra eingesetzt werden.
Wir zeigen, dass das Rückkopplungsgesetz, das sich aus solchen Methoden ergibt,
lokal stabilisierend ist und sich günstiger asymptotischer Suboptimalitätsgrenzen
erfreut.

Die dritte Klasse, die wir analysieren, ist die der progressive tightening-Methoden.
In diesem Fall liegt die Hauptidee in der Ausnutzung stufenweise variierender
Beschränkungen und Kosten, die zu immer konservativeren Vorhersagen führen,
je weiter wir in die Zukunft blicken. Wir weisen die asymptotische Stabilität
der progressive tightening NMPC nach und schlagen eine numerische Methode
vor, die eine spezifische barrierenbasierte Verschärfung ausnutzen kann, um den
Rechenaufwand zu verringern.

Schließlich werden Echtzeit-Varianten der zweiten und dritten Klasse von
Methoden vorgeschlagen und aus systemtheoretischer Sicht analysiert und
numerisch validiert.

Zusätzlich zu den vorgeschlagenen Algorithmen und systemtheoretischen
Ergebnissen validieren wir experimentell die klassische RTI-Strategie, wie
sie im Softwarepaket acados zur Aufgabe der Steuerung einer Reluktanzsyn-
chronmaschine implementiert ist. Wir stellen die experimentellen Ergebnisse
eines Stromreglers vor, der auf einem indirekten NMPC basiert und mit einer
Abtastzeit von 250 µs läuft.

Abschließend präsentieren wir das High-Level-Software-Framework prometeo
für eingebettete hocheffiziente Berechnungen. Diese Tool ist motiviert durch den
hohen Grad Interaktion zwischen Softwarekomponenten, die an der Umsetzung
komplexer numerischer Strategien beteiligt sind.

List of abbreviations

NMPC

MPC

QP

NLP

SQP

ADMM

RTI

OCP

ODE

IVP

DAE

LICQ

SOSC

FONC

KKT

CPU

AST

BLAS

PMSM

RSM

nonlinear model predictive control

model predictive control

quadratic program

nonlinear program

sequential quadratic programming

alternating direction method of multipliers

real-time iteration

optimal control problem

ordinary differential equation

initial value problem

differential algebraic equation

linear independence constraint qualification

second-order sufficient conditions

first-order necessary conditions

Karush-Kuhn-Tucker

central processing unit

abstract syntax tree

basic linear algebra subroutines

permanent magnet synchronous machine

reluctance synchronous machine

ix

Notation

Throughout the thesis we will use the following notation.

R

:=

>,≥, <,≤
S+

S++

Rn+
Rn×m+

Rn++

Rn×m++

1n
In
(x, y)

‖v‖
‖v‖1
‖v‖W

L2

set of real numbers

definition

for vectors v ∈ Rn, inequalities are intended to be component-wise

set of symmetric positive semidefinite matrices

set of symmetric positive definite matrices

set of vectors ∈ Rn with non-negative elements

set of matrices ∈ Rn×m with non-negative elements

set of vectors ∈ Rn with strictly positive elements

set of of matrices ∈ Rn×m with strictly positive elements

vector of ones in Rn

n× n identity matrix

(with v ∈ Rn, w ∈ Rm) stacked vector, i.e., (v, w) :=
[
v
w

]
Euclidean norm of v ∈ Rn (or ‖v‖2 for improved readability)

one norm of v ∈ Rn

(with W ∈ S+) weighted semi-norm of v ∈ Rn, i.e., ‖v‖W :=
√
v>Wv

space of square-integrable functions

xi

xii NOTATION

‖f‖L2

B(v, r)

BW (v, r)

∇vf(u)

σmin(Q)

σmax(Q)

ρ(A)

IΩ(v)

NΩ(v)

L2 norm of a function f : [a, b] → Rn with f ∈ L2, i.e., ‖f‖ :=(∫ b
a
‖f(x)‖2dx)

) 1
2

Euclidean ball of radius r centered at v ∈ Rn, i.e., B(v, r) := {w ∈
Rn : ‖w − v‖ ≤ r}
weighted norm ball of radius r centered at v ∈ Rn, i.e., BW (v, r) :=

{w ∈ Rn : ‖w − v‖W ≤ r}
gradient of the function f : Rn → Rm with respect to v ∈ Rn at

u ∈ Rn, i.e., ∇vf(u) := ∂f
∂v (u)> (∈ Rn×m)

smallest eigenvalue of Q ∈ S+.

largest eigenvalue of Q ∈ S+.

spectral radius of A ∈ Rn×n

indicator function of the set Ω ⊆ Rn at v ∈ Rn, i.e.,

IΩ(v) :=
{

0, if v ∈ Ω
∞, otherwise

normal cone to the set Ω ⊆ Rn at v ∈ Rn, i.e.,

NΩ(v) :=
{
{u ∈ Rn : u>(v − w) ≥ 0, ∀w ∈ Ω}, if v ∈ Ω,
∅ otherwise.

Contents

Abstract v

Kurze Zusammenfassung vii

List of abbreviations ix

Notation xi

Contents xiii

List of Figures xv

List of Tables xxi

1 Introduction 1
1.1 Contributions and outline of the thesis 2

2 Background on numerical optimization and predictive control 7
2.1 Numerical optimization . 7
2.2 Numerical optimal control and model predictive control 24

3 Asymptotic stability of the system-optimizer dynamics in NMPC 39
3.1 Contraction estimates for real-time methods 41
3.2 Asymptotic stability of the system-optimizer dynamics 57
3.3 Chapter summary and outlook 81

4 Zero-order methods for NMPC with stability guarantees 83
4.1 Zero-order SQP for NMPC . 84
4.2 Asymptotic stability of zero-order NMPC 95
4.3 Implementation details and benchmarking 106
4.4 Chapter summary and outlook 114

xiii

xiv CONTENTS

5 Progressive tightening methods for NMPC with stability guaran-
tees 117
5.1 Asymptotic stability of progressive tightening model predictive

control . 118
5.2 A partial tightening real-time method 122
5.3 Progressive tightening NMPC for attitude control of a quadcopter 141
5.4 Chapter summary and outlook 152

6 Continuous control set NMPC of reluctance synchronous machines 155
6.1 Nonlinear model predictive control for electrical drives 155
6.2 Simulation and experimental results 171
6.3 Chapter summary and outlook 175

7 prometeo: a domain specific language for embedded high-
performance computing 177
7.1 Introducing prometeo . 177
7.2 Usage and performance . 190
7.3 Chapter summary and outlook 199

8 Conclusions and outlook 203

A Appendix 209
A.1 Proof of Proposition 3.2.16 . 209
A.2 Proof of Theorem 3.2.25 . 211
A.3 Lyapunov function for the system-optimizer dynamics in error

form . 212
A.4 Asymptotic stability of the system-optimizer dynamics for

equality constrained NMPC . 214
A.5 A globalization heuristic for the feasible SQP strategy of Section

4.1 . 221
A.6 CS-NMPC for RSMs: additional results 223

Curriculum vitae 239

Bibliography 239

List of publications 241

List of Figures

2.1 Example of an unconstrained optimization problem with a global
strict nonisolated solution [Bertsekas, 1999, Example 1.1.11].
Although ȳ = 0 is the unique global minimizer, there are
sequences of local minima that converge to ȳ such that there
does not exist a neighborhood of 0 inside which ȳ is the only
local solution. 9

2.2 Illustration of a single-valued localization. 14
2.3 Sparsity pattern of the Hessian of the Lagrangian for an NLP

obtained with direct single shooting: in this case no sparsity can
be exploited. 28

2.4 Sparsity pattern of the Hessian of the Lagrangian for an NLP
obtained with direct multiple shooting: the matrix has a specific
sparsity pattern that can be leveraged by tailored structure-
exploiting solvers. 30

3.1 Coupled system-optimizer dynamics ξ+ = Φ(T ; ξ): when a
limited number of iterations of the optimization algorithm are
carried out in order to obtain an approximate solution that is
then used to control the system, the system’s and the optimizer’s
dynamics interact with one another. 40

3.2 Illustration of Assumption 3.1.2 and Lemma 3.1.5. Our setting
does not require that Z̄ is single-valued, but rather that there
exists a single-valued and Lipschitz continuous localization z̄ of
the solution map. For sufficiently small changes in the parameter,
any z within a ball of radius rz centered at z̄(x) leads to a
warmstart that is at most r̂z “distant” from z̄(x+) such that
contraction (3.7) can be applied. 44

xv

xvi LIST OF FIGURES

3.3 Comparison of closed-loop trajectories obtained with exact (thick,
grey) and real-time (thin, black) feedback policies. A single
iteration of RT-ADMM (real-time ADMM) is carried out per
sampling time. Although a suboptimal solution is used to control
the system, the closed-loop trajectories are very similar. 54

3.4 Numerical error incurred during the closed-loop simulation.
The plot shows the Euclidean norm of the difference between
the approximate primal solution w and the exact one w̄(x)
during a part of the closed-loop simulation under consideration.
Although the numerical error experiences peaks every time
that the reference is changed, contraction is preserved and the
suboptimality decreases with subsequent iterations until the next
reference step. 55

3.5 Trajectories of the auxiliary dynamics (3.81) for different initial
conditions (κ = 0.4, ā = 0.5, γ̂ = 0.2, µ̂ = 0.1) - T = 1.0 (top)
and T = 0.4 (bottom). The black vector describes the direction
defined by ŵ as in Theorem 3.2.27, while the shaded area defines
the cone that contains all the vectors that would satisfy (3.89),
i.e., all the vectors ŵ that define a valid Lyapunov function
Vl(w) = ŵ>w. 71

3.6 Illustrative example adapted from [Chen and Allgöwer, 1998] -
closed-loop state trajectories obtained using the approximate
feedback policy computed with a single iteration of a Gauss-
Newton real-time algorithm (solid) and contour lines of dV (x(t))

dt
(dashed). 77

3.7 Illustrative example adapted from [Chen and Allgöwer, 1998]
- although the numerical error does not necessarily decrease
monotonically over time, the Lyapunov function for the combined
system-optimizer dynamics Vso(ξ) does decrease over time. . . 78

4.1 Illustrative example: comparison of convergence rate of feasible
SQP with iterated second-order corrections and Gauss-Newton
on the nonlinear least squares problem (4.31) - Euclidean norm
of the primal-dual steps. Convergence rate computed according
to Theorem 4.1.7: κ = 0.412. “Empirical” convergence rate
computed with linear regression: κ̃ = 0.408. Gauss-Newton
asymptotic convergence rate: 0.842. 93

4.2 Illustrative example: iterates in the primal space obtained with
the proposed zero-order sequential programming algorithm and
with Gauss-Newton. The iterates obtained with zero-order
sequential programming are always feasible with respect to the
nonlinear equality constraint. 94

LIST OF FIGURES xvii

4.3 ∆V for optimal value function (left) and Ṽ (x) (right). Decreasing
cost ∆V < 0 in green, non-decreasing cost ∆V ≥ 0 in red, maximum
number of iterations reached or infeasible SQP step in blue. The
optimal value function is guaranteed to decrease by construction.
For the inexact strategy, the cost can be non-decreasing due to the
approximation introduced. However, ∆V < 0 holds in a non-negligible
region around the origin. 102

4.4 Relative suboptimality ε% = Ṽ (x)−V (x)
V (x) · 100. The inexact strategy

gives rise to largely suboptimal policies in certain regions of the state
space, however, as shown in Figure 4.3 stability is guaranteed in a
non-negligible region of the state space. 103

4.5 Suboptimality as a function of the directional coordinate xd.
Ṽ (x) − V (x) is compared with 1

2x
>Qx. Due to Lemma 4.2.6, the

suboptimality is dominated by the quadratic stage cost. 103
4.6 Nonlinear hanging chain benchmark for nm = 5 masses

[Kouzoupis et al., 2018]. The dashed sketch describes the
equilibrium at which the fixed quantities used by Algorithm 3
and 4 are computed. 110

4.7 Open-loop trajectories obtained with the original (solid), zero-
order (dotted) and linear-quadratic (dashed) formulations.
An additional constraint is added to the problem used in
[Wirsching et al., 2006] that requires the position of the actuated
mass to be within a ball. Although the zero-order strategy is
clearly suboptimal, the obtained trajectories satisfy the nonlinear
constraint (unlike with the linear-quadratic formulation). . . . 113

4.8 Asymptotic suboptimality of zero-order and linear-quadratic
formulations in open-loop as a function of the deviation of x from
the steady-state. The zero-order strategy provides a superior
approximation of the optimal cost. 114

5.1 Simplified illustration of the progressive tightening Assumption
5.1.3 based on the cost-constraint epigraph inclusion. 119

5.2 Backward and forward Riccati recursion. The variables associated
with stages M to N (in green) can be efficiently eliminated due
to the (relaxed) linearized complementarity conditions. 131

5.3 Converged open-loop trajectories for τ = 0.1. 138
5.4 Converged open-loop trajectories for τ = 1.0. 139
5.5 Closed-loop trajectories obtained with the proposed partial

tightening real-time iteration strategy for different number of
iterations k per sampling time and τ = 10.0. 140

xviii LIST OF FIGURES

5.6 Inverted pendulum swing-up: comparison of RTI strategies.
Partial tightening RTI strategy (bold solid red) with N = 100,
M = 20 and τ = 1, standard formulation with N = 100 (dashed
blue) and with N = 50 (dashed yellow). The partial tightening
formulation stabilizes the system keeping the original constraints
only in the initial 20 stages. The same does not hold for a
standard formulation with a shortened horizon of N = 50 nodes. 141

5.7 Attitude tracking simulation results comparing different control
strategies - closed-loop state trajectories: PD in solid yellow, LQR
in dashed red and converged-NMPC in solid blue. The NMPC
controller achieves a more accurate tracking of the reference
attitude. 146

5.8 Attitude tracking simulation results comparing different control
strategies - closed-loop input trajectories. PD in solid yellow,
LQR in dashed red and converged-NMPC in solid blue. 148

5.9 Human-sized quadrotor equipped with a low-power Xilinx Zynq
SoC with a dual-core ARM Cortex-A9 running at 800 MHz:
snapshot from the experiment video (https://www.youtube.
com/watch?v=-dsezQa7nzk&feature=youtu.be). 151

5.10 Experimental results - attitude in Euler angles. 152
5.11 Experimental results - actuators. 152
5.12 Experimental results - actuators (zoom in). 153

6.1 Nonlinear flux linkage of a real RSM obtained from FEM data
Ψ̂d

s (solid surface) and fitted grey box model Ψd
s (dotted) - d-

component. The worst-case relative error amounts to less than
10%. 157

6.2 Nonlinear flux linkage of a real RSM obtained from FEM data
Ψ̂d

s (solid surface) and fitted grey box model Ψd
s (dotted) - q-

component. The worst-case relative error amounts to less than
10%. 157

6.3 Voltage hexagon associated with the two-level VSI. 161
6.4 Laboratory setup including dSPACE real-time system, voltage-

source inverters connected back-to-back, RSM, PMSM and torque
sensor. 162

6.5 Control diagram: the MTPA LUTs provide the reference flux ψ̄
and voltage ū associated with a given reference torque m̄. The
NMPC controller computes the optimal control action based on
the current state and disturbance estimate provided by an EKF. 164

https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be
https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be

LIST OF FIGURES xix

6.6 Current steps at 157 rad s−1 (simulation): results obtained using
the CS-NMPC (left) and the gain-scheduled PI controller (right).
The voltage spherical constraints are directly included into
the control formulation using the SCQP strategy proposed in
[Verschueren et al., 2016]. Additionally, a “safety” polytopic
constraint is included which, due to its linearity, is always satisfied
exactly. 165

6.7 Current steps at 157 rad s−1 (simulation): results obtained using
the CS-NMPC (left) and gain-scheduled PI controller (right). The
CS-NMPC controller outperforms the PI controller, especially
when the input constraints become active (e.g., between t = 0.75 s
and t = 1.00 s). At the same time, a faster transient can be
achieved even when the constraints become active only for a
short time. 166

6.8 Current steps at 157 rad s−1 (experiment): two-norm of measured
voltage references uref commanded by the two controllers and
udc over time. During the third current step, the PI controller
saturates and does not steer the system to the desired reference.
Notice that the input commanded by the PI controller remains
saturated during the entire step. On the contrary, the CS-NMPC
controller, after an initial saturation, steers the current to the
(feasible) reference values. 167

6.9 Current steps at 157 rad s−1 (experiment): results obtained using
the proposed CS-NMPC controller (left) and gain-scheduled PI
controller (right). The CS-NMPC controller outperforms the PI
controller, especially when the input constraints become active
(e.g., between t = 0.75 s and t = 1.00 s). At the same time, as it
can be seen especially between t = 1.25 s and t = 1.50 s, a faster
transient can be achieved, even when the constraints are active
only for a short time. 169

6.10 Current steps at 157 rad s−1 (experiment): two-norm of measured
voltage references uref commanded by the two controllers and
udc over time. During the third current step, the PI controller
saturates and does not steer the system to the desired reference.
Notice that the input commanded by the PI controller remains
saturated during the entire step. On the contrary, the CS-NMPC
controller, after an initial saturation, steers the current to the
(feasible) reference values. 170

xx LIST OF FIGURES

6.11 Current steps at 157 rad s−1: overall control loop turnaround
time (in black) obtained with the CS-NMPC controller using
acados with qpOASES (available computation time of 250 µs in
red). About 90% of the computation time is due the CS-NMPC
controller (together with the EKF). 173

7.1 prometeo’s transpilation and worst case heap analysis. 181
7.2 AST associated with Listing 7.1 183
7.3 AST associated with Listing 7.3: typing information is added to

the AST. 186
7.4 Call graph with memory-weighted edges. The shortest path from

main to any node with the most negative cost determines the
worst-case heap usage of the program. Only non negative cycles
are allowed. 190

7.5 Computation time associated with a Riccati factorization for
increasing matrix sizes. prometeo’s performance is almost
identical to the one achieved with hand-coded C code. Although
not embeddable, Numpy and Julia are included in the benchmark
for reference. 200

A.1 Eigenvalues as a function of the sampling time T for problem
(A.34). For sufficiently short sampling times, the auxiliary system
in Definition A.4.6 is asymptotically stable. 219

A.2 Modulus of the eigenvalues associated with the system-optimizer
dynamics and their trajectories in the complex plane. The plot
reveals some conservatism of the analysis based on the auxiliary
dynamics. In fact, the largest T for which the system-optimizer
dynamics are stable is T ≈ 0.6 as opposed to T ≈ 0.15 obtained
from Figure A.1. 220

A.3 Current steps at 165 rad s−1 (simulation): closed-loop trajectories
obtained using CS-NMPC (left) and gain-scheduled PI controller
(right). 224

A.4 Current steps at 165 rad s−1 (simulation): two-norm of voltage
references uref commanded by the two controllers and udc over
time. During the third current step, the PI controller saturates
and does not steer the system to the desired reference. 225

A.5 Current steps at 165 rad s−1 (experiment): closed-loop current
trajectories obtained using the two controllers under analysis.
Due to the strong effect of input saturation observed in simulation,
for this value of the reference speed it was not possible to run
the experiment with the PI controller. 226

List of Tables

3.1 Closed-loop relative suboptimality and average computation
times in microseconds obtained with RT-ADMM-i, where i
denotes the number of iterations per sampling time. Notice
that, in order to compute a solution to the subproblems with a
tolerance of 10−4, about 30 ADMM iterations are needed, leading
to an average computation time of 17 µs. 56

4.1 Closed-loop worst-case computation time, in milliseconds, for
the standard (RTI) and zero-order (0-RTI) real-time iteration
strategies for different prediction horizons N , numbers of masses
nm and numbers of stages for the collocation integrators ns. In
all simulations the system is steered to the steady state. Using
the 0-RTI strategy, a maximum increase of less than 0.1% in the
closed-loop cost is incurred with respect to the standard RTI. . 112

5.1 Pendulum example: worst-case computation times for the
swing-up closed-loop scenario (1000 sampling steps) in millisec-
onds and closed-loop cost with N = 100, τ = 1 and decreasing
values of M (standard RTI with N = 100 in the first column). 142

5.2 Quadrotor model - values of the parameter used for the simulation
results in Section 5.3.2. Notice that these values are fictitious.
They have been used for simulation purpose and do not
correspond to the parameters of the physical system. 144

5.3 Maximum and average CPU time and relative closed-loop
suboptimality with respect to converged NMPC of the RTI and
partial tightening RTI (pt-RTI) strategies. Using the pt-RTI
strategy a speedup of about a factor 5 can be achieved with a
moderate increase in suboptimality. 146

6.1 Parameters of physical setup (used in simulation too). 174

xxi

xxii LIST OF TABLES

7.1 CPU time for the Fibonacci benchmark: prometeo is more than
one order of magnitude faster than Nuitka and Python and about
three times faster than PyPy. 200

Chapter 1

Introduction

Although several other definitions could be used, automatic control, from ancient
Greek autòmatos, namely “acting of one’s own will”, can be described as the
application of control theory for regulation of processes without direct human
intervention. As such, according to Heraclitus and Democritus, it fits, as well
as any other form of technology, the idea that it must deal with the creation of
something, which philosophers would call techne, that imitates nature. The first
control systems (the techne of automatic control) that we know of date back
to 270 B.C, when Ctesibius in Ptolemaic Egypt described a floating regulator
for a water clock. Since then, our ability to “develop devices that control other
devices” hence helping us to delegate increasingly complex tasks to machines has
greatly improved. From Ctesibius’s water clocks, through the early proportional-
integral-derivative controller for ship steering by Minorsky, to controllers in
today’s applications ranging from autonomous driving to aerospace, from power
grid operation to applications in biomedics, we have improved our capacity to
create devices that imitate, and sometimes surpass, humans’ ability to take
decisions in order to achieve a certain goal (although many today call this
artificial intelligence, rather than automatic control).

Model predictive control (MPC), which is the central topic of this thesis, is
a particular form of automatic control that relies on the rather fundamental
idea that, whenever possible, one should better use “a” model of the underlying
process to be controlled. In fact such a model can be used to predict to a certain
accuracy the system’s behavior for different actions, or policies, and pick the
policy that better achieves whichever goal we are trying to attain. This process
of optimization over predictions can be, with a moderate amount of bias, seen
as an ubiquitous element in humans’ decision making process: most decisions

1

2 INTRODUCTION

that we make are based on a more or less accurate model of what they will lead
to in the future.

More specifically, and more technically, in MPC, decisions are made by solving
a series of (potentially) nonconvex programs, typically one at every sampling
instant. The solutions to those programs provide state and input trajectories of
the system to be controlled that minimize a certain loss function, while satisfying
constraints that define regions of the input and state space the system must
operate in. Although such a solution of mathematical programs can be in certain
special cases carried out in closed form, this is in general a computationally
demanding task. For this reason, MPC found its first applications in the late
1970s in the field of process control where the underlying time constants of the
systems to be controlled give rise to sampling times sufficiently long to carry out
the necessary computations. Since then, considerable technical advances have
been made in the fields of computing, which, together with the development
of increasingly efficient algorithms, have made MPC a viable control strategy
in applications with much shorter sampling times: a control strategy that was
initially applicable to systems with sampling times in the range of hours, is
gradually becoming applicable in the milli- and microsecond timescale. Despite
the great deal of progress made, MPC still attracts much research interest due
to the many open challenges in meeting shorter and shorter sampling times and
the many open system theoretic questions.

Among others, a way of addressing the challenge of reducing the computational
footprint of MPC is the one of relying on inexact computations. In particular,
in this thesis the term inexact will be used to refer to both the employment of
computationally cheaper inexact solutions and the use of inexact formulations.
As much as it sounds intuitive that inexact solutions and computations can
be computationally cheaper than exact ones, it immediately becomes apparent
that control strategies based on them might not enjoy the same properties,
e.g., optimality, feasibility and stabilizing properties. This interplay between
inexactness and satisfaction of desirable properties typically enjoyed by exact
solutions to MPC formulations is the core topic of this thesis.

1.1 Contributions and outline of the thesis

In this thesis we investigate methods that rely on inexact solutions to nonconvex
programs associated with MPC formulations or, similarly, on inexact MPC
formulations. The thesis’ structure as well as the contributions associated with
each chapter are outlined below.

CONTRIBUTIONS AND OUTLINE OF THE THESIS 3

Chapter 2 - Background on numerical optimization and predictive control

This chapter introduces contents in the fields of numerical optimization, optimal
control and system theory that lie the foundations for most of the contributions
in the thesis. First, the theory of constrained optimization is reviewed and the
fundamental results on sensitivity analysis, which will play an important role in
much of the rest of the thesis, are reported. Second, the principal numerical
approaches to solving optimal control problems are briefly discussed. Finally,
standard stability results for model predictive control are reported.

Chapter 3 - Asymptotic stability of system-optimizer dynamics in NMPC

This chapter deals with the stability analysis of the system-optimizer dynamics
in the context of NMPC. In particular, when inexact solutions to the underlying
noncovenx programs are obtained through early termination, a nontrivial
interaction between the system and the optimizer must be taken into account.
The results presented in this chapter provide novel asymptotic stability results
for the system-optimizer dynamics in a general setting. It is shown that,
under mild assumptions, asymptotic stability can be recovered if the feedback
policy is applied to the system with a sufficiently short sampling time and, in
the most general setting, a Lyapunov function for the combined dynamics
is constructed. The contents of the chapter are part of the publications
[Zanelli et al., 2019a, Zanelli et al., 2021b, Zanelli et al., 2020].

Chapter 4 - Efficient zero-order methods for NMPC with stability guarantees

In this chapter, we regard a class of numerical methods, which we call zero-
order methods, that make use of sequential quadratic programming (SQP)-
type iterations that employ inexact first- and second-order information. The
main idea - which originates in [Bock et al., 2007] and has strong connections
with early work on second-order corrections in [Fletcher, 1982] and projection
methods in [Sargent and Murtagh, 1973] - lies in solving a series of quadratic
programs in which only the constraint evaluations are updated across iterations.
With this simple, and yet powerful, algorithmic ingredient, it is possible to
recover a feasible, but suboptimal solution. We specialize this concept into
different numerical strategies for NMPC and study the error bound associated
with the inexact solutions as well as stability properties of the feedback policy
therefore obtained. A stability analysis of the closed-loop obtained with the
inexact solutions is provided. Moreover, by applying the results of Chapter 3, it
is shown how the real-time variant of zero-order NMPC leads to asymptotically

4 INTRODUCTION

stable system-optimizer dynamics. Finally, the algorithmic elements of zero-
order NMPC are used to develop a feasible SQP strategy that exploits a
Schur complement active-set strategy. The contents of the chapter are part
of the publications [Zanelli et al., 2016, Zanelli et al., 2019a] as well as of the
publication in preparation “Zanelli, A., and Diehl, M. - A feasible sequential
quadratic programming strategy with iterative second-order corrections”.

Chapter 5 - Progressive tightening methods for NMPC with stability
guarantees

We introduce a class of NMPC formulations, that we call progressive tightening
NMPC. In particular, we deal with formulations with stage-varying costs
and constraints that satisfy a tightening property and prove their stabilizing
properties under standard assumptions. Loosely speaking, the underlying idea
exploited in progressive tightening NMPC is that the optimal value function is
a valid Lyapunov function for problems with stage-varying cost and constraints
if increasingly pessimistic predictions are made. This amounts to the same
point in the state-input space being associated with increasingly higher costs
as the stage index increases. Since, the costs and constraints in progressive
tightening NMPC are not time-varying, but rather stage-varying, classical
results on NMPC with time-varying costs and constraints cannot be trivially
applied.

In the second part of the chapter, a specific instance of progressive tightening
NMPC, that we call partial tightening NMPC is proposed. In this approach,
the prediction horizon is split into two sections. While in the initial section the
original constraints are preserved, in the terminal section, the constraints are
tightened using a barrier formulation. In this way, the numerical difficulties
associated with the treatment of the nonsmooth complementarity manifold of
the underlying mathematical programs can be partially mitigated. Due to the
partially smoothened complementarity manifold, at each optimizer iteration,
the variables associated with the terminal section can be efficiently eliminated.
In this way, the computational burden of each iteration can be substantially
reduced. Using the results of Chapter 3, it is shown that the real-time variant
of partial tightening NMPC gives rise to asymptotically stable system-optimizer
dynamics. Finally, the proposed strategy is experimentally validated on a
quadcopter. The contents of this chapter are associated with the publications
[Zanelli et al., 2017b, Zanelli et al., 2018].

CONTRIBUTIONS AND OUTLINE OF THE THESIS 5

Chapter 6 - Continuous control set nonlinear model predictive control of
reluctance synchronous machines

This chapter presents an application of the real-time iteration, an algorithm
belonging to the class of inexact strategies analyzed in Chapter 3, to the problem
of controlling an electrical drive. A solver for nonconvex problems based on the
software toolbox acados is deployed on an embedded control platform in order
to control the currents (and indirectly the torque) of a reluctance synchronous
machine. The approach chosen, that relies on an external modulator for the
actual assignment of switching sequences, namely continuous set (or indirect)
NMPC (CS-NMPC), is often regarded as computationally out of reach and
it is largely unexplored. The simulation and experimental results discussed
in this chapter show that a real-time implementation of CS-NMPC is both
capable of achieving sampling times below 250 µs and largely outperforming
state-of-the-art field oriented control strategies. The results presented in this
chapter have been published in [Zanelli et al., 2021a].

Chapter 7 - prometeo: a domain specific language for embedded high-
performance computing

A key aspect to the successful application of advanced control strategies, and
NMPC in particular, to challenging problems is the availability of reliable and
user-friendly software for numerical computing. In this chapter, we introduce
prometeo, a domain specific language and Python-to-C transpiler whose aim
is to propose a paradigm for the development of embedded high-performance
software. Due to its transpiler, prometeo allows one to write high-performance
code for embedded applications in a high-level language (a restricted version of
the Python language) and to translate them into self-contained C code that can
be easily deployed onto embedded platforms. Moreover, a particular structure
on the programs is enforced such that, through static analysis, the worst-case
memory usage can be determined. In this way, prometeo’s memory management
system greatly simplifies dealing with otherwise error-prone and tedious memory
book-keeping that is typically required in programs heavily relying on small
scale computations such as NMPC. The contents of this chapter are based on
the publication in preparation “Zanelli, A., Sartor, T., Rutquist, P., Frison,
G., Diehl, M. prometeo: a domain specific language and Python-to-C transpiler
for embedded high-performance computing".

6 INTRODUCTION

Chapter 8 - Conclusions and outlook

In this chapter, the contributions of the thesis are summarized and possible
future research directions are proposed.

Chapter 2

Background on numerical
optimization and predictive
control

In this chapter, we review key concepts present in the literature of numerical
optimization and predictive control that will be used throughout the thesis.
Most of the results presented are well established ones and can be found in
numerical optimization textbooks such as [Nocedal and Wright, 2006]. For what
concerns results in the field of strongly regular generalized equations we will
mostly refer to the seminal paper [Robinson, 1980] and the more recent book
[Dontchev and Rockafellar, 2009]. Similarly, for what concerns the concepts on
numerical optimal control and stability of model predictive control, we will refer
to [Diehl and Gros, 2018] and [Rawlings et al., 2017], respectively.

2.1 Numerical optimization

Let us review some fundamental concepts in constrained optimization and
numerical algorithms for the solution of nonconvex programs.

7

8 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

2.1.1 Theory of constrained optimization

Regard the following optimization problem:

min
y

f(y)

s.t. g(y) = 0,

h(y) ≥ 0,

(2.1)

where y ∈ Rn and f : Rn → R, g : Rn → Rm and h : Rn → Rq are twice
continuously differentiable functions. We will refer to f as the objective function
of (2.1), while we will call g and h its equality and inequality constraints,
respectively.

Definition 2.1.1 (Feasible set). We define as feasible set of (2.1) the set of
points in Rn that satisfy all the constraints:

Ω := {y ∈ Rn | g(y) = 0, h(y) ≥ 0}. (2.2)

In the following, we define different types of solutions to (2.1).

Definition 2.1.2 (Local solution). A vector ȳ is a local solution to (2.1) if it
is a feasible point, i.e., ȳ ∈ Ω, and there exists a neighborhoodM of ȳ such that
f(y) ≥ f(ȳ) for all y ∈M∩ Ω.

Definition 2.1.3 (Strict local solution). A vector ȳ is a strict local solution
(or strong local solution) to (2.1) if ȳ ∈ Ω and there exists a neighborhoodM
of ȳ such that f(y) > f(ȳ) for any y ∈M∩ Ω \ {ȳ}.
Definition 2.1.4 (Isolated local solution). A vector ȳ is an isolated local
solution to (2.1) if ȳ ∈ Ω and there exists a neighborhoodM of ȳ such that ȳ is
the only local solution inM∩ Ω.

Note that, although isolated local solutions are strict local solutions, strict
local solutions are not necessarily isolated. The following example from
[Bertsekas, 1999], and depicted in Figure 2.1, describes this fact.

Example 2.1.5. Regard the following optimization problem:

min
y

f(y) =
{
y2 (√2− sin

(4π
3 −
√

3 log(y2)
))
, if y 6= 0

0, if y = 0.
(2.3)

It is possible to show that ȳ = 0 is the unique global solution to (2.3), while, for
any k > 0, yk = e

(1−8k)π
8
√

3 is a local solution, such that there is a sequence {yk}

NUMERICAL OPTIMIZATION 9

−0.4 −0.2 0.0 0.2 0.4
y

10−8

10−6

10−4

10−2

f
(y

)

Figure 2.1: Example of an unconstrained optimization problem with a global
strict nonisolated solution [Bertsekas, 1999, Example 1.1.11]. Although ȳ = 0 is
the unique global minimizer, there are sequences of local minima that converge
to ȳ such that there does not exist a neighborhood of 0 inside which ȳ is the
only local solution.

of local minima that converges to ȳ = 0. Due to the definition of a convergent
series (topological version) we cannot define a neighborhood of 0 such that ȳ is
the only solution in it.

First-order necessary conditions of optimality

In order to be able to define the so-called first- and second-order optimality
conditions, we introduce the following definitions.

Definition 2.1.6 (Active set). The active set A(y) at a feasible point y is the
set of all the indices associated with the active inequality constraints, i.e.,

A(y) := {i ∈ {1, . . . , q} |hi(y) = 0}. (2.4)

Notice that, unlike in the definition of active set in [Nocedal and Wright, 2006],
A(y) does not include the indices associated with the equality constraints.

Definition 2.1.7 (Tangent vector). We call d a tangent vector to Ω at y if
there exists a feasible sequence {zk} such that limk→∞{zk} = y and a sequence

10 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

of positive scalars {tk} such that

lim
k→∞

zk − y
tk

= d. (2.5)

Definition 2.1.8 (Tangent cone). We call tangent cone to Ω at ȳ the set of
all tangent vectors to Ω at ȳ and we denote such set by TΩ(ȳ).

Definition 2.1.9 (Linearized feasible cone). Given a feasible point y, the
linearized feasible cone F(y) is defined as follows:

F(y) = {d | d>∇g(y) = 0, d>∇hi(y) ≥ 0, for all i ∈ A(y)}. (2.6)

Notice that the specification of the tangent cone is purely geometric and that
T (y) can differ from F(y) whose specification is instead algebraic. Moreover,
the two sets are not necessarily equivalent (see, e.g., [Nocedal and Wright, 2006,
Example 12.5]). In order to make sure that the linearized feasible set, which has
a much more practical specification than the tangent cone, (locally) captures
the geometry of the feasible set, various types of constraint qualifications can
be used. In this thesis, we will mostly rely on the following type of constraint
qualification.

Definition 2.1.10 (Linear independence constraint qualification (LICQ)). We
say that linear independence constraint qualification holds at a feasible point
y, if the vectors in the set {∇gi(y), for i = 1, . . . ,m, ∇hi(y), for i ∈ A(y)} are
linearly independent.

The condition involved in Definition 2.1.10 clearly fails to hold, e.g., at any
point where two equivalent constraints (or two constraints whose linearization
is geometrically equivalent) become active. Weaker constraint qualifications
exist that hold even when LICQ does not. The interested reader is referred to
[Nocedal and Wright, 2006] for further details. With the above definitions in
place, we are ready to state the following first-order conditions for optimality of
a point ȳ.

Theorem 2.1.11 (First-order necessary conditions (FONC)). Let ȳ be a local
solution of (2.1). Assume further that f , g and h are continuously differentiable
and that LICQ holds at ȳ. Then there exist Lagrange multipliers λ̄ ∈ Rm and

NUMERICAL OPTIMIZATION 11

µ̄ ∈ Rq such that the following hold:

∇yf(ȳ)−∇yg(ȳ) λ̄−∇yh(ȳ) µ̄ = 0,

g(ȳ) = 0,

h(ȳ) ≥ 0,

µ̄ ≥ 0,

µ̄ihi(ȳ) = 0, for i = 1, . . . , q.

(2.7)

Remark 2.1.12. We report a sketch of a proof of Theorem 2.1.11 in the
following. A full proof can be found in [Nocedal and Wright, 2006].

In order to show that, under the assumptions of the theorem, any minimizer ȳ
satisfies conditions (2.7), it is necessary to show that, i) if LICQ holds, then
F(ȳ) = TΩ(ȳ), and ii) using Farkas’ Lemma, show that either

∇yf(ȳ) = ∇yg(ȳ) λ̄+
∑

i∈A(ȳ)

∇yhi(ȳ) µ̄i (2.8)

with µ̄i ≥ 0 for i ∈ A(ȳ), or there is a feasible direction d ∈ F(ȳ) such that
d>∇yf(ȳ) < 0.

Conditions (2.7) are often referred to as Karush-Kuhn-Tucker conditions or
KKT conditions.

Definition 2.1.13 (KKT point). We call a point (ȳ, λ̄, µ̄) that satisfies
conditions (2.7) and LICQ a KKT point.

Definition 2.1.14 (Strongly and weakly active constraints). Given a KKT
point (ȳ, λ̄, µ̄), we say that a constraint hi with i ∈ A(ȳ) is strongly active if
µ̄i > 0. Otherwise, we say that it is weakly active.

Definition 2.1.15 (Strict complementarity (SC)). A point (ȳ, λ̄, µ̄) where ȳ is
a local solution of (2.1) is said to satisfy strict complementarity if all active
constraints are strongly active, i.e., µ̄i > 0 for all i ∈ A(ȳ).

Second-order conditions of optimality

Theorem 2.1.11 shows that, under suitable differentiability assumptions, any
local solution ȳ to (2.1) is associated with properly defined Lagrange multipliers
such that (ȳ, λ̄, µ̄) is a KKT point. These conditions are merely necessary
since first-order information cannot be used to determine the local behavior

12 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

of the objective function for the directions d ∈ F(ȳ) for which d>∇yf(ȳ) = 0
(using the argument in the proof of Theorem 2.1.11 one can only conclude
that, if conditions 2.7 are satisfied, then d>∇yf(ȳ) ≥ 0 holds for any feasible
direction). For this reason, in order to develop sufficient conditions of optimality,
it is necessary to characterize the behavior of the objective function in these
“undecided” directions. The following definition defines the set of such directions.
Definition 2.1.16 (Critical cone). Given a KKT point (ȳ, λ̄, µ̄), we call critical
cone the set

C(ȳ, λ̄, µ̄) := {d ∈ F(ȳ) : ∇yhi(ȳ)>d = 0, ∀i ∈ A(ȳ)with µ̄i > 0} (2.9)

or, equivalently

d ∈ C(ȳ, λ̄, µ̄) ⇐⇒

∇yg(ȳ)>d = 0,
∇yhi(ȳ)>d = 0, for all i ∈ A(ȳ) with µ̄i > 0,
∇yhi(ȳ)>d ≥ 0, for all i ∈ A(ȳ) with µ̄i = 0.

(2.10)

The directions inside the critical cone are the ones for which first-order
information is not enough to guarantee that a point is a local minimizer.
In fact, since µ̄i = 0 for all inactive constraints, the following holds:

d ∈ C(ȳ, λ̄, µ̄) =⇒ µ̄i∇yhi(ȳ)>d = 0, for i = 1, . . . , q,

λ̄i∇ygi(ȳ)>d = 0, for i = 1, . . . ,m.
(2.11)

Using conditions (2.7), we can conclude that

d ∈ C(ȳ, λ̄, µ̄) =⇒ d>∇yf(ȳ) =
m∑
i=1

λ̄i d
>∇ygi(ȳ) +

q∑
i=1

µ̄i d
>∇yhi(ȳ) = 0,

(2.12)
which shows that the critical cone contains feasible directions for which we cannot
assess whether the objective increases or decreases from first-order information
only. The following theorems provide conditions that exploit second-order
derivatives in order to overcome this obstacle.
Definition 2.1.17 (Lagrangian function). We call

L(y, λ, µ) := f(y)− λ>g(y)− µ>h(y) (2.13)

the Lagrangian function of (2.1).
Theorem 2.1.18 (Second-order necessary conditions (SONC)). Let ȳ be a local
solution to (2.1) and let (ȳ, λ̄, µ̄) be a KKT point. Assume that LICQ holds and
that f , g and h are twice continuously differentiable. Then, for all d ∈ C(ȳ, λ̄, µ̄),
the following holds:

d>∇2
yyL(ȳ, λ̄, µ̄)d ≥ 0. (2.14)

NUMERICAL OPTIMIZATION 13

Theorem 2.1.19 (Second-order sufficient conditions (SOSC)). Let (ȳ, λ̄, µ̄) be
a KKT point. Assume that f , g and h are twice continuously differentiable and
that, for all d ∈ C(ȳ, λ̄, µ̄), with d 6= 0, the following holds:

d>∇2
yyL(ȳ, λ̄, µ̄)d > 0. (2.15)

Then ȳ is a local minimizer for (2.1).

Perturbation analysis and stability

Throughout the thesis we will often use concepts from perturbation analysis
of parametric nonlinear programs to determine local continuity properties and
compute sensitivities of parametric solutions. In the following, we recall some
of the fundamental concepts in the field of perturbation analysis for nonlinear
programming. First, regard the simplified setting in which problem (2.1) does
not have inequality constraints:

P0(ε) :
min
y

f(y, ε)

s.t. g(y, ε) = 0,
(2.16)

where we have introduced the dependency of both the objective and constraints
on the parameter ε ∈ Rr and where we denote by ȳ(ε) : Rr → Rn the
(potentially set-valued) solution map. In this setting, under suitable regularity
assumptions, it is possible to determine well-definedness and continuity of
the solution map ȳ(ε) in a neighborhood of a solution ȳ(0) associated with
ε = 0 using the implicit function (or Dini’s) theorem. For the sake of
completeness, we report Dini’s theorem (as stated by Dontchev and Rockafellar
in [Dontchev and Rockafellar, 2009]) in the following. To this end, it becomes
useful to introduce the concepts of graphical localization and single-valued
localization of a map.

Definition 2.1.20 (Graphical localization). Let Ψ : Rn ⇒ Rm be a set-valued
mapping and let (ū, v̄) ∈ gph Ψ. A graphical localization of Ψ at ū for v̄ is a
(potentially set-valued) mapping Ψ̃ such that

gph Ψ̃ = (U × V) ∩ gph Ψ (2.17)

for some neighborhoods U of ū and V of v̄ so that

Ψ̃(u) =
{

Ψ(u) ∩ V, when u ∈ U,
∅, otherwise.

(2.18)

14 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

Figure 2.2: Illustration of a single-valued localization.

The inverse of Ψ̃ is defined by

Ψ̃−1(v) =
{

Ψ−1(v) ∩ U, when v ∈ V,
∅, otherwise.

(2.19)

and is thus a graphical localization of the set-valued mapping Ψ−1 at v̄ for ū.

In particular, we will be interested in situations in which solution maps admit
graphical localizations that are single-valued.

Definition 2.1.21 (Single-valued localizations). By a single-valued localization
of Ψ at ū for v̄ will be meant a graphical localization that is a function, its
domain not necessarily being a neighborhood of ū. In case its domain is indeed
a neighborhood of ū we will say that it is a single-valued localization around ū
for v̄.

Figure 2.2 describes the concept of single-valued localization.

Theorem 2.1.22 (Implicit function or Dini’s theorem). Regard the nonlinear
root-finding problem

φ(z, ε) = 0, (2.20)
where φ : Rn × Rr → Rn is a continuously differentiable function in a
neighborhood of (ẑ, 0) and such that φ(ẑ, 0) = 0. Let the partial Jacobian
of φ with respect to z at (ẑ, 0), namely ∇zφ(ẑ, 0)>, be nonsingular. Then the
solution mapping

S : ε→ {z ∈ Rn |φ(z, ε) = 0}, for ε ∈ Rr, (2.21)

NUMERICAL OPTIMIZATION 15

has a single-valued localization s around ε = 0 for ẑ which is continuously
differentiable in a neighborhoodM of ε = 0 with Jacobian satisfying

∇εs(ε)> = −∇zφ(s(ε), ε)−>∇εφ(s(ε), ε)>, for all ε ∈M. (2.22)

Applying Dini’s theorem to the first-order optimality conditions of (2.16),
together with some additional assumptions, we can prove the following classical
result on perturbation analysis for equality constrained nonlinear programming.

Theorem 2.1.23. Let ȳ be a solution to P0(0) at which LICQ and SOSC hold
with associated Lagrange multiplier λ̄. Then there exist neighborhoodsMz of
z̄ := (ȳ, λ̄) andMε of ε = 0 such that the solution map z̄(ε) := (ȳ(ε), λ̄(ε)) is
single-valued inMz and Lipschitz continuous overMε.

Proof. Let z := (y, λ). The result is a direct consequence of the IFT since LICQ
and SOSC imply that the Jacobian of the Lagrangian ∇zL(z, 0) is nonsingular
(see, e.g. [Nocedal and Wright, 2006, Lemma 16.1]).

This result on parametric sensitivities of equality constrained nonlinear programs
can be extended to the inequality constrained setting

P1(ε) :

min
y

f(y, ε)

s.t. g(y, ε) = 0,

h(y, ε) ≥ 0,

(2.23)

with the additional assumption that the inequality constraints locally behave
as equality constraints under small perturbations of the nonlinear program.

Theorem 2.1.24 (Theorem 2.4.4, [Fiacco, 1983]). Let (ȳ, λ̄, µ̄) be a local
solution to P1(0) and assume that the following hold:

1. The functions f , g and h are C2 in both y and ε.

2. SOSC holds at (ȳ, λ̄, µ̄).

3. LICQ holds at ȳ.

4. SC holds, i.e., µ̄i > 0, for all i ∈ A(ȳ).

Then the following hold:

1. The point ȳ is a local isolated minimizer for P1(0) and λ̄ and µ̄ are the
unique Lagrange multipliers associated with ȳ.

16 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

2. For ε near 0, there exists a unique C1 function z̄(ε) = (ȳ(ε), λ̄(ε), µ̄(ε))
with z̄(0) = (ȳ, λ̄, µ̄), such that ȳ(ε) is an isolated local minimizer for P1(ε)
with associated unique Lagrange multipliers λ̄(ε) and µ̄(ε).

3. For ε near 0, the gradients of the binding constraints are linearly
independent and SC holds for ȳ(ε) and µ̄(ε).

Finally, under a slightly more restrictive assumption on curvature properties,
the following theorem drops the assumption of strict complementarity allowing
for weakly active constraints at the unperturbed solution. In particular, we will
rely on the following stronger version of the second-order sufficient conditions
of optimality.

Definition 2.1.25 (Strong second-order sufficient conditions (SSOSC)). Let
(ȳ, λ̄, µ̄) be a KKT point for P1(0) and let Cs(ȳ, λ̄, µ̄) be defined as follows:

d ∈ Cs(ȳ, λ̄, µ̄) ⇐⇒
{
∇yg(ȳ)>d = 0,
∇yhi(ȳ)>d = 0, for all i ∈ A(ȳ) with µ̄i > 0.

(2.24)

We say that strong second-order sufficient conditions hold at (ȳ, λ̄, µ̄) if, for all
d ∈ Cs(ȳ, λ̄, µ̄), with d 6= 0, the following holds:

d>∇2
yyL(ȳ, λ̄, µ̄)d > 0. (2.25)

Theorem 2.1.26 (Theorem 2.4.5, [Fiacco, 1983]). Let (ȳ, λ̄, µ̄) be a KKT point
for P1(0) and assume that the following hold:

1. The functions f , g and h are C2 in both and y and ε in a neighborhood of
(ȳ, 0).

2. SSOSC holds at (ȳ, λ̄, µ̄).

3. LICQ holds at ȳ.

Then the following hold:

1. The point ȳ is a local isolated minimizer for P1(0) and λ̄ and µ̄ are the
unique Lagrange multipliers associated with ȳ.

2. For ε near 0, there exists a unique C1 function z̄(ε) = (ȳ(ε), λ̄(ε), µ̄(ε)) with
z̄(0) = (ȳ, λ̄, µ̄) satisfying SSOSC for P1(ε) such that ȳ(ε) is an isolated
local minimizer for P1(ε) with associated unique Lagrange multipliers λ̄(ε)
and µ̄(ε).

NUMERICAL OPTIMIZATION 17

3. For ε near 0, the gradients of the binding constraints are linearly
independent for ȳ(ε).

4. There exist 0 < α, β, γ <∞ and δ > 0 such that, for any ε with ‖ε‖ < δ,
the following hold:

‖ȳ(ε)− ȳ‖ ≤ α‖ε‖, (2.26)
‖λ̄(ε)− λ̄‖ ≤ β‖ε‖ (2.27)

and
‖µ̄(ε)− µ̄‖ ≤ γ‖ε‖. (2.28)

5. The function f̄(ε) := f(ȳ(ε), ε) is continuously differentiable with respect
to ε near ε = 0.

6. The directional derivative of z̄(ε) exists in any direction near ε = 0.

Theorem 2.1.26 shows that under the assumption that SSOSC holds, we can
guarantee that the localization of the parametric solution map z̄(ε) is locally
Lipschitz. As we will see in the next section, SSOSC is a sufficient condition for
a more general property called strong regularity.

Example 2.1.27 (Nondifferentiable Lipschitz continuous optimal value).
Regard the following parametric linear program:

min
x,t∈R

t

s.t. x = ε,

t− x ≥ 0,

x+ t ≥ 0.

(2.29)

We can easily verify that the parametric solution to (2.29) is

x̄(ε) = ε, t̄(ε) = |ε|, (2.30)

which is globally Lipschitz in ε with Lipschitz constant 1. However, the
parametric optimal cost f̄(ε) = t̄(ε) is not differentiable at ε = 0. In
fact the assumption that LICQ holds made in Theorem 2.1.26 is violated at
ȳ(0) = (x̄(0), t̄(0)) = (0, 0) since the Jacobian of the binding constraints reads:

J =
[
1 −1 1
0 1 1

]
, (2.31)

which is obviously rank deficient. At the same time, we can easily verify that the
dual solution for ε = 0 is indeed not a singleton either by inspection or using
the so called strict Mangasarian Fromovitz constraint qualification.

18 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

2.1.2 Strongly regular generalized equations

The well established results reported in Section 2.1.1 provide extremely useful
tools to analyze the local behavior of the solutions to parametric nonlinear
programs under small perturbations. In this section, we introduce the
mathematical framework of generalized equations, which can be used to derive
a generalization of Theorem 2.1.26. The type of results that can be obtained
with such a framework are more general because i) they apply to a broader class
of problems - namely generalized equations - rather than parametric programs
only ii) the assumptions made to obtain them are somewhat less stringent than
the one of Theorem 2.1.26: although, for parametric nonlinear programs, we
can obtain results similar to the ones in Theorem 2.1.26, it is not necessary to
assume SSOSC and LICQ, but rather certain Lipschitz continuity properties of
the solution to a properly defined parametric linearized problem.

According to the definition in the seminal paper [Robinson, 1980], a generalized
equation is an inclusion of the form

0 ∈ F (z) +NK(z), (2.32)

where F is a function from a subset Ξ of a normed linear space Z to its
topological dual Z ′, K is a nonempty closed and convex set and NK(z) denotes
the normal cone to K at z:

NK(z) :=
{
{v ∈ Z ′ : v>(z − u) ≥ 0, ∀u ∈ K}, if z ∈ K,
∅ otherwise.

In particular, in the context of nonconvex programming, generalized equations
can be used to represent first-order necessary optimality conditions. In fact,
with reference to (2.1), we can define

F (z) :=

∇yf(y) +∇yg(y)λ+∇yh(y)µ
−g(y)
−h(y)

 , (2.33)

where z := (y, λ, µ), and K := Rn × Rm × Rq+, such that (2.32), represents the
first-order optimality conditions of (2.1).

Remark 2.1.28. A different and somewhat advantageous reformulation is
possible in cases where (2.1) takes the form

min
y

f(y)

s.t. g(y) = 0,

y ∈ Ω.

(2.34)

NUMERICAL OPTIMIZATION 19

where Ω ∈ Rn is a closed convex set. Following the notation used
in [Tran-Dinh et al., 2012], it is possible to write the first-order necessary
optimality conditions associated with (2.34) as follows:

0 ∈ ∇f(y) +∇g(y)λ+NΩ(y),

0 = g(y).
(2.35)

In this way, defining z := (y, λ), K = Ω× Rm and

F (z) :=
(
∇f(y) +∇g(y)λ

g(y)

)
, (2.36)

equations (2.35) can be reworked into (2.32).

The main question addressed in [Robinson, 1980], and the one which is of our
interest in this section, is to assess whether (2.32) and problems “close” to it
have locally unique solutions and whether such solutions have good continuity
properties with respect to perturbations introduced into (2.32). In particular,
assuming that F is differentiable in a neighborhood of a solution z0, it is possible
to impose a condition on the linearized generalized equation

0 ∈ F (z0) +∇zF (z0)>(z − z0) +NK(z), (2.37)

such that (2.32) satisfies the desired properties. Such condition, named by
Robinson strong regularity, can be seen as a generalization of the nonsingularity
condition used in the implicit function theorem (it is indeed easy to verify that
it reduces to that condition if K = Z). Although the results in [Robinson, 1980]
are more general, in this thesis we are interested in the simplified setting in
which Z = Z ′ = Rnz , so we will restrict our attention to it.

Definition 2.1.29 (Strong regularity). Let Ξ be an open subset of Rnz
containing a point z0. Let K be a closed convex set in Rnz and let F : Ξ→ Rnz
be differentiable at z0. Suppose that the generalized equation

0 ∈ F (z) +NK(z) (2.38)

has a solution at z0 and, for a given z ∈ Rnz , define

Tz := F (z0) +∇zF (z0)>(z − z0) +NK(z). (2.39)

We say that (2.38) is strongly regular at z0 with associated Lipschitz constant σ,
if there exist neighborhoods U of the origin in Rnz and V of z0 such that the
restriction to U of T−1 ∩ V is a single-valued function from U to V which is
Lipschitz continuous on U with modulus σ.

20 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

Remark 2.1.30. Definition 2.1.29 is the one given in [Robinson, 1980] and
we report it here in its original form and using the same language. It is however
useful to be aware of the fact that other popular textbooks and publications on
the topic may use a slightly different language. In particular, Bonnans et al.
[Bonnans and Shapiro, 1998] would say that a solution is strongly stable rather
than that the generalized equation is strongly regular at that solution. Moreover,
the definition of strong regularity given in [Bonnans and Shapiro, 1998] is
somewhat more intuitive and we report it below for completeness.

Definition 2.1.31 (Strong regularity [Bonnans and Shapiro, 1998]). Let z0 be
a solution to (2.38). We say that z0 is a strongly stable solution to (2.38), if there
exist neighborhoods B(0, r̄δ) and B(0, r̄z) such that the linearized generalized
equation

δ ∈ F (z0) +∇zF (z0)>∆z +NK(z0 + ∆z), (2.40)

with unknown ∆z has a unique solution in B(0, r̄z) and its solution is Lipschitz
continuous in B(0, r̄δ) with Lipschitz constant σ:

‖∆z̄(δ′)−∆z̄(δ)‖ ≤ σ ‖δ′ − δ‖ , ∀δ, δ′ ∈ B(0, r̄δ).

We can interpret the concept of strong regularity in terms of perturbed
optimization by looking at the case in which (2.40) represents the optimality
conditions associated with a perturbed optimization problem and where
δ = (δ1, δ2) is a perturbation parameter. In fact, (2.40) can be used to represent
the first-order optimality conditions of the following problem:

min
y

(∇f(ȳ)− δ1)>y + 1
2(y − ȳ)>∇2

yL(ȳ, λ̄)(y − ȳ)

s.t. g(ȳ) +∇yg(ȳ)>(y − ȳ) = δ2,

y ∈ Ω,

(2.41)

for some convex set Ω, which, for δ = 0, is in turn a local approximation at
(ȳ, λ̄) of the problem

min
y

f(y)

s.t. g(y) = 0,

y ∈ Ω.

(2.42)

Hence, problem (2.42) is strongly regular at z̄ if and only if, for any δ ∈ B(0, r̄δ),
(2.41) has a unique KKT point z̄(δ) in B(z̄, r̄z) and z̄(δ) is Lipschitz continuous
in δ over B(0, r̄δ).

NUMERICAL OPTIMIZATION 21

The following theorem provides a fundamental result, a type of implicit function
theorem for strongly regular generalized equations.
Theorem 2.1.32 (Theorem 2.1, [Robinson, 1980]). Let K, Ξ and z0 be defined
as in 2.1.29. Let ε ∈ Rr be a perturbation parameter and let F : Ξ×Rr → Rnz .
Assume that F is differentiable with respect to z, that ∇zF and F are continuous
at (z0, 0) and that z0 solves

0 ∈ F (z, 0) +NK(z). (2.43)

If (2.43) is strongly regular at z0, with associated Lipschitz constant σ, then for
any σ̃ > 0, there exist neighborhoodsMσ̃ of 0 and Zσ̃ of z0 and a single-valued
function z̄ :Mσ̃ → Zσ̃, such that, for any ε ∈Mσ̃, z̄(ε) is the unique solution
in Zσ̃ of the inclusion

0 ∈ F (z, ε) +NK(z). (2.44)
Further, for each ε1 and ε2 inMσ̃, one has

‖z̄(ε1)− z̄(ε2)‖ ≤ (σ + σ̃)‖F (z̄(ε1), ε1)− F (z̄(ε2), ε2)‖. (2.45)

Corollary 2.1.33 (Corollary 2.2, [Robinson, 1980]). Assume the notation and
hypothesis of Theorem 2.1.32. Assume further that there exists a positive
constant L such that, for each ε1, ε2 ∈ Mσ̃ and each z ∈ Zσ̃, the following
holds:

‖F (z, ε1)− F (z, ε2)‖ ≤ L‖ε1 − ε2‖. (2.46)
Then, z̄(·) is Lipschitz continuous onMσ̃, i.e.,

‖z̄(ε1)− z̄(ε2)‖ ≤ L(σ + σ̃)‖ε1 − ε2‖. (2.47)

Finally, the following theorem [Bonnans and Shapiro, 1998, Theorem 5.1] shows
that it is possible to approximate the solution z̄(ε) by z0 + z1(ε), which we
will call a pseudoexpansion [Bonnans and Shapiro, 1998], where z0 denotes the
unperturbed solution z̄(0) and z1(ε) represents the solution to the generalized
equation (with unknown ζ)

0 ∈ F (z0, 0) +∇zF (z0, 0)>ζ +∇εF (z0, 0)>ε+NK(z0 + ζ). (2.48)

Theorem 2.1.34. Let K, Ξ and z0 be defined as in 2.1.29. Let ε ∈ Rr be a
perturbation parameter and let F : Ξ×Rr → Rnz . Assume that F is continuously
differentiable with respect to z and ε at (z0, 0) and that z0 solves

0 ∈ F (z, 0) +NK(z). (2.49)

Then, for all ε in a neighborhood of 0, the mappings z̄(ε) and z1(ε) are well
defined in the vicinity of z0 and in a neighborhood of the origin, respectively. In
addition, z̄(ε) is Lipschitz continuous,

z1(ε) = O (‖ε‖) (2.50)

22 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

and the following holds:

z̄(ε) = z0 + z1(ε) + o (‖ε‖) . (2.51)

2.1.3 Local convergence of Newton-type methods

With the help of relatively standard assumptions, a contraction for generalized
Newton-type methods can be obtained by using the assumption of strong
regularity. Although several variants of this result can be found in the literature,
in the following, we present a simple derivation for the sake of completeness.

We are interested in generalized Newton-type iterates generated by solving the
following linearized inclusion:

0 ∈ F (z) + F̃ ′(z)(ζ − z) +NK(ζ), (2.52)

with unknown ζ, where F̃ ′(z) is an approximation of the exact Jacobian F ′(z)
computed at the linearization point z. In particular, if K = Rng × Rn, then
(2.52) reduces to a Newton-type scheme. Moreover, if F̃ ′(z) = F ′(z), we obtain
the exact generalized Newton method.

Assumption 2.1.35. Let z̄ be a solution to (2.38). Assume that there exists a
constant rz > 0, such that

1. there exists a positive constant κ̃ satisfying σκ̃ < 1
2 such that, for any z

in B(z̄, rz), the following holds:∥∥F ′(z̄)− F̃ ′(z)∥∥ ≤ κ̃. (2.53)

2. there exists a constant 0 < ω̃ < ∞ such that, for any z in B(z̄, rz), the
following holds:

‖F ′(z)− F ′(z̄)‖ ≤ ω̃ ‖z − z̄‖ . (2.54)

Notice that the assumptions above are analogous to the ones in [Tran-Dinh et al., 2012]
and similar to the standard “kappa” and “omega” conditions for Newton-type
methods used for example in [Diehl, 2016].

Lemma 2.1.36. Let Assumption 2.1.35 hold and assume that (2.38) is strongly
regular at z̄ and let z+ be a solution to (2.32). Then, if z ∈ B(z̄, rz), the
following contraction estimate holds:

‖z+ − z̄‖ ≤ κ‖z − z̄‖+ ω

2 ‖z − z̄‖
2, (2.55)

where κ = σκ̃
(1−σκ̃) and ω = σω̃

1−σκ̃ .

NUMERICAL OPTIMIZATION 23

Proof. Using Assumption 2.1.35, we derive the contraction estimate as follows.
The generalized equation (2.52) can be written as

δ̄ ∈ F (z̄) + F ′(z̄)(z − z̄) +NK(z), (2.56)

where

δ̄ := − F (z) + F (z̄)− F̃ ′(z)(z − z̄) + F ′(z̄)(z − z̄)

= − F (z) + F (z̄)− (F̃ ′(z)− F ′(z̄))(z − z̄) + F̃ ′(z)(z − z̄)

= − F (z) + F (z̄)− (F̃ ′(z)− F ′(z̄))(z − z̄)

+ (F̃ ′(z)− F ′(z̄))(z − z̄) + F ′(z̄)(z − z̄),

(2.57)

which is the perturbed linearized generalized equation involved in Definition
2.1.31. Then, using strong regularity at z̄, we have that

‖z+ − z̄‖ ≤ σ
∥∥δ̄∥∥ , (2.58)

for sufficiently small perturbations δ̄. In particular, after defining ∆z+ :=
‖z+ − z̄‖, we can write the following:

∆z+ ≤ σ‖F (z)− F (z̄)− F ′(z̄)(z − z̄)

+ (F̃ ′(z)− F ′(z̄))(z+ − z̄)− (F̃ ′(z)− F ′(z̄))(z − z̄)‖

and, using Assumption 2.1.35, we can easily see that the following holds:

∆z+ ≤ σ‖F (z)− F (z̄)− F ′(z̄)(z − z̄)‖ + σκ̃∆z+ + σκ̃‖z − z̄‖. (2.59)

Using again Assumption 2.1.35 and the mean value theorem, we obtain

∆z+ ≤
1

(1− σκ̃)

(
σκ̃‖z − z̄‖

+ σ‖
∫ 1

0
(F ′(z̄ + t(z − z̄))− F ′(z̄))(z − z̄)dt‖

)
and, defining κ := σκ̃

1−σκ̃ and ω := ω̃σ
1−σκ̃ , we obtain

∆z+ ≤ κ‖(z − z̄)‖ + ω

2 ‖z − z̄‖
2, (2.60)

which concludes the proof.

24 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

2.2 Numerical optimal control and model predic-
tive control

In this section we introduce key concepts on optimal control and model predictive
control that, together with the contents of Section 2.1 constitute the theoretical
and algorithmic basis most of this thesis relies on. In particular, we will focus
both on system theoretic and numerical aspects, i.e., i) on stability properties
of feedback controllers based on optimal control problems and ii) on numerical
methods that can be used to solve such problems, and their properties.

2.2.1 Dynamical systems

We are interested in controlling dynamical systems whose dynamics can be
described by ordinary differential equations or differential algebraic equations
whose definitions we give below.
Definition 2.2.1 (Ordinary differential equation (ODE)). Let t ∈ R represent
time, x(t) ∈ Rnx represent the states of the system and u(t) ∈ Rnu represent
the control inputs to the system. An ordinary differential equation (ODE) is an
equation of the form

0 = φ(x(t), ẋ(t), u(t)), (2.61)
where we assume that ∂φ

∂ẋ is invertible for all arguments in an appropriate
domain. In the case in which an ODE takes the form

ẋ(t) = φe(x(t), u(t)), (2.62)

we call it an explicit ODE.

Definition 2.2.2 (Differential algebraic equation (DAE)). A differential
algebraic equation (DAE) is an equation of the form

φ(ẋ(t), x(t), w(t), u(t)) = 0, (2.63)

where, we have made the distinction between differential variables x(t) and
algebraic variables w(t) ∈ Rnw and where φ : Rnx × Rnx × Rnw × Rnu → Rnx .
If the Jacobian matrix ∂φ

∂(ẋ,w) is invertible, we say that the DAE is of index 1.

An important special case is the one of semi-explicit DAEs.
Definition 2.2.3 (Semi-explicit DAE). We call semi-explicit DAEs, equations
of the form

ẋ(t) = φe(x(t), w(t), u(t)),

0 = g(x(t), w(t), u(t)).
(2.64)

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 25

where the function g : Rnx ×Rnw ×Rnu → Rnw defines the algebraic constraints
of the DAE. In this case, if the Jacobian matrix ∂g

∂w is invertible, the DAE is of
index 1.

When simulating the dynamics of a system, we are interested in the trajectories
x(t) and w(t) of the differential and algebraic variables, respectively, as a
function of time and with t0 ≤ t ≤ t1, for a given input trajectory u(t) and
initial condition x(t0) = x0.
Definition 2.2.4 (Initial value problem (IVP)). We call initial value problem
(IVP) an ODE (or a DAE) together with an appropriate number of initial
conditions, e.g.,

ẋ(t) = φe(x(t), u(t)), for all t0 ≤ t ≤ t1,

x(t0) = x0.
(2.65)

In order for the solution to an IVP to be of any use in the numerical solution of
optimal control problems, we assume throughout the thesis that the conditions
of the following fundamental theorem are satisfied.
Theorem 2.2.5 (Picard-Lindelöf theorem). Regard the initial value problem in
Definition 2.2.4 and a given input u(t). If φe is uniformly Lipschitz continuous
in x and continuous in t, then there exists an ε > 0 such that the initial value
problem has a unique solution over the interval [t0 − ε, t0 + ε].

2.2.2 Optimal control

The main questions addressed in the present thesis, although addressed from
different angles, revolve around the challenge of numerically solving optimal
control problems in an efficient fashion. The problems that will be regarded
take the following general form:

min
s(·),u(·),w(·)

∫ T

0
L(s(τ), u(τ), w(τ))dτ +m(s(T), w(T))

s.t. s(0)− x = 0,

ṡ(t)− φ(s(t), u(t), w(t)) = 0, t ∈ [0, T],

g(s(t), u(t), w(t)) = 0, t ∈ [0, T],

h(s(t), u(t), w(t)) ≤ 0, t ∈ [0, T],

r(s(T), w(T)) ≤ 0.

(2.66)

26 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

Here, the states are denoted by s(t) ∈ Rnx - this notation will make it easier to
distinguish between optimization variables associated with the state trajectories
and the actual state of the system which is described by the parameter x
(especially when dealing with the stability results for the combined system-
optimizer dynamics in Chapter 3). At the same time, we have introduced
the path and terminal constraint functions h : Rnx × Rnu × Rnw → Rnh and
r : Rnx×Rnw → Rnr . The so-called Lagrange and Mayer cost terms are defined
by L : Rnx × Rnu × Rnw → R and m : Rnx × Rnw → R. Finally, the time
T ∈ (0,∞] over which the cost integral is carried out is considered to be fixed.

Although some special instances of continuous-time optimal control problems
can be solved in their original formulation either numerically or in closed form
and potentially discretized afterwards, solving nonconvex programs in infinite
dimensional spaces is in general computationally challenging. For this reason, it
is common to first discretize problem (2.66) into a finite dimensional nonlinear
program, such that state-of-the-art algorithms for nonlinear programming can
be leveraged in order to efficiently solve the discretized problem (this is the
so-called “first discretize, then optimize” approach).

The main focus of this thesis is on the so-called direct optimal control
methods that make use of this idea, which will be described next. The
two main alternative approaches, namely indirect approaches and state-space
approaches based on the Hamilton-Jacobi-Bellman equation will not be discussed
since outside of the scope and the interested reader is referred to, e.g.,
[Diehl and Gros, 2017].

Direct optimal control

In this section, we introduce the class of numerical methods that constitutes
the basis for all the numerical algorithms for nonlinear model predictive control
presented in this thesis, namely the class of direct optimal control methods. In
this case, we regard the formulation with path constraints

min
s(·),u(·)

∫ T

0
L(s(τ), u(τ))dτ +m(s(T))

s.t. s(0)− x = 0,

ṡ(t)− φ(s(t), u(t)) = 0, t ∈ [0, T],

h(s(t), u(t)) ≤ 0, t ∈ [0, T],

r(s(T)) ≤ 0.

(2.67)

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 27

Notice that, although we could in principle regard general formulations with,
e.g., algebraic variables and constraints and free terminal time, we will restrict
our attention to this formulation in order to ease the presentation of the key
concepts.

The main idea behind direct methods is to transform the infinite dimensional
problem (2.67) into a much simpler to solve finite dimensional nonlinear
program whose solution provides an approximation to the solution of the
original continuous-time formulation. This is achieved by employing a finite
dimensional parametrization of the control trajectories u(t) with parameter q.
Among other options, this can be done by choosing a piece-wise constant or
piece-wise polynomial parametrization of the control trajectories. For example,
if a piece-wise constant parametrization over N − 1 time intervals defined by
the time grid 0 = t0 < t1 < · · · < tN is chosen, we obtain:

u(t, q) = qi, t ∈ [ti, ti+1), for i = 0, . . . , N − 1, (2.68)

where q = (q0, . . . , qN−1) ∈ RN ·nu fully characterizes the input trajectories.

As we will see in the following, there are three main direct methods which all
exploit this general concept: direct single shooting, direct multiple shooting and
direct collocation.

Direct single shooting

In direct single shooting, the states s(t), for t ∈ [0, T] and for a given initial
condition s(0) = x, are regarded as a function of the input u(t, q) and the path
constraints are evaluated at a finite number of points in time (usually on the
same points as the ones specified by the time grid used to parametrize the
control trajectories) such that the optimal control problem can be written as

min
q∈RN·nu

∫ T

0
L(s(τ, q), u(τ, q))dτ +m(s(T, q))

s.t. h(s(ti, q), u(ti, q)) ≤ 0, i = 0, . . . , N − 1,

r(s(T, q)) ≤ 0.

(2.69)

On the one side, as shown in Figure 2.3, due to the elimination of the
state trajectories, the resulting NLP (2.69) does not exhibit a particularly
advantageous sparsity pattern and general purpose dense NLP solvers can be
used to solve OCP parameterized with direct single shooting. On the other
side, the number of variables involved in the NLPs can be significantly reduced

28 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

0 2 4 6 8

100 non-zeros

0

2

4

6

8

Figure 2.3: Sparsity pattern of the Hessian of the Lagrangian for an NLP
obtained with direct single shooting: in this case no sparsity can be exploited.

through this elimination, which can in some cases result beneficial from a
computational point of view.

However, one can in general expect that the benefits of such a reduction in
problem dimensionality loose their impact on computation times as the number
of grid points N increases. In fact, as we will see, other methods that do not
eliminate the state trajectories, lead to NLPs with increased sparsity and a
structured sparsity pattern that can be leveraged by either general purpose
sparse solvers or tailored structure exploiting solvers, respectively. A second
major drawback of the direct single shooting method lies in the fact that
high sensitivity to initialization and numerical difficulties in general can be
encountered when solving OCPs involving highly nonlinear and unstable systems.
In fact the function s(t, q) can become increasingly nonlinear in q for larger
and larger values of t. As an informal explanation of this fact, if one was to
discretize the underlying ODE with explicit Euler with step-size δ, the resulting
numerical approximation of s(ti, q) with i > 1, for a given initial condition
s(0) = x and a given q would read

s(ti, q) = x+ δ · φ(x, q) + δ · φ(x+ δ · φ(x, q), q) + . . . , (2.70)

which shows that compositions of φ with itself appear in the expression for
s(ti, q). This simple observation can provide an intuitive, although informal,

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 29

explanation of why the direct single shooting method can exhibit inferior
numerical performance if compared to other direct methods, namely direct
multiple shooting and direct collocation, that do not eliminate the state
trajectories from the underlying NLP.

Direct multiple shooting

The numerical difficulties associated with direct single shooting can, to some
extent, be circumvented by using the direct multiple shooting method which
was first introduced in [Bock and Plitt, 1984]. The key idea in direct multiple
shooting is linked to our observation that an integration of the system’s
dynamics over a long time can lead to highly nonlinear problems. In order to
avoid integration from t = 0 to t = T the state trajectories are “sliced” into
shorter segments and continuity of the trajectory is enforced through continuity
conditions. This is achieved by introducing additional intermediate variables
si for i = 0, . . . , N associated with the value of the state trajectories at the
so-called shooting notes (which usually coincide with the points defined by the
time grid used to parametrize the input trajectories). If, for example, a piece-
wise parametrization of the input trajectories is chosen, we obtain a distinct
initial value problem of the following form for each i = 0, . . . , N − 1:

ψ̇i(t, si, qi) = φ(ψi(t, si, qi), qi), t ∈ [ti, ti+1]

ψi(ti, si, qi) = si.
(2.71)

Together with the numerically computed integrals

li(si, qi) :=
∫ ti+1

ti

L(ψi(τ, si, qi), qi)dτ, for i = 0, . . . , N − 1 (2.72)

and the continuity conditions si+1 = ψi(ti+1, si, qi) for i = 0, . . . , N − 1, we
obtain the following NLP:

min
s0,··· ,sN
q0,··· ,qN−1

N−1∑
i=0

li(si, qi) +m(sN)

s.t. s0 − x = 0

si+1 − ψi(ti+1, si, qi) = 0, i = 0, · · · , N − 1

h(si, qi) ≤ 0, i = 0, · · · , N − 1

r(sN) ≤ 0.

(2.73)

30 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

0 10 20 30 40

236 non-zeros

0

10

20

30

40

Figure 2.4: Sparsity pattern of the Hessian of the Lagrangian for an NLP
obtained with direct multiple shooting: the matrix has a specific sparsity
pattern that can be leveraged by tailored structure-exploiting solvers.

Although in comparison to (2.69) this NLP involves more optimization
variables it exhibits the favorable sparsity pattern shown in Figure 2.4
that can be leveraged by both general purpose sparse solvers and tailored
structure-exploiting solvers. At the same time, this “lifting” allows us
to mitigate the nonlinearity associated with the propagation of the state
trajectories and to circumvent the numerical issues associated with unstable
dynamics. Apart from this qualitative observations, the direct multiple shooting
method can be interpreted as a lifted Newton’s method, which, as shown in
[Albersmeyer and Diehl, 2010], can often achieve better local contraction with
respect to the Newton’s method applied to the (non-lifted) formulations obtained
with direct single shooting.

Direct collocation

The direct collocation method brings the concept of lifting one step further
by embedding the nonlinear equations associated with the chosen integration
method into the NLP in order to obtain an even larger and sparser structured

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 31

problem of the form

min
s0,...,sN
q0,...,qN−1
v0,...,vN−1

N−1∑
i=0

li(si, qi)+m(sN)

s.t. s0 − x = 0,

ϕ(si, qi, vi) = 0, i = 0, . . . , N − 1,

si + Cvi − si+1 = 0, i = 0, . . . , N − 1,

h(si, ui) ≤ 0, i = 0, . . . , N − 1,

r(sN) ≤ 0,

(2.74)

where v ∈ Rnv are the variables associated with the integration method. The
equation ϕ(si, qi, vi) = 0 represents the collocation equations

ϕ(si, qi, vi) :=

φ(si + Tint
∑d
k=1 a1,kv

k
i , qi)

...
φ(si + Tint

∑d
k=1 ad,kv

k
i , qi)

−
v

1
i
...
vdi

 (2.75)

associated with the shooting node i, where d denotes the number of collocation
nodes and the scalars ai,j with i, j = 1, . . . , d are the coefficients of the collocation
method. The integration step size is represented by Tint and C in (2.74) is a
constant matrix that depends on Tint and the collocation nodes.

Numerical methods that can exploit the specific structure arising from the
application of the direct collocation method can be found, for example, in
[Steinbach, 1996] and [Quirynen et al., 2015].

2.2.3 Model predictive control

Nonlinear model predictive control (NMPC) is an optimization-based control
strategy that relies on the solution of optimal control problems in order to
compute a feedback policy. Due to the considerable computational burden
associated with the solution of such optimal control problems, NMPC has
first found application in fields where the sampling times are generally long
enough to carry out the required computations. In particular, since the 1970s,
successful applications of NMPC have been reported in the process control
industry [Rawlings et al., 2017].

32 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

In more recent years, due to the significant progress made in the development
of efficient algorithms and software implementations and due to the increasing
computational power available on embedded control units, NMPC has gradually
become a viable strategy for applications with much shorter sampling times.
Among others, we report on recent applications such as [Zanelli et al., 2021a],
[Albin et al., 2017] and [Besselmann et al., 2015], where sampling times in the
milli- and microsecond range are met.

Although numerical solution with direct methods is the main approach of interest
within the context of this thesis (and arguably one of the most widespread
approaches in general), in this section we will abstract away from the numerical
and computational aspects and focus instead on system theoretic considerations.
In particular, we are interested in addressing the non trivial question of under
which assumptions the NMPC feedback law stabilizes the system to be controlled.
Such policy will be regarded as the solution to a discrete-time optimal control
problem of the following form:

min
s0,··· ,sN

u0,··· ,uN−1

N−1∑
i=0

l(si, ui) +m(sN)

s.t. s0 − x = 0

si+1 − ψ(si, ui) = 0, i = 0, · · · , N − 1

h(si, ui) ≤ 0, i = 0, · · · , N − 1

r(sN) ≤ 0,

(2.76)

where, for simplicity, we have assumed that the cost term l, the dynamics ψ
and the constraints h do not vary along the prediction horizon. We will denote
by ȳ(x) the solution map of (2.76) and by ū(x) := Mu,y ȳ(x), for some matrix
Mu,y of appropriate dimensions, the associated feedback policy. The main idea
behind NMPC lies in, at every sampling time, solving an instance of (2.76)
with x equal to the current (measured or estimated) state of the system and
applying the first “move” in the optimal input trajectory to the system, thus
obtaining the following closed-loop dynamics:

xnext = ψ(x, ū(x)). (2.77)

In the following section, before introducing some fundamental definitions and
results on stability theory, we report a rather standard result on stability of
tracking NMPC adapted from [Rawlings et al., 2017].

Remark 2.2.6. Although stability results for more general NMPC set-
tings with, e.g., time-varying costs are present in the literature (see, e.g.,

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 33

[Rawlings et al., 2017]), we restrict our attention to this setting which is
the most common and most interesting within the scope of this introductory
discussion of the stability theory for NMPC. In Chapter 5, we will address a
specific class of problems with stage-varying (as opposed to time-varying) costs
and constraints, namely the class of progressively tightening formulations, for
which it is possible to derive stability guarantees.

2.2.4 Stability theory

In this section, we introduce some fundamental definitions and results on stability
theory that will be used to address stability of closed-loop systems controlled
with NMPC. Most of the contents of this section comply with the definitions in
[Rawlings et al., 2017, Appendix B]. In particular, we are interested in assessing
system theoretic properties of an autonomous system of the form

x+ = ψ(x) (2.78)

with state x ∈ Rnx and dynamics ψ : Rnx → Rnx . The first fundamental concept
required to define the properties of interest is the concept of equilibrium.

Definition 2.2.7 (Equilibrium). A point x∗ is said to be an equilibrium point
for x+ = ψ(x) if ψ(x∗) = x∗.

Loosely speaking, we would like the trajectories of the autonomous system
(2.78) to be well behaved in the sense that small perturbations to the initial
condition do not lead to large variations in the future values of the state and,
potentially, that, after a perturbation, the state trajectories converge back to
the equilibrium under consideration.

In certain situations it might be useful to refer to stability and convergence to a
set, which we will call a positive invariant, rather than to an equilibrium point.

Definition 2.2.8 (Positive invariant set). A positive invariant set for the
dynamics x+ = ψ(x) is a closed set A such that x ∈ A =⇒ ψ(x) ∈ A.

The following definitions will be useful to introduce the concept of Lyapunov
function, which is a key mathematical tool for the characterization of stability
properties of dynamical systems.

Definition 2.2.9 (K, K∞, KL and PD functions). We call α : R+ → R+ a K
function if it is continuous, zero at zero, i.e., α(0) = 0, and strictly increasing.
We say that α belongs to class K∞ if it is a K function and additionally
lims→∞ α(s) =∞. We call β : R+× I+ → R+ a KL function if it is continuous

34 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

and if, for any t ≥ 0, β(·, t) is a K function and, for any s ≥ 0, β(s, ·) is
nonincreasing and satisfies limt→∞ β(s, t) = 0. Finally, we call γ : R→ R+ a
PD function if it is zero at zero, i.e, γ(0) = 0, and positive anywhere else.

We are now ready to introduce the definitions of stability, attractivity and their
variants. We will assume that ψ is locally bounded and that A is a closed and
positive invariant set for x+ = ψ(x) for the rest of this section.

Definition 2.2.10 (Local stability). For a given initial condition x, let φ(k;x) :
I+ × Rnx → Rnx denote the value of the state of system (2.78) after k time
instants, i.e.,

φ(0, x) = x

φ(1, x) = ψ(x)

φ(2, x) = ψ(ψ(x))

...

(2.79)

The (closed and positive invariant) set A is locally stable for x+ = ψ(x) if, for
any ε > 0, there exists a δ > 0 such that |x|A < δ implies that |φ(k;x)|A < ε
for all k > 0.

Remark 2.2.11. Notice that the definition of local stability involves an ε− δ
argument that closely resembles one used in the definition of continuity of a
function. In fact, interestingly, we could say that local stability is equivalent
to continuity of the map x → x := {x, φ(1, x), φ(2, x), . . . } at the equilibrium
under analysis.

Definition 2.2.12 (Attractivity). The (closed, positive invariant) set A is said
to be globally attractive for x+ = ψ(x) if, for any x ∈ Rnx , limk→∞ |φ(k, x)|A =
0. Similarly, we say that A is locally attractive for x+ = ψ(x) if there exists a
constant η > 0 such that |x|A < η implies limk→∞ |φ(k, x)|A = 0.

Definition 2.2.13 (Asymptotic stability). The (closed, positive invariant) set
A is said to be globally asymptotically stable for x+ = ψ(x), if it is locally stable
and globally attractive. Similarly, we say that A is locally asymptotically stable
if it is locally stable and locally attractive.

In order to assess the stability properties of a dynamical system, rather than
verifying that it satisfies the ε − δ property, we rely on Lyapunov theory. In
particular, if a function can be found that satisfies certain “dissipation-like”
properties, then we are able to prove asymptotic stability of the system under
analysis.

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 35

Definition 2.2.14 (Lyapunov function). Let X be a positive invariant set and
A a closed positive invariant set for x+ = ψ(x). Assume that ψ is locally
bounded. We call V : X → R+ a Lyapunov function for x+ = ψ(x) in X if
there exist functions α1, α2 ∈ K∞ and a continuous function α3 ∈ PD such that

α1 (|x|A) ≤ V (x) ≤ α2(|x|A), (2.80a)

V (ψ(x))− V (x) ≤ −α3(|x|A) (2.80b)

hold for any x ∈ X.

The following fundamental theorem shows that we can use Lyapunov functions
to certify asymptotic stability of a dynamical system.

Theorem 2.2.15 (Theorem B.13, [Rawlings et al., 2017]). Let X be a positive
invariant set and A a closed and positive invariant set for x+ = ψ(x) and assume
that ψ is locally bounded. If V is a Lyapunov function in X for x+ = ψ(x) and
A, then A is globally asymptotically stable.

2.2.5 Stability of tracking NMPC

In this section we summarize a standard result on stability of tracking NMPC
which lies the basis for the stability proofs derived in Chapters 3, 4 and 5. In
particular, the result exploits Theorem 2.2.15 in the sense that it shows that,
under reasonable and rather general assumptions, the optimal cost associated
with problem (2.76) is a Lyapunov function for the closed-loop system.

To this end, and with reference to (2.76), let Z := {(s, u) ∈ Rnx×Rnu |h(s, u) ≤
0}, U(s) := {u ∈ Rnu | (s, u) ∈ Z}, X := {s ∈ Rnx |U(s) 6= ∅} and Xf := {s ∈
Rnx | r(s) ≤ 0}. Moreover, let X̄ ⊆ X denote the set containing all the x for
which (2.76) has a solution. We require the following Assumptions to hold:

Assumption 2.2.16 (Continuity of system and cost). Assume that the origin
is a steady state with ψ(0, 0) = 0, l(0, 0) = 0, and m(0) = 0. Moreover, assume
that l and h, m, ψ, r and are continuous.

Assumption 2.2.17 (Properties of constraint sets). The set Z is closed and
the set U(s) is compact and uniformly bounded in X. The set Xf ⊆ X is compact
and each set contains the origin.

Assumption 2.2.18 (Basic stability assumption). The terminal cost m, the
set Xf and the cost term l satisfy the following properties:

36 BACKGROUND ON NUMERICAL OPTIMIZATION AND PREDICTIVE CONTROL

1. For all x ∈ Xf , there exists a u, such that (x, u) ∈ Z, satisfying

ψ(x, u) ∈ Xf ,

m(ψ(x, u))−m(x) ≤ −l(x, u).

2. There exists a K∞ function αl such that

l(x, u) ≥ αl(‖x‖), ∀x ∈ X̄,

for any u such that (x, u) is in Z.

Assumption 2.2.19 (Weak controllability). There exists a K∞ function α2(·)
such that, for the optimal cost associated with (2.76)

V (x) :=
N−1∑
i=0

l(s̄i(x), ūi(x)) +m(s̄N (x)), (2.81)

the following holds:
V (x) ≤ α2(‖x‖),∀x ∈ X̄. (2.82)

Under the requirement that Assumptions 2.2.16, 2.2.17, 2.2.18 and 2.2.19 hold,
the main stability result can be derived. In particular, it can be shown that V (x)
is a Lyapunov function for the closed-loop system obtained by controlling the
system with the optimal feedback law Mu,y ȳ(x) in a receding horizon fashion
[Rawlings et al., 2017]:

Theorem 2.2.20 (Asymptotic stability of NMPC). Suppose that Assumptions
2.2.16, 2.2.17, 2.2.18 and 2.2.19 are satisfied. Then the following hold:

1. There exist K∞ functions α1(·) and α2(·) and a positive definite function
α3(·) such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2.83a)

V (ψ(x,Mu,y ȳ(x)))− V (x) ≤ −α3(‖x‖), (2.83b)

for all x ∈ X̄.

2. The origin x = 0 is an asymptotically stable equilibrium with attraction
region X̄ for the closed-loop system.

NUMERICAL OPTIMAL CONTROL AND MODEL PREDICTIVE CONTROL 37

Proof. First, it is necessary to identify valid candidates for the functions α1(·)
and α2(·) such that the inequality (2.83a) is satisfied. The fact that a K∞
function α2(·) exists such that

V (x) ≤ α2(‖x‖), ∀x ∈ X̄

is a direct consequence of Assumption 2.2.19. Due to Assumption 2.2.18, we
have

V (x) ≥ l(x, ū(x)) ≥ αl(‖x‖), ∀x ∈ X̄,

for any u such that (x, u) is in Z, which implies that α1(·) = αl(·) can be used.

Second, it is necessary to show that the decrease property in (2.83b) holds. To
this end, consider the following feasible control and state sequences obtained by
shifting the solution to (2.76) for a given x:

ũ = {ū1(x), . . . , ūN−1(x), ũN}

and
s̃ = {s̄1(x), . . . , ψ(s̄N (x), ũN)},

where ũN is any feasible control action that guarantees that ψ(s̄N (x), ũN) ∈ Xf .
Such a control action ũN is guaranteed to exist by Assumption 2.2.18. We
introduce the cost associated with the suboptimal sequences ũ and s̃

Ṽ (s̃, ũ) :=
N∑
i=1

l(s̄i(x), ūi(x)) +m(ψ(s̄N (x), ũN))

= V (x)− l(x, ū0(x)) + l(s̄N (x), ũN)

−m(s̄N (x)) +m(ψ(s̄N (x), ũN))

and, due to Assumption 2.2.18 together with the fact that (s̃, ũ) is a feasible,
but suboptimal solution, we obtain that

V (ψ(x, ū0(x))) ≤ Ṽ (s̃, ũ) ≤ V (x)− l(x, ū0(x)). (2.84)

This last inequality shows that (2.83b) holds with α3(·) = αl(·).
Finally, in order to conclude the proof, Theorem 2.2.15 can be used. The set X̄
can be shown to be positive invariant for the closed-loop system following the
arguments in the proof of [Rawlings et al., 2017, Proposition 2.10(b)]. Moreover,
inequalities (2.80a) and (2.80b) are trivially satisfied through (2.83a) and (2.83b).
This implies that Theorem 2.2.15 can be applied and the origin can be shown
to be asymptotically stable in X̄.

Chapter 3

Asymptotic stability of the
system-optimizer dynamics in
NMPC

NMPC applications with high sampling rates often rely on approximate feedback
policies in order to meet the required computation times. Among other
approaches, the real-time iteration (RTI) strategy proposed in [Diehl, 2002]
exploits a single iteration of a sequential quadratic programming programming
(SQP) algorithm in order to compute an approximate solution of the current
instance of the nonlinear parametric optimization problem. By using this
solution to warmstart the SQP algorithm at the next sampling time, it is
possible to track an optimal solution and eventually converge to it, as the
system is steered to a steady state [Diehl et al., 2005]. In this chapter, we
analyze RTI-like methods for nonlinear model predictive control (NMPC) that
rely on a limited number of iterations to compute an approximate solution to
the underlying parametric nonlinear programs. Loosely speaking, the main
challenge present in real-time approaches lies in the fact that the dynamics
of the system and the ones of the optimizer interact with each other in a
non-trivial way. A formal definition of the system-optimizer dynamics requires
the introduction of several concepts that we delay to Section 3.2. However, we
can picture a setting in which

x+ = ψ(T ;x, u) (3.1)

describes the discrete-time dynamics of the system to be controlled, where T
denotes the sampling time, x the state of the system, and u the input applied

39

40 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Figure 3.1: Coupled system-optimizer dynamics ξ+ = Φ(T ; ξ): when a limited
number of iterations of the optimization algorithm are carried out in order to
obtain an approximate solution that is then used to control the system, the
system’s and the optimizer’s dynamics interact with one another.

to it. Similarly,
z+ = ϕ(x, z) (3.2)

denotes the dynamics of the optimizer, where z and x describe the iterates and
the parameter of the underlying (potentially) nonconvex programs, respectively.
Whenever the global minimizer to the nonconvex programs is used to control the
system, standard stability results hold for the closed-loop dynamics. However,
when using a real-time method, a limited number of iterations described by
(3.2) are carried out. For a given state x and an approximate primal-dual
solution z, the system is controlled using the control u = Mu,zz, where Mu,z

is a constant matrix, and, after the sampling time T , its state is steered to
x+ = ψ(T ;x,Mu,zz). Analogously, the optimizer generates a new approximate
solution z+ = ϕ(ψ(T ;x,Mu,zz), z). We will refer to these coupled dynamics,
with state ξ = (x, z), as ξ+ = Φ(T ; ξ), which will be defined later in the chapter.
The system-optimizer interaction is visualized in Figure 3.1. The main focus of
the results presented in this chapter is the stability analysis of ξ+ = Φ(T ; ξ) for
general real-time methods.

Related work

Attractivity proofs for the RTI strategy in slightly different settings, and
under the assumption that inequalities are either absent or inactive in a
neighborhood of the equilibrium, are presented in [Diehl et al., 2005] and
[Diehl et al., 2007]. In the same spirit, similar algorithms that rely on a
limited number of iterations are present in the literature and, in the following,

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 41

we give an overview of such approaches. In [Graichen and Kugi, 2010] a
general framework that covers methods with linear contraction in the objective
function value is analyzed and an asymptotic stability proof is provided.
The recent work of [Liao-McPherson et al., 2019] addresses a more general
setting where an SQP algorithm is used. A proof of local input-to-state
stability is provided based on the assumption that a sufficiently high number of
iterations is carried out per sampling time. In the convex setting, the works
in [Feller and Ebenbauer, 2017] and [Van Parys and Pipeleers, 2018] introduce
stability results for relaxed barrier anytime methods and real-time projected
gradient methods, respectively. Finally, the works in [Scokaert et al., 1999],
[Pannocchia et al., 2011] and [Allan et al., 2017], analyze conditions under
which suboptimal NMPC is stabilizing given that a feasible warmstart is
available.

Outline

The chapter is structured as follows. Section 3.1 is based on [Zanelli et al., 2019b]
and presents general contraction estimates for a broad class of real-time algo-
rithms. Section 3.2 is based on [Zanelli et al., 2021b] and [Zanelli et al., 2020]
and introduces extensions to the results in [Diehl et al., 2005, Diehl et al., 2007].
Namely, it introduces a proof of asymptotic stability for a general setting with
two fundamental ingredients i) a Lyapunov function for the ideal closed-loop
system ii) a solver whose iterates converge Q-linearly to the ideal policy. Under
these assumptions, it is shown that, for sufficiently short sampling times, we can
explicitly construct a Lyapunov function and hence prove asymptotic stability
of the system-optimizer dynamics.

3.1 Contraction estimates for real-time methods

Before studying the interaction between the system and optimizer dynamics from
a system theoretic point of view, we will focus our attention on the optimizer
dynamics. In this section, we derive a general contraction estimate for a class of
algorithms that can be used in the context of NMPC to compute approximate
and computationally cheap feedback policies. The main idea lies in performing
a small number or, in the limit, a single iteration of a Q-linearly convergent
algorithm in order to trade control performance for computational speed. In
this way, we aim at generalizing existing results based on specific settings. We
derive a contraction estimate that provides a bound on the numerical error
incurred when using such strategies under the assumption of Robinson’s strong
regularity of the underlying generalized equation. Moreover, we show that

42 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

several algorithms fall in the class to which our results are applicable. Finally,
we present a numerical example where, using one of the proposed real-time
methods, a speedup of more than an order of magnitude can be obtained, at
the cost of moderate closed-loop suboptimality.

3.1.1 Real-time methods and the real-time dilemma

The results derived in Section 3.1.2 are not specific to optimal control. However,
a motivation for practical usefulness of the algorithms described in this section
lies in the fact that in NMPC one might be interested in obtaining approximate
solutions within shorter computation times, rather than accurate ones within
longer computation times. This consideration is a consequence of the fact
that the solution to the nonconvex program based on the latest available state
estimate might become excessively outdated if we dedicate too much time to
its computation as the true state of the system evolves in time. The RTI is a
specific strategy that addresses this issue. The main concept used in the RTI is
based on numerical continuation ideas (see, e.g., [Allgower and Georg, 1990]):
under proper regularity assumptions, we can track the parametric optimal
solution with a limited number of iterations of the optimizer.

Although a complete survey of approaches that exploit similar ideas is well
beyond the scope of this section, in the following, we mention a few strategies
that make use of similar concepts. The work in [Diehl, 2001, Diehl et al., 2002a,
Diehl et al., 2003, Diehl et al., 2007] focuses on convergence and attractivity
properties of Newton-type methods under the assumption of stable active
set. In [Tran-Dinh et al., 2012] and [Zavala and Anitescu, 2010], based on the
framework of strongly regular generalized equations, contraction results are
obtained for path-following sequential convex programming and truncated
Newton-type methods, respectively. Results in the same spirit are derived in
[Graichen and Kugi, 2010] for linearly convergent and feasible iterates. Finally,
for linear systems, recent results have been obtained using relaxed barrier
formulations [Feller and Ebenbauer, 2016] and the projected gradient method
[Van Parys and Pipeleers, 2018]. All of the above mentioned methods aim at
tracking the parametric optimal solution with a limited number of iterations.
We will refer to these methods as real-time methods in order to make an explicit
connection at the semantic level with the well known RTI strategy. Although
results on contraction properties for real-time algorithms have been derived for
specific settings, we aim at providing general results that can be applied to a
broad class of algorithms.

In particular, we regard methods that generate Q-linearly convergent iterates
in a neighborhood of the solution. Under the assumption of strong regularity

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 43

[Robinson, 1980], we derive bounds for the numerical error attained when a
single iteration of the abstract method is applied per sampling time in a real-
time setting. The results obtained in this way do not depend on the assumption
of a fixed active set across iterates and can be interpreted as extensions to
the works in [Tran-Dinh et al., 2012] and [Zavala and Anitescu, 2010], where
similar contractions have been obtained for sequential convex programming
and truncated exact Newton algorithms, respectively. We emphasize that the
proposed framework is independent of the numerical method used to solve the
NLPs as we only require that it has at least local Q-linear convergence rate in
a generic semi-norm. The abstraction from a specific numerical method both
simplifies the results and provides more general estimates that can be applied
to several algorithms.

3.1.2 Contraction estimates

In order to derive the contraction estimates, we will regard the following
parametric optimization problem:

P (x) :

min
y

f(y)

s.t. g(y) + Ĉx = 0,

y ∈ Ω,

(3.3)

where y ∈ Rn, Ω ⊆ Rn is a nonempty, closed and convex set, the functions
f : Rn → R and g : Rn → Rng are twice continuously differentiable functions,
x ∈ Rnx is a parameter and Ĉ ∈ Rng×nx .

Remark 3.1.1. Notice that the optimal control problem in (2.76) can be easily
reformulated into (3.3) by properly defining f , g, Ĉ and Ω. Although the results
derived in this section do not rely on the specific formulation in (2.76), we will
make considerations specific to NMPC in Section 3.1.4.

Following the reformulation introduced in Section 2.1.2, we rework the first-order
optimality conditions of (3.3) as the generalized equation

0 ∈ F (z) + Cx+NK(z), (3.4)

where C := [0 Ĉ>]>.

Let Z̄(x) be the set of KKT points satisfying (3.4) for a given x. In order to be
able to refer to a well-behaved “branch” of the solution map, as illustrated in
Figure 3.2, we will make the following assumption.

44 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Figure 3.2: Illustration of Assumption 3.1.2 and Lemma 3.1.5. Our setting does
not require that Z̄ is single-valued, but rather that there exists a single-valued
and Lipschitz continuous localization z̄ of the solution map. For sufficiently
small changes in the parameter, any z within a ball of radius rz centered at
z̄(x) leads to a warmstart that is at most r̂z “distant” from z̄(x+) such that
contraction (3.7) can be applied.

Assumption 3.1.2. There exist a single-valued localization z̄ : Rnx → Rnz of
the solution map of (3.4) and a non-empty set X such that, for all x ∈ X, (3.4)
is strongly regular at z̄(x).

Proposition 3.1.3 (Lemma 3.3, [Tran-Dinh et al., 2012]). Let Assumption
3.1.2 hold. Then, there exist positive constants r̃x and r̃z such that, for any x
in X and any x′ ∈ B(x, r̃x), Z̄(x′) ∩ B(z̄(x), r̃z) contains a single point z̄(x′).
Moreover, there exists γ̃ > 0 such that the following holds:

‖z̄(x′)− z̄(x)‖ ≤ γ̃ ‖x′ − x‖ . (3.5)

Let P be a symmetric positive semidefinite matrix. We define a semi-norm:

‖z‖
P

:=
(
z>Pz

) 1
2 (3.6)

and denote balls defined using the above semi-norm by B
P

(·, ·). Moreover, we
define the constant γ := σmax(P) γ̃.

Our goal is to provide a unified framework to analyze real-time methods for
the parametric problem (3.3), which is independent of the numerical strategy

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 45

used to solve the underlying NLP associated with each parameter value x. To
this end, we require the use of methods to compute solutions of (3.4) at x
that have at least local Q-linear convergence rate in the semi-norm ‖ · ‖P as
stated in Assumption 3.1.4. Loosely speaking, the use of semi-norms allows for
a treatment of algorithms which only provide contraction in a subspace of the
space of the iterates.

Assumption 3.1.4. There exists a radius r̂z such that, for any x ∈ X, and
any z in B

P
(z̄(x), r̂z), the optimization routine can produce z+ such that

‖z+ − z̄(x)‖
P
≤ κ ‖z − z̄(x)‖

P
+ ω

2 ‖z − z̄(x)‖2
P
, (3.7)

for some positive constants 0 ≤ κ < 1 and 0 ≤ ω <∞.

Lemma 3.1.5. Let Assumptions 3.1.2 and 3.1.4 hold, then there exist strictly
positive constants rz and rx, such that, for any x ∈ X, any z in B

P
(z̄(x), rz),

and any x+ in B(x, rx) ∩X, the following holds:

‖z+ − z̄(x+)‖
P
≤ κ ‖z − z̄(x)‖

P
+ ω

2 ‖z − z̄(x)‖2
P

+ γκ ‖x+ − x‖ + ωγ2

2 ‖x+ − x‖2

+ ωγ ‖z − z̄(x)‖
P
‖x+ − x‖ .

(3.8)

Proof. First, we show that, for sufficiently small rx > 0 and rz > 0, for any
x ∈ X and any z in B

P
(z̄(x), rz), we can guarantee that ‖z − z̄(x+)‖

P
≤ r̂z.

This, together with the fact that x+ ∈ B(x, rx) ∩X, and hence x+ ∈ X, allows
us to apply the contraction from Assumption 3.1.4 at z̄(x+). Since

‖z − z̄(x+)‖
P
≤ ‖z − z̄(x)‖

P
+ ‖z̄(x+)− z̄(x)‖

P

≤ ‖z − z̄(x)‖
P

+ σmax(P)‖z̄(x+)− z̄(x)‖

≤ ‖z − z̄(x)‖
P

+ σmax(P)γ̃‖x+ − x‖

≤ rz + γrx,

(3.9)

by choosing rz ≤ r̂z − γrx, with rx < min{r̃x, r̂zγ }, we can ensure that z ∈
B
P

(z̄(x+), r̂z) for any z ∈ BP (z̄(x), rz) and x+ ∈ B(x, rx). Then, by Assumption
3.1.4, for any z in B

P
(z̄(x+), r̂z), we can write

‖z+ − z̄(x+)‖
P
≤ κ ‖z − z̄(x+)‖

P
+ ω

2 ‖z − z̄(x+)‖2
P
. (3.10)

46 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Using the triangle inequality we obtain

‖z − z̄(x+)‖
P

= ‖z + z̄(x)− z̄(x)− z̄(x+)‖
P

≤ ‖z − z̄(x)‖
P

+ ‖z̄(x)− z̄(x+)‖
P
.

Plugging this into (3.10), and using (3.5) and the fact that ‖ · ‖
P
≤ σmax(P)‖ · ‖,

we obtain that

‖z+ − z̄(x+)‖
P
≤κ ‖z − z̄(x)‖

P
+ ω

2 ‖z − z̄(x)‖2
P

+ γκ ‖x+ − x‖ + ωγ2

2 ‖x+ − x‖2

+ ωγ ‖z − z̄(x)‖
P
‖x+ − x‖

holds, for any x+ in B(x, r̃x)∩X and any z ∈ B
P

(z̄(x+), r̂z). It follows that the
above contraction holds for any z in B

P
(z̄(x), rz), and any x+ in B(x, rx) ∩X,

which concludes the proof.

Lemma 3.1.5 shows that, for sufficiently small changes in the value of the
parameter x, contraction of the iterates can be preserved. This property is of
great help in the context of real-time methods and, as we will see in Section
3.1.4, in the context of NMPC in particular. In fact, thanks to Lemma 3.1.5, we
can guarantee that the contraction of a method employed to approximately solve
the nonlinear programs is not lost if we perform a single iteration per problem
instance. Moreover, the following theorem shows that we can guarantee that
certain bounds on the numerical error can be satisfied under the assumption
that the parameter variation ‖x+ − x‖ is sufficiently small.

Theorem 3.1.6. Let Assumptions 3.1.2 and 3.1.4 hold. There exists a positive
constant 0 < rsx < rx (cf. Lemma 3.1.5), such that, for any x, x+ ∈ X, if
‖x+ − x‖ ≤ rsx and ‖z − z̄(x)‖

P
≤ rz, then

‖z+ − z̄+‖P ≤ rz. (3.11)

Proof. Since ‖z − z̄(x)‖
P
≤ rz and ‖x+ − x‖ ≤ rsx, the following holds:

‖z+ − z̄(x+)‖
P
≤ κrz + ω

2 r
2
z + γκrsx + ωγ2

2 (rsx)2 + ωγrzr
s
x.

In order to ensure that ‖z+ − z̄(x+)‖
P
≤ rz, it suffices to choose

rsx <
1
ωγ2

(
− γ(κ+ ωrz) +

√
γ2(κ+ ωrz)2 − ωγ2(2(κ− 1) + ωrz)

)

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 47

if ωγ
2

2 > 0, and

rsx <
rz(2(1− κ)− ωrz)

2γ(κ+ ωrz)
, (3.12)

if ωγ
2

2 = 0, which concludes the proof.

3.1.3 Concrete real-time algorithms

In this section, concrete examples of real-time algorithms that satisfy
Assumption 3.1.4 are given. Apart from the obvious choice of generalized
Newton-type methods analyzed in Section 2.1.3, we list below two substantially
different algorithms that are covered by the framework under analysis.

Alternating direction method of multipliers

Although the contraction estimates derived in Section 3.1.2 can be applied to
general parametric nonconvex programs, we focus in the following on parametric
convex programs that arise from (2.76) and can be formulated as follows:

min
v,w

f̂(v) + ĝ(w)

s.t. Av +Bw + Ĉx = c,

(3.13)

with variables v ∈ Rnv and w ∈ Rnw . Here we have introduced the matrices A ∈
Rnc×nv and B ∈ Rnc×nw and the vector c ∈ Rnc . Problems of this form arise
from (2.76) when considering linear dynamics, expressed as Av +Bw + Ĉx = c

and convex constraints and objectives that can be included in f̂(v) + ĝ(w) by
means of indicator functions.

We regard the alternating direction method of multipliers (ADMM) and report
a slightly adapted version of the result from [Nishihara et al., 2015] that leads
to Q-linear convergence to a solution z̄(x) := (v̄(x), w̄(x), t̄(x)). The ADMM
variant analyzed in [Nishihara et al., 2015] is described in Algorithm 1. In order
to make use of the Q-linear convergence result in [Nishihara et al., 2015], we
make the following assumption:

Assumption 3.1.7. Assume that f̂ : Rnv → R is strongly convex and Lipschitz,
ĝ : Rnw → R ∪ {+∞} is convex, A is invertible and B has full column rank.
Moreover, assume that there exists a nonempty closed set X, such that, for any
x ∈ X, (3.13) has a solution.

48 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

In order to apply Theorem 3.1.6 to (3.13), we regard z := (v, w, t),
concatenating primal and dual variables, and we denote the corresponding
semi-norm as

‖z‖2
P

:=
[
Bw
t

]>
P̃

[
Bw
t

]
,

where P̃ is a symmetric positive-definite matrix. Under this setting, we can
prove the following result.

Proposition 3.1.8 (Q-linear convergence). Let Assumption 3.1.7 and the
Assumptions in [Nishihara et al., 2015, Theorem 6] hold and let z := (w, v, t)
denote the iterates generated by Algorithm 1. Then, there exists a symmetric
positive semi-definite matrix P and a positive constant 0 ≤ τ < 1 such that, for
any z, the following holds:

‖z+ − z̄(x)‖
P
≤ τ‖z − z̄(x)‖

P
. (3.14)

Proof. Define µ := (Bw, t). Then, due to [Nishihara et al., 2015, Theorems
6-7], for any ρ > 0 and any α ∈ (0, 2), it holds that

‖µ+ − µ̄(x)‖2
P̃
≤ τ2‖µ− µ̄(x)‖2

P̃
(3.15)

for some symmetric positive definite matrix P̃ and some τ < 1 and µ̄(x) =
(Bw̄(x), t̄(x)), which implies

‖z+ − z̄(x)‖
P
≤ τ‖z − z̄(x)‖

P
, (3.16)

where P :=
[
0 0
0 B̂>P̃ B̂

]
with B̂ :=

[
B 0
0 I

]
.

Proposition 3.1.9 (Q-linear convergence in Euclidean norm). Assume that
B = Inw and α = 1. Then, the iterate sequence {wk, tk} generated by Algorithm
1 converges Q-linearly in the Euclidean norm.

Proof. Since B is the identity matrix and α = 1, the result follows directly from
[Nishihara et al., 2015, Theorem 6].

Truncated sequential quadratic programming

In the following we outline a second simple Q-convergent strategy which relies on
SQP with inexact solution of the QP subproblems. In particular, it is possible to
show that carrying out a sufficiently high number of iterations of any Q-linearly

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 49

Algorithm 1 Alternating direction method of multipliers
input: functions f̂ and ĝ, matrices A and B, vector c, parameters ρ and α,
and a parameter value x ∈ X.
output: approximate solution (ṽ, w̃, t̃) at x
repeat:

1: vk+1 = arg min
v
f̂(v) + ρ

2‖Av +Bwk + Ĉx− c+ tk‖2

2: wk+1 = arg min
w
ĝ(w) + ρ

2‖αAvk+1 − (1− α)Bwk +Bw + αĈx− αc+ tk‖2

3: tk+1 = tk + αAvk+1 − (1− α)Bwk +Bwk+1 + αĈx− αc
until termination criterion met

Algorithm 2 Q-linearly convergent truncated SQP
input: initial primal-dual point z0

output: approximate solution z0 ≈ z̄
for k = 0, . . . repeat:

1: form subproblem (3.17) based on current iterate zk
2: set ẑ0 = zk

3: solve (3.17) approximately with j? iterations
4: update linearization point zk+1 ← ẑj

?

until termination criterion met

convergent method for convex quadratic programs in between linearizations the
SQP iterates converge Q-linearly to a local solution. More specifically, at every
iterate z, we regard the (potentially regularized) subproblem

0 ∈ F (z) + F̃ ′(z)(ζ − z) + Cx+NK(ζ) (3.17)

with unknown ζ and denote its solution as z̄QP(z). We assume that we dispose
of a method for solving convex QPs that generates iterates {ẑj} with j ∈ N,
such that

‖ẑj − z̄QP(z)‖ ≤ ζj‖ẑ0 − z̄QP(z)‖. (3.18)

Given a linearization point z, we construct the subproblem 3.17 and initialize
the iterates of the QP solver as ẑ0 = z. The subproblem is then approximately
solved with j? iterations and the linearization point is updated accordingly as
z+ = ẑj

? .

The truncated SQP algorithm under consideration is summarized in Algorithm
2. This simple observation allows one not only to readily extend the applicability
of virtually any algorithm for convex QPs to nonconvex programs. In fact it is
also of particular interest in the context of real-time methods in the sense that it
allows one to distribute the computational burden associated with the solution

50 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

of the QP subproblems across iterations. Apart from the fact that this strategy
can be used to obtain methods for nonconvex programs in an extremely simple
way, carrying out inexact computations leads to suboptimality and, as we will
see in the next lemma, worsens the contraction rate. This makes the approach
potentially less interesting for “offline” optimization (or in any situation where
we would like to solve the nonlinear programs to machine precision). However,
in a real-time context, it gives access to algorithms for which contraction rate
can be easily traded for cheaper per-iteration cost such that the approximate
feedback law can be computed within the available time. Moreover, being the
iterates Q-linearly convergent, the results from Lemma 3.1.5 and Theorem 3.1.6,
together with the stability guarantees of the system-optimizer dynamics in
NMPC that will be introduced in Section 3.2 can be easily applied.

Lemma 3.1.10. For a fixed value of x, regard a solution z̄ to (3.4) and assume
that the contraction estimate

‖z̄QP(z)− z̄‖ ≤ κ‖z − z̄‖ (3.19)

holds for any z ∈ B(z̄, rz). Assume that, for any z and any ẑ0, applying j inner
iterations, the contraction

‖ẑj − z̄QP(z)‖ ≤ ζj‖ẑ0 − z̄QP(z)‖, for j = 0, 1, . . . (3.20)

holds. Moreover, assume that j? >
⌈

logζ
(

1−κ
1+κ

)⌉
, ẑ0 = z and z+ = zj

? . Then,

for any z ∈ B(z̄, rz), the following holds:

‖z+ − z̄‖ ≤ κ̃‖z − z̄‖, (3.21)

where κ̃ = (ζj + ζjκ+ κ) < 1.

Proof. The following holds:

‖z+ − z̄‖ ≤ ‖z+ − z̄QP(z)‖ + ‖z̄QP(z)− z̄‖

= ‖zj − z̄QP(z)‖+ ‖z̄QP(z)− z̄‖

≤ ζj‖ẑ0 − z̄QP(z)‖+ ‖z̄QP(z)− z̄‖

≤ ζj‖ẑ0 − z̄‖ + ζj‖z̄QP(z)− z̄‖ + κ‖z − z̄‖

≤ ζj‖ẑ0 − z̄‖ + ζjκ‖z − z̄‖ + κ‖z − z̄‖

= ζj‖z − z̄‖ + ζjκ‖z − z̄‖ + κ‖z − z̄‖

= (ζj + ζjκ+ κ)‖z − z̄‖

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 51

from which we can see that, for ζj < 1−κ
1+κ , contraction takes place. Choosing

j? >

⌈
logζ

(
1−κ
1+κ

)⌉
we recover the contraction stated by the lemma.

Remark 3.1.11. Notice that the result in Lemma 3.1.10 can be easily
generalized to the setting where the subproblems associated with a Q-linearly
convergent method are approximately solved with an algorithm whose iterates
converge Q-linearly. These methods need not be SQP-like methods and, in fact,
need not even be methods to solve nonconvex programs.

3.1.4 Considerations specific to NMPC

The results derived under Assumptions 3.1.2 and 3.1.4, apply to any real-time
algorithm used to solve a parametric optimization problem of the form (3.3). In
this section, we derive consequences of Lemma 3.1.5 and Theorem 3.1.6 specific
to the setting where problem (3.3) stems from an OCP of the form (2.76) to be
solved online in order to control a system. Although the results are not entirely
surprising and have a strong connection with the error bounds proposed, for
example, in [Zavala and Anitescu, 2010] and [Diehl, 2001], they can be useful
in making practical considerations when designing NMPC controllers based on
general real-time algorithms.

First, in the spirit of the considerations made in [Diehl, 2001, Corollary 5.10],
we can use Lemma 3.1.5 to compute bounds on the numerical error incurred if,
due to a disturbance at steady state, the state of the system changes from x to
x+.

Corollary 3.1.12. Assume that the discrete-time system x+ = ψ(x, u) has
reached a steady-state xss associated with the steady-state input uss, i.e., xss =
ψ(xss, uss). Moreover, assume that the iterates have converged to the optimal
solution z̄(xss). Then, if, after a disturbance, the state of the system is x+ ∈
B(xss, rx) ∩X, after one iteration, the following inequality holds:

‖z+ − z̄(x+)‖
P
≤ γκ ‖x+ − xss‖ + ωγ2

2 ‖x+ − xss‖2. (3.22)

Proof. The inequality trivially follows from the result of Lemma 3.1.5 setting
‖z − z̄(xss)‖P = 0.

Corollary 3.1.12 shows that the numerical error will be of second-order in the
state perturbation, when the method has quadratic convergence. Additionally,
we might be interested in analyzing the dependence of the derived contraction
estimates on the underlying sampling time.

52 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Definition 3.1.13. Regard the following IVP:

d
dtψ(t;x, u) = φ(ψ(t;x, u), u),

ψ(0;x, u) = x,

(3.23)

where x denotes the initial conditions, u the constant input applied over the
interval [0, T] and φ defines the continuous-time dynamics. Here, with a slight
abuse of notation, we have added an argument to ψ in order to explicitly state
its dependency on the sampling time.

In the following, we will assume that x+ is associated with the solution to 3.23,
i.e.,

x+ = ψ(T ;x, u). (3.24)

Assumption 3.1.14. Assume that 0 ∈ X and, without loss of generality, let
the origin x = 0, be a steady-state of the discrete time system x associated with
the steady-state input u = 0:

ψ(T ; 0, 0) = 0. (3.25)

Assume that the optimal solution to (2.76) at the origin yields z̄(0) = 0. Let T
denote the sampling time and let positive constants 0 < η <∞ and 0 < θ <∞
exist, such that, for any x in X and any z in B(z̄(x), rz), the following inequality
holds:

‖x+ − x‖ ≤ Tη ‖x‖ + Tθ ‖z − z̄(x)‖ . (3.26)

Remark 3.1.15. Assumption 3.1.14 can be justified using the arguments
reported in Appendix A.1.

Combining Assumption 3.1.14 and the inequality from Theorem 3.1.6, we can
state the following result, where we assume ω = 0, for the sake of simplicity:

Corollary 3.1.16. Let Assumptions 3.1.2, 3.1.4 and 3.1.14 be satisfied.
Moreover, assume that ω = 0 and P = Inz . Then, for any z, such that
‖z − z̄(x)‖ ≤ rz, and any x, x+ ∈ X, with x additionally satisfying

‖x‖ ≤ r̂sx := rsx − Tθrz
Tη

, (3.27)

the following holds:
‖z+ − z̄(x+)‖ ≤ rz. (3.28)

Proof. Using Assumption 3.1.14, we obtain, that the condition

‖x‖ ≤ r̂sx (3.29)

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 53

implies that ‖x+ − x‖ ≤ rsx. Then, the result follows directly from Theorem
3.1.6.

This shows that, for a sufficiently small initial numerical error ‖z− z̄(x)‖, we can
guarantee that, as long as the state remains in a neighborhood of the origin, the
numerical error will be bounded by rz. Moreover, the size of this neighborhood
increases as we shrink the sampling time T .

Corollary 3.1.17. Let Assumptions 3.1.2, 3.1.4 and 3.1.14 hold and let P =
Inz . Then, for any z such that ‖z − z̄(x)‖ = O (T), and any x, x+ ∈ X such
that ‖x+ − x‖ ≤ rsx, the following holds:

‖z+ − z̄(x+)‖ = O (T) . (3.30)

Moreover, if κ = 0 and ‖z − z̄(x)‖ = O
(
T 2), then ‖z+ − z̄(x+)‖ = O

(
T 2).

Proof. The results follow directly from Lemma 3.1.5 by using Assumption 3.1.14
and the fact that ‖z − z̄(x)‖ = O (T) or ‖z − z̄(x)‖ = O

(
T 2), respectively.

The results from Corollary 3.1.17 relate the magnitude of the numer-
ical error to the sampling time T and are analogous to the ones in
[Zavala and Anitescu, 2010]. We intentionally report them here to explicitly
make a connection between the two frameworks and show that they hold for
general real-time methods, too.

3.1.5 Illustrative example

In this section, we focus on an illustrative example involving a Q-linearly
convergent method used as a real-time one. Since results related to Newton-type
methods are relatively widespread in the literature, e.g., in [Diehl et al., 2007],
[Tran-Dinh et al., 2012] and [Zavala and Anitescu, 2010], we intentionally focus
on a different algorithm to highlight the generality of the results derived in
Section 3.1.2.

We will use the real-time version of Algorithm 1, which we will refer to as
RT-ADMM, to compute an approximate linear-quadratic MPC feedback policy
for a permanent magnet synchronous machine (PMSM).

54 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

0.024 0.026 0.028 0.030

0

200

u
d

ud - RT-ADMM
ud - exact

0.024 0.026 0.028 0.030
time [s]

0

2

4

6

i d

Figure 3.3: Comparison of closed-loop trajectories obtained with exact (thick,
grey) and real-time (thin, black) feedback policies. A single iteration of RT-
ADMM (real-time ADMM) is carried out per sampling time. Although a
suboptimal solution is used to control the system, the closed-loop trajectories
are very similar.

The dynamics of the system under consideration can be modelled using a linear
ordinary differential equation as follows:

i̇d = 1
Ld

(−Rsid + ωLqiq + ud)

i̇q = 1
Lq

(−Rsiq − ωLdid − ωψpm + uq) ,
(3.31)

where id, iq, ud and uq denote the currents and voltages, respectively, in the
dq frame. The stator resistance is denoted by Rs, the inductances by Ld and
Lq, the constant flux due to the permanent magnets by ψpm and, finally, ω
represents the constant rotor speed. We formulate a tracking optimal control

CONTRACTION ESTIMATES FOR REAL-TIME METHODS 55

0 100 200 300 400 500 600
iterations

10−5

10−3

10−1

101
‖w
−
w̄

(x
)‖

2

Figure 3.4: Numerical error incurred during the closed-loop simulation. The
plot shows the Euclidean norm of the difference between the approximate primal
solution w and the exact one w̄(x) during a part of the closed-loop simulation
under consideration. Although the numerical error experiences peaks every time
that the reference is changed, contraction is preserved and the suboptimality
decreases with subsequent iterations until the next reference step.

problem as follows:

min
s0,...,sN

u0,...,uN−1

Tf
2N

N−1∑
i=0

siui
1

>H
siui

1

+ 1
2

[
sN
1

]>
HN

[
sN
1

]

s.t. s0 − x = 0,

si+1 = Adsi +Bdui + cd, i = 0, . . . , N − 1,

‖ui‖2 ≤ u2
max, i = 0, . . . , N − 1,

(3.32)

where s and u denote the state and input of the system, respectively, Ad, Bd
and cd define the discretized linear dynamics for a constant speed ω̄ of the
system and where the matrices

H =

Q 0 q
0 R r
q> r> 1

 and HN =
[
QN qN
q>N 1

]
(3.33)

have been used to define the stage, and terminal cost. Notice that, in this
context, assuming ω to be constant is in general a reasonable assumption that

56 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

RT-ADMM-1 RT-ADMM-2 RT-ADMM-3 RT-ADMM-5
rel subopt. 4.82% 3.07% 0.76% 0.16%
CPU time [µs] 0.813 1.387 1.961 3.109

Table 3.1: Closed-loop relative suboptimality and average computation times
in microseconds obtained with RT-ADMM-i, where i denotes the number of
iterations per sampling time. Notice that, in order to compute a solution to the
subproblems with a tolerance of 10−4, about 30 ADMM iterations are needed,
leading to an average computation time of 17 µs.

is often used in practice due to the fact that electrical and mechanical dynamics
of the system have very different time constants.

We eliminate the equality constraints in (3.32) and split the resulting problem
by choosing A = −B = INnu and defining ĝ in (3.13) to be the indicator
function associated with the convex inequality constraints in (3.32). In this
way, Step 1 of Algorithm 1 boils down to the solution of a linear system
with precomputed Cholesky factors, and Step 2 involves the computationally
inexpensive projection onto the convex set defined by the voltage constraints.
The algorithm has been implemented in C using the high-performance linear
algebra package BLASFEO [Frison et al., 2018]. All the experiments have been
run on an Intel Core i7-7560U CPU.

We perform a closed-loop simulation where we want to track a time-varying
reference and compare the control performance obtained with RT-ADMM and
using the exact solution to problem (3.32). Figure 5.6 compares a section of
the closed-loop trajectories obtained with RT-ADMM with a single iteration
and with the exact solution, where we can see that, RT-ADMM leads to a
limited degradation of the control performance. In particular, the closed-loop
relative suboptimality with respect to the cost obtained with the exact MPC
feedback policy, is shown in Table 4.1 for different numbers of ADMM iterations
per sampling time. Finally, Figure 3.4 shows the deviation of the approximate
solution computed by RT-ADMM from the exact one. Although large spikes can
be seen whenever the reference is changed, the numerical error keeps contracting
and the closed-loop trajectories do not seem to be heavily affected.

3.1.6 Conclusions

In this section, we presented contraction estimates for general real-time
algorithms in the context of parametric optimization and NMPC in particular.
Under the assumption of strong regularity of the underlying parametric

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 57

optimization problems and Q-linear or Q-quadratic convergence of the
optimization algorithm in some semi-norm, we provided generic numerical
error bounds that can be applied to a broad class of methods. With the help of
a numerical benchmark, we showed that the proposed approach can drastically
reduce the computational burden associated with the implementation of MPC
with moderate performance degradation.

In the rest of the chapter, we will exploit the contraction estimates derived in
this section in order to study the stability of the system-optimizer dynamics in
NMPC.

3.2 Asymptotic stability of the system-optimizer
dynamics

The contraction estimate in Lemma 3.1.5 provides insights on the behavior
of the numerical error, measured with an appropriate norm or semi-norm,
as the parameter of the parametric nonconvex programs undergoes a general
update. As such, the value of the parameter needs not be driven by dynamics
of the system. In this and in the following section, we focus on the interaction
arising between the optimizer and the system to be controlled. In fact in the
most interesting setting the parameter x will take on the values determined by
system’s evolution under the approximate feedback u = Mu,zz.

3.2.1 System and optimizer dynamics

In order to study the interaction between the system to be controlled and
the optimizer, we will first formally define their dynamics and describe the
assumptions required for the stability analysis proposed.

System dynamics

The system under control obeys the following sampled-feedback closed-loop
dynamics:

58 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Definition 3.2.1 (System dynamics). Let the following differential equation
describe the dynamics of the system controlled using a constant input u0:

dψ

dt
(t;x0, u0) = φ(ψ(t;x0, u0), u0),

ψ(0;x0, u0) = x0.

(3.34)

Here ψ : R×Rnx×Rnu → Rnx describes the trajectories of the system, x0 denotes
the state of the system at a given sampling instant and u0 the corresponding
constant input. We will refer to the strictly positive parameter T > 0 as the
sampling time associated with the corresponding discrete-time system

xnext = ψ(T ;x, u). (3.35)

We will assume that a slightly tailored type of Lyapunov function is available
for the closed-loop system controlled with a specific policy.

Assumption 3.2.2. Let ū : Rnx → Rnu , and let V : Rnx → R be a continuous
function. Let V̄ be a strictly positive constant and define

XV̄ := {x : V (x) ≤ V̄ }. (3.36)

Assume that there exist positive constants a1, a2, a3, T0 and q ∈ [1,∞) such that,
for any x ∈ XV̄ and any T ≤ T0, the following hold:

a1‖x‖q ≤ V (x) ≤ a2‖x‖q, (3.37a)

V (ψ(T ;x, ū(x)))− V (x) ≤ −T · a3‖x‖q. (3.37b)

Notice that Assumption 3.2.2, for a fixed T boils down to the standard
assumption for exponential asymptotic stability (see, e.g., Theorem 2.21 in
[Rawlings et al., 2017]). Moreover, the dependency on T in (3.37b) can be
justified, for example, by assuming that a continuous-time Lyapunov function
Vc exists such that d

dtVc(x(t)) ≤ −a‖x‖2, for some positive constant a and that
V is a sufficiently good approximation of Vc in the following sense.

Remark 3.2.3. Regard the simpler case in which the system under consideration
is linear time-invariant, i.e., ẋ(t) = φ(x(t), u(t)) = Acx(t) + Bcu(t). Its
discretized counterpart reads xnext = Adx+Bdu, where

Ad := exp (AcTd), Bd :=
(∫ Td

0
exp (Acτ)dτ

)
Bc.

When controlling a discrete-time linear time-invariant system with the linear
feedback policy u(x) = Kdx, we know that, if x>Pdx is a Lyapunov function for

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 59

the resulting closed-loop system xnext = (Ad +BdKd)x, then it must satisfy the
following discrete-time Lyapunov equation:

(Ad +BdKd)>Pd(Ad +BdKd)− Pd +Qd = 0, (3.38)

for some positive-definite Qd. It is easy to show that, if the discretization time
Td is sufficiently small, then x>Pdx is a Lyapunov function for the continuous-
time closed-loop system ẋ(t) = (Ac +BcKd)x(t), where we use the discrete-time
gain Kd. In particular, it suffices to show that a positive-definite matrix Qc
exists such that the following continuous-time Lyapunov equation is satisfied:

(Ac +BcKd)>Pd + Pd(Ac +BcKd) +Qc = 0. (3.39)

To this end, we note that Ad = I + TdAc + O(T 2
d) and Bd = TdBc + O(T 2

d),
such that we obtain(

Ad − I
Td

+O(Td) +
(
Bd
Td

+O(Td)
)
Kd

)>
Pd

+ Pd

(
Ad − I
Td

+O(Td) +
(
Bd
Td

+O(Td)
)
Kd

)
+Qc = 0

and, multiplying by Td,

(Ad − I +BdKd)>Pd + Pd(Ad − I +BdKd) + E>E = −TdQc, (3.40)

where E = O(Td). Let Ãd := Ad +BdKd. Simplifying, we obtain

(Ad − I +BdKd)>Pd + Pd(Ad − I +BdKd) + E>E

=Ã>d Pd + PdÃd − 2Pd + E>E

�Ã>d Pd + PdÃd − 2Pd + E>E + (Ãd − I)>Pd(Ãd − I)

=Ã>d PdÃd − Pd + E>E = −Qd + E>E,

where we have exploited the fact that (Ãd − I)>Pd(Ãd − I) � 0. Due to the fact
that E>E = O(T 2

d) and Qd � 0, we obtain that −TdQc � −Qd +O(T 2
d), and,

for any sufficiently small discretization time Td, there must exist a positive-
definite Qc such that the continuous-time Lyapunov equation (3.39) is satisfied.
Finally, with similar arguments it is possible to show that, if Td is small enough,
for any sufficiently small sampling time T , x>Pdx is a valid Lyapunov function
for the closed-loop system xnext = (As +BsKd)x, where

As := exp (AcT), Bs :=
(∫ T

0
exp (Acτ)dτ

)
Bc.

60 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Moreover, we make the following assumption which establishes additional
regularity properties of the Lyapunov function.

Assumption 3.2.4. Assume that V
1
q , where q ∈ [1,∞) is the constant

introduced in Assumption 3.2.2, is Lipschitz continuous over XV̄ , i.e., there
exists a positive constant µ̃ such that

|V (x′)
1
q − V (x)

1
q | ≤ µ̃‖x′ − x‖, (3.41)

∀x′, x ∈ XV̄ .

Remark 3.2.5. Notice that a sufficient condition for Assumption 3.2.4 to hold
is that V is Lipschitz continuous over XV̄ and that V

1
q is Lipschitz continuous

at x = 0. These conditions are satisfied, for example, by Lyapunov functions
which are twice continuously differentiable at the origin if q = 2 or simply
Lipschitz continuous at the origin if q = 1.

Remark 3.2.6. If we take V to be the value function of the underlying
MPC nonconvex program, results on the inherent robustness and stability of
suboptimal MPC exist even for the case where V is discontinuous (see, e.g.,
[Allan et al., 2017]). However, in this context we deliberately choose to assume
that stronger properties of the Lyapunov function hold, in order to analyze the
system-optimizer interaction to a deeper level of detail.

In particular, in the setting of [Scokaert et al., 1999], [Pannocchia et al., 2011],
and [Allan et al., 2017], no regularity assumptions are required for the optimal
solution and optimal value function, which are even allowed to be discontinuous.
However, a decrease in the objective function is required in order for the
optimizer’s iterates to be accepted. This condition is in general difficult to satisfy
given that commonly used numerical methods do not generate feasible iterates
and, for this reason, it is not easy to enforce decrease in the objective function.
Although robust stability could still be guaranteed by shifting the warmstart
(cf. [Allan et al., 2017]), the improved iterates might be rejected unnecessarily.
Moreover, the optimizer’s dynamics are completely neglected. With respect to
[Scokaert et al., 1999], [Pannocchia et al., 2011], and [Allan et al., 2017], we
propose in this chapter an analysis that, although requires stronger assumptions
on the properties of the optimal solution, incorporates knowledge on the
optimizer’s dynamics and does not require a decreasing cost.

The following proposition provides asymptotic stability of the closed-loop system
obtained using the feedback policy ū.

Proposition 3.2.7 (Lyapunov stability). Let Assumption 3.2.2 hold. Then,
for any T ≤ T0, the origin is an exponentially asymptotically stable equilibrium
with region of attraction XV̄ for the closed-loop system xnext = ψ(T ;x, ū(x)).

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 61

Proof. Due to Assumption 3.2.2, the function V is a valid Lyapunov function
for the closed-loop dynamics for any T ≤ T0.

The Lyapunov function defined in Assumption 3.2.2 guarantees that, if the
ideal policy ū is employed, the resulting closed-loop system is (exponentially)
asymptotically stable. In the following, we define the dynamics of the optimizer
used to numerically compute approximations of ū(x) for a given state x.

Optimizer dynamics

We will assume that we dispose of a numerical method that defines what we will
call the optimizer (or more generally a solver) that, for a given x, can compute
a vector z̄(x) from which we can compute ū(x) through a linear map.

Assumption 3.2.8. Assume that there exists a function z̄ : XV̄ → Rnz and a
matrix Mu,z such that, for any x ∈ XV̄ , the following holds:

ū(x) = Mu,z z̄(x). (3.42)

For simplicity of notation, we will assume further that ‖Mu,z‖ = 1.

Definition 3.2.9 (Optimizer dynamics). Let the following discrete-time system
describe the dynamics of the optimizer

z+ = ϕ(ψ(T ;x,Mu,zz), z), (3.43)

where ϕ : Rnx × Rnz → Rnx and where z represents the state of the optimizer.

Remark 3.2.10. Notice that the optimizer dynamics (3.43) make use of
the current approximate solution z and a forward-simulated state x+ =
ψ(T ;x,Mu,zz). This setting corresponds, for example, to the case where a
real-time iteration is carried out by solving the linearized generalized equation
(or, loosely speaking, the QP associated with it)

0 ∈ F (z) +∇F (z)>(z+ − z) + Cx+ +NK(z+), (3.44)

with unknown z+ and linearization point z and where the parameter x+ =
ψ(T ;x,Mu,zz) is used. This amounts to assuming that either a perfect prediction
x+ of the system’s state is available ahead of time, or that instantaneous feedback
can be delivered to the system. In both cases, small perturbations introduced
by either model mismatch or feedback delay could be introduced explicitly. This
goes however beyond the scope of the present work (although inherent robustness
of continuous Lyapunov functions would provide the necessary properties to
guarantee stability under sufficiently small perturbations).

62 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

In order to be able to leverage a contraction estimate similar to the one from
Section 3.1, we will make the two following assumptions.

Assumption 3.2.11 (Lipschitz continuity). Assume that there exist positive
constants r̂x and σ such that, for any x ∈ XV̄ and any x′ ∈ B(x, r̂x), the
following holds

‖z̄(x′)− z̄(x)‖ ≤ σ‖x′ − x‖. (3.45)

Moreover, we assume that z̄(0) = 0.

Assumption 3.2.12 (Contraction). There exists a radius r̂z > 0 and a positive
constant κ̂ < 1 such that, for any x ∈ XV̄ and any z ∈ B(z̄(x), r̂z), the optimizer
dynamics produce z+ such that

‖z+ − z̄(x)‖ ≤ κ̂ ‖z − z̄(x)‖ . (3.46)

The following lemma, based on Lemma 3.1.5, provides a way of quantifying the
perturbation to the nominal contraction (3.46) due to changes in the value of x
across iterations of the optimizer.

Lemma 3.2.13. Let Assumptions 3.2.11 and 3.2.12 hold. Then there exist
strictly positive constants rz and rx such that, for any x in XV̄ , any z in
B(z̄, rz), and any x′ in B(x, rx), it holds that

‖z+ − z̄(x′)‖ ≤ κ̂ ‖z − z̄(x)‖+ σκ̂ ‖x′ − x‖ . (3.47)

Proof. The result is a special case of Lemma 3.1.5.

Notice that the assumptions made do not require that V is the optimal value
function of a discretized OCP nor of an optimization problem in general. We
require instead that it is a Lyapunov function with some additional properties
according to Assumptions 3.2.2 and 3.2.4. Similarly, z̄ needs not be the primal-
dual solution to an optimization problem. We require instead that it is associated
with the policy ū, i.e., for any x ∈ XV̄ , ū(x) = Mu,z z̄(x), that it is Lipschitz
continuous and that the optimizer (or “solver” in general) can generate Q-
linearly contracting iterates that converge to z̄(x). This setting is formalized by
Assumptions 3.2.8, 3.2.11 and 3.2.12.

Remark 3.2.14. To make a more concrete connection with a classical setting,
in NMPC we can often assume that V is the optimal value function of a
discretized version of an OCP of the form (2.66). In this case, we can refer
to the resulting parametric nonlinear program of the form (2.23) and to the
generalized equation representing its first-order optimality conditions. Under
proper regularity assumptions, we can then obtain that a single-valued localization

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 63

z̄ of the solution map of the generalized equation must exist. Under the same
assumptions, we can usually prove Lipschitz continuity of z̄ and Q-linear
contraction of, for example, Newton-type iterations as shown in Section 2.1.3,
hence satisfying Assumptions 3.2.11 and 3.2.12.

Similarly, using the standard argumentation introduced in Section 2.2.5, we
obtain that the feedback policy associated with the global solution to the underlying
nonlinear programs is stabilizing and the associated optimal value function is a
Lyapunov function. In this way, Assumptions 3.2.2, 3.2.4 and 3.2.8 are satisfied.
Note that, in this context, an aspect that remains somewhat unresolved is the fact
that the standard argumentation for the stability analysis of NMPC requires that
the global optimal solution is found by the optimizer (unless more sophisticated
tools are brought into the picture, cf. [Allan et al., 2017]). Hence, in order to
be able to identify V with the optimal value function it is necessary to assume
that the single-valued localization z̄ attains the global minimum for all x ∈ XV̄ .

3.2.2 Combined system-optimizer dynamics

Proposition 3.2.7 and Lemma 3.2.13 provide key properties of the system and
optimizer dynamics, respectively. In this section, we analyze the interaction
between these two dynamical systems and how these properties are affected
by such an interplay. To this end, let us define the following coupled system-
optimizer dynamics.

Definition 3.2.15 (System-optimizer dynamics). Let the following discrete-
time system describe the coupled system-optimizer dynamics:

x+ = ψ(T ;x,Mu,zz),

z+ = ϕ(ψ(T ;x,Mu,zz), z)
(3.48)

or, in compact form
ξ+ = Φ(T ; ξ) (3.49)

where ξ := (x, z) and Φ : R× Rnx+nz → Rnx+nz .

Our ultimate goal is to prove that, for a sufficiently short sampling time T , the
origin is a locally asymptotically stable equilibrium for (3.49).

Error contraction perturbation due to state evolution

In order to use the contraction from Lemma 3.2.13 in the context where ‖x′−x‖
is determined by the evolution of the system to be controlled under the effect of

64 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

the approximate policy, we will make a general assumption on the behavior of
the closed-loop system in a neighborhood of the equilibrium and for a bounded
value of the numerical error.
Assumption 3.2.16 (Lipschitz system dynamics). Assume that φ(0, 0) = 0
and that positive finite constants Lφ,x, Lφ,u and ρ exist such that, for all
x′, x ∈ XV̄+ρ := {x ∈ X : V (x) ≤ V̄ + ρ}, all u′ = Mu,zz

′, u = Mu,zz, with
z′, z ∈ B(z̄(x), rz), the following holds:

‖φ(x′, u′)− φ(x, u)‖ ≤ Lφ,x‖x′ − x‖+ Lφ,u‖u′ − u‖. (3.50)

The following propositions establish bounds on the rate at which the state can
change for given x and z.
Proposition 3.2.17. Let Assumption 3.2.16 hold. Then, there exist positive
finite constants Lψ,x, Lψ,u and T1 > 0 such that for all x ∈ XV̄ , all z ∈
B(z̄(x), rz) and any T ≤ T1, the following holds:

‖ψ(T ;x,Mu,zz)− x‖ ≤ T · (Lψ,x‖x‖+ Lψ,u‖Mu,zz‖). (3.51)

Moreover, for all x ∈ XV̄ , all u′ = Mu,zz
′, u = Mu,zz, such that z′, z ∈

B(z̄(x), rz) and any T ≤ T1, the following holds:

‖ψ(T ;x, u′)− ψ(T ;x, u)‖ ≤ T · Lψ,u‖u′ − u‖. (3.52)

Proof. See Appendix A.1.

Proposition 3.2.18. Let Assumptions 3.2.11 and 3.2.16 hold. Then, there
exists positive finite constants η, θ and T2, such that for any x ∈ XV̄ , any
z ∈ B(z̄(x), rz) and any T ≤ T2, the following holds:

‖ψ(T ;x, u)− x‖ ≤ T · (η‖x‖+ θ‖z − z̄(x)‖). (3.53)

Proof. Define η := Lψ,x + Lψ,uσ and θ := Lψ,u. Due to Proposition 3.2.17 we
have that

‖ψ(T ;x,Mu,zz)− x‖ ≤ T · (Lψ,x‖x‖+ Lψ,u‖Mu,zz‖) (3.54)

for any T ≤ T1 and, due to the assumption of strong regularity at the solution
z̄(x), and the fact that z̄(0) = 0, we can write

‖Mu,zz‖ ≤ ‖z̄(x)‖+ ‖z − z̄‖ ≤ σ ‖x‖+ ‖z − z̄‖ , (3.55)

and the following holds:

‖ψ(T ;x, u)− x‖ ≤ T (Lψ,x + Lψ,uσ) ‖x‖+ TLψ,u ‖z − z̄‖ . (3.56)

Finally, defining T2 := min{T0, T1} completes the proof.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 65

Using the bound from Proposition 3.2.18 together with the contraction from
Lemma 3.2.13 we obtain the following perturbed contraction.

Proposition 3.2.19. Let Assumptions 3.2.2, 3.2.11, 3.2.12 and 3.2.16 hold.
Moreover, define

T ′3 := min
{

rx
ηrV̄ + θrz

,
rz(1− κ̂)

σκ̂(θrz + ηrV̄)

}
, (3.57)

where rV̄ :=
(
V̄
a1

) 1
q .

Then, for any x, z such that x ∈ XV̄ and ‖z − z̄(x)‖ ≤ rz and any T ≤ T3 :=
min{T ′3, T2}, the following holds:

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄(x)‖+ Tγ‖x‖, (3.58)

where
κ := κ̂(1 + T3σθ) < 1, γ := σκ̂η. (3.59)

Moreover, ‖z+ − z̄(x+)‖ ≤ rz.

Proof. Given that ‖z − z̄(x)‖ ≤ rz and that, due to Assumption 3.2.16 and the
fact that T ≤ T3 ≤ T2, we have ‖x+ − x‖ ≤ rx for all x ∈ XV̄ , we can apply
the contraction from Theorem 3.2.13:

‖z+ − z̄(x+)‖ ≤ κ̂ ‖z − z̄(x)‖ + σκ̂ ‖x+ − x‖ . (3.60)

Applying the inequality from Proposition 3.2.18, we obtain

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄(x)‖+ Tγ‖x‖, (3.61)

where
κ := κ̂(1 + T3σθ), γ := σκ̂η. (3.62)

Finally, due to Assumption the definition of T3 in (3.57) we have that ‖z+ −
z̄(x+)‖ ≤ rz and κ < 1.

Proposition 3.2.19 shows that under suitable assumptions and, in particular,
for any T ≤ T3, we can guarantee that the numerical error does not increase
after one iteration of the optimizer.

In the following, we will make similar considerations for the behavior of V (x)
across iterations.

66 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Lyapunov decrease perturbation due to numerical error

In the following, we analyze the impact of the fact that the approximate
feedback policy Mu,zz is used, instead of the exact one Mu,z z̄(x), on the
nominal Lyapunov contraction. Throughout the rest of the section, we will
make use of the following shorthand:

V+(T ;x, z) := V (ψ(T ;x,Mu,zz)) (3.63)

to denote the value taken by the optimal cost at the state reached applying the
suboptimal control action Mu,zz starting from x. Similarly, we introduce

E(x, z) := ‖z − z̄(x)‖ (3.64)

and

E+(T ;x, z) := ‖ϕ(ψ(T ;x,Mu,zz), z)− z̄(ψ(T ;x,Mu,zz))‖ (3.65)

to denote the numerical error attained at the “current” and next iteration of
the optimizer, where the error is computed with respect to the exact solution
associated with the “current” and next state of the system.

Proposition 3.2.20. Let Assumptions 3.2.2, 3.2.8, 3.2.11, 3.2.12, and 3.2.16
hold. Then, there exists a finite positive constant µ such that, for any z ∈
B(z̄(x), rz), any x in XV̄ and any T ≤ T1, the following holds:

V+(T ;x, z) ≤ (1− T ā)V (x) + TµE(x, z), (3.66)

where ā := a3
a2
.

Proof. Assumption 3.2.2 implies that, for any x ∈ XV̄ and any T ≤ T0 the
following holds:

V (ψ(T ;x,Mu,z z̄(x))) ≤ V (x)− Ta3‖x‖q

≤ V (x)− T a3
a2
V (x)

= (1− T ā)V (x)

(3.67)

Due to Assumption 3.2.4, for any x′, x ∈ XV̄ , we can write

|V (x′)− V (x)| ≤ |(V (x′)
1
q)q − (V (x)

1
q)q|

= |(V (x′)
1
q + V (x)

1
q)(V (x′)

1
q − V (x)

1
q)|

≤ 2V̄
1
q µ̃‖x′ − x‖

(3.68)

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 67

and defining LV := 2V̄
1
q µ̃ we obtain

|V (x′)− V (x)| ≤ LV ‖x′ − x‖. (3.69)

Together with Assumption 3.2.16, this implies that we can write:

V (ψ(T ;x,Mu,zz))−V (ψ(T ;x,Mu,z z̄(x)))

≤ |V (ψ(T ;x,Mu,zz))− V (ψ(T ;x,Mu,z z̄(x)))|

≤ LV ‖ψ(T ;x,Mu,zz)− ψ(T ;x,Mu,z z̄(x))‖

≤ TLψ,uLV ‖z − z̄(x)‖

which implies

V+(T ;x, z) ≤ (1− T ā)V (x) + TµE(x, z), (3.70)

where µ := LV Lψ,u.

Using Proposition 3.2.20 we can formulate Lemma 3.2.22 below which establishes
positive invariance of the following set for the system-optimizer dynamics (3.48).

Definition 3.2.21 (Invariant set). Define the following set:

Σ := {(x, z) ∈ Rnx+nz : V (x) ≤ V̄ , ‖z − z̄(x)‖ ≤ r̃z},

where
r̃z := min

{
rz,

āV̄

µ

}
. (3.71)

Lemma 3.2.22 (Invariance of Σ). Let Assumptions 3.2.2, 3.2.4, 3.2.8, 3.2.11,
3.2.12, and 3.2.16 hold. Define

T ′4 := (1− κ)r̃za
1
q

1

V̄
1
q γ

. (3.72)

Then, for any ξ ∈ Σ and any T ≤ T4 := min{T ′4, T3}, it holds that ξ+ ∈ Σ.
Moreover, the following coupled inequalities hold:

V+(T ;x, z) ≤ (1− T ā)V (x) + TµE(x, z),

E+(T ;x, z) ≤ T γ̂V (x)
1
q + κE(x, z),

(3.73)

where γ̂ := γ/a
1
q

1 .

68 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Proof. Given that E(x, z) ≤ r̃z ≤ rz and x ∈ XV̄ , we can apply the contraction
from Proposition 3.2.20, such that

V+(T ;x, z) ≤ (1− T ā)V (x) + TµE(x, z), (3.74)

holds. Moreover, due to the definition of r̃z in (3.71), we have that V+(T ;x, z) ≤
V̄ since

V+(T ;x, z) ≤ (1− T ā)V (x) + TµE(x, z)

≤ (1− T ā)V̄ + Tµr̃z

≤ (1− T ā)V̄ + Tµ
āV̄

µ

≤ V̄ .

(3.75)

This implies that x+ is in XV̄ . Similarly, due to the fact that that E(x, z) ≤
r̃z ≤ rz and x ∈ XV̄ , we can apply the result from Proposition 3.2.18, which
shows that

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄(x)‖+ Tγ‖x‖ (3.76)

and
‖z+ − z̄(x+)‖ ≤ rz (3.77)

must hold. Using Assumption 3.2.2 in Equation (3.76), we obtain

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄(x)‖+ T γ̂ (V (x))
1
q . (3.78)

Moreover, due to (3.72), we have that ‖z+ − z̄(x+)‖ ≤ r̃z for any T ≤ T4.

In principle, we could study the behavior of the coupled contraction estimate
by looking at the “worst-case” dynamics associated with (3.73):

v+ = (1− T ā)v + Tµe,

e+ = T γ̂v
1
q + κe,

(3.79)

which, however, are not Lipschitz continuous at the origin (v, e) = (0, 0), for
q > 1. Nonetheless, we can still reformulate (3.79) such that standard tools can
be used to obtain important information about the behavior of the V+(T ;x, z)
and E+(T ;x, z) under the combined contraction established in Lemma 3.2.22
and ultimately establish asymptotic stability of the system-optimizer dynamics.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 69

3.2.3 Asymptotic stability of the system-optimizer dynamics

In the following, we derive the main asymptotic stability result, which relies on
a reformulation of the worst-case dynamics (3.79).

Proposition 3.2.23. Let Assumptions 3.2.2, 3.2.4, 3.2.8, 3.2.11, 3.2.12 and
3.2.16 hold. Moreover, let µ̂ := Lφ,ue

T1Lφ,x µ̃. Then, for any ξ ∈ Σ and any
T ≤ T4, we have ξ+ ∈ Σ and the following holds:

V+(T ;x, z)
1
q ≤ (1− T ā)

1
q V (x)

1
q + T µ̂E(x, z),

E+(T ;x, z) ≤ T γ̂V (x)
1
q + κE(x, z).

(3.80)

Proof. The fact that ξ+ ∈ Σ is a direct consequence of Lemma 3.2.22. Moreover,
due to Assumption 3.2.4, the following holds, for any x ∈ XV̄ :

V (ψ(T ;x,Mu,zz))
1
q ≤ V (ψ(T ;x,Mu,z z̄(x))

1
q

+ µ̃‖ψ(T ;x,Mu,zz)− ψ(T ;x,Mu,z z̄(x))‖

and, using the nominal Lyapunov contraction and Proposition 3.2.18, we obtain
that, for any ξ ∈ Σ, the following holds:

V (ψ(T ;x,Mu,zz))
1
q ≤ (1− T ā)

1
q V (x)

1
q + T µ̂‖z − z̄(x)‖,

where µ̂ := Lφ,ue
T1Lφ,x µ̃.

Unlike (3.79), the worst-case dynamics associated with (3.80) are not only
Lipschitz continuous, but can also be cast as a linear positive system. We define
the following dynamical system based on (3.80).

Definition 3.2.24 (Auxiliary dynamics). We will refer to the linear time-
invariant discrete-time dynamical system

ν+ = (1− T ā)
1
q ν + T µ̂ε,

ε+ = T γ̂ν + κε,
(3.81)

with states ν, ε ∈ R, as auxiliary dynamics. Due to the definitions of κ, µ̂ and γ̂
and Assumption 3.2.2, (3.81) is a positive system [Kaczorek, 2008].

Remark 3.2.25. Given the definition of the auxiliary dynamics in Definition
3.2.24, for any ξ ∈ Σ, if V (x)

1
q = ν and E(x, z) = ε, then V+(T ;x, z)

1
q ≤ ν+

and E+(T ;x, z) ≤ ε+. For this reason, intuitively, we can study the stability of

70 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

the auxiliary dynamics and infer stability properties of the combined system-
optimizer dynamics. This concept will be later formalized with the explicit
construction of a Lyapunov function for the system-optimizer dynamics in
Theorem 3.2.28.

We exploit properties of positive systems in order to construct an explicit linear
Lyapunov function for the auxiliary dynamics which can be rewritten in the
compact form

w+ = Aaw, (3.82)
where

Aa :=
[
(1− T ā)

1
q T µ̂

T γ̂ κ

]
, (3.83)

and w := (ν, ε). We will make use of the following result adapted from
[Kaczorek, 2008].

Theorem 3.2.26 (Stability of positive systems). A positive discrete-time linear
system of the form

w+ = Aw, (3.84)
where A ∈ Rn×n+ and w ∈ Rn+ is asymptotically stable if there exist a strictly
positive vector ŵ ∈ Rn++ and a strictly positive constant d̂ such that

max
i=1,...,n

[(A> − I)ŵ]i ≤ − d̂. (3.85)

Moreover, the linear function Vl(w) := ŵ>w is a Lyapunov function for such
system in Rn≥0 and the following holds:

Vl(w+)− Vl(w) ≤ −d̂ · ‖w‖. (3.86)

Proof. See Appendix A.2.

Theorem 3.2.27. The positive discrete-time linear system (3.82) is asymptot-
ically stable if and only if the following condition is satisfied:

T 2µ̂γ̂ − (1− κ)(1− (1− T ā)
1
q) < 0, (3.87)

which is satisfied for any sufficiently small sampling time T ≤ T5 := β(1−κ)
µ̂ .

Moreover, the function Vl(w) := ŵ>w, where

ŵ =
[

1
β

]
, with β := 1

2
ā

qγ̂
, (3.88)

is a Lyapunov function for (3.81) in R2
≥0.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 71

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
ε

0.00 0.25 0.50 0.75 1.00
ν

0.0

0.2

0.4

0.6

0.8

1.0

ε

Figure 3.5: Trajectories of the auxiliary dynamics (3.81) for different initial
conditions (κ = 0.4, ā = 0.5, γ̂ = 0.2, µ̂ = 0.1) - T = 1.0 (top) and T = 0.4
(bottom). The black vector describes the direction defined by ŵ as in Theorem
3.2.27, while the shaded area defines the cone that contains all the vectors that
would satisfy (3.89), i.e., all the vectors ŵ that define a valid Lyapunov function
Vl(w) = ŵ>w.

72 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Proof. In order to prove that ŵ>w is a Lyapunov function for (3.81) it suffices
to apply Theorem 3.2.26. The system of inequalities

−1 + (1− T ā)
1
q + T γ̂ β < 0,

T µ̂ + (κ− 1)β < 0,

β > 0

(3.89)

admits solutions if

T
µ̂

1− κ < β <
1− (1− T ā)

1
q

T γ̂
. (3.90)

This condition can always be satisfied for a sufficiently small T . In fact, it
is easy to show that the limits for T → 0 of the upper and lower bounds on
β are 0 and ā

qγ̂ > 0, respectively, such that, by continuity, there must exist
a strictly positive constant T5, such that (3.87) is satisfied for any T ≤ T5.
However, in order to make β independent of T , we note that, due to convexity,
1− (1− T ā)

1
q ≥ ā

qT , for any T ≥ 0. Using such lower bound we can simplify
the upper bound in (3.90):

β <

ā
qT

γ̂T
= ā

qγ̂
≤ 1− (1− T ā)

1
q

T γ̂
. (3.91)

Choosing β to be half of this upper bound, i.e., β := 1
2
ā
qγ̂ , we obtain that (3.90)

is satisfied for any T ≤ T5 := β(1−κ)
µ̂ , which concludes the proof.

Theorem 3.2.27 shows that (exponential) asymptotic stability of the auxiliary
dynamics holds under the condition that the sampling time T satisfies inequality
(3.87) for given µ̂, ā and κ. Figure 3.5, illustrates the meaning of Theorem
3.2.27, by showing the trajectories of the auxiliary system in a phase plot, for
fixed values of the parameters µ̂, ā, κ and γ̂, two different values of the sampling
time T and for different initial conditions. In the following, we establish the
main result of the section by exploiting the Lyapunov decrease established in
Theorem 3.2.27 for the auxiliary dynamics to construct a Lyapunov function
for the combined system-optimizer dynamics (3.49).

Theorem 3.2.28. Let Assumptions 3.2.2, 3.2.4, 3.2.8, 3.2.11, 3.2.12 and
3.2.16 hold. Then, for any T ≤ min{T4, T5}, the origin is an asymptotically
stable equilibrium with region of attraction Σ for the combined system-optimizer
dynamics (3.49). In particular, the function

Vso(ξ) := ŵ>
[

V (x)
1
q

‖z − z̄(x)‖

]
, (3.92)

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 73

where ŵ is defined according to Theorem 3.2.27, is a Lyapunov function in Σ
for the system (3.49) and the origin (x, z) = ξ = 0.

Proof. We can derive an upper bound for Vso(ξ) as follows:

Vso(ξ) = V (x)
1
q + β‖z − z̄(x)‖

≤ a
1
q

2 ‖x‖+ β‖z − z̄(x)‖

≤ a
1
q

2 ‖x‖+ β(‖z‖+ ‖z̄(x)‖)

≤ (a
1
q

2 + σβ)‖x‖+ β‖z‖

≤ max{a
1
q

2 + σβ, β}︸ ︷︷ ︸
=:w̃2

· (‖x‖+ ‖z‖)

≤ w̃2 · (‖x‖1 + ‖z‖1) = w̃2 · ‖ξ‖1

≤ w̃2
√
nx + nz · ‖ξ‖.

(3.93)

In order to derive a lower bound, we proceed as follows. Using the reverse
triangle inequality and Lipschitz continuity of z̄(x), we obtain

Vso(ξ) ≥ V (x)
1
q + β(‖z‖ − σ‖x‖)

≥ a
1
q

1 ‖x‖+ β(‖z‖ − σ‖x‖)

= (a
1
q

1 − βσ)‖x‖+ β‖z‖.

(3.94)

If a
1
q

1 − βσ > 0, then we can readily compute a lower bound:

Vso(ξ) ≥ (a
1
q

1 − βσ)‖x‖+ β‖z‖

≥ a
1
q

1 − βσ√
nx

‖x‖1 + β√
nz
‖z‖1

≥ min
{
a

1
q

1 − βσ√
nx

,
β√
nz

}
︸ ︷︷ ︸

=:w̃1,1

(‖x‖1 + ‖z‖1)

≥ w̃1,1 · ‖ξ‖.

(3.95)

74 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

If instead a
1
q

1 − βσ ≤ 0, we define the auxiliary lower bound

V̂so(x, z) := a
1
q

1 ‖x‖+ β‖z − z̄(x)‖. (3.96)

Since Vso(ξ) ≥ V̂so(x, z), if we can show that V̂so(x, z) can be lower bounded
by a properly constructed function of z, we can use this function to lower
bound Vso(ξ) too. To this end, we first observe that, since we assumed that
a

1
q

1 − βσ ≤ 0, for any x such that ‖x‖ ≤ 1
σ‖z‖, we have that

V̂so(x, z) ≥ (a
1
q

1 − βσ)‖x‖+ β‖z‖

≥ min
x s.t. ‖x‖≤ 1

σ ‖z‖
(a

1
q

1 − βσ)‖x‖+ β‖z‖

≥ a
1
q

1
σ
‖z‖,

(3.97)

where, for the minimization, we have used the fact that the objective (a
1
q

1 −
βσ)‖x‖+ β‖z‖ is monotonically nonincreasing in ‖x‖ such that the minimum
is attained at the boundary of the interval for ‖x‖ = 1

σ‖z‖. Similarly, for any x
such that ‖x‖ ≥ 1

σ‖z‖, we can use the fact that

V̂so(x, z) = a
1
q

1 ‖x‖+ β‖z − z̄(x)‖ ≥ a
1
q

1 ‖x‖ ≥
a

1
q

1
σ
‖z‖.

Hence, we can conclude that

Vso(ξ) ≥ V̂so(x, z) ≥ a
1
q

1
σ
‖z‖ (3.98)

for any x. Summing this last inequality and Vso(ξ) ≥ a
1
q

1 ‖x‖, we obtain

Vso(ξ) ≥ a
1
q

1
2 ‖x‖+ a

1
q

1
2σ ‖z‖

≥ a
1
q

1
2√nx

‖x‖1 + a
1
q

1
2σ√nz

‖z‖1

≥ min
{

a
1
q

1
2√nx

,
a

1
q

1
2σ√nz

}
︸ ︷︷ ︸

=:w̃1,2

(‖x‖1 + ‖z‖1)

≥ w̃1,2 · ‖ξ‖.

(3.99)

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 75

Together with (3.95), we can define

w̃1 :=
{
w̃1,1, if a

1
q

1 − βσ > 0,
w̃1,2, otherwise,

(3.100)

and conclude that Vso(ξ) ≥ w̃1 · ‖ξ‖. Finally, the Lyapunov decrease can be
derived. For given x and z, let ε = E(x, z) and ν = V (x)

1
q . Then the following

holds.
Vso(ξ+) =V+(T ;x, z)

1
q + βE+(T ;x, z)

Remark 3.2.25
≤ ν+ + βε+

Theorem 3.2.26
≤ ν + βε− d̂ · ‖(ν, ε)‖1

=V (x)
1
q + βE(x, z)− d̂ · ‖(ν, ε)‖1

=Vso(ξ)− d̂ · (V (x)
1
q + ‖z − z̄(x)‖),

(3.101)

where we have used the `1 norm due to the intermediate result in the proof of
Theorem 3.2.26. Let ∆Vso(ξ) := −d̂ · (V (x)

1
q +‖z− z̄(x)‖) denote the Lyapunov

decrease. Using the same procedure used to derive the lower bound for Vso(ξ),
we can show that, if a

1
q

1 − σ > 0, we can write

∆Vso(ξ) ≤ −d̂ ·
(

(a
1
q

1 − σ)‖x‖+ ‖z‖
)

≤ − d̂ ·min
{
a

1
q

1 − σ√
nx

,
1√
nz

}
︸ ︷︷ ︸

=:w̃3,1

(‖x‖1 + ‖z‖1)

≤ −w̃3,1 · ‖ξ‖.

Else, if a
1
q

1 − σ ≤ 0, we can obtain the following bound:

∆Vso(ξ) = −d̂ ·
(
V (x)

1
q + ‖z − z̄(x)‖

)
≤ − d̂a

1
q

1
σ
‖z‖.

76 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

Summing this last inequality and ∆Vso(ξ) ≤ −d̂a
1
q

1 ‖x‖, we obtain

∆Vso(ξ) ≤ − d̂a
1
q

1
2

(
‖x‖+ 1

σ
‖z‖
)

≤ − d̂a
1
q

1
2

(
1√
nx
‖x‖1 + 1

σ
√
nz
‖z‖1

)

≤ − d̂a
1
q

1
2 ·min

{
1√
nx
,

1
σ
√
nz

}
︸ ︷︷ ︸

=:w̃3,2

(‖x‖1 + ‖z‖1)

≤ −w̃3,2 · ‖ξ‖.

We define

w̃3 :=
{
w̃3,1, if a

1
q

1 − σ > 0,
w̃3,2, otherwise,

(3.102)

and conclude that ∆Vso(ξ) ≤ −w̃3 · ‖ξ‖. Hence, we can define the K∞ functions
αso,1(‖ξ‖) := w̃1 ·‖ξ‖ and αso,2(‖ξ‖) := w̃2 ·‖ξ‖ and the positive definite function
αso,3(‖ξ‖) := w̃3 · ‖ξ‖, such that

αso,1(‖ξ‖) ≤ Vso(ξ) ≤ αso,2(‖ξ‖)

Vso(ξ+)− Vso(ξ) ≤ −αso,3(‖ξ‖),
(3.103)

i.e., Vso(ξ) is a Lyapunov function in Σ for the system-optimizer dynamics
ξ+ = Φ(T ; ξ) and the equilibrium ξ = 0, for any T ≤ min{T4, T5}.

3.2.4 Illustrative example

In this section, in order to illustrate Theorem 3.2.28, we use a variant of the
classical example from [Chen and Allgöwer, 1998]. In particular, we regard an
optimal control problem of the form in (2.67) and we define the continuous-time
dynamics as

φ(x, u) :=
[
x2 + u(µ+ (1− µ)x2)
x1 + u(µ− 4(1− µ)x2)

]
. (3.104)

In order to compute an LQR-based terminal cost, the linearized dynamics are
defined as

Ac := ∂φ

∂x
(0, 0), Bc := ∂φ

∂u
(0, 0), (3.105)

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 77

−1.0 −0.5 0.0 0.5 1.0
x2

−1.0

−0.5

0.0

0.5

1.0

x
1

Figure 3.6: Illustrative example adapted from [Chen and Allgöwer, 1998] -
closed-loop state trajectories obtained using the approximate feedback policy
computed with a single iteration of a Gauss-Newton real-time algorithm (solid)
and contour lines of dV (x(t))

dt (dashed).

and discretized using exact discretization with piece-wise constant parametriza-
tion of the control trajectories:

A := exp (AcTd), B :=
(∫ Td

τ=0
exp (Acτ)dτ

)
Bc,

where Td denotes the discretization time. We compute the solution P to the
discrete-time algebraic Riccati equation

P = A>PA− (A>PB)(R+B>PB)−1(B>PA) +Q,

where Q = 0.1 · I2, R = 0.1, such that, the cost functionals can be defined as

L(x, u) := x>Qx+ u>Ru, m(x) := x>Px (3.106)

and we impose simple bounds on the input −2 ≤ u ≤ 2.

We set the prediction horizon Tf = 1.0 and discretize the resulting continuous-
time optimal control problem using direct multiple shooting with N = 5 shooting
nodes. Euler discretization is used for the cost integral and explicit RK4 is
used to discretize the dynamics. In order to solve the resulting discretized

78 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

0.000 0.025 0.050 0.075 0.100

0.50

0.75

1.00

1.25

1.50

K
z

0.000 0.025 0.050 0.075 0.100

−0.2

0.0

0.2

0.4

∆
V

0.000 0.025 0.050 0.075 0.100
time [s]

10−1

100

101

−
∆
V

so

Figure 3.7: Illustrative example adapted from [Chen and Allgöwer, 1998] -
although the numerical error does not necessarily decrease monotonically over
time, the Lyapunov function for the combined system-optimizer dynamics Vso(ξ)
does decrease over time.

optimal control problem, we use the standard RTI approach, with Gauss-
Newton iterations and a fixed Levenberg-Marquardt-type term. A single SQP
iteration per sampling time is carried out.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS 79

In order to compute an estimate for the constants involved in the definition
of the Lyapunov function in Theorem 3.2.28, we regard six different initial
conditions, and control the system using the feedback policy associated with the
exact solution to the discretized optimal control problem. For every state x in
the obtained trajectories, we evaluate the optimal cost V (x) and the primal-dual
optimal solution z̄(x). With these values, we can estimate the constants a1, a2, a3
in Assumption 3.2.2, the constant µ̃ in Assumption 3.2.4 and the constant σ
in Theorem 3.2.13. Moreover, for any state visited, we carry out a limited
number of iterations of the optimizer in order to estimate the contraction
rate κ̂. Choosing the sampling time T = 0.0012, we obtain the estimates
κ = 0.882, ā = 1.157, γ̂ = 70.23, and µ̂ = 0.360, such that the parameter
involved in the definition of the Lyapunov function for the combined system-
optimizer dynamics takes the value β = 0.0041 and we have T5 = 0.037 ≥ T . All
the computations were carried out using CasADi [Andersson et al., 2019] and its
interface to Ipopt [Wächter and Biegler, 2009] and the code for the illustrative
example is made available at https://github.com/zanellia/nmpc_system_
optimizer_lyapunov.

Figure 3.6 shows the state trajectories obtained controlling the system using the
approximate feedback law starting from the selected initial conditions. Figure
3.7 shows the behavior of ‖z − z̄(x)‖, V (x) and Vso(ξ) over time through the
compact metrics

Kz := ‖z+ − z̄(x+)‖
‖z − z̄(x)‖ , (3.107)

∆V := V (x+)− V (x)
Ts

, (3.108)

∆Vso := Vso(ξ+)− Vso(ξ)
Ts

. (3.109)

In particular, it is shown that, although the numerical error ‖z − z̄(x)‖ and
the value function does not necessarily decrease over time, the constructed
Lyapunov function Vso(ξ) does decrease.

3.2.5 Conclusions

In this section, we presented a novel asymptotic stability results for inexact
MPC relying on a limited number of iterations of an optimization algorithm.
A class of optimization methods with Q-linearly convergent iterates has been
regarded and, under the assumption that the ideal feedback law is stabilizing,
we constructed a Lyapunov function for the system-optimizer dynamics. These
results extend the attractivity proofs present in the literature which rely instead
on the assumption that inequality constraints are either absent or inactive in

https://github.com/zanellia/nmpc_system_optimizer_lyapunov
https://github.com/zanellia/nmpc_system_optimizer_lyapunov

80 ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS IN NMPC

the attraction region considered. Moreover, although under more stringent
regularity assumptions, with respect to more general results on suboptimal
MPC (cf. [Scokaert et al., 1999], [Pannocchia et al., 2011], [Allan et al., 2017]),
we analyzed in deeper detail the interaction between system and optimizer.

CHAPTER SUMMARY AND OUTLOOK 81

3.3 Chapter summary and outlook

In this chapter, contraction and stability properties of real-time methods for
NMPC have been derived and discussed. First, in Section 3.1, properties of
a general class of numerical algorithms for nonconvex parametric programs
have been proved. In particular, it was shown that, under the assumption that
the underlying parameter undergoes sufficiently small changes across iterations
of the optimizer, a Q-linear contraction estimate can be obtained. Moreover,
concrete examples of algorithms that satisfy the assumptions made (including
Newton-type generalized methods, ADMM and a truncated SQP method) have
been discussed.

These contraction estimates were then used to derive asymptotic stability
guarantees in Section 3.2. The section extends the attractivity result from
[Diehl et al., 2005, Diehl et al., 2007] in the sense that i) asymptotic stability
rather than attractivity was proved ii) the inequality constrained setting is
covered iii) a Lyapunov function for the system-optimizer dynamics is explicitly
constructed iv) a general framework that abstracts away from the specific
numerical method and Lyapunov function chosen is introduced.

Extensions of the results presented in this chapter in several directions would
contribute to their improved generality and applicability and are subject of
ongoing research. Among other, an interesting extension would be the one of
relaxing the assumptions of Lipschitz continuity of z̄ and Q-linear contraction
of the optimizer’s iterations, namely Assumptions 3.2.11 and 3.2.12. In this
way, a broader class of problems and algorithms could be addressed. In the
case of Assumption 3.2.11, this would allow one to regard parametric programs
that, for example, do not satisfy SSOSC and have, e.g., set-valued dual (or even
primal) solutions or Hölder continuous primal optimal solutions.

Chapter 4

Zero-order methods for
NMPC with stability
guarantees

In this chapter we introduce a class of inexact NMPC methods, that we
call zero-order methods, that can be used to compute cheap approximate
solutions to nonlinear programs. The main idea behind zero-order methods
originates in [Bock et al., 2007] and has strong connections with early work
on second-order corrections in [Fletcher, 1982] and projection methods in
[Sargent and Murtagh, 1973]. It lies in fixing part of the first- and second-
order derivative information that is generally required to construct the QP
subproblems within an SQP strategy. In this way, iterative algorithms
for nonlinear programming that only require the computation of zero-order
information (i.e., function evaluations) are obtained. As we will see, this
type of algorithms can largely speed up the computations associated with the
construction and solution of the QP subproblems in at least two different ways:
i) in applications where the computation of first-order derivatives is a bottleneck
in itself, freezing the sensitivities can lead to a considerable improvement of the
computation times ii) the use of fixed first-order information generally leads to
faster algorithms that can exploit precomputation of computationally intensive
linear algebra operations (generally level 3 BLAS and LAPACK operations).

Zero-order methods are inexact methods, not only in the sense that they carry
out approximate SQP iterations, but also, as we will see, due to the fact that they
converge to inexact solutions. For this reason, apart from their computational

83

84 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

benefits, we are interested in investigating the properties of the inexact solutions
and the system theoretic properties of the resulting inexact feedback policies.

Outline

In Section 4.1, we introduce zero-order NMPC and investigate some of the
fundamental numerical properties of the underlying numerical algorithm.
In Sections 4.2 and 4.2.2, which are based on [Zanelli et al., 2016] and
[Zanelli et al., 2019a], respectively, we introduce a stability analysis of zero-
order NMPC in the equality and inequality constrained setting, respectively.
Moreover, in Section 4.3, we discuss how the structure of the nonconvex programs
arising from NMPC formulations can be exploited in order to derive an efficient
algebraic elimination strategy to be combined with a dense active-set solver.

4.1 Zero-order SQP for NMPC

In this initial section, we will introduce the main idea behind zero-order NMPC
as first described in [Bock et al., 2007]. Consider the following finite-horizon
discrete-time optimal control problem:

V (x) := min
s0,...,sN

u0,...,uN−1

N−1∑
i=0

l(si, ui) +m(sN)

s.t. s0 − x = 0,

ψ(si, ui)− si+1 = 0, i = 0, . . . , N − 1,

π(si, ui) ≤ 0, i = 0, . . . , N − 1,

πN (sN) ≤ 0,

(4.1)

with optimization variables si ∈ Rnx and ui ∈ Rnu . Here, l : Rnx × Rnu → R+
and m : Rnx → R+ define the objective and the functions π : Rnx ×Rnu → Rnπ
and πN : Rnx → RnπN describe the stage and terminal constraints, respectively.

ZERO-ORDER SQP FOR NMPC 85

If the NLP in (4.1) is solved with an SQP strategy [Bock, 1983], the resulting
subproblems take the form

min
∆s0,··· ,∆sN

∆u0,··· ,∆uN−1

1
2

N−1∑
i=0

∆si
∆ui

1

>Mi

∆si
∆ui

1

+ 1
2

[
∆sN

1

]>
MN

[
∆sN

1

]

s.t. ∆s0 − rλ0 = 0

∆si+1−Ai∆si−Bi∆ui − rλi+1 = 0, i = 0, · · · , N − 1,

π(ŝi, ûi) + Ci∆si +Di∆ui ≤ 0, i = 0, · · · , N − 1,

πN (ŝN) + CN∆sN ≤ 0,

(4.2)

with dynamics and inequality constraints linearized at the current approximate
solution ŝ := (ŝ0, . . . , ŝN) and û := (û0, . . . , ûN−1):

Ai := ∂ψ

∂s
(ŝi, ûi), Bi := ∂ψ

∂u
(ŝi, ûi)

and
Ci := ∂π

∂s
(ŝi, ûi), Di := ∂π

∂u
(ŝi, ûi).

Similarly, for the terminal constraint, we have defined CN := ∂πN
∂s (ŝN). For

ease of notation, we have introduced the Hessians Mi, for i = 0, · · · , N − 1

Mi :=

Mss
i Msu

i ∇sli
Mus
i Muu

i ∇uli
∇sl>i ∇ul>i 1

 (4.3)

and
MN :=

[
Mss
N ∇sm

∇sm> 1

]
, (4.4)

where the matrices Mss
i , M

su
i = Mus,>

i and Muu
i denote the approximations

of the Hessians of the Lagrangian with respect to input and state variables at
stage i. Moreover, we have introduced the shorthands ∇sli := ∇si l(si, ui) and
∇uli := ∇ui l(si, ui). Finally, we have introduced the vectors rλi for i = 0, · · · , N
to denote the residuals of the equality constraints.

A possible way of solving the subproblems in (4.2) is by eliminating the state
variables s resulting in a smaller and dense problem that can be efficiently
solved by state-of-the-art QP solvers [Ferreau et al., 2014]. However, the
computational burden introduced by the QP solver can be rather high. A
second source of computational effort, regardless of the QP formulation used, is

86 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

the fact that the matrices and vectors involved in the QP need to be computed
at every iteration.

The main motivation behind an inexact strategy that exploits fixed derivatives
is to reduce the computational burden associated with sensitivity generation
and linear algebra operations by using the Jacobians evaluated at a reference
(sr, ur):

Ai = A = ∂ψ

∂s
(sr, ur), Bi = B = ∂ψ

∂u
(sr, ur),

Ci = C = ∂π

∂s
(sr, ur), Di = D = ∂π

∂u
(sr, ur).

Moreover, following the algorithm proposed in [Bock et al., 2007], we set Mi,
for i = 0, · · · , N − 1

Mi =

 Q S ri
S> R qi
r>i q>i 1

 (4.5)

and
MN =

[
QN qN
q>N 1

]
, (4.6)

where Q,R, S and QN define the chosen approximation of the Hessian blocks
at the linearization point (sr, ur). Finally, at every iteration, we update the
gradient vectors based on the approximate solution as qi := ∇sl(sr, ur) +Q(ŝi−
sr)+S(ûi−ur), ri := ∇ul(sr, ur)+S>(ŝi−sr)+R(ûi−ur), for i = 0, . . . , N−1,
and qN := ∇sm(sr) +QN (ŝN − sr).

Remark 4.1.1. Notice that, in principle, a stage-dependent reference sr,i, ur,i
for i = 0, . . . , N−1 and sr,N can be considered without affecting the convergence
and computational properties of the algorithm. However, for the sake of
notational simplicity we restrict our attention to a fixed linerization point
across stages.

Overall, introducing y := (s, u) to refer to the primal solution and Ĉ := [I 0]>,
we can rewrite (4.1) in the compact form

min
y

f(y)

s.t. g(y) + Ĉx = 0,

h(y) ≤ 0,

(4.7)

where y ∈ Rn, g : Rn → Rng and h : Rn → Rnh .

ZERO-ORDER SQP FOR NMPC 87

With this compact notation, a generic QP subproblem reads as

min
∆y

∇yf(ŷ)>∆y + 1
2∆y>M∆y

s.t. g(ŷ) + Ĉx+∇yg(ŷ)>∆y = 0,

h(ŷ) +∇yh(ŷ)>∆y ≤ 0.

(4.8)

Here, we have introduced M to denote the chosen approximation of the Hessian
of the Lagrangian and λ and µ are the Lagrange multipliers associated with the
equality and inequality constraints, respectively. Accordingly, the zero-order
SQP iterates are defined by the solution to the following QP:

min
∆y

a>∆y + 1
2∆y>M∆y

s.t. g(ŷ) + Ĉx+G∆y = 0,

h(ŷ) +H∆y ≤ 0,

(4.9)

where a = ∇yf(yr) + P (ŷ − yr), with P ≈ ∇2
yL(yr, λr, µr). Here, G and H

represent the constant Jacobians of the equality and inequality constraints,
respectively.

Remark 4.1.2. Notice that, unlike in [Bock et al., 2007], we do not require
P = M . This becomes particularly useful in the iterative setting described in
Section 4.1.1. In that case, we will see that, by choosing P to be the exact
Hessian of the Lagrangian, we can recover local quadratic convergence, even
when M 6= P . In this way, we can leverage the computational benefits associated
with choosing a positive-definite Hessian for the QP subproblems. At the same
time, we recover quadratic contraction typical of exact Hessian SQP, which
would however require in general a convexification strategy to handle potentially
indefinite Hessians.

If convergence to a point (ỹ, λ̃, µ̃) is achieved, from the first-order optimality
conditions of the QPs, we obtain

∇yf(ỹ) +G>λ̃+H>µ̃ = 0,

g(ỹ) + Ĉx = 0,

h(ỹ) ≤ 0,

hi(ỹ)µ̃i = 0, i = 1, . . . , nh,

(4.10)

88 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

which can be interpreted as the first-order optimality conditions of the nonlinear
program [Bock et al., 2007]

min
y

f(y) + ξ(x)>y

s.t. g(y) + Ĉx = 0,

h(y) ≤ 0,

(4.11)

with

ξ(x) :=
(
G> −∇g(ỹ(x))

)
λ̃(x) +

(
H> −∇h(ỹ(x))

)
µ̃(x).

From this last perturbed nonlinear program, we see that the iterates of the
proposed strategy converge to a feasible, but suboptimal solution.

The idea of exploiting new function evaluations and fixed sensitivities in order to
reduce constraint violation of the iterates of an SQP-like algorithm is not entirely
new and has strong connections with the popular second-order corrections
introduced in [Fletcher, 1982]. Second-order corrections were introduced to
help mitigate the Maratos effect which takes place in the presence of strong
curvature of the constraints. In this situation, it can be difficult to achieve
decrease in the merit function along the tangent to the linearized constraints. A
second-order correction is a correction applied to the search direction computed
by solving a modified QP where the residuals of the constraints are evaluated at
the uncorrected new iterate (see [Fletcher, 1982] or [Nocedal and Wright, 2006]
for further details). From this point of view, the strategy discussed here can be
seen as an iterative application of second-order corrections.

4.1.1 Convergence analysis

In this section, we analyze the algorithmic properties of the proposed strategy. In
particular, we are interested in i) studying convergence of the iterates associated
with the solution to instances of (4.9) for a fixed reference (yr, λr, µr) ii) deriving
convergence guarantees for an iterative procedure in which (yr, λr, µr) is updated
in an outer loop. In the second case, the main idea lies in solving a series of
problems with frozen sensitivities as the one in (4.11) and, after convergence,
updating the sensitivities in order to construct a new subproblem with fixed
derivatives. With reference to this second setting, we will assume in the following
that (yr, λr, µr) is updated according to the solution (ỹ, λ̃, µ̃). Moreover, we will
refer to the iterations carried out on an instance of (4.11) as inner iterations.
Similarly, we will refer to the iterates defined by the solutions the inner iterates
converge to as outer iterates.

ZERO-ORDER SQP FOR NMPC 89

The analysis of this algorithm becomes relevant in at least two settings. First,
because the zero-order methods described in Sections 4.1, 4.2 and 4.2.2 will
typically be embedded into a hierarchical strategy, as in the so-called multi-level
iterations in [Bock et al., 2007], with potentially asynchronous updates of the
derivative information at lower frequency. Second, an inherent advantage of this
type of algorithmic strategy would lie in the fact that any intermediate solution
would be feasible with respect to both equality and inequality constraints. In
this way, the approximate solutions obtained with a limited number of iterations
could become very useful in contexts where feasibility is crucial.

In order to derive a convergence result for the inner iterations, we will interpret
(4.9) as the QP associated with the linearized generalized equation obtained
by applying the generalized Newton-type method to the following (nonlinear)
generalized equation

0 ∈ F̃ (z) +NK(z). (4.12)
Here, we have omitted the dependency on x which we will assume to be fixed
throughout the rest of this section. Moreover, we have introduced z := (y, λ, µ),

F̃ (z) :=

∇yf(ỹ) + P (y − ỹ) +G>λ+H>µ
−g(y)
−h(y)

 (4.13)

and K = Rn × Rng × Rnh+ . For consistency, we have followed the notation and
formulation used in [Robinson, 1980].

It can be easily verified that the linearized generalized equation

0 ∈ F̃ (ẑ) + J(z − ẑ) +NK(z), (4.14)

with

J :=

 M G> H>

−G 0 0
−H 0 0

 ≈ ∂F̃

∂z
(ẑ) =

 P G> H>

−∂g∂y (ŷ) 0 0
−∂h∂y (ŷ) 0 0

 , (4.15)

represents the first-order optimality conditions associated with (4.9). We make
the following assumptions.
Assumption 4.1.3. Let z̃ be a solution to (4.12). Assume that (4.12) is
strongly regular at z̃ with Lipschitz constant σ over the neighborhood B(z̃, r̃z),
with r̃z > 0.
Assumption 4.1.4. Assume that there exist a non-empty neighborhood B(z̃, r̂z)
of z̃ with radius r̂z ≤ r̃z and a positive constant κ̃, with σκ̃ < 1

2 such that, for
any z ∈ B(z̃, r̂z), the following holds:∥∥∥∥∂F̃∂z (ẑ)− J

∥∥∥∥ ≤ κ̃. (4.16)

90 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

Theorem 4.1.5 (Convergence of inner iterations). Let z̃ be a solution to (4.12)
such that Assumptions 4.1.3 and 4.1.4 hold. Let ẑ+(ẑ) denote the solution to
(4.14) constructed at ẑ. Then, there exist a strictly positive constant rz ≤ r̂z
and a positive constant κ < 1, such that, for any ẑ in B(z̃, rz), the following
holds:

‖ẑ+(ẑ)− z̃‖ ≤ κ‖ẑ − z̃‖. (4.17)

Proof. The proof follows the same arguments as the one of Lemma 2.1.36

4.1.2 Convergence of outer iterations

In the following, we analyze the convergence of the outer iterates associated
with the solution to the zero-order problems in the setting where subsequent
linearizations are carried out at the solutions to (4.12).

In order to simplify the derivations, we will regard the equality constrained
formulation, which can be naturally extended to the inequality constrained
case whenever it can be assumed that strict complementarity holds. Under this
setting, the generalized equation (4.12) reduces to the nonlinear root-finding
problem

F̃ (z, z̃) :=
[
∇yf(ỹ) + P (y − ỹ) +G(ỹ)>λ

g(y)

]
= 0, (4.18)

where we have added the explicit dependence on z̃, which is now allowed to
vary. The following result provides local contraction for the iterates obtained by
solving a series of subproblems of the form (4.18), where G is updated according
to the current approximate solution.

Assumption 4.1.6. Let z̄ be a solution to the equality constrained variant of
(4.7). Assume that LICQ and SOSC hold at z̄.

Theorem 4.1.7 (Convergence of outer iterations). Let z̃+(z̃) denote a solution
to (4.18) for a given z̃ and let Z ∈ Rn×ng be a matrix whose columns span the
nullspace of ∂g

∂y (ȳ), i.e., ∂g
∂y (ȳ)Z = 0. Let Assumption 4.1.6 hold. Then, if

κ := ρ
(
(Z>PZ)−1Z>(∇2

yL(ȳ, λ̄)− P)Z
)
< 1, (4.19)

the outer iterations exhibit local linear convergence with asymptotic convergence
rate κ. If κ = 0, then the outer iterations converge quadratically locally.

Proof. Expanding z̃+(z̃) at z̄ we obtain

z̃+(z̃) = z̄ + ∂z̃+
∂z̃

(z̄) · (z̃ − z̄) +O
(
‖z̃ − z̄‖2

)
, (4.20)

ZERO-ORDER SQP FOR NMPC 91

which shows that, in order to study local contractivity, it suffices to compute
the spectral radius of ∂z̃+

∂z̃ . In particular, using the implicit function theorem,
we can write

∂z̃+
∂z̃

= −
(
∂F̃

∂z

)−1
∂F̃

∂z̃
=
[
P G(ȳ)>

G(ȳ) 0

]−1 [∇2
yL(ȳ, λ̄)− P 0

0 0

]
,

which can be easily computed using the null space method [Nocedal and Wright, 2006]
as follows. Since the second block column of the right-hand side is zero, we can
regard the linear system[

P G(ȳ)>
G(ȳ) 0

] [
X
?

]
=
[
∇2
yL(ȳ, λ̄)− P

0

]
.

We partition X as
X = Y X1 + ZX2, (4.21)

where Y is any n× ng matrix such that [Y |Z] is nonsingular. By substituting
X in the second equation and recalling that GZ = 0, we obtain

GYX1 = 0 (4.22)

and, due to the fact that GY is invertible, we obtain that

X1 = (GY)−10 = 0. (4.23)

Similarly, we can substitute (4.21) in the first equation in order to obtain

PY X1 + PZX2 +G>? = ∇2
yL(ȳ, λ̄)− P. (4.24)

Premultiplying by Z> and using the fact that X1 = 0, we can write

Z>PZX2 = Z>(∇2
yL(ȳ, λ̄)− P), (4.25)

such that we can compute X as

X = Z(Z>PZ)−1Z>(∇2
yL(ȳ, λ̄)− P). (4.26)

Observing that
∂z̃+
∂z̃

=
[
X 0
? 0

]
, (4.27)

we can conclude that κ = ρ
(
∂z̃+
∂z̃

)
= ρ(X). Hence, using Ostrowski’s Theorem

[Ostrowski, 1966], we can conclude that the iterates converge linearly locally
with asymptotic contraction rate ρ(X).

92 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

A second variant of the algorithm under analysis can be obtained assuming
that the exact gradient of the cost ∇yf is computed at every iteration, which is
sometimes much cheaper than computing the derivatives associated with the
constraints of the problem. In this way we obtain

F̃ (z, z̃) :=
[
∇yf(y) +G(ỹ)>λ

g(y)

]
= 0. (4.28)

Corollary 4.1.8 (Convergence of outer iterations). Let z̃+(z̃) denote a solution
to (4.28) for a given z̃ and let Z ∈ Rn×ng be a matrix whose columns span the
nullspace of ∂g

∂y (ȳ), i.e., ∂g
∂y (ȳ)Z = 0. Let Assumption 4.1.6 hold. Then, if

κ := ρ

(
(Z>∇2

yf(ȳ)Z)−1Z>
∑
i

λ̄i∇2
ygi(ȳ)Z

)
< 1, (4.29)

the outer iterations exhibit local linear convergence with asymptotic convergence
rate κ. If κ = 0, then the outer iterations converge quadratically

Proof. The proof follows the same arguments as the proof of Theorem 4.1.7
noting that expanding z̃+(z̃) at z̄ we obtain

z̃+(z̃) = z̄ + ∂z̃+
∂z̃

(z̄) · (z̃ − z̄) +O
(
‖z̃ − z̄‖2

)
, (4.30)

which shows that, in order to study local contractivity, it suffices to compute
the spectral radius of ∂z̃+

∂z̃ . In particular, using the implicit function theorem,
we can write

∂z̃+
∂z̃

= −
(
∂F̃

∂z

)−1
∂F̃

∂z̃
=
[
∇2
yf(ȳ) G(ȳ)>
G(ȳ) 0

]−1 [∑
i λ̄i∇2

ygi(ȳ) 0
0 0

]
.

The rest of the proof follows the same derivations in the proof of Theorem
4.1.7.

Illustrative example

In the following, in order to illustrate the meaning of Theorem 4.1.7, a simple
numerical example is presented. We will regard the optimization problem

min
y

∥∥∥∥∥(y1 − α)3

y2

∥∥∥∥∥
2

2

s.t. (y1 − 1)2 + (y1 − 1)3 + (y2 − 1)− 1 = 0,

(4.31)

ZERO-ORDER SQP FOR NMPC 93

0 20 40 60 80 100
iterations

10−8

10−6

10−4

10−2

100

∆
z

zero-order (v1)
Gauss-Newton
zero order (v2)

Figure 4.1: Illustrative example: comparison of convergence rate of feasible SQP
with iterated second-order corrections and Gauss-Newton on the nonlinear least
squares problem (4.31) - Euclidean norm of the primal-dual steps. Convergence
rate computed according to Theorem 4.1.7: κ = 0.412. “Empirical” convergence
rate computed with linear regression: κ̃ = 0.408. Gauss-Newton asymptotic
convergence rate: 0.842.

where α ∈ R is a tuning parameter. Problem (4.31) is solved with both variants
of the proposed algorithm and the generalized Gauss-Newton method. For both
variants of the zero-order algorithm, we choose M to be the Gauss-Newton
Hessian. The iterates in the primal space and the Euclidean of the primal-dual
steps are reported in Figure 4.2 and 4.1, respectively. Figure 4.2 shows that
the resulting feasible SQP iterates are always feasible, while in Figure 4.1 the
result on the asymptotic convergence rate in Theorem 4.1.7 is validated and
we see that feasible SQP achieves a better convergence rate than generalized
Gauss-Newton. Moreover, choosing P to be the exact Hessian of the Lagrangian
at (ỹ, λ̃), the first variant of the algorithm achieves quadratic convergence as
stated by Theorem 4.1.7. The same does not hold for the second variant, where
the asymptotic contraction rate is proportional to the multipliers and to the
Hessians of the constraints, as stated in Corollary 4.1.8.

94 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

0.0 0.5 1.0 1.5
y1

−0.2

0.0

0.2

0.4

0.6

y 2

zero-order (v1)
Gauss-Newton
zero order (v2)

Figure 4.2: Illustrative example: iterates in the primal space obtained with
the proposed zero-order sequential programming algorithm and with Gauss-
Newton. The iterates obtained with zero-order sequential programming are
always feasible with respect to the nonlinear equality constraint.

Efficient solution of the quadratic subproblems

In order to obtain an efficient implementation of the feasible SQP, an efficient
solver for the quadratic subproblems involved in the solution of problem (4.9) is
of fundamental importance. In particular, given that the matrices appearing in
the subproblems are fixed until a solution to (4.12) is found, using an active-set
strategy, it is possible to maintain a factorization of the KKT systems to be
updated with low-rank updates as the working set changes across iterations.
Notice that, in this context, interior-point methods cannot in general exploit
the fact that the sensitivities are fixed because the update of the multipliers and
slack variables determines a high-rank update of the Hessians. For structured
problems arising in optimal control a tailored elimination algorithm to be used
in combination with the active-set strategy described in [Ferreau et al., 2008]
and implemented in qpOASES is proposed in Section 4.3.1. In the context of
large unstructured problems, we propose to use an active-set solver that exploits
the strategy presented in [Janka et al., 2016] and implemented in qpOASES
in order to speed up the solution of the underlying linear systems. The
algorithm presented in [Janka et al., 2016] is based on a Schur complement
strategy [Bisschop and Meeraus, 1977, Gill et al., 1987, Gould and Toint, 2002,
Gill and Wong, 2015]. Such an algorithm and its implementation in qpOASES

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 95

can be readily used to obtain an efficient solution of the quadratic subprograms
in the feasible SQP strategy and require no further development.

A proof-of-concept implementation of the proposed algorithm based on CasADi’s
code generation and qpOASES is available at https://github.com/zanellia/
feasible_sqp.

4.1.3 Conclusions

In this section, we have introduced zero-order NMPC and analyzed its numerical
properties. The proposed algorithm relies on the solution of a series of
subproblems with zero-order iterations (or second-order corrections) such that
feasibility can be achieved by reevaluating the residuals of the constraints at each
new iteration. In this way, a feasible, but suboptimal solution can be obtained,
while considerably reducing the computational footprint. The algorithm can
be embedded into an iterative strategy that updates the sensitivities in an
outer loop such that convergence towards a locally optimal solution is obtained.
We analyzed the contraction properties of the inner and outer iterations and
illustrated the meaning of the convergence results on a toy example.

In the context of unstructured nonconvex programming, the proposed algorithm
can be used in combination with the active-set Schur complement strategy
proposed in [Janka et al., 2016]. Such a method can exploit the fact that
the QP matrices are kept unchanged across several iterations to update the
factorization of the KKT system. A proof-of-concept implementation has been
made available while extensive benchmarking of the proposed strategy is subject
of undergoing research.

4.2 Asymptotic stability of zero-order NMPC

In this section, we analyze the stabilizing properties of the zero-order suboptimal
feedback policy. The analysis will be carried out in the equality constrained
setting first and later extended to the inequality constrained setting in Section
4.2.2. Without loss of generality, we will assume that the system has a steady
state at the origin and that the fixed derivatives are evaluated at (s, u) = (0, 0).

https://github.com/zanellia/feasible_sqp
https://github.com/zanellia/feasible_sqp

96 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

We will refer to an equality constrained formulation of the form

V (x) := min
s0,...,sN

u0,...,uN−1

N−1∑
i=0

l(si, ui) +m(sN)

s.t. s0 − x = 0,

ψ(si, ui)− si+1 = 0, i = 0, . . . , N − 1.

(4.32)

Regard the first-order optimality conditions for the QP subproblem (4.2)

−∆s0 = −rλ0

− λ0 +Mss
0 ∆s0 +Msu

0 ∆u0 +A>0 λ1 = −∇sl0

Mus
0 ∆s0 +Muu

0 ∆u0 +B>0 λ1 = −∇ul0

.

−∆sN +AN−1∆sN−1 +BN−1∆uN−1 = −rλN

− λN +Mss
N ∆sN = −∇slN ,

(4.33)

where λ0, · · · , λN are the Lagrange multipliers associated with the equality
constraints. Within the proposed zero-order strategy the optimality conditions
take the form

−∆s0 = −rλ0

− λ0 +Q∆s0 + S∆u0 +A>λ1 = −q0

S>∆s0 +R∆u0 +B>λ1 = −r0

.

−∆sN +A∆sN−1 +B∆uN−1 = −rλN

− λN +QN∆sN = −qN .

(4.34)

It is immediately clear from (4.34), that, when convergence is achieved, the
residuals associated with the equality constraints must be zero, such that we

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 97

recover a feasible solution satisfying the following conditions:

s0 − x = 0

q0 +A>λ1 − λ0 = 0

r0 +B>λ1 = 0

.

sN − ψ(sN−1, uN−1) = 0

qN − λN = 0.

(4.35)

The solution recovered by the inexact strategy is feasible, as the equality
constraints appear unchanged in the nonlinear root-finding problem (4.35). The
approximation introduced by fixing the sensitivities affects instead optimality
of the solution. For this reason, when analyzing the stability of the closed-loop
strategy, the question naturally arises of how this approximation degrades the
properties of the optimal value function which is commonly used as a Lyapunov
function in tracking NMPC.

The nominal stability proof will be based on a sensitivity analysis of the solution
to the nonlinear root-finding problem (4.35) with respect to the initial value x
at the origin. These considerations will be then exploited to prove that, in a
neighbourhood of the origin, the standard Lyapunov stability arguments must
hold for the inexact strategy as well. First, a simple fact on the sensitivity
of both optimal and suboptimal solutions with respect to x will be recalled.
Regard the first-order optimality conditions of (4.32):

s0 − x = 0

∇sl0 +∇sψ(s0, u0)λ1 − λ0 = 0

∇ul0 +∇uψ(s0, u0)λ1 = 0

s1 − ψ(s0, u0) = 0

.

sN − ψ(sN−1, uN−1) = 0

∇sm− λN = 0.

(4.36)

Equations (4.35) and (4.36) will be referred to in the compact forms

F̃ (z, x) = 0 (4.37)

98 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

and
F (z, x) = 0, (4.38)

respectively, where z := (s, u, λ).

Assumption 4.2.1. Assume that there exists a non-empty neighborhood X̄ of
the origin such that, for any x ∈ X̄, equations (4.37) and (4.38) have at least a
solution. Moreover, assume that ∇zF (0, 0) is nonsingular.

Assumption 4.2.2. Assume that l and m are positive definite functions and
that ∇sl(0, 0) = 0, ∇ul(0, 0) = 0 and ∇sm(0) = 0. Moreover, assume that there
exists positive constants a1 ≤ a2 such that a1‖x‖2 ≤ l(x, u) for all u and all
x ∈ X̄ and V (x) ≤ a2‖x‖2 for all x ∈ X̄.

Assumption 4.2.3. Assume that, for any x ∈ X̄, there exists a u†(x) such that

m(ψ(x, u†(x)))−m(x) + l(x, u†(x)) ≤ 0. (4.39)

Lemma 4.2.4. Let Assumptions 4.2.1 and 4.2.2 hold. Then there exists a
single-valued localization z̃(x), with z̃(0) = 0, of the solution map of (4.37).
Similarly, there exists a single-valued localization z̄(x), with z̄(x) = 0, of the
solution map of (4.38). Moreover, the following holds:

‖z̃(x)− z̄(x)‖ = O
(
‖x‖2

)
.

Proof. First, it can be trivially verified that, for x = 0, z = 0 solves both (4.37)
and (4.38). The existence of the single-valued localizations z̄(x) and z̃(x) is
guaranteed by Dini’s Theorem (cf. Theorem 2.1.22). Moreover, it is possible
to express their derivative with respect to the parameter x around the origin
respectively as

∂z

∂x
= −∂F

∂z

−1 ∂F

∂x
and ∂z̃

∂x
= −∂F̃

∂z

−1
∂F̃

∂x
,

where invertibility of ∂F∂z and ∂F̃
∂z is guaranteed in a neighbourhood of the origin

due to Assumption 4.2.1. It is possible to see that the derivative matrices
coincide at the origin, i.e

∂F̃

∂z
(0, 0) = ∂F

∂z
(0, 0) and ∂F̃

∂x
(0, 0) = ∂F

∂x
(0, 0) (4.40)

due to the fact that

A = ∂ψ

∂s
(0, 0) and B = ∂ψ

∂u
(0, 0). (4.41)

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 99

Moreover, since z̃(0) = z̄(0) = 0, we can write

‖z̃(x)− z̄(x)‖ = O
(
‖x‖2

)
. (4.42)

Let ỹ(x) and ȳ(x) denote the primal solution associated with z̃(x) and z̄(x),
respectively. In order to be able to use fundamental properties such as
monotonicity of the optimal value function and global optimality, which are
used in the argumentation of standard stability proofs for NMPC (see, e.g.,
[Rawlings et al., 2017]), we will make the following assumption.
Assumption 4.2.5. Assume that, for any x ∈ X̄, z̄(x) attains the global
minimum for (4.32), i.e., V (x) = f(ȳ(x)).

Now regard (4.32) in compact form

V (x) := min
y

f(y)

s.t. g(x) + Ĉx = 0.
(4.43)

The result from Lemma 4.2.4 can be used to quantify the suboptimality of ỹ(x)
as a function of ‖x‖.
Lemma 4.2.6. Let Assumptions 4.2.1 and 4.2.2 hold. Then, the following
holds:

f (ỹ(x))− f (ȳ(x)) = O
(
‖x‖4

)
. (4.44)

Proof. The proof exploits the fact that ỹ(x) is a feasible solution, hence g(ỹ(x))+
Ĉx = 0. Thus, objective and Lagrangian coincide, i.e., f(ỹ(x)) = L(ỹ(x), λ),
where:

L(y, λ) := f(y)− λ>(g(y) + Ĉx). (4.45)
The Taylor expansion of the Lagrangian at the solution

(
ȳ(x), λ̄(x)

)
reads

L(y, λ̄(x)) = L(ȳ(x), λ̄(x)) +∇yL(ȳ(x), λ̄(x))>(y − ȳ(x)) +O
(
‖y − ȳ(x)‖2

)
.

Using the fact that ȳ(x) is an optimal solution, i.e., ∇yL(ȳ(x), λ̄(x)) = 0, the
following is obtained for y = ỹ(x):

f(ỹ(x)) = L(ỹ(x), λ̄(x))

= L(ȳ(x), λ̄(x)) +O
(
‖(ỹ(x)− ȳ(x))‖2

)
= f(ȳ(x)) +O

(
‖(ỹ(x)− ȳ(x))‖2

)
.

(4.46)

100 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

Together with the fact that ‖z̃(x)− z̄(x)‖ = O
(
‖x‖2

)
, this implies that the

suboptimality grows with the fourth power of the norm of x, i.e.,

‖f (ỹ(x))− f (ȳ(x))‖ = O
(
‖x‖4

)
, (4.47)

which concludes the proof.

The observations made until now can be exploited in order to build a Lyapunov
function for the system controlled by applying the suboptimal solution in a
receding horizon fashion. The following theorem states the main stability result
for the inexact strategy in the equality constrained setting.

Theorem 4.2.7. Let Assumptions 4.2.1, 4.2.2, 4.2.3 and 4.2.5 hold. Then the
origin is a locally exponentially stable equilibrium for the closed-loop system

xnext = ψ(x, ũ0(x)) (4.48)

obtained by applying the suboptimal control input ũ0(x) associated with ỹ(x).

Proof. In order to prove the above result we show that that the cost

Ṽ (x) := f (ỹ(x)) (4.49)

is a valid Lyapunov function. Define VN−1(x) as the optimal value function
associated with a modified version of (4.32), with horizon N − 1. For any x
sufficiently close to the origin, the following holds:

Ṽ (x) = l(x, ũ0(x)) +
N−1∑
i=1

l(s̃i(x), ũi(x)) +m(s̃N (x))

Assumption 4.2.2
≥ a1‖x‖2 +

N−1∑
i=1

l(s̃i(x), ũi(x)) +m(s̃N (x))

optimality
≥ a1‖x‖2 + VN−1(ψ(x, ũ0(x)))

monotonicity
≥ a1‖x‖2 + V (ψ(x, ũ0(x))),

(4.50)

where, for the last inequality, we have exploited the monotonicity property of
the value function [Rawlings et al., 2017]. Moreover, due to Lemma 4.2.6, we
can write

Ṽ (x) ≥ a1‖x‖2 + Ṽ (ψ(x, ũ0(x))) +O
(
‖s̃1(x)‖4

)
. (4.51)

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 101

This last inequality shows that Ṽ (·) decreases for ‖s̃1(x)‖ small enough. Since,
due the Dini’s Theorem, the primal solution is Lipschitz in x, i.e., s̃1(x) =
O (‖x‖), the following holds:

Ṽ (x) ≥ a1‖x‖2 + Ṽ (ψ(x, ũ0(x))) +O
(
‖x‖4

)
. (4.52)

Hence, there exists a strictly positive constant ã1 such that

Ṽ (ψ(x, ũ0(x)))− Ṽ (x) ≤ −ã1 ‖x‖2 , (4.53)

in a non-empty neighborhood of the origin.

Moreover, lower and upper bounds can be trivially constructed using Assumption
4.2.2 such that Ṽ (x) is a valid Lyapunov function for the closed-loop system
over a nonempty neighborhood of the origin.

4.2.1 Illustrative example

In the following, in order to illustrate Theorem 4.2.14, the proposed zero-order
strategy will be applied to a simple example.

We regard an OCP of the form in (4.32), with an additional terminal equality
constraint as in [Zanelli et al., 2016]. In this case, the function ψ represents
discretized dynamics obtained by applying the explicit Runge-Kutta strategy
of order 4 with fixed step-size h = 0.1 to the following ordinary differential
equation:

ẋ = φ(x, u) :=
[
x3

1 + (1 + x2)u1
x3

2 + x1 + u2

]
. (4.54)

A control horizon T = 1 is used and the trajectories are discretized using N = 10
shooting nodes. A quadratic cost is used and the cost matrices are chosen to be
equal to the identity matrix Q = R = I2.

The full-step Gauss-Newton algorithm is used for the comparison and both the
exact and inexact SQP-type algorithms are iterated until either convergence
or failure. Two possible causes of failure are taken into account: either the
algorithm has not converged after a maximum number of iterations τmax = 100
or an infeasible QP has arisen.

The state space region X = {−1.2 ≤ x1 ≤ 1.2,−1.2 ≤ x2 ≤ 1.2} is discretized
with an equally spaced grid and the OCP is solved with both methods. For
any initial condition x and input computed ū0(x), let ∆V be the cost difference
defined as

∆V = V (ψ(x, ū0(x)))− V (x) (4.55)

102 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

−1 0 1

−1

0

1

x1

x
2

∆V < 0 ∆V ≥ 0 failure

−1 0 1

−1

0

1

x1

x
2

Figure 4.3: ∆V for optimal value function (left) and Ṽ (x) (right). Decreasing cost
∆V < 0 in green, non-decreasing cost ∆V ≥ 0 in red, maximum number of iterations
reached or infeasible SQP step in blue. The optimal value function is guaranteed to
decrease by construction. For the inexact strategy, the cost can be non-decreasing due
to the approximation introduced. However, ∆V < 0 holds in a non-negligible region
around the origin.

for exact NMPC and

∆V = Ṽ (ψ(x, ũ0(x)))− Ṽ (x) (4.56)

for zero-order NMPC.

Figure 4.3 shows the regions where ∆V < 0, ∆V ≥ 0 or a failure is encountered,
comparing the results obtained with the two strategies. In particular, it is
shown that Lyapunov decrease can be obtained for zero-order NMPC in a rather
large neighbourhood of the origin.

The relative suboptimality ε% = Ṽ (x)−V (x)
V (x) · 100 of the trajectories obtained

with the inexact strategy is plotted in Figure 4.4 for different initial conditions.
The strategy can become largely suboptimal for points sufficiently distant from
the origin, where the fixed sensitivities might not be good approximations of the
exact ones. However, closed-loop feasibility is always guaranteed and stability
can be guaranteed in a non-negligible region as illustrated in Figure 4.3.

Finally, in Figure 4.5, points on a line that passes through the origin parametrized
with the scalar coordinate xd are considered [x1 x2] = xd [1 1.71] and the
absolute suboptimality Ṽ (x)− V (x) is compared with the stage cost 1

2x
>Qx.

Due to Lemma 4.2.6, the suboptimality is of fourth order in ‖x‖, hence the
inequality Ṽ (x)− V (x) < 1

2x
>Qx holds in a neighbourhood of the origin.

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 103

−2

0

2

−2

0

2

0

100

200

300

x1
x2

ε
%

Figure 4.4: Relative suboptimality ε% = Ṽ (x)−V (x)
V (x) · 100. The inexact strategy gives

rise to largely suboptimal policies in certain regions of the state space, however, as
shown in Figure 4.3 stability is guaranteed in a non-negligible region of the state
space.

−0.2 −0.1 0 0.1 0.2

0

0.2

0.4

0.6

xd

Ṽ (x) − V (x)

1
2x

>Qx

Figure 4.5: Suboptimality as a function of the directional coordinate xd. Ṽ (x) −V (x)
is compared with 1

2x
>Qx. Due to Lemma 4.2.6, the suboptimality is dominated by

the quadratic stage cost.

4.2.2 Asymptotic stability - inequality constrained

In order to extend Theorem 4.2.14 to the inequality constrained setting, we
replace equations (4.37) and (4.38) with the generalized equations

0 ∈ F̃ (z, x) +NK(z) (4.57)

and
0 ∈ F (z, x) +NK(z), (4.58)

respectively and we adapt Assumption 4.2.1 as follows.

104 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

Assumption 4.2.8. Assume that, for x = 0, the generalized equations (4.57)
are strongly regular at z = 0.

Proposition 4.2.9. Let Assumption 4.2.8 hold. Then there exists a single-
valued localization z̃(x), with z̃(0) = 0, of the solution map of (4.57). Similarly,
there exists a single-valued localization z̄(x), with z̄(x) = 0, of the solution map
of (4.58). Moreover, let ỹ(x) and ȳ(x) denote the primal solution associated
with z̃(x) and z̄(x), respectively.

Proof. The result is a direct consequence of Assumption 4.2.8.

Let ỹ(x) and ȳ(x) denote the primal solution associated with z̃(x) and z̄(x),
respectively.

Proposition 4.2.10. Regard problem (4.11) and let Assumption 4.2.8 hold.
Then the following holds:

ξ(x) = O
(
‖x‖2

)
. (4.59)

Proof. Since z̃(0) = 0, due to strong regularity, µ̃(x) = O (‖x‖) and ỹ(x) =
O (‖x‖). Moreover, since G> − ∇g(ỹ(x)) = O (‖x‖) and H> − ∇h(ỹ(x)) =
O (‖x‖), then ξ(x) = O(‖x‖2).

Consider now the following parametrization of problem (4.11):

min
y

f(y) + ξ>y

s.t. g(y) + Ĉx = 0,

h(y) ≤ 0,

(4.60)

where ξ is regarded as a parameter. Let the following auxiliary generalized
equation represents the first-order necessary conditions of (4.60):

0 ∈ F̂ (z, x, ξ) +NK(z), (4.61)

where F̂ (z, x, 0) = F (z, x).

Proposition 4.2.11. Let Assumption 4.2.8 hold. Then there exists a single-
valued localization ẑ(x, ξ) of the solution map of (4.61). Moreover, for x
sufficiently close to 0, the following holds:

ẑ(x, ξ)− z̄(x) = O (‖ξ‖) . (4.62)

ASYMPTOTIC STABILITY OF ZERO-ORDER NMPC 105

Proof. Existence of the single-valued localization ẑ(x, ξ) is guaranteed by
Assumption 4.2.8. Moreover, due to Corollary 2.1.33, we can write

‖ẑ(x, ξ)− ẑ(x, 0)‖ = O

(∥∥∥∥[xξ
]
−
[
x
0

]∥∥∥∥) = O(‖ξ‖). (4.63)

Moreover, since for x sufficiently small, due to strong regularity, (4.61) has a
unique solution in a neighborhood of z = 0, z̄(x) = ẑ(x, 0) holds and we can
write

ẑ(x, ξ)− z̄(x) = O (‖ξ‖) . (4.64)

Lemma 4.2.12. Let Assumption 4.2.8 hold. Then the following is true:

z̄(x)− z̃(x) = O
(
‖x‖2

)
. (4.65)

Proof. The result is a direct consequence of Propositions 4.2.10 and 4.2.11.

Lemma 4.2.13. Let Assumption 4.2.8 hold. Then, the following holds:

f(ȳ(x))− f(ỹ(x)) = O
(
‖x‖4

)
. (4.66)

Proof. Given that ỹ(x) is a local minimizer for (4.11), it holds that

f(ỹ(x)) + ξ(x)>ỹ(x) ≤ f(y) + ξ(x)>y, (4.67)

for any feasible y in B(ỹ(x), ry) for some ry > 0 and, in particular, for ‖x‖
sufficiently small, we can write

f(ỹ(x))− f(ȳ(x)) ≤ ξ(x)>(ȳ(x)− ỹ(x)). (4.68)

Moreover, due to Proposition 4.2.10 and Lemma 4.2.12, we have that ξ(x) =
O
(
‖x‖2

)
and ȳ(x)− ỹ(x) = O

(
‖x‖2

)
, which implies that

f(ỹ(x))− f(ȳ(x)) = O
(
‖x‖4

)
. (4.69)

Lemma 4.2.13 provides a result similar to Lemma 4.2.6, which can be used to
establish local asymptotic stability stability for the zero-order NMPC strategy
in the inequality constrained setting.

In order to ensure that the optimal value function is a Lyapunov function, we
will rely on the standard Assumptions 2.2.16, 2.2.17, 2.2.18 and 2.2.19.

106 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

Theorem 4.2.14. Let Assumptions 2.2.16, 2.2.17, 2.2.18, 2.2.19, 4.2.2, 4.2.3,
4.2.5 and 4.2.8 hold. Then the origin is a locally exponentially stable equilibrium
for the closed-loop system

xnext = ψ(x, ũ0(x)) (4.70)

obtained by applying the suboptimal control input ũ0(x) associated with ỹ(x).

Proof. The proof follows the same arguments as the proof of Theorem 4.2.14.

4.2.3 Asymptotic stability of system-optimizer dynamics

In the following, a stability analysis for the combined system-optimizer dynamics
with zero-order optimization is proposed. In particular, we show how the result
from Theorem 3.2.28 can be used in order to guarantee asymptotic stability
of the combined closed-loop dynamics. In particular, in Theorem 4.1.5 we
have shown that a Q-linear contraction result can be derived for the zero-order
iterates in the inequality constrained setting.

Theorem 4.2.15. Let the Assumptions of Theorem 3.2.28 hold. Then, there
exists a (“sufficiently” short) sampling time T > 0, such that the origin (x, z) =
(0, 0) is a locally asymptotically stable equilibrium for the combined system-
optimizer dynamics obtained by controlling a system in receding horizon with the
feedback policy obtained with the proposed zero-order real-time iteration strategy:

x+ = ψ(T ;x,Mu,zz),

z+ = ϕ(ψ(T ;x,Mu,zz), z),
(4.71)

where ϕ : Rnx×Rnz → Rnz denotes the solution map of the linearized generalized
equation associated with the SQP iterates.

Proof. The proof follows the same arguments as the one of Theorem 3.2.28
choosing as Lyapunov function f(ỹ(x)).

4.3 Implementation details and benchmarking

In this section, the zero-order algorithm algorithm will be specialized to the
structure obtained by using the direct collocation discretization strategy and an
efficient elimination strategy based on lifted integrators [Quirynen et al., 2017]
and the condensing routines proposed in [Frison and Jørgensen, 2013] will

IMPLEMENTATION DETAILS AND BENCHMARKING 107

be described. The main underlying idea, as in the numerical strategy for
unstructured problem proposed in Section 4.1, is to exploit the fact that the
sensitivities are frozen. In this way, several computations that need in general
to be carried out online can be performed offline.

The structure-exploiting algorithm is based on a two-level algebraic elimination
procedure that, starting from the large and sparse direct collocation formulation,
allows one to solve lower dimensional quadratic programs (QPs), with a
prefactorized KKT system. First, the exact lifted integrators proposed in
[Quirynen et al., 2017] which, in this context, can be seen as a strategy to
eliminate the internal variables associated with implicit integrators, are used
to bring the linear systems into multiple shooting form. Second, a condensing
procedure is used to eliminate the state variables, such that a dense QP with
fewer variables needs to be solved. Due to the fact that the sensitivities are kept
constant, most computations needed for both elimination procedures can be
carried out offline. These computations include factorizations needed to solve
the collocation equations and the computation of the dense Hessian and its
factorization. The only computations left to be carried out online consist in the
evaluation of the (explicit) nonlinear functions describing cost and constraints
of the NLP, condensing and expansions of right-hand sides and solution of the
dense QP. For the latter, efficient rank one updates can be exploited to speed
up the required computations [Ferreau et al., 2008].

Remark 4.3.1. Although in some cases it might be more computationally
efficient to use explicit integrators, the two-level elimination strategy will be
described for the case where implicit integrators are used to discretize the
continuous-time dynamics. This is done on purpose, since the proposed algorithm
can significantly speed up the computations associated with the solution of implicit
collocation equations as well.

108 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

4.3.1 Two-level algebraic elimination

Consider the following discrete-time optimal control problem in direct collocation
form:

min
s,u,v

N−1∑
i=0

l(si, ui) +m(sN)

s.t. s0 − x = 0,

φ(si, ui, vi) = 0, i = 0, . . . , N − 1,

si + Evi − si+1 = 0, i = 0, . . . , N − 1,

π(si, ui) ≤ 0, i = 0, . . . , N − 1,

πN (sN) ≤ 0,

(4.72)

where si ∈ Rnx , for i = 0, . . . , N and ui ∈ Rnu , vi ∈ Rnv , for i = 0, . . . , N − 1,
are the states, controls and collocation variables, respectively. The equation
φ(si, ui, vi) = 0 represents the collocation equations

φ(si, ui, vi) :=

ψc(v
1
i , si + Tint

∑q
s=1 a1,sv

s
i , ui)

...
ψc(vqi , si + Tint

∑q
s=1 aq,sv

s
i , ui)

 (4.73)

associated with stage i, where q denotes the number of collocation nodes and
the scalars ai,j with i, j = 1, . . . , q are the coefficients of the collocation method.
The integration step size is represented by Tint and E in (4.72) is a constant
matrix that depends on Tint and the collocation nodes. The function ψc in
(4.73) characterizes the fully implicit continuous-time dynamics

0 = ψc(ẋ(t), x(t), ū). (4.74)

Remark 4.3.2. As described in [Quirynen et al., 2017], the presented algo-
rithm can be easily extended to the case where a differential-algebraic equation
describes the dynamics, and to the case where more than one intermediate
integration step is carried out per shooting node. For the sake of brevity, we will
restrict ourselves to the less general formulation (4.72)-(4.73).

IMPLEMENTATION DETAILS AND BENCHMARKING 109

Algorithm 3 Level-1 elimination: lifted integrators
input: current primal iterate (ŝ, û, v̂)
output: updated primal iterate (s+, u+, v+)

1: L1-Condensing procedure
2: for i = 0, . . . , N − 1 do
3: ∆ṽi ← ∂φ

∂v

−1
φ(ŝi, ûi, v̂i),

4: rλi+1 ← ŝi + Ev̂i − ŝi+1 + E∆ṽi
5: end for
6: QP solution (Algorithm 4)
7: for i = 0, . . . , N − 1 do
8: si,+ ← ŝi + ∆si
9: ui,+ ← ûi + ∆ui

10: end for
11: sN,+ ← ŝN + ∆sN
12: L1-Expansion procedure
13: for i = 0, . . . , N − 1 do
14: vi,+ ← v̂i + ∆ṽi + Vs∆si + Vu∆ui
15: end for

The proposed algorithm solves, at every iteration, QP subproblems of the form
(4.2) with fixed sensitivities, which we report below for improved readability:

min
∆s0,··· ,∆sN

∆u0,··· ,∆uN−1

1
2

N−1∑
i=0

∆si
∆ui

1

>Mi

∆si
∆ui

1

+ 1
2

[
∆sN

1

]>
MN

[
∆sN

1

]

s.t. ∆s0 − rλ0 = 0

∆si+1−A∆si−B∆ui − rλi+1 = 0, i = 0, · · · , N − 1,

π(ŝi, ûi) + C∆si +D∆ui ≤ 0, i = 0, · · · , N − 1,

πN (ŝN) + CN∆sN ≤ 0.

(4.75)

Here, due to the presence of the collocation equality constraints, the matrices
A and B are defined as follows:

A := I + EVs, B := EVu, (4.76)

where
Vs := −∂φ

∂v

−1 ∂φ

∂s
, Vu := −∂φ

∂v

−1 ∂φ

∂u
, V := [Vs, Vu]. (4.77)

110 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

Algorithm 4 Level-2 elimination: states condensing
input: QP (4.75)
output: ∆s and ∆u

1: L2-Condensing procedure
2: update condensed QP ([Frison, 2015] - Algorithms 6, 8, 14)
3: Condensed QP solution
4: compute ∆u
5: L2-Expansion procedure
6: compute ∆s ([Frison, 2015] - Equation 9.1)

-4

1 0

-2

0.5 0.5

0

10

Figure 4.6: Nonlinear hanging chain benchmark for nm = 5 masses
[Kouzoupis et al., 2018]. The dashed sketch describes the equilibrium at which
the fixed quantities used by Algorithm 3 and 4 are computed.

While the terms rλi , i = 1, . . . , N are updated using Algorithm 3, the terms
π(ŝi, ûi) for i = 0, . . . , N − 1, and πN (ŝi) are computed by evaluating the
constraint functions at the current iterate.

After problem (4.75) is formed through steps 1− 5 of Algorithm 3, a (states)
condensing routine is used to update a condensed QP whose solution delivers
the Newton step in the input variables ∆u as described in Algorithm 4. Notice
that, since the QP matrices in (4.75) are constant throughout the iterations,
the step 5 of Algorithm 4, only involves the update of gradients and right-hand
sides resulting in a tailored condensing routine that is significantly cheaper than
the standard implementation.

4.3.2 Numerical results

The zero-order strategy described in Algorithms 3 and 4 has been implemented
in C within the framework for nonlinear embedded optimization acados
[Verschueren et al., 2021] using the high-performance linear algebra library

IMPLEMENTATION DETAILS AND BENCHMARKING 111

BLASFEO [Frison et al., 2018]. The QP solver qpOASES [Ferreau et al., 2008] is
used in order to exploit hotstarting of its active-set strategy and avoid the
necessity of factorizing the condensed Hessian at every iteration. The efficient
condensing routines implemented in HPIPM [Frison, 2017] are used in order to
carry out steps 1 and 5 in Algorithm 4. In the following, a numerical case-study
based on a scalable example is presented where it is shown that considerable
speedups can be achieved. All benchmarks have been run on a Dell XPS13-9360
equipped with an Intel i7-7560U with maximum and minimum frequency set to
the nominal value of 2.40 GHz in order to avoid thermal throttling.

Nonlinear hanging chain - Timings

The system as presented in [Wirsching et al., 2006] and [Ferreau et al., 2008]
consists in a hanging chain of masses connected by springs described by a
differential equation with nx = 6(nm − 2) + 3 states, where nm represents
the number of masses in the chain. The chain is controlled by adjusting the
velocities of the mass at one of its ends resulting in nu = 3 controls, while the
opposite end is fixed. Figure 1 shows a sketch of the system under consideration.

Following the notation in (4.72), a tracking formulation with

l = 1
2(s− xss)>Q(s− xss) + 1

2(u− uss)>R(u− uss) (4.78)

and
m = 1

2(s− xss)>QN (s− xss) (4.79)

is be used, where Q = QN = 100·Inx and R = Inu . Double-sided box constraints
are imposed on the inputs umin ≤ u ≤ umax and single-sided constraints for
the states xmin ≤ x are included that represent the wall on the side of the
chain. Implicit lifted collocation integrators [Quirynen et al., 2017] of type
Gauss-Legendre with order 2ns are used to discretize the dynamics of the
system.

Table 4.1 shows the worst-case CPU time in milliseconds obtained in a closed-
loop simulation using the standard (RTI) and the proposed (0-RTI) real-time
iteration strategies. Especially for a large number of masses nm and number of
stages of the collocation integrators ns, a large speedup can be achieved with
respect to the standard strategy. For these benchmarks, the maximum increase
in the closed-loop cost with respect to the standard RTI is below 0.1%.

112 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

N 10 10 10 20 20 20 30 30 30
nm 5 6 7 5 6 7 5 6 7
ns 2 4 6 2 4 6 2 4 6
RTI 1.20 4.65 19.96 2.54 9.97 40.41 4.80 16.04 61.41
0-RTI 0.43 0.44 0.94 0.81 1.32 2.34 1.84 2.65 4.23
speedup 2.79 10.56 21.37 3.13 7.55 17.27 2.61 6.05 14.52

Table 4.1: Closed-loop worst-case computation time, in milliseconds, for the
standard (RTI) and zero-order (0-RTI) real-time iteration strategies for different
prediction horizons N , numbers of masses nm and numbers of stages for the
collocation integrators ns. In all simulations the system is steered to the steady
state. Using the 0-RTI strategy, a maximum increase of less than 0.1% in the
closed-loop cost is incurred with respect to the standard RTI.

Nonlinear hanging chain - Control performance

In order to illustrate the benefits of the proposed strategy in terms of
control performance, a slight adaptation of the original formulation used in
[Wirsching et al., 2006] will be taken into account. In particular, a convex
quadratic constraint that requires the position of the actuated mass to be within
a ball of a fixed radius ρ̄ centered around p̄ is introduced:

‖p− p̄‖22 − ρ̄2 ≤ 0, (4.80)

where p represents the position of the actuated mass.

Figure 2 shows the open-loop trajectories obtained by solving the exact NLP
and the approximate zero-order and the linear-quadratic formulations obtained
by using the required fixed quantities computed at the steady-state. Although
the zero-order trajectories are clearly suboptimal, the advantage over the linear-
quadratic formulation is evident due to the fact that the additional nonlinear
constraint (4.80) can be satisfied when using the proposed approach.

Finally, in order to illustrate the superior asymptotic approximation of the
optimal cost, Figure 4.8 shows the deviation of the open-loop costs obtained
with the zero-order and linear-quadratic formulations.

IMPLEMENTATION DETAILS AND BENCHMARKING 113

0 0.2 0.4 0.6 0.8 1
0

2

4

6

time [s]

x
1

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

time [s]

u
1

exact
zero-order
QP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

feasible

infeasible

time [s]

co
n
st
.
v
io
la
ti
on

Figure 4.7: Open-loop trajectories obtained with the original (solid), zero-order
(dotted) and linear-quadratic (dashed) formulations. An additional constraint is
added to the problem used in [Wirsching et al., 2006] that requires the position
of the actuated mass to be within a ball. Although the zero-order strategy is
clearly suboptimal, the obtained trajectories satisfy the nonlinear constraint
(unlike with the linear-quadratic formulation).

4.3.3 Conclusions

In Sections 4.2 and 4.3 we have presented system theoretic and computational
considerations on zero-order NMPC. In particular, we introduced a proof of local
asymptotic stability of the closed-loop system controlled with the feasible, but
suboptimal, solutions recovered by the zero-order iterates. Section 4.3 focuses
instead on computational aspects by proposing a structure exploiting algebraic
elimination strategy that leverages the frozen sensitivities in the underlying
QPs.

114 ZERO-ORDER METHODS FOR NMPC WITH STABILITY GUARANTEES

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
·10−6

‖x− xss‖2

co
st

d
ev
ia
ti
on

zero-order
QP

Figure 4.8: Asymptotic suboptimality of zero-order and linear-quadratic
formulations in open-loop as a function of the deviation of x from the steady-
state. The zero-order strategy provides a superior approximation of the optimal
cost.

4.4 Chapter summary and outlook

In this chapter, we investigated numerical and system theoretic properties
of algorithmic strategies based on a special case of the multi-level real-time
iterations proposed in [Bock et al., 2007]. The main idea relies on the fact that,
reevaluating the residuals of the constraint functions, we can enforce feasibility
of properly constructed SQP iterates that can be efficiently computed. Since the
QP subproblems only need function evaluations, or “zero-order” information, to
be constructed, we named the class of numerical algorithms zero-order methods.

We analyzed how this simple, and yet powerful, idea can be specialized into
different strategies for NMPC and numerical optimization in general. In Section
4.2, a stability analysis of the closed-loop system obtained using the suboptimal,
but feasible, solution recovered by a zero-order SQP strategy is proposed. In
particular, we showed that, under the assumption that the optimal cost is a
Lyapunov function for the closed-loop system, locally, the cost associated with
the suboptimal solutions is also a Lyapunov function. Moreover, an efficient
structure exploiting strategy has been proposed that relies on a two-level
algebraic elimination. In fact, relying on the fact that the sensitivities are held
constant across the SQP iterates, it is possible to reuse many of the numerical
quantities involved in the step computations. First the variables associated with
implicit integrators, can be eliminated using prefactorized Jacobians using what
we might refer to as a zero-order variant of the lifted integrators proposed in
[Quirynen et al., 2013]. Second, the state variables can be eliminated using the
condensing algorithm proposed in [Frison and Jørgensen, 2013]. The resulting
routines do not update matrices and only the vector recursions need to be carried

CHAPTER SUMMARY AND OUTLOOK 115

out in order to formulate and solve the QP subproblems. Finally, a condensed
QP needs to be solved whose KKT system can be prefactorized in order to
speed up the computations of an active-set solver. In this way, altogether, the
computational footprint of one iteration becomes much closer to the one of
linear-quadratic MPC, and yet the approximate solution the iterates converge
to retains feasibility with respect to the (potentially) nonlinear constraints.

Undergoing research involves an efficient implementation of the feasible SQP
solver using the Schur complement strategy described in [Janka et al., 2016] and
available in qpOASES and its extensive benchmarking against state-of-the-art
solvers for large-scale nonlinear programming.

Chapter 5

Progressive tightening
methods for NMPC with
stability guarantees

In this chapter, we analyze a class of NMPC formulations that rely on a
rather intuitive concept called progressive tightening. In particular, we will
study the system theoretic properties of progressive tightening NMPC and
design numerical algorithms that can speed up computations by leveraging
such formulations. The main concept behind progressive tightening is to use
stage-varying, rather than time-varying, costs and constraints that, loosely
speaking, lead to costs that monotonically increase in the prediction horizon.
By doing so, the optimal control formulation relies on an increasing penalization
of state and input deviations from their steady state values the farther into the
future we look. As we will see, the use of such formulations can be motivated
directly by system theoretic considerations and can be advantageously adopted
to mitigate numerical challenges associated with specific ingredients of the
underlying optimization problems.

Outline

The chapter is organized as follows. In Section 5.1, asymptotic stability of general
progressive tightening NMPC formulations is proved under the assumption of
subsequent inclusion of what will be referred to as cost-constraint epigraphs
of the underlying optimal control problem. In Section 5.2, we introduce a

117

118 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

partial tightening real-time iteration strategy that exploits a particular type of
tightening based on logarithmic barrier functions on the terminal section of the
prediction horizon. The resulting algorithm is interpreted within the framework
of generalized Newton-type methods and a convergence and stability proof for
the real-time variant of the numerical strategy is derived. Finally, in Section
5.2.5, numerical results obtained with the proposed partial tightening algorithm
are presented and discussed.

5.1 Asymptotic stability of progressive tightening
model predictive control

Regard the following standard optimal control problem:

min
s0,...,sN

u0,...,uN−1

N−1∑
i=0

li(si, ui) +m(sN)

s.t. s0 − x = 0,

ψ(si, ui)− si+1 = 0, i = 0, . . . , N − 1,

πi(si, ui) ≤ 0, i = 0, . . . , N − 1,

πN (sN) ≤ 0,

(5.1)

where s ∈ Rnx and u ∈ Rnu represent the states and controls of the system.
The functions li : Rnx × Rnu → R+, and m : Rnx → R+ define the cost
terms. The constraint functions are denoted by πi : Rnx × Rnu → Rnπ and
πN : Rnx → RnπN , while ψ : Rnx × Rnu → Rnx describes the dynamics of the
system. Finally, the parameter x represents the initial state of the system. We
will denote the optimal solution to (5.1) for a given x as (ū(x), s̄(x)), where
ū(x) := (ū(x)0, . . . , ūN−1(x)) and s̄(x) := (s̄0(x), . . . , s̄N (x)).

Remark 5.1.1. Since the costs and constraints in progressive tightening NMPC
are not time-varying, but rather stage-varying, classical results on NMPC with
time-varying costs and constraints cannot be trivially applied.

In order to formalize the concept of progressive tightening and define the class
of optimal control problems that we will refer to, we introduce in the following
the concept of cost-constraint epigraphs.

ASYMPTOTIC STABILITY OF PROGRESSIVE TIGHTENING MODEL PREDICTIVE CONTROL 119

Figure 5.1: Simplified illustration of the progressive tightening Assumption
5.1.3 based on the cost-constraint epigraph inclusion.

Definition 5.1.2 (Cost-constraint epigraphs). Regard the following modified
cost terms:

l̃i(s, u) := li(s, u) + IΠi(s, u), i = 0, . . . , N − 1, (5.2)

m̃(s) := m(s) + IΠN (s), (5.3)

where
Πi = {(s, u) : πi(s, u) ≤ 0}, i = 0, . . . , N − 1, (5.4)

ΠN = {s : πN (s) ≤ 0}. (5.5)

Here

IΩ(v) :=
{

0, if v ∈ Ω
∞, otherwise

(5.6)

denotes the indicator function of a set Ω. We will refer to the epigraphs of the
modified cost terms as cost-constraint epigraphs.

Assumption 5.1.3 (Progressive tightening). For the cost-constraint epigraphs
associated with the costs and constraints in (5.1), the following holds:

epi l̃i ⊆ epi l̃i−1, i = 1, . . . , N − 1. (5.7)

120 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

In the following, we present a stability proof for nonlinear model predictive
control with stage-varying costs and constraints satisfying Assumption 5.1.3.

The main result is based on an extension of standard stability arguments
[Rawlings et al., 2017] which we adapt to the problem formulation under
analysis in the following. For consistency, we will refer to the notation and
definitions used in [Rawlings et al., 2017]. To this end, let Zi := {(s, u) ∈ Rnx×
Rnu |πi(s, u) ≤ 0}, Ui(s) := {u ∈ Rnu | (s, u) ∈ Zi}, Xi := {s ∈ Rnx |Ui(s) 6= ∅}
and Xf := {s ∈ Rnx |πN (s) ≤ 0}. Moreover, let X̄ ⊆ X0 denote the set
containing all the x for which (5.1) has a solution. We require the following
Assumptions to hold:

Assumption 5.1.4 (Continuity of system and cost). Assume that the origin
is a steady state with ψ(0, 0) = 0, li(0, 0) = 0, i = 0, . . . , N − 1 and m(0) = 0.
Moreover, assume that li for i = 0, . . . , N −1 and m are continuous and positive
definite and that πi for i = 0, . . . , N and ψ are continuous.

Assumption 5.1.5 (Properties of constraint sets). For i = 0, . . . , N − 1, the
sets Zi are closed and the sets Ui(s) are compact and uniformly bounded in each
corresponding Xi. The set Xf ⊆ XN−1 is compact and each set contains the
origin.

Assumption 5.1.6 (Basic stability assumption). The terminal cost m, the set
Xf and the cost terms lN−1 and l0 satisfy the following properties:

1. For all x ∈ Xf , there exists a u†(x), such that (x, u†(x)) ∈ ZN−1,
satisfying

ψ(x, u†(x)) ∈ Xf ,

m(ψ(x, u†(x)))−m(x) ≤ −lN−1(x, u†(x)).

2. There exist a K∞ function αl such that

l0(x, u) ≥ αl(‖x‖), ∀x ∈ X̄,

for any u such that (x, u) is in Z0.

Assumption 5.1.7 (Weak controllability). There exists a K∞ function α2(·)
such that, for the optimal cost associated with (5.1)

V (x) :=
N−1∑
i=0

li(s̄i(x), ūi(x)) +m(s̄N (x)), (5.8)

the following holds:
V (x) ≤ α2(‖x‖),∀x ∈ X̄. (5.9)

ASYMPTOTIC STABILITY OF PROGRESSIVE TIGHTENING MODEL PREDICTIVE CONTROL 121

Under the requirement that Assumptions 5.1.3, 5.1.4, 5.1.5, 5.1.6 and 5.1.7 hold,
the main stability result can be derived. In particular, it can be shown that V (x)
is a Lyapunov function for the closed-loop system obtained by controlling the
system with the optimal feedback law Mu,y ȳ(x) in a receding horizon fashion
[Rawlings et al., 2017]:

Theorem 5.1.8 (Asymptotic stability of progressive tightening NMPC).
Suppose that Assumptions 5.1.3, 5.1.4, 5.1.5, 5.1.6 and 5.1.7 are satisfied.
Then the following hold.

1. There exist K∞ functions α1(·) and α2(·) and a positive definite function
α3(·) such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (5.10a)

V (ψ(x,Mu,y ȳ(x)))− V (x) ≤ −α3(‖x‖), (5.10b)

for all x ∈ X̄.

2. The origin x = 0 is an asymptotically stable equilibrium with region of
attraction X̄ for the closed-loop system

xnext = ψ(x, ū0(x)). (5.11)

Proof. First, it is necessary to identify valid candidates for the functions α1(·)
and α2(·) such that the inequality (5.10a) is satisfied. The fact that a K∞
function α2(·) exists such that

V (x) ≤ α2(‖x‖), ∀x ∈ X̄

is a direct consequence of Assumption 5.1.7. Due to Assumption 5.1.6, we have

V (x) ≥ l0(x, ū(x)) ≥ αl(‖x‖), ∀x ∈ X̄,

for any u such that (x, u) is in Z0, which implies that α1(·) = αl(·) can be used.

Second, it is necessary to show that the decrease property in (5.10b) holds.
To this end, consider the following control sequence obtained by shifting the
solution obtained by solving (5.1) for a given x:

ũ = (ū1(x), . . . , ūN−1(x), ũN),

where ũN := u†(s̄N (x)) is defined according to Assumption 5.1.6. Due to
Assumption 5.1.3 on the recursive inclusion of the cost-constraint epigraphs, ũ

122 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

is feasible for the optimal control problem associated with the shifted horizon,
since the inclusion epi l̃i ⊆ epi l̃i−1 implies Zi ⊆ Zi−1. The cost associated
with the suboptimal sequence ũ reads

Ṽ (s̄1(x)) =
N−1∑
i=1

li−1(s̄i(x), ūi(x)) + lN−1(s̄N (x), ũN) +m(ψ(s̄N (x), ũN))

= V (x)− l0(x, ū0(x))−
N−1∑
i=1

li(s̄i(x), ūi(x))−m(s̄N (x))

+
N−1∑
i=1

li−1(s̄i(x), ūi(x)) + lN−1(s̄N (x), ũN) +m(ψ(s̄N (x), ũN)).

Again, due to the cost-constraint epigraph inclusion in Assumption 5.1.3, the
following holds:

N−1∑
i=1

li−1(s̄i(x), ūi(x))−
N−1∑
i=1

li(s̄i(x), ūi(x)) ≤ 0,

which implies

Ṽ (s̄1(x)) ≤ V (x)−l0(x, ū0(x))−m(s̄N (x))+lN−1(s̄N (x), ũN)+m(ψ(s̄N (x), ũN))

and, due to Assumption 5.1.6, we have that

Ṽ (s̄1(x))− V (x) ≤ −l0(x, ū0(x)) ≤ αl(‖x‖). (5.12)

This last inequality shows that (5.10b) holds with α3(·) = αl(·).
Finally, in order to conclude the proof, Theorem 2.2.15 can be used. The set X̄
can be shown to be positive invariant for the closed-loop system following the
arguments in the proof of [Rawlings et al., 2017, Proposition 2.10(b)]. Moreover,
inequalities (2.80a) and (2.80b) are trivially satisfied through (2.83a) and (2.83b).
This implies that Theorem 2.2.15 can be applied and the origin can be shown
to be asymptotically stable in X̄.

5.2 A partial tightening real-time method

In this section, we propose a numerical strategy based on progressive tightening
that can be used to reduce the computational burden associated with the solution
of problems arising in nonlinear model predictive control. The prediction horizon

A PARTIAL TIGHTENING REAL-TIME METHOD 123

is split into two sections and the constraints associated with the terminal one
are tightened using a barrier formulation. In this way, when using the RTI
strategy, variables associated with such stages can be efficiently eliminated
from the quadratic subproblems by a single backward Riccati sweep. After
eliminating the tightening stages, a quadratic problem with a reduced horizon
is solved where the original constraints are used. The solution is then expanded
to the full horizon with a single forward Riccati sweep. By doing so, the online
computational burden associated with the solution of the optimization problems
can be largely reduced.

Regard the following optimal control problem:

min
s0,...,sN

u0,...,uN−1

N−1∑
i=0

l(si, ui) +m(sN)

s.t. s0 − x = 0

si+1 = ψ(si, ui), i = 0, . . . , N − 1,

π(si, ui) ≤ 0, i = 0, . . . , N − 1,

πN (sN) ≤ 0,

(5.13)

where l, m, ψ, π and πN are twice continuously differentiable and π and πN
are convex.
Remark 5.2.1. While, from a computational point of view, the proposed
algorithm can be applied to a more general problem formulation with potentially
nonconvex inequality constraints, convexity of π and πN will be assumed in
order to be able to employ recentered barrier functions. These become in fact
necessary to construct a Lyapunov function for the proposed method.

We are interested in solving (5.13) with an SQP-type algorithm. In order to
reduce the computational burden associated with several linearizations and QP
solutions at each sampling instant, the RTI strategy can be used. This allows
the algorithm to converge over time and achieve faster control feedback to the
system. In the following we propose a numerical strategy based on progressive
tightening that can be used to speed up the solution of the QPs associated with
the RTI.

5.2.1 The partial tightening real-time strategy

In the following, we propose a partial tightening formulation that allows one to
speed up the computations necessary to solve (5.13). For stages i = M, . . . , N ,

124 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

the constraints are removed and the stage costs are replaced with the modified
costs

l̃(s, u) = l̂(s, u) + ρ(s, u),

m̃(s) = m̂(s) + ρN (s),
(5.14)

where the logarithmic barriers

ρ(s, u) := −τ ·
ng∑
j=1

log(−πj(s, u)),

ρN (s) := −τ ·
ngN∑
j=1

log(−πNj(s)),

(5.15)

have been introduced and where the cost terms have been adapted to include
the associated gradient recentering terms

l̂(s, u) = l(s, u)− ρ(0, 0)−∇sρ(0, 0)>s−∇uρ(0, 0)>u,

m̂(s) = m(s)− ρN (0)−∇sρN (0)>s.
(5.16)

Remark 5.2.2. Notice that the inclusion of the recentering terms is only
necessary in order to be able to derive the system theoretic properties presented
in Section 5.2.4 and one can in principle set l̂(s, u) = l(s, u) and m̂(s) = m(s)
resulting in a completely valid algorithm.

The resulting parametric nonlinear program reads

min
s0,...,sN

u0,...,uN−1

M−1∑
i=0

l(si, ui) +
N−1∑
i=M

l̃(si, ui) + m̃(sN)

s.t. s0 − x = 0

si+1 = ψ(si, ui), i = 0, . . . , N − 1,

π(si, ui) ≤ 0, i = 0, . . . ,M − 1.

(5.17)

Note that such a formulation is also used in interior-point methods in order
to cope with the nonsmoothness of the complementarity conditions. In
those methods, the so-called barrier parameter τ is shrunk as the algorithm
proceeds in order to obtain a solution to the original problem as τ → 0
[Nocedal and Wright, 2006].

In the context of model predictive control, strategies that exploit a fixed value of
the barrier parameter and tightening of the entire horizon have been investigated

A PARTIAL TIGHTENING REAL-TIME METHOD 125

by the authors of [Wills and Heath, 2004] and [Feller and Ebenbauer, 2016]. In
the first work, for nonlinear systems, the stabilizing properties are described
for the feedback policy that is obtained by solving the tightening optimal
control problems for a fixed value of the barrier parameter. The second work,
for linear systems, presents an approximate strategy that requires, in the
limit, performing a single iteration per subproblem. Convergence and stability
of such an algorithm is analyzed in [Feller and Ebenbauer, 2016]. Finally,
the approach in [Ohtsuka, 2015] shares some similarities with the work in
[Wills and Heath, 2004] and [Feller and Ebenbauer, 2016] in the sense that the
C/GMRES iterations can be interpreted as interior-point-like iterations on
problems with a particular barrier formulation [Diehl et al., 2009].

In the following, a similar approach is used with the important difference that
only stages fromM to N will be tightened in order not to require a modification
of the constraints in the first stages. Moreover, instead of solving exactly the
tightening problems, a formulation is proposed that results in QP subproblems
with linearized complementarity conditions for the tightening stages. In this
way, the variables associated with such stages can be efficiently eliminated with
a Riccati-like recursion. After elimination, a smaller QP is obtained, with a
reduced horizon that can be efficiently solved with QP solvers tailored to MPC.

Real-time iterations with partial tightening

It can be easily shown that the first-order optimality conditions associated with
problem (5.13), with stage costs modified according to the barrier formulation
in (5.14) and (5.15) can be written as:

− s0 + x = 0

∇sl(s0, u0) +∇sψ(s0, u0)λ1 − λ0 +∇sπ(s0, u0)ν0 = 0

∇ul(s0, u0) +∇uψ(s0, u0)λ1 +∇uπ(s0, u0)ν0 = 0

π(s0, u0) + t0 = 0

T0ν0 = 0

. . .

(5.18)

126 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

for stages 0 to M − 1, and

. . .

− sM + ψ(sM−1, uM−1) = 0

∇s l̂(sM , uM) +∇sψ(sM , uM)λM+1 − λM +∇sπ(sM , uM)νM = 0

∇u l̂(sM , uM) +∇uψ(sM , uM)λM+1 +∇uπ(sM , uM)νM = 0

π(sM , uM) + tM = 0

TMνM = τ1

. . .

− sN + ψ(sN−1, uN−1) = 0

∇sm̂(sN)− λN +∇sπ(sN)νN = 0

π(sN) + tN = 0

TNνN = τ1,

(5.19)

for stages M to N . Here νi, ti ≥ 0 are the Lagrange multipliers and slacks,
respectively, associated with the stage inequalities and λi are the equality
constraint multipliers. Moreover, Ti denotes the diagonal matrix having the
elements of si on its diagonal. In order to compute a solution to (5.18)-(5.19),
we regard a Newton-type method based on the following linearized problem:

−∆s0 = −rλ0

−∆λ0 +Hss
0 ∆s0 +Hsu

0 ∆u0 + C>0 ∆ν0 +A>0 ∆λ1 = −rs0

Hus
0 ∆s0 +Huu

0 ∆u0 +D>0 ∆ν0 +B>0 ∆λ1 = −ru0

C0∆s0 +D0∆u0 + ∆t0 = −rν0

(T̂0 + ∆T0)(ν̂0 + ∆ν0) = 0

. . .

(5.20)

A PARTIAL TIGHTENING REAL-TIME METHOD 127

for stages 0 to M − 1, and

−∆sM +AM−1∆sM−1 +BM−1∆uM−1 = −rλM

−∆λM +Hss
M∆sM +Hsu

M ∆uM + C>M∆νM +A>M∆λM+1 = −rsM

Hus
M ∆sM +Huu

M ∆uM +D>M∆νM +B>M∆λM+1 = −ruM

CM∆sM +DM∆uM + ∆tM = −rνM

T̂M∆νM + V̂M∆tM = −eM

. . .

−∆sN +AN−1∆sN−1 +BN−1∆uN−1 = −rλN

−∆λN +Hss
N ∆sN + C>N∆νN = −rsN

CN∆sN + ∆tN = −rνN

T̂N∆νN + V̂N∆tN = −eN

(5.21)

for stages M to N . Here

Ai := ∇sψ(ŝi, ûi)>, Bi := ∇uψ(ŝi, ûi)>,

Ci := ∇sπ(ŝi, ûi)>, Di := ∇uπ(ŝi, ûi)>,
(5.22)

have been introduced that represent evaluations of the Jacobians of equality and
inequality constraints at the linearization point (ŝi, ûi). The matrices T̂i and V̂i
are the diagonal matrices having the elements of t̂i and ν̂i on their diagonals.
The matrices Hss

i , H
su
i = (Hus

i)> and Huu
i denote the approximations of the

Hessians of the Lagrangian with respect to input and state variables at stage
i. Finally, we have introduced the vectors rλi , rsi , for i = 0, . . . , N , rui for
i = 0, . . . , N − 1 and ei for i = M, . . . , N , to denote the residuals defined
according to (5.18)-(5.19).

With the standard elimination procedure described, for example, in [Rao et al., 1998]
we can eliminate the multipliers and slack variables:

∆tN = V̂ −1
N (−T̂N∆νN − eN),

∆νN = V̂N T̂
−1
N (rνN − V̂ −1

N eN + CN∆sN),
(5.23)

128 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

and, for i = M, . . . , N − 1,

∆ti = V̂ −1
i (−T̂i∆νi − ei),

∆νi = V̂iT̂
−1
i (rνi − V̂ −1

i ei + Ci∆si +Di∆ui),
(5.24)

such that we obtain the following simplified set of equations:

−∆sM +AM−1∆sM−1 +BM−1∆uM−1 = −rλM

−∆λM + H̃ss
M∆sM + H̃su

M ∆uM +A>M∆λM+1 = −r̃sM

H̃us
M ∆sM + H̃uu

M ∆uM +B>M∆λM+1 = −r̃uM

.

−∆sN +AN−1∆sN−1 +BN−1∆uN−1 = −rλN

−∆λN + H̃ss
N ∆sN = −r̃sN ,

(5.25)

with the following updated Hessian and right-hand side terms:

H̃ss
i := Hss

i + C>i V̂iT̂
−1
i Ci, H̃su

i := Hsu
i + C>i V̂iT̂

−1
i Di,

H̃us
i := Hss

i + C>i V̂iT̂
−1
i Ci, H̃uu

i := Huu
i +D>i V̂iT̂

−1
i Di,

(5.26)

and
r̃si := rsi + C>i ViT

−1
i rνi − C>i T−1

i ei,

r̃ui := rui +D>i ViT
−1
i rνi −D>i T−1

i ei,
(5.27)

for i = M, . . . , N − 1, and

H̃ss
N := Hss

N + C>N V̂N T̂
−1
N CN ,

r̃sN := rsN + C>NVNT
−1
N rνN − C>NT−1

N eN .
(5.28)

Notice that, if an SQP step is applied to the partial tightening problem, where
logarithmic barriers are used explicitly in the cost, analogously, a set of linear
equations would be obtained for the terminal section of the horizon and the
strategy would naturally fall in the standard SQP framework. However, for
numerical reasons, it might be convenient instead to use the formulation proposed
above. Although different intermediate iterations would be taken by the two
strategies in general, if convergence is achieved, a solution to (5.18)-(5.19) is
obtained by both algorithms.

A PARTIAL TIGHTENING REAL-TIME METHOD 129

Notice that, when applying the standard RTI strategy, the presence of constraints
gives rise to nonsmooth equations that require special treatment. If, for example,
the resulting QP is solved with an interior-point method, the complementarity
conditions for the first M stages need to be relaxed and iteratively solved within
one SQP iteration. In the proposed strategy, the smoothed complementarity
conditions for stages i = M, . . . , N have been linearized in (5.20)-(5.21) such
that the computational burden associated with one RTI iteration can be largely
reduced. In particular, a single backward Riccati recursion [Rao et al., 1998] can
be used to factorize the part of the KKT matrix associated with the tightening
stages. These implementation aspects are discussed further in Section 5.2.2.

5.2.2 Efficient implementation

In this section, the implementation of the proposed partial tightening algorithm
is discussed. An efficient Riccati recursion based on the algorithm proposed
in [Rao et al., 1998] is used to eliminate variables associated with the tightening
stages in order to obtain, after elimination, a reduced QP with a shorter horizon.
Note that the solution of the resulting QP is expanded back into the solution
for the original long horizon problem.

The backward Riccati recursion

To perform an RTI, system (5.20)-(5.21) needs to be solved, including the
positivity constraints for the slack variables and Lagrange multipliers. For stages
M to N , it can be shown that the linear system associated with a Newton step
has the form of the KKT system that arises from a linear-quadratic problem
[Rao et al., 1998]. In particular, after eliminating slack variables and inequality
multipliers, this leads to a system with a special band diagonal structure that
can be exploited in order to reduce the computational burden. For example, for

130 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

N = 4 and M = 2, these equations, for stages M to N , would read

−I
−I H̃ss

2 H̃su
2 A>2

H̃us
2 H̃uu

2 B>2
A2 B2 −I

−I H̃ss
3 H̃su

1 A>3
H̃us

3 H̃uu
3 B>3

A3 B3 −I
−I H̃ss

4

∆λ2

∆s2

∆u2

∆λ3

∆s3

∆u3

∆λ4

∆s4

= −

rλ2

r̃s2

r̃u2

rλ3

r̃s3

r̃u3

rλ4

r̃s4

.

(5.29)
It is possible to factorize the matrix in (5.29) starting from the block
corresponding to stage N using the standard Riccati recursion

Pi = H̃ss
i +A>i Pi+1Ai + Σi(H̃us

i +B>i Pi+1Ai) (5.30)

and

pi = r̃si +A>i (Pi+1rλi+1 + pi+1) + Σi(r̃ui +B>i Pi+1rλi+1 +B>i pi+1), (5.31)

where
Σi := −(H̃su

i +A>i Pi+1Bi)(H̃uu
i +B>i Pi+1Bi)−1, (5.32)

for i = N − 1, . . . ,M and initialized with PN = H̃ss
N and pN = r̃sN , in order to

obtain PM and pM .

The reduced QP subproblem and forward expansion

Once the variables associated with stages M to N have been eliminated, the
following reduced QP with shorter horizon is left to be solved:

min
∆s0,...,∆sM

∆u0,...,∆uM−1

M−1∑
i=0

∆si
∆ui

1

>

Hi

∆si
∆ui

1

+mM (∆sM)

s.t. ∆s0 − rλ0 = 0,

∆si+1−Ai∆si−Bi∆ui − rλi = 0, i = 0, . . . ,M − 1,

π(ŝi, ûi) + Ci∆si +Di∆ui ≤ 0, i = 0, . . . ,M − 1,

(5.33)

A PARTIAL TIGHTENING REAL-TIME METHOD 131

Figure 5.2: Backward and forward Riccati recursion. The variables associated
with stages M to N (in green) can be efficiently eliminated due to the (relaxed)
linearized complementarity conditions.

where the terminal cost for stage M is defined as

mM (∆sM) := ∆s>MPM∆sM + p>M∆sM , (5.34)

with PM and pM both resulting from the backward recursion on stages N to
M in (5.30) and (5.31). Moreover, for ease of notation, we have introduced the
Hessians Hi, for i = 0, . . . ,M − 1, defined as follows:

Hi :=

Hss
i Hsu

i ∇sli
Hus
i Huu

i ∇uli
∇sl>i ∇ul>i 1

 . (5.35)

Remark 5.2.3. The procedure described so far can be interpreted as a way
of building a terminal cost mM (sM) for the MPC problem (5.33) with shorter
horizon. Compared to the original OCP in (5.13), mM (sM) incorporates an
approximate contribution due to stagesM to N , which can be efficiently computed
thanks to the partial tightening formulation that is adopted.

The resulting QP in (5.33) can be readily solved with a standard QP solver tai-
lored to MPC such as qpOASES [Ferreau et al., 2014], HPMPC [Frison et al., 2014]
or FORCES PRO [Domahidi et al., 2012b]. After solving the QP subproblem, a
forward recursion is used to update the solution for the tightening stages. In
order to use the standard formulation of the Riccati recursion, we can rewrite

132 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

(5.29) as

H̃uu
2 B>2
B2 −I

−I H̃ss
3 H̃su

3 A>3
H̃us

3 H̃uu
3 B>3

A3 B3 −I
−I H̃ss

4

∆u2

∆λ3

∆s3

∆u3

∆λ4

∆s4

= −

r̃u2 + H̃us
2 ∆s2

rλ1 +A2rλ2

r̃s3

r̃u3

rλ4

r̃s4

,

(5.36)
such that we can compute ∆λM and ∆uM by solving the following linear system:

H̃uu
2 B>2
B2 −I

−I P3

∆u2

∆λ3

∆s3

 = −

r̃u2 + H̃us

2 ∆s2

rλ3 +A2rλ2

p3

 . (5.37)

Finally, we complete the forward recursion with

∆ui = Ki∆si + ki,

∆si+1 = Ai∆si +Bi∆ui + rλi+1

∆λi = Pi∆si + pi,

(5.38)

for i = M + 1, . . . , N − 1, where

Ki = −ΓiB>i Pi+1Ai,

ki = −Γi (r̃ui +B>i (Pi+1rλi+1 + pi+1))

Γi = (H̃uu
i +B>i Pi+1Bi)−1.

(5.39)

Using equations (5.23) and (5.24), we can expand the solution to the full space.
Once the solution ∆z̄ := (∆λ̄,∆s̄,∆ū,∆ν̄,∆s̄) to equations (5.20)-(5.21) has
been computed, an inexact backtracking line-search is used to obtain a feasible
step:

ẑ+ = ẑ + α∆z̄, (5.40)
where α ∈ (0, 1] such that the positivity constraints on νi and si are satisfied.
Notice that the positivity constraints for stages 0 to M − 1 are always satisfied,
if a feasible solution to the reduced QP is obtained. Hence, for a practical
implementation, the line-search might be limited to the tightening stages. The
proposed strategy is summarized in Algorithm 5 and the special block-banded
structure with linear stages is visualized in Figure 5.2.

A PARTIAL TIGHTENING REAL-TIME METHOD 133

Remark 5.2.4. Notice that x is only necessary at line 10 of Algorithm 5. For
this reason, when splitting the computations in preparation and feedback phase
according to [Diehl et al., 2007], the feedback phase consists only of the solution
of the reduced QP, and forward expansion which can further reduce the feedback
delays.

Algorithm 5 Partial tightening real-time iteration

1: input: ẑ := (λ̂, ŝ, û, ν̂, t̂), τ
2: linearization of (5.18)-(5.19)
3: - compute
4: Ai, Bi, Di, for i = 0, . . . , N − 1,
5: Ci, rνi , rsi , rλi , for i = 0, . . . , N,
6: T̂i, V̂i, ei, for i = M, . . . , N,
7: reduction to equality constrained form (N →M) :
8: - eliminate ∆si,∆νi, for i = M, . . . , N according to [Rao et al., 1998]
9: backward Riccati sweep (N →M) :

10: - compute PM and pM using (5.30) and (5.31)
11: estimate new initial state x
12: QP solution (5.33):
13: - compute ∆s̄i,∆λ̄i, for i = 0, . . . ,M
14: - and ∆ūi,∆ν̄i, for i = 0, . . . ,M − 1
15: forward Riccati sweep (M → N):
16: - compute ∆s̄i,∆λ̄i, for i = M, . . . , N
17: - and ∆ūi, for i = M, . . . , N − 1 using (5.38) and (5.39)
18: expansion (M → N) :
19: - compute ∆t̄i,∆ν̄i, for i = M, . . . , N according to [Rao et al., 1998]
20: line-search:
21: - compute z+ using (5.40)
22: output: z+

5.2.3 Convergence

In order to analyze the contraction properties of the proposed partial tightening
strategy, we will interpret the iterations described in Algorithm 5 as the
iterations of a generalized Newton-type method applied to a properly defined
generalized equation. In fact, although a similar algorithm applied to an
“unlifted” formulation (5.17) where barrier functions appear explicitly in the
cost can be easily interpreted as an SQP-type algorithm, the same does not hold
in this case. The presence of both smoothed and unsmoothed complementarity
constraints in (5.20)-(5.21) makes it more natural to analyze instead the iterates

134 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

using the framework of generalized Newton methods. This allows one to avoid
(implicitly or explicitly) referring to the underlying optimization problem whose
first-order optimality conditions are expressed by (5.20)-(5.21). To this end, we
rewrite the conditions expressed in (5.18)-(5.19) together with the associated
positivity constraints on slack and inequality multipliers as

x− s0 = 0

∇sl(s0, u0) +∇sψ(s0, u0)λ1 − λ0 +∇sπ(s0, u0)µ0 = 0

∇ul(s0, u0) +∇uψ(s0, u0)λ1 +∇uπ(s0, u0)µ0 = 0

µ0 − ν0 = 0

π(s0, u0) + t0 = 0

− t0 ≤ 0

− ν0 ≤ 0

T0ν0 = 0

. . .

xM − ψ(sM−1, uM−1) = 0

∇s l̂(sM , uM) +∇sψ(sM , uM)λM+1 − λM +∇sπ(sM , uM)µM = 0

∇u l̂(sM , uM) +∇uψ(sM , uM)λM+1 +∇uπ(sM , uM)µM = 0

π(sM , uM) + tM = 0

TMµM − τ1 = 0

. . .

sN − ψ(sN−1, uN−1) = 0

∇sm̂(sN)− λN +∇sπ(sN)µN = 0

π(sN) + tN = 0

TNµN − τ1 = 0,

(5.41)

where we have introduced explicitly the equalities π(si, ui) + ti = 0, for i =
0, . . . ,M − 1 with associated multipliers µi. Following [Robinson, 1980, Section

A PARTIAL TIGHTENING REAL-TIME METHOD 135

4], we can reformulate the necessary optimality conditions into the following
generalized equation:

0 ∈ Fp(z) +NK(z) + Cx, (5.42)

where z := (λ, s, u, µ, ν, t), the vector valued function in the generalized equation
is defined as Fp(z) :=

−s0

∇sl(s0, u0) +∇sψ(s0, u0)λ1 − λ0 +∇sπ(s0, u0)µ0

∇ul(s0, u0) +∇uψ(s0, u0)λ1 +∇uπ(s0, u0)µ0

µ0 − ν0

π(s0, u0) + t0

−t0
. . .

sM − ψ(sM−1, uM−1)
∇s l̂(sM , uM) +∇sψ(sM , uM)λM+1 − λM +∇sπ(sM , uM)µM
∇u l̂(sM , uM) +∇uψ(sM , uM)λM+1 +∇uπ(sM , uM)µM

π(sM , uM) + tM

TMµM − τ1
. . .

sN − ψ(sN−1, uN−1)
∇sm̂(sN)− λN +∇sπ(sN)µN

π(sN) + tN

TNµN − τ1

(5.43)

and NK(z) is the normal cone to the set

K := Rnx×Rnx×Rnu×Rng×Rng×Rng+ ×· · ·×Rnx×Rnx×RngN×R
ngN
+ . (5.44)

Finally, the parameter x enters the generalized equation linearly through C :=
[I 0]>. In order to compute an iterate of the generalized Newton’s method
applied to (5.43), we need to solve the following linearized generalized equation,
with unknown z+ and linearization point ẑ:

0 ∈ Fp(ẑ) +∇zFp(ẑ)>(z+ − ẑ) +NK(z+) + Cx. (5.45)

The following theorem provides a convergence result for the iterates generated
by the generalized Newton iterations associated with the linearized generalized
equation (5.45).

136 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

Theorem 5.2.5 (Convergence of partial tightening Newton iterations). Let
z̄(x) be a strongly stable solution to (5.42) for a given parameter value x. Then,
there exists a non-empty neighborhood Z of z̄(x) and positive constants 0 ≤ κ < 1
and ω ≥ 0, such that, for any linearization point ẑ ∈ Z, the generalized Newton
iterates associated with the solution of the linearized generalized equation (5.45)
satisfy the following contraction estimate:

‖z+ − z̄(x)‖ ≤ κ‖ẑ − z̄(x)‖+ ω

2 ‖ẑ − z̄(x)‖2. (5.46)

Proof. The result is a direct consequence of the assumption of strong regularity
at z̄(x) following the proof of Lemma 2.1.36.

A note on strong regularity

The convergence result stated in Theorem 5.2.5, relies on the assumption that
the generalized equation (5.42) used to define the partial tightening iterations
is strongly regular at a solution. Since (5.42) cannot be trivially interpreted as
the generalized equation associated with the first-order optimality conditions
of some optimization problem, we cannot directly apply the strong sufficient
second order conditions from [Robinson, 1980, Theorem 4.1]. Alternatively,
one could resort to the reduction technique in [Robinson, 1980, Theorem 3.1],
which applies to generic generalized equations. However, we can exploit a
simpler argument, namely that, exploiting the Riccati-like elimination strategy
described above, the linearized generalized equation associated with (5.42), can
be easily reduced into an auxiliary problem which corresponds to the first-order
optimality conditions of the reduced QP in (5.33). Hence, strong regularity of
(5.42) at a given solution would be implied by the fact that strong second-order
conditions hold for the reduced QP.

5.2.4 Asymptotic stability of partial tightening real-time
iterations

It is possible to show asymptotic stability of the combined system-optimizer
dynamics obtained when controlling a system in closed-loop with the proposed
partial tightening real-time iteration strategy. To this end, it suffices to rely on
the result from Theorem 5.1.8, together with the contraction result in Theorem
5.2.5 and some additional assumptions required to fit the setup to the one
of Theorem 3.2.28. In particular, using the gradient recentered formulation
proposed in [Wills and Heath, 2004], it is easy to show that Assumptions 5.1.3,
5.1.4, 5.1.5, 5.1.6 and 5.1.7 hold for the partial tightening NMPC formulation

A PARTIAL TIGHTENING REAL-TIME METHOD 137

5.17 such that the optimal value function V (x) associated with it, is a valid
Lyapunov function. At this point, making the assumptions necessary for
Theorem 3.2.28, we can state the following result.

Theorem 5.2.6. Let the Assumptions of Theorems 5.1.8, 5.2.5 and 3.2.28
hold. Then, there exists a (“sufficiently” short) sampling time T > 0, such that
the origin (x, z) = (0, 0) is a locally asymptotically stable equilibrium for the
combined system-optimizer dynamics obtained by controlling a system in receding
horizon with the feedback policy obtained with the proposed partial tightening
real-time iteration strategy:

x+ = ψ(T ;x,Mu,zz),

z+ = ϕ(ψ(T ;x,Mu,zz), z),
(5.47)

where ϕ : Rnx×Rnz → Rnz denotes the solution map of the linearized generalized
equation (5.45).

Proof. The proof follows the same arguments as the one of Theorem 3.2.28.

5.2.5 Illustrative example and benchmarking

In order to illustrate the proposed partial tightening approach, we regard the
problem of controlling a simple system of the form

ẋ1 = 0.5 · sin(x2)− x2

ẋ2 = 0.1 · x2 + x1 + u,
(5.48)

subject to the input constraint −1 ≤ u ≤ 1. We discretize this ODE with the
explicit Runge-Kutta method of order 4 and formulate an OCP with N = 30
shooting nodes. A quadratic cost with Q = QN = 10 · I2 and R = 1 is used.
Figures 5.3 and 5.4 show the open-loop trajectories obtained for different values
of M and for τ = 0.1 and τ = 1.0, respectively. For τ = 10.0, Figure 5.5 shows
instead the resulting closed-loop trajectories obtained when using the partial
tightening real-time strategy with different numbers of iterations.

Finally, the proposed strategy has been implemented within acados using the
open-source interior-point solver HPMPC [Frison et al., 2014] that exploits high-
performance linear algebra package BLASFEO [Frison et al., 2017]. In order to
validate this implementation and highlight the computational benefits of the
proposed partial tightening strategy, we will consider the problem of controlling

138 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

0 2 4 6 8 10

−2

0

2

4
x

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

u

untight.
M = 2
M = 5
M = 10
M = 20

Figure 5.3: Converged open-loop trajectories for τ = 0.1.

the following ordinary differential equations describing the dynamics of an
inverted pendulum:

ṗ = v

v̇ = −lpmp sin(θ)ω2 + F + gmp cos(θ) sin(θ)
Mp +mp −mp cos(θ)2

θ̇ = ω

ω̇ = −lpmp cos(θ) sin(θ)ω2 + F cos(θ) + gmp sin(θ) +Mpg sin(θ)
lp(Mp +mp −mp cos(θ)2) ,

(5.49)

where x = (p, θ, v, ω) is the state of the system, where p and v are the linear
position and velocity of the cart and θ and ω are the angle and angular velocity
of the pendulum. The input to the system is the force F applied to the cart,
while mp, Mp, lp and g are fixed parameters representing the mass of the
pendulum, the mass of the cart, the length of the pendulum and gravitational
acceleration respectively.

A PARTIAL TIGHTENING REAL-TIME METHOD 139

0 2 4 6 8 10

−2

0

2

4
x

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

u

untight.
M = 2
M = 5
M = 10
M = 20

Figure 5.4: Converged open-loop trajectories for τ = 1.0.

An OCP of the form in (5.13) is considered, where ψ(·) represents the discretized
dynamics obtained by applying the explicit Runge-Kutta strategy of order four
with fixed step-size h = 0.01s. A control horizon T = 1s is used and the
trajectories are discretized using N = 100 shooting nodes. Simple bounds are
imposed on the input Fmax = −Fmin = 12N and the cost matrices have been
chosen as follows:

Q = diag(1 · 10−1, 1, 1 · 10−1, 2 · 10−3) and R = 5 · 10−4,

and an LQR-based terminal cost is used.

Figure 5.6 shows the closed-loop trajectories obtained with three different setups.
An RTI strategy with standard formulation is used with N = 50 and N = 100
and the proposed partial tightening formulation is used with M = 20, N = 100
and τ = 1. The partial tightening strategy stabilizes the system, keeping the
original form of the constraints only in few stages. In this way, a long prediction
horizon can be used while reducing the computational burden associated with
the iterations with respect to the standard RTI strategy. If a shorter horizon of
e.g. N = 50 shooting nodes is used, the system cannot be stabilized. Timing
results are reported in Table 5.1 for the inverted pendulum swing-up example,

140 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

−4

−2

0

2

4
x

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

−1.0

−0.5

0.0

0.5

1.0

u

untight.
k = 1
k = 2

k = 5
k = 10

Figure 5.5: Closed-loop trajectories obtained with the proposed partial
tightening real-time iteration strategy for different number of iterations k
per sampling time and τ = 10.0.

using a varying number of untightened stages M and τ = 1. For small values of
M , a large speedup can be achieved with respect to the standard formulation
with N = 100.

5.2.6 Conclusions

An efficient partial tightening RTI strategy for NMPC has been presented. The
algorithm uses a barrier formulation to approximate stage constraints in the
terminal part of the prediction horizon. In this way a large part of the variables
in the QP subproblems can be eliminated with a single backward Riccati
recursion sweep. After solving a reduced QP for the initial part of the horizon,
the solution is expanded back to the full horizon. We proved convergence of
the partial tightening generalized Newton iterations and asymptotic stability
of the system-optimizer dynamics. A numerical case study is presented that
shows both closed-loop simulations and detailed timing results.

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 141

0 1 2 3 4 5

0

1

2

3

p

N=100, M =20
N=100
N=50

0 1 2 3 4 5

0

2

4

θ

0 1 2 3 4 5

−10

0

10

time [s]

F

Figure 5.6: Inverted pendulum swing-up: comparison of RTI strategies. Partial
tightening RTI strategy (bold solid red) with N = 100, M = 20 and τ = 1,
standard formulation with N = 100 (dashed blue) and with N = 50 (dashed
yellow). The partial tightening formulation stabilizes the system keeping the
original constraints only in the initial 20 stages. The same does not hold for a
standard formulation with a shortened horizon of N = 50 nodes.

5.3 Progressive tightening NMPC for attitude con-
trol of a quadcopter

This section discusses the design, implementation and deployment of an attitude
controller for a quadrotor based on partial tightening NMPC on a low-power
embedded system equipped with a Cortex-A9 CPU running at 800 MHz.
Simulation results that show the improvement in performance obtained by
using NMPC over standard control techniques are discussed and experimental
results using the proposed implementation are presented.

142 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

N=100 M=50 M=20 M=10 M=5 M=2
QP [ms] 4.405 2.571 1.034 0.566 0.313 0.237
lin. [ms] 0.190 0.190 0.190 0.190 0.190 0.190
total [ms] 4.595 2.761 1.224 0.756 0.503 0.427
i.p. iter. 37 32 29 26 17 17
c.l. cost 1037 1005 1160 1128 1338 1288

speedup QP − 1.71 4.26 7.78 14.07 18.59
speedup RTI − 1.66 3.75 6.07 9.13 10.76

Table 5.1: Pendulum example: worst-case computation times for the swing-up
closed-loop scenario (1000 sampling steps) in milliseconds and closed-loop cost
with N = 100, τ = 1 and decreasing values of M (standard RTI with N = 100
in the first column).

Background on unmanned aerial vehicles

Unmanned aerial vehicles (UAVs) are finding their way into several application
fields such as inspection, surveillance and rescuing and are drawing considerable
interest in the control engineering community. Furthermore, a few applications
have emerged in which quadrotor- and multirotor-like systems are used as
personal air vehicles [EHa, 2014, Kit, 2010]. Due to the highly nonlinear
dynamics exhibited by quadrotors, the performance of linearization-based
controllers can be affected when the vehicles are operated far from the
linearization point. Moreover, with classical control solutions, it is non-trivial
to deal with constraints on states and inputs, when they are present. Although
such approaches have been successfully applied to the problem of controlling the
attitude of quadrotors (see [Bouabdallah et al., 2004], [Yang, 2012] to cite only
a few applications), NMPC could in principle provide a more direct approach in
treating nonlinearity and constraints. In [Kamel et al., 2015] an NMPC attitude
controller for a multicopter that operates on the rotation group SO(3) using
the RTI strategy [Diehl et al., 2002b] is proposed.

In this section, NMPC is used to design an attitude controller for a human-sized
quadrotor equipped with a low-power embedded processor running at 800 MHz.
The designed controller is required to be able to compute the control action
within 10 ms, while sparing enough CPU time for the other routines running
on the embedded platform to be performed (e.g telemetry, logging, low-level
controller, sensing and estimation, fault detection, etc). In order to meet the
required execution time, partial tightening NMPC introduced in Section 5.2 is
used. The OCP employed utilizes dynamics in quaternion form and a nonlinear

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 143

least-squares cost that enables direct tracking of references in the Euler angles
space.

The main purpose of the section is, rather than building on top of state-
of-the-art control techniques for UAVs, to show that recent advances in
algorithms and software implementations enable one to reduce the computational
burden associated with optimization-based control techniques. In particular,
applications can be tackled where short sampling times need to be met on
resource constrained hardware.

5.3.1 Quadcopter model and optimal control formulation

In order to control the quadcopter’s attitude we will use the tracking NMPC
formulation with least-squares cost terms

min
s0,...,sN

u0,...,uN−1

1
2

N−1∑
i=0
‖η(si, ui)‖2W + 1

2‖ηN (sN)‖2WN

s.t. s0 − x = 0,

si+1 = ψ(si, ui), i = 0, . . . , N − 1,

π(si, ui) ≤ 0, i = 0, . . . , N − 1,

πN (sN) ≤ 0,

(5.50)

where xi ∈ Rnx and ui ∈ Rnu are the states and inputs of the system respectively
and ψ, π, πN , η and ηN are twice continuously differentiable functions. The
nonlinear residual functions η and ηN are weighted byW, WN ∈ S+, respectively
and the initial state of the system is denoted by x.

The dynamics of the quadcopter to be controlled are described by the following
model [Betsch and Siebert, 2009]:

q̇ = 1
2S
>Ω, Ω̇ = J−1(T − Ω× JΩ), (5.51)

where q and Ω describe the orientation of the quadrotor expressed in quaternion
representation and its angular velocity, respectively, and with

S :=

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 . (5.52)

144 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

Parameter Value Description

ρ 1.225 kg/m3 air density

A 0.1 m2 propeller area

Cl 0.125 lift coefficient

Cd 0.075 drag coefficient

m 10 kg quadrotor mass

g 9.81 m/s2 gravitational acceleration

J1 = J2 = 4 · J3 0.25 kg ·m/s2 moments of inertia

Table 5.2: Quadrotor model - values of the parameter used for the simulation
results in Section 5.3.2. Notice that these values are fictitious. They have been
used for simulation purpose and do not correspond to the parameters of the
physical system.

It is assumed that angular velocities of the propellers ω can be tracked
instantaneously, hence they are considered as inputs to the system. Moreover,
the angular momentum contribution of the propellers is ignored in order to
simplify the model. The matrix J denotes the inertia matrix of the vehicle,
while the torques applied to the system are described by T := [T1 T2 T3]>, with

T1 := AClρ(ω2
2 − ω2

4)
2 , T2 := AClρ(ω2

1 − ω2
3)

2 ,

T3 := ACdρ(ω2
1 − ω2

2 + ω2
3 − ω2

4)
2 ,

where ρ is the air density, Cd and Cl are the drag and lift coefficients and A
is the area of the propellers. The values of the parameters appearing in the
model are listed in Table 5.2. In the next section, numerical simulations will be
presented that compare the computation times and the closed loop performance
of different attitude controllers among which the partial tightening and the
standard RTI strategy.

5.3.2 Simulation results

In this section, the performance of different control strategies will be assessed
in simulation. In particular, a proportional-derivative controller (PD), a linear-

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 145

quadratic regulator (LQR) and different variants of an NMPC-based strategy
will be taken into account.

PD controller

The first controller taken into account is a PD acting separately on the
three Euler coordinates and using a fixed torque allocation as described in
[Bouabdallah et al., 2004]. The main idea consists in defining the torque
applied to the vehicle using an a priori fixed parametrization that relies on the
observation that torques along the three axis can be obtained, loosely speaking,
by adjusting the propeller speeds in a “differential” fashion:

τ1 = AClρ

2J1
(ω2

2 − ω2
4), τ2 = AClρ

2J2
(ω2

3 − ω2
1),

τ3 = ACdρ

2J3
(ω2

1 − ω2
2 + ω2

3 − ω2
4).

(5.53)

Additionally, the equation Fr = (ω2
1 + ω2

2 + ω2
3 + ω2

4)AClρ
2 is used to specify the

desired total thrust.

Remark: notice that the torque parametrization used completely neglects the
inertial terms in the dynamics which depend on the angular velocities of the
vehicle. However, for small angular velocities, it can be expected to provide a
reasonable approximation of the actual torques.

The chosen approximate parametrization allows one to design three fully
decoupled PD controllers that control the attitude on a separate axis each:

τi = Kpei +Kdėi, for, i ∈ {1, 2, 3}, (5.54)

where ei and ėi are estimates of angle errors and their derivatives, respectively,
and Kp and Kd are the proportional and derivative diagonal matrix gains. Once
the desired torque vector τ has been computed according to (5.54), the squared
rotor speeds ωs can be efficiently computed by solving the linear system

Aρ

2 Mωs = t, (5.55)

where

M :=

0 1 0 −1
−1 0 1 0
1 −1 1 −1
1 1 1 1

 , t :=
[
τ1J1
Cl

τ2J2
Cl

τ3J3
Cd

gm
Cl

]>
.

146 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

ro
ll

[r
ad

]

0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

pi
tc

h
[r

ad
]

0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

time [s]

ya
w

[r
ad

]

PD LQR NMPC ref.

Figure 5.7: Attitude tracking simulation results comparing different control
strategies - closed-loop state trajectories: PD in solid yellow, LQR in dashed
red and converged-NMPC in solid blue. The NMPC controller achieves a more
accurate tracking of the reference attitude.

max CPU time [ms] avg CPU time [ms] subopt. [%]
Ipopt 131.40 43.40 -
RTI 1.04 0.52 3.69

pt-RTI 0.22 0.18 17.67

Table 5.3: Maximum and average CPU time and relative closed-loop
suboptimality with respect to converged NMPC of the RTI and partial tightening
RTI (pt-RTI) strategies. Using the pt-RTI strategy a speedup of about a factor
5 can be achieved with a moderate increase in suboptimality.

Notice that the matrix Aρ
2 M is constant and it can be pre-factorized offline

in order to speed up the solution of the linear system. The actual rotor
speeds can be finally obtained by computing the element-wise square root of
ωs: ωi = √ωs,i, i = 1, . . . , 4.

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 147

LQR controller

The second controller that will be taken into account is based on a reduced space
LQR. Since the attitude dynamics in quaternion coordinates are not controllable,
the dynamics will be first projected onto a controllable subspace as proposed
in [Yang, 2012]. In particular, using the fact that q0 =

√
1− q2

1 − q2
2 − q2

3 , the
first component of the quaternion vector can be eliminated yielding a differential
equation which, together with the angular velocity dynamics in (5.51), will be
used to design the LQR static gain. To this end, the dynamics are linearized
around the hovering steady state and input (x̄, ū) and discretized using an
explicit RK4 integration strategy:

xk+1 − x̄ = A(xk − x̄) +B(uk − ū). (5.56)

At this point, a discrete-time LQR controller can be designed by solving the
discrete time algebraic Riccati equation

A>PA− P − (A>PB)(B>PB +R)−1(B>PA) +Q = 0,

which provides a static state feedback u = Kx+ ū with

K = (B>PB +R)−1(B>PA), (5.57)

which, once an estimate of the state of the system has been computed, allows
one to readily compute the input to be applied to the system.

NMPC controller

Three different variants of NMPC-based controllers will be compared in
simulation. All of them use a nonlinear least-squares formulation with residual
functions

η(x, u) :=

α(x)− αr
β(x)− βr
γ(x)− γr
x− xr
u− ur

, ηN (x) :=

α(x)− αr
β(x)− βr
γ(x)− γr
x− xr

 , (5.58)

where α, β and γ define the attitude of the quadrotor in Euler angles (roll,
pitch and yaw) as functions of q. The quantities in (5.58) with the r subscript
denote the desired references associated with each residual output.

148 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

0 1 2 3 4 5 6 7 8 9 10
30

40

50

ω
1

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50
ω
2

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50

ω
3

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50

time [s]

ω
4

[r
ad

/s
]

Figure 5.8: Attitude tracking simulation results comparing different control
strategies - closed-loop input trajectories. PD in solid yellow, LQR in dashed
red and converged-NMPC in solid blue.

Converged NMPC strategy

The problem formulation in (5.50) has been implemented using CasADi
[Andersson et al., 2019] with a prediction horizon of T = 1.0 s and N = 20
shooting nodes, discretizing the dynamics using the explicit RK4 integration
strategy. The obtained OCPs are solved using the interior-point solver
Ipopt [Wächter and Biegler, 2006]. The Ipopt interface available in CasADi
is used where the possibility of just-in-time compiling function evaluations
is exploited in order to speed up the computations. The linear system
solver ma57 [Duff, 2004] is used linked against a single threaded build of
the high-performance BLAS implementation OpenBLAS [OpenBLAS, 2011].
Although real-time implementations of nonlinear interior-point methods are
present in the literature [Zanelli et al., 2017a], the computation times obtained
when solving the OCPs to a local minimum are often longer than the ones
obtained with approximate strategies like the RTI. However, the closed loop
trajectories obtained with this approach will be used as a reference to assess
the suboptimality associated with the approximate strategies described below.

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 149

Standard RTI strategy

In order to reduce the computation times associated with the solution of the
OCPs, the RTI strategy has been implemented using the software package
acados [Verschueren et al., 2021]. The same number of shooting nodes and the
same tuning has been used for the implementation. The chosen QP solver is
HPMPC [Frison et al., 2014] which relies on the hardware-tailored linear algebra
package BLASFEO [Frison et al., 2017].

Partial tightening RTI strategy

Finally, the partial tightening RTI strategy (pt-RTI) has been implemented in
acados using an untightened horizon of M = 2 stages and an overall horizon
of N = 20. The same tuning used for the previous two strategies is used and
a fixed barrier value τ = 10 is used. As for the standard RTI strategy, the
solver HPMPC will be used to solve the reduced QPs as well as to perform the
Riccati-based elimination for the terminal section of the horizon described in
[Zanelli et al., 2017b].

The code in the following simulations is set up to use the ANSI C implementation
BLASFEO RF [Frison et al., 2018] in order to better resemble the CPU load
distribution between different routines (e.g. linearization and QP solution)
expected on the embedded hardware.

Comparison

The controllers described above are used in the following to track a periodic
attitude reference. For the NMPC formulations the following weights are chosen:

W = blkdiag(5 · 102 · I3, 1 · 10−3 · I11)

WN = blkdiag(5 · 102 · I3, 1 · 10−3 · I7).

In order to tune the PD controller, the parametrizationKp = κp · I3 and Kd =
κd ·I3, with κp ∈ [1, 60] and κd ∈ [1, 20] has been chosen. After discretizing each
parameter interval into 100 equidistant values, a simulation has been run for
each combination of values (κp, κd) and the squared deviation from the reference
trajectories in the Euler space has been taken into account as a performance
metric. The values κp = 23 and κd = 9 have been chosen, which provide
a reasonable trade-off between deviation from the reference trajectory and
chattering of the input trajectories. The LQR controller could be in principle
tuned by exploiting a linearization of the transformation from Euler to the

150 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

controllable quaternion subspace. In this way, the control policy obtained would
be locally equivalent to the NMPC one. However, possibly due to nonlinearity
and to the presence of constraints, the simulations showed the necessity to
detune the controller in order to achieve acceptable performance. To this end,
the LQR weighting matrices have been chosen as follows:

Q = blkdiag(1 · 102 · I3, 1 · 10−3 · I3), R = 1 · 10−3 · I4.

A simulation with sampling time Ts = 0.05 s is performed where the input bounds
are imposed on the propeller velocities: ωss −∆ωmax ≤ ωi ≤ ωss + ∆ωmax, with
∆ωmax := 8 rad s−1 and where ωss := 39.939 rad s−1 denotes the steady-state
input associated with a mass of 10 kg (although the controller only regulates
the vehicle’s attitude, it is meant to be used in a cascaded architecture, where
also position is controlled).

The closed-loop trajectories obtained with PD, LQR and NMPC controllers
are reported in Figure 5.7 and 5.8. Only trajectories obtained with Ipopt
are shown for the sake of clarity, as the results obtained with the RTI and
pt-RTI strategies do not differ much from the ones obtained using converged
NMPC. For the two approximate strategies, computation times and closed-loop
suboptimality are reported in Table 5.3. From Figure 5.7 and 5.8, it can be seen
that the converged NMPC controller performs better than the other two control
strategies in the sense that smaller overshoots and faster response to references
changes can be achieved. This might be due to the fact that nonlinearity and
the presence of constraints can degrade the performance of the PD and LQR
controllers for large reference changes like the ones used in the benchmark.

5.3.3 Experimental results

The controller based on the pt-RTI strategy has been deployed to the on-board
embedded hardware of the quadrotor which features a Xilinx Zynq system-on-
chip with dual-core Cortex-A9 clocked at 800 MHz. Notice that, although the
instruction set available on such a CPU provides vectorized instructions, they
are only available in single precision. Hence, the GENERIC implementation of
the BLASFEO package has been used, which exploits a panel-major format, but
does not make explicit usage of vectorized instructions.

For the embedded implementation, a horizon T = 1.0 s is used with N = 10
shooting nodes and untightened horizon M = 2. In order to achieve faster
response to changes in the reference and disturbance rejection, and to improve
the convergence of the pt-RTI strategy, the controller is run at a sampling
Ts = 10 ms. Notice that, although to the knowledge of the authors a formal

PROGRESSIVE TIGHTENING NMPC FOR ATTITUDE CONTROL OF A QUADCOPTER 151

Figure 5.9: Human-sized quadrotor equipped with a low-power Xilinx Zynq
SoC with a dual-core ARM Cortex-A9 running at 800 MHz: snapshot from
the experiment video (https://www.youtube.com/watch?v=-dsezQa7nzk&
feature=youtu.be).

stability proof for this setup does not exist, the “over-sampled” implementation
of NMPC strategies is rather common among practitioners.

Similarly to what obtained in simulations, using the pt-RTI strategy withM = 2
gives rise to a considerable speedup reducing the average computation times
from about 6 ms for the standard RTI to about 2 ms. In this way, enough
computational time can be spared to carry out other tasks such as telemetry,
logging and executing lower level controllers without approaching high CPU
loads which might lead to faults.

Figures 5.10 and 5.11 show the attitude and actuators trajectories obtained
during a test flight. Notice that, since no position control has been implemented
for the test, the attitude reference during the test flight is provided by a human
pilot who is making sure that the vehicle is hovering safely above the ground.

5.3.4 Conclusions

In this section, the design, implementation and deployment of an NMPC
attitude controller for a human-sized quadrotor has been presented. The
partial tightening method proposed in Section 5.2 is used in order to reduce
the computation times. Simulation results are discussed which show that
considerable speedups can be achieved with a moderate increase in suboptimality
with respect to standard approaches. The NMPC controller is deployed to
the on-board computer of the vehicle and flight test results are reported and
discussed.

https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be
https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be

152 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

0 5 10 15 20 25 30 35 40

−20

0

20

ro
ll

[d
eg

]

0 5 10 15 20 25 30 35 40

−20

0

20

time [s]

pi
tc

h
[d

eg
] actual

reference

Figure 5.10: Experimental results - attitude in Euler angles.

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
1

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
2

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
3

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

time [s]

ω
4

Figure 5.11: Experimental results - actuators.

5.4 Chapter summary and outlook

In this chapter, we introduced a class of progressive tightening NMPC
formulations that rely on stage-varying costs and constraints that become

CHAPTER SUMMARY AND OUTLOOK 153

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

ω
1

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0
ω
2

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

ω
3

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

time [s]

ω
4

Figure 5.12: Experimental results - actuators (zoom in).

increasingly “tight” as the stage index increases. This idea encodes the fact
that increasingly conservative assessments are made as we predict farther into
the future. We showed that standard arguments can be adapted in order
to construct a Lyapunov function for NMPC formulations that satisfy the
cost-constraint epigraph inclusion assumption that formalizes the concept of
progressive tightening.

In the second part of the chapter, we introduced a partial tightening RTI
strategy that exploits an underlying progressive tightening formulation based on
barrier functions in order to speed up the computations. In this case, the main
idea is to split the prediction horizon in two sections and exploit a smooth, and
“tightened”, approximation of the feasible sets for the terminal section. In this
way, the numerical difficulties associated with inequalities are mitigated and,
in particular, it is possible to use an efficient Riccati-like algebraic elimination
to reduce the horizon of the underlying QP subproblems. Moreover, although
a suboptimal solution is recovered, since the exact constraints are used in
the initial section of the prediction horizon, the full feasible input set can be
exploited by the proposed strategy. This is in contrast with most barrier-based
MPC strategies present in the literature. We showed that, under the assumption
of strong regularity, the iterates generated by the proposed algorithm converge
Q-linearly to a KKT point of the partial tightening OCP. In this way, the results
from Chapter 3 can be applied in order to guarantee asymptotic stability of
the system- optimizer dynamics. The partial tightening RTI strategy has been
implemented in the software package acados and its numerical performance
has been validated on a nontrivial example showing that considerable speedups

154 PROGRESSIVE TIGHTENING METHODS FOR NMPC WITH STABILITY GUARANTEES

can be achieved.

The asymptotic stability proof presented in Section 5.1 is rather general and
it can cover in principle a large class NMPC formulations. At the same time,
it can inspire the development of novel formulations and numerical methods
such as the partial tightening RTI strategy. The revisitation of existing NMPC
methods and their interpretation as progressive tightening NMPC is subject
of undergoing research. On the numerical side, strategies that make use of
barrier formulations with an increasing barrier parameter could offer numerical
benefits and provide an interesting research direction. Finally, a user-friendly
implementation of the partial tightening RTI method in acados is yet to be
developed and could be relatively easily obtained using the building blocks
provided by the QP solver HPIPM [Frison et al., 2020].

Chapter 6

Continuous control set
NMPC of reluctance
synchronous machines

In this chapter we describe the design and implementation of a current controller
for a reluctance synchronous machine based on continuous set nonlinear model
predictive control. A computationally efficient grey box model of the flux linkage
map is employed in a tracking formulation which is implemented using the high-
performance framework for nonlinear model predictive control acados. The
resulting controller is validated in simulation and deployed on a dSPACE real-time
system connected to a physical reluctance synchronous machine. Experimental
results are presented where the proposed implementation can reach sampling
times in the range typical for electrical drives and can achieve large improvements
in terms of control performance with respect to state-of-the-art classical control
strategies.

6.1 Nonlinear model predictive control for electri-
cal drives

In recent years, reluctance synchronous machines (RSMs) have emerged as a
competitive alternative to classical synchronous machines (SMs) with permanent
magnet (PMSMs) or direct current excitation. In addition to the favourable
properties of SMs in general, e.g., high efficiency, reliability and compact

155

156 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

design, RSMs are often easier to manufacture and comparably cheap due
to the absence of magnets. Moreover, their anisotropic magnetic path in
the rotor, makes them particularly suitable for saliency-based encoderless
control [Landsmann et al., 2010a, Landsmann et al., 2010b].
However, a major drawback of the RSM concerning control is its characteristic
nonlinearity of the flux linkage, caused by magnetic saturation and cross-
coupling effects in the rotor. As a consequence, the machines’ inductances vary
significantly with the stator currents. Moreover, additional coupling between the
stator d- and q-currents is imposed by the cross-coupling inductances and the
coupling of the nonlinear back electro-motive force in the synchronous reference
frame, which generally requires further measurements to be carried out online.
Regarding the control of RSMs, two main concepts have been pursued in the past:
(i) Direct torque control (DTC) [Boldea et al., 1991, Lagerquist et al., 1994]
and (ii) field-oriented control (FOC) [Matsuo and Lipo, 1993, Xu et al., 1991,
Betz et al., 1993]. While DTC is known for its robustness and fast dynam-
ics [Bolognani et al., 2011], it produces a high current distortion leading to
torque ripples [Chikhi et al., 2010]. In contrast, vector control improves
the torque response [Rashad et al., 2004] and the efficiency of the sys-
tem [Kamper et al., 1996], but good knowledge of the system parameters is
required for implementation. In [Hackl, 2015], a completely parameter-free
adaptive PI controller is proposed which guarantees tracking with prescribed
transient accuracy. The controller is applied to current control of (reluctance)
synchronous machines, but measurement results are not provided.
In [Rashad et al., 2004] and [Yamamoto et al., 2009], the inductances are
tracked online in order to adjust the current references thus achieving a higher
control accuracy. In [Hackl et al., 2016], a FOC control scheme is proposed,
where the PI control parameters are continuously adapted to the actual system
state, which improves the overall current dynamics.

An alternative to classical control approaches is the use of optimization-based
control techniques such as model predictive control (MPC). When using MPC, a
parametric optimization problem is formulated that exploits a model of the plant
to be controlled and enforces constraints while minimizing a certain objective
function. Although MPC can in principle improve the control performance and
ease the controller design [Geyer et al., 2009], meeting the required sampling
times is in general a challenging task due to the high computational burden
associated with the solution of the underlying optimization problems.

In order to circumvent this difficulty, several algorithmic strategies have been
proposed over the past decade that use different approaches and (potentially)
different formulations of the optimal control problems to be solved. Among
the possible classifications of methods present in the literature, in the fields of
electrical drives and power electronics, a fundamental distinction can be made

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 157

ids (in A)

−40 −20 0 20 40
iqs

(in
A)

−40
−20

0
20

40

ψ
d s

(in
W

)

−1.0
−0.5
0.0
0.5
1.0

Figure 6.1: Nonlinear flux linkage of a real RSM obtained from FEM data
Ψ̂d

s (solid surface) and fitted grey box model Ψd
s (dotted) - d-component. The

worst-case relative error amounts to less than 10%.

ids (in A)

−40 −20 0 20 40
iqs

(in
A)

−40
−20

0
20

40

ψ
d s

(in
W

)

−0.4
−0.2
0.0
0.2
0.4

Figure 6.2: Nonlinear flux linkage of a real RSM obtained from FEM data
Ψ̂d

s (solid surface) and fitted grey box model Ψd
s (dotted) - q-component. The

worst-case relative error amounts to less than 10%.

between what is sometimes referred to as finite (FS-) and continuous control
set (CS-) MPC [Quevedo et al., 2019], [Cortes et al., 2008].

In FS-MPC, the switch positions of the power converter are regarded as
optimization variables leading to mixed-integer programs. In this way, the
need for an external modulator is eliminated and the switching sequences are
directly determined by the solution to the optimal control problem (hence the

158 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

name “direct” MPC used in some of the literature on MPC for electrical drives
and power converters [Geyer, 2016]).

When using CS-MPC instead, we delegate the determination of switching
sequences to an external modulator in order to obtain a continuous optimization
problem. For this reason, CS-MPC is sometimes referred to as “indirect” MPC
[Geyer, 2016]. Although the computation times associated with this latter
approach scale favourably with prediction horizon length and number of control
variables (typically complexity O

(
N (̇nu + nx)3) can be achieved, where N , nu

and nx represent horizon length, number of inputs and states, respectively), for
short horizons, strategies based, e.g., on sphere decoding algorithms applied
to FS-MPC formulations can achieve sufficiently short computation times. On
the contrary, CS-MPC is generally regarded as more computationally expensive
and it is still, arguably for this reason, largely unexplored [Geyer, 2016].

Among the experimental results in the literature obtained with CS-MPC, in
[Besselmann et al., 2015] a DC-excited synchronous motor is controlled using
the real-time iteration method. In [Englert and Graichen, 2018], a fixed-point
iteration scheme is used to control a permanent magnet synchronous machine.
Among applications leveraging linear-quadratic CS-MPC we mention the work
in [Domahidi et al., 2012a] in which permanent magnet synchronous machines
and induction machines are controlled using explicit model predictive control.
Finally, in the recent work in [Cimini et al., 2020], an active-set algorithm is used
to solve the convex QPs arising from a linear-quadratic CS-MPC formulation
to control a PMSM.

6.1.1 Contribution

In this section, we describe the design and implementation details together
with simulation and experimental results of a nonlinear CS-MPC controller
(CS-NMPC) for an RSM. The contributions of the present work are:

• We describe the design and implementation details of a tracking CS-
NMPC formulation that relies on the software package acados, which is
capable of achieving timings in the microsecond time scale necessary to
control the electrical drive.

• We propose the use of a simple grey box model for the flux maps of RSMs
with a small number of parameters that can be used for online applications
where computation times are of key importance.

• Finally, we present simulation and experimental results that confirm the
validity of the proposed control formulation and its implementation and

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 159

its superior performance in comparison with state-of-the-art methods from
the field of classical control. This is, to the best of the authors’ knowledge,
one of the earliest experimentally validated applications of CS-NMPC to
an RSM.

6.1.2 Background on RSMs and NMPC

In order to facilitate the discussion of the design and implementation of the
proposed controller, in the following, mathematical models of RSMs and voltage
source inverters (VSI) will be derived and numerical methods for NMPC will
be introduced. Note that the argument (t), used to denote dependence on time,
is sometimes dropped for the sake of readability.

6.1.3 Generic model of the RSM

The machine model in the synchronously rotating (d, q)-reference frame is given
by [Hackl, 2017, Chap. 14]

us = Rsis+ω

=:J︷ ︸︸ ︷[
0 −1
1 0

]
ψs
(
is
)
+ d

dtψs
(
is
)
,

d
dtω = np

Θ

[
mm(is)− ml

]
, d

dtφ = ω,

(6.1)

where us := (ud
s , u

q
s)> are the applied stator voltages, Rs is the stator resistance,

is := (ids , iqs)> are the stator currents and ψs := (ψd
s , ψ

q
s)> are the stator flux

linkages (functions of is). The (d, q)-reference frame rotates with electrical
angular velocity ω = np ωm of the rotor, where np is the number of pole pairs
and ωm denotes the mechanical angular velocity of the machine. Furthermore,
Θ is the total moment of inertia,

mm(is) := 3
2np (is)>Jψs

(
is
)

(6.2)

is the electro-magnetic machine torque, and ml represents an external (time-
varying) bounded load torque.

In order to formulate an optimal control problem, the flux dynamics can be
described, based on (6.1), by the following differential algebraic equation (DAE):

d
dtψs = us −Rsis − ωJψs + v,

0 = ψs −Ψs(is),
(6.3)

160 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

where Ψs := (Ψd
s , Ψq

s)> : R2 → R2 defines the algebraic constraints based on
the identified flux maps and v := (vd, vq)> are additive disturbances which will
be used in an offset-free NMPC setting (see Section 6.1.7).

Based on the available flux maps computed through the finite element method
(FEM), we obtained a continuously differentiable model by fitting a simple grey
box model. Due to their low number of parameters and simple structure, we
propose the following parametrization of the flux maps:

Ψd
s (ids ,iqs , θd) =

cd
0√

2πσ2
q

exp (−γ (iqs , σq)) atan(cd1 ids) + cd2 i
d
s

(6.4)

and
Ψq

s (ids , iqs , θq) =

cq
0√

2πσ2
d

exp
(
−γ
(
ids , σd

))
atan(cq1 iqs) + cq2 i

q
s ,

(6.5)

with
γ(x, y) := 1

2

(
x

y

)2
(6.6)

and where the unknown parameters involved are

θd := (cd0 , cd1 , cd2 , σd) (6.7)

and
θq := (cq0, c

q
1, c

q
2, σq). (6.8)

This parametrization of the flux maps is, to the authors’ best knowledge,
novel and it is able to capture the main features of the flux maps with only 4
parameters per flux component. The numerical values of the coefficients can be
computed by solving the following (decoupled) nonlinear least-squares problems:

min
θd

m∑
j=1

n∑
k=1

(
Ψd

s (̄ids,j , ī
q
s,k, θd)− Ψ̂d

s (̄ids,j , ī
q
s,k)
)2

min
θq

m∑
j=1

n∑
k=1

(
Ψq

s (̄ids,j , ī
q
s,k, θq)− Ψ̂q

s (̄ids,j , ī
q
s,k)
)2

(6.9)

where īds,j and ī
q
s,k are the j-th and k-th current data points associated with the

flux values Ψ̂d
s and Ψ̂q

s obtained from FEM analysis. The fitting problems have
been solved with the MATLAB Curve Fitting Toolbox and the resulting fitted
model is shown in Figure 6.2.

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 161

α

β

− 1
3
udc

1
3
udc

2
3
udc

0− 2
3
udc

− 2
3
udc

− 1
3
udc

1
3
udc

2
3
udc

a

b

c

u
s
100

u
s
110u

s
010

u
s
011

u
s
001 u

s
101

u
s
000 = u

s
111

1
2
udc

1√
3
udc

u
s
ref

Figure 6.3: Voltage hexagon associated with the two-level VSI.

6.1.4 Model of the two-level VSI

The machine is supplied by a two-level voltage source inverter (VSI), which –
on average over one switching period Ts – translates a given voltage reference

us
s,ref := (uαs,ref, u

β
s,ref) (6.10)

(in the stationary s = (α, β)-reference frame) into the inverter output voltage
us

s, i.e.
us

s(k Ts) ≈ us
s,ref((k − 1)Ts), k ∈ ∇. (6.11)

Since a two-level voltage source inverter may produce a total of eight unique
switching vectors, i.e. sabcs := (sa

s , s
b
s , s

c
s)> ∈ {000, 001, 010, 100, 011, 101, 110, 111},

the typical voltage hexagon in the αβ-plane is obtained (see Figure 6.3), where

us
s = κudc

[
1
2 0 − 1

2
0

√
3

2 0

]
1 −1 0
0 1 −1
−1 0 1

 sabcs (6.12)

depends on the switching vector sabcs and the Clarke-factor κ ∈ {2/3,
√

2/3}
[Hackl, 2017, Chap. 14]. Using space-vector modulation (SVM) to generate the
switching vector, any voltage reference within the circle of radius udc/

√
3 can

162 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

Figure 6.4: Laboratory setup including dSPACE real-time system, voltage-source
inverters connected back-to-back, RSM, PMSM and torque sensor.

be realized, with udc denoting the (assumed constant) DC-link voltage. Finally,
the inverter output voltage is transformed into the rotating (d, q)-reference
frame using the inverse Park transformation, i.e.

us =
[
ud

s

uq
s

]
=
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
︸ ︷︷ ︸

=:Tp(φ)−1

us
s. (6.13)

From now on, since we will only refer to currents, fluxes and voltages applied
to the stator and in the (d-q)-frame, we will simplify the notation by dropping
the associated subscript such that, for example, i = (ids , iqs) denotes the stator
currents in the (d-q)-frame.

6.1.5 Nonlinear model predictive control formulation

In this section, we will regard the following standard tracking formulation
with prediction horizon Th and N shooting nodes, where the squared deviation
of fluxes ψ and voltages u from properly defined steady-state references are

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 163

penalized:

min
ψ0,...,ψN
u0,...,uN−1

Th
2N

N−1∑
i=0

∥∥∥∥ψi − ψ̄ui − ū

∥∥∥∥2

W

+ 1
2‖ψN − ψ̄‖

2
WN

s.t. ψ0 − ψe = 0,

g(ψi, ui, ωe, ve)− ψi+1 = 0, i = 0, . . . , N − 1,

u>i ui ≤
(
udc√

3

)2
, i = 0, . . . , N − 1,

Ĉui ≤ ĉ, i = 0, . . . , N − 1,

(6.14)

where g describes the discretized dynamics obtained by integrating the
differential-algebraic model in (6.3) using the Gauss-Legendre collocation
method of order 2 assuming constant (estimated) angular velocity ωe and
disturbances ve. The variables ψ̄ and ū denote the steady-state references
computed for a given desired torque using a maximum-torque-per-Ampere
(MTPA) criterion [Eldeeb et al., 2017]. Given the flux maps obtained from
FEM data in Figure 6.2, it is possible to compute off-line lookup tables (LUTs)
that contain the MTPA reference fluxes and voltages for a finite number of
values of the target torque in a specified range. The LUTs are then interpolated
online in order to compute approximate values of ψ̄ and ū associated with the
specified target torque m̄ (see Figure 6.5).

The convex quadratic constraint in (6.14) describes the circular input feasible
set introduced in Section 6.1.4. Finally, Ĉ and ĉ define polytopic constraints
(which we will later refer to as “safety” constraints) that are meant to be always
inactive at any local solution of (6.14) (apart from a finite number of points
where they are locally equivalent to the linearized spherical constraint), but
can mitigate constraint violation of intermediate SQP iterates. In particular,
we define Ĉ and ĉ such that the affine constraint defines an outer polytopic
approximation with 6 facets as depicted in Figure 6.6. Notice that due to
this formulation of the feasible set, linear independence constraint qualification
can fail at a finite number of points where the linearization of the nonlinear
constraint is equivalent to one of the affine constraints in (6.14). Although, this
would violate a common assumption used in convergence theory for both SQP
and some numerical methods for the solution of convex QPs, the active-set solver
qpOASES that we employ for this application can handle redundant constraints
through a strategy that determines which constraint needs to be removed from
the working set [Ferreau et al., 2008].

164 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

Figure 6.5: Control diagram: the MTPA LUTs provide the reference flux ψ̄ and
voltage ū associated with a given reference torque m̄. The NMPC controller
computes the optimal control action based on the current state and disturbance
estimate provided by an EKF.

Remark 6.1.1. Notice that the actual dynamics of the system involve a coupling
of mechanical (ω) and electrical states (ψ). It is however common, given the
large difference between associated time constants, to assume a constant angular
velocity ω when designing controllers. In our case, it allows us to use much
shorter prediction horizons since we do not require the OCP in (6.14) to steer
the speed of the motor to the desired reference, but only fluxes which directly
map to currents and, for a given speed, to torques.

Problem (6.14) is used to define an implicit feedback policy that requires the
solution of an instance of the parametric NLP at every sampling time, where
the value of the parameter ψe is given by the current estimate of the system’s
state. The resulting solutions are feasible with respect to the constraints and
minimize (at least locally) the cost function. Nominal and inherently robust
stability of the closed-loop system can be guaranteed in a neighborhood of a
steady-state by properly choosing the terminal cost [Rawlings et al., 2017].

Remark 6.1.2. Notice that formulations more general than (6.14) can in
principle be used in the framework of NMPC. Among others, economic costs and
more general nonlinear constraints and nonlinear cost terms, are features that can
be included in the problem in order to better capture control design requirements.
However, for the application discussed in this section, the nonlinear least-squares
problem described in (6.14) is general enough.

6.1.6 Numerical methods and software for NMPC

In order to be able to solve problem (6.14) within the available computation
time, the use of efficient numerical methods is fundamental.

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 165

−200 0 200
ud (in V)

−300

−200

−100

0

100

200

300

u
q

(in
V

)

CS-NMPC (sim.)

−200 0 200
ud (in V)

−300

−200

−100

0

100

200

300

u
q

(in
V

)

gain-scheduled PI (sim.)

Figure 6.6: Current steps at 157 rad s−1 (simulation): results obtained using
the CS-NMPC (left) and the gain-scheduled PI controller (right). The voltage
spherical constraints are directly included into the control formulation using the
SCQP strategy proposed in [Verschueren et al., 2016]. Additionally, a “safety”
polytopic constraint is included which, due to its linearity, is always satisfied
exactly.

166 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40
cu

rr
en

ts
(in

A
)

CS-NMPC (sim.)

id

iq

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40

cu
rr

en
ts

(in
A

)

gain-scheduled PI (sim.)

id

iq

Figure 6.7: Current steps at 157 rad s−1 (simulation): results obtained using
the CS-NMPC (left) and gain-scheduled PI controller (right). The CS-NMPC
controller outperforms the PI controller, especially when the input constraints
become active (e.g., between t = 0.75 s and t = 1.00 s). At the same time, a
faster transient can be achieved even when the constraints become active only
for a short time.

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 167

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)
CS-NMPC (exp.)

‖uref‖
udc√

3

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)

gain-scheduled PI (exp.)

‖uref‖
udc√

(3)

Figure 6.8: Current steps at 157 rad s−1 (experiment): two-norm of measured
voltage references uref commanded by the two controllers and udc over time.
During the third current step, the PI controller saturates and does not steer
the system to the desired reference. Notice that the input commanded by
the PI controller remains saturated during the entire step. On the contrary,
the CS-NMPC controller, after an initial saturation, steers the current to the
(feasible) reference values.

168 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

Due to the computational burden associated with the solution of the QPs and re-
linearization of the original NLP in (6.14), several approximate strategies can be
used that can significantly reduce computation times (e.g., [Zanelli et al., 2019a],
[Graichen and Kugi, 2010], [Feller and Ebenbauer, 2017]). In this work, we will
use the RTI strategy [Diehl, 2001, Diehl et al., 2002a], which relies on a single
SQP iteration in order to provide an approximate feedback law and whose
stability properties have been analyzed in Chapter 3. In particular, the NMPC
controller used both in simulations and experiments uses the implementation of
the RTI available in acados, which we briefly describe below.

The acados framework

The high-performance software package acados [Verschueren et al., 2021]
provides a modular framework for NMPC and moving horizon estimation
(MHE). It consists of a C library that implements building blocks needed
to solve NLPs arising from NMPC and MHE formulations. It relies on the
high-performance linear algebra package BLASFEO [Frison et al., 2018] and on
the quadratic program (QP) solver HPIPM [Frison et al., 2020] and contains
efficient implementations of explicit and implicit integration methods. Moreover,
it interfaces a number of QP solvers such as qpOASES [Ferreau et al., 2014]
and OSQP [Stellato et al., 2020] and it provides high-level Python and MATLAB
interfaces. Through these interfaces, one can conveniently specify optimal
control problems and code-generate a self-contained C library that implements
the desired solver and can be easily deployed onto embedded control units such
as dSPACE using the automatically generated C wrapper and S-Function. The
code-generation takes place through templated C code which is rendered by the
Tera templating engine written in Rust. In this way, human-readable C code
can be generated that facilitates the deployment on the target hardware.

6.1.7 NMPC offset-free tracking formulation

In order to achieve offset-free regulation, we adopt the standard strategies
discussed, for example, in [Pannocchia and Rawlings, 2003]. In particular, we
use the following augmented dynamics to design an extended Kalman filter
(EKF):

NONLINEAR MODEL PREDICTIVE CONTROL FOR ELECTRICAL DRIVES 169

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40
cu

rr
en

ts
(in

A
)

CS-NMPC (exp.)

id

iq

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40

cu
rr

en
ts

(in
A

)

gain scheduled PI (exp.)

id

iq

Figure 6.9: Current steps at 157 rad s−1 (experiment): results obtained using
the proposed CS-NMPC controller (left) and gain-scheduled PI controller (right).
The CS-NMPC controller outperforms the PI controller, especially when the
input constraints become active (e.g., between t = 0.75 s and t = 1.00 s). At
the same time, as it can be seen especially between t = 1.25 s and t = 1.50 s, a
faster transient can be achieved, even when the constraints are active only for a
short time.

170 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)
CS-NMPC (exp.)

‖uref‖
udc√

3

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)

gain-scheduled PI (exp.)

‖uref‖
udc√

(3)

Figure 6.10: Current steps at 157 rad s−1 (experiment): two-norm of measured
voltage references uref commanded by the two controllers and udc over time.
During the third current step, the PI controller saturates and does not steer
the system to the desired reference. Notice that the input commanded by
the PI controller remains saturated during the entire step. On the contrary,
the CS-NMPC controller, after an initial saturation, steers the current to the
(feasible) reference values.

SIMULATION AND EXPERIMENTAL RESULTS 171

d
dtψ = u−Ri− ωJψ + v,

d
dtv = 0,

0 = ψ −Ψ(i),

(6.15)

where the disturbance state v is introduced and we assume that pseudo-
measurements ψmeas are available through the interpolated FEM flux maps:

ψmeas = Ψ̂(imeas), (6.16)

while current measurements imeas are physically carried out on the machine. A
standard EKF is designed using (6.15) and (6.16) which uses flux measurements
to estimate fluxes ψe and disturbances ve. Notice that the angular velocity ωe
is estimated externally and is considered as a constant-over-time parameter
that is updated at every sampling time. In [Pannocchia et al., 2015, Theorem
14] a streamlined version of the results from [Muske and Badgwell, 2002,
Pannocchia and Rawlings, 2003, Morari and Maeder, 2012] is presented, where
under the assumptions, among others, of observability of the augmented
dynamics (6.15) and asymptotically constant disturbances v, the steady-state
of the closed-loop system can be proved to be offset-free.

6.2 Simulation and experimental results

An RTI strategy [Diehl et al., 2002a], where a single QP of an SQP al-
gorithm is carried out per sampling time, is used to solve (6.14). In
particular, the generalized Gauss-Newton Hessian approximation proposed
in [Verschueren et al., 2021] is used. In this way, the (positive) curvature
contribution due to the convex spherical constraints on voltages can be exploited
in order to improve the Hessian approximation used in the QP subproblems.
Although in our experience this improves a lot the convergence of the RTI
iterates on this specific problem, the approximate feedback law can, from time
to time, be largely infeasible with respect to the nonlinear spherical constraints
(recall that the intermediate full-step SQP iterates are feasible only with respect
to linear constraints). Since a-posteriori projection of the control actions
onto the feasible set can largely deteriorate the control performance, we add
extra polytopic “safety” constraints (defined by Ĉ and ĉ in (6.14)) around the
spherical ones in order to ensure that the constraint violation is bounded at any
successfully computed iterate.

In order to be able to meet the short sampling times required to control
the electrical drive, we use a prediction horizon of Th = 3.2 ms obtained

172 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

with 2 shooting nodes (N = 2) and we use the QP solver qpOASES, which is
particularly suited for problems with short horizons [Kouzoupis et al., 2018].
For both simulation and experimental results the controller is run at 4 kHz.

Remark 6.2.1. Notice that the discretization time (Th/2 = 1.6 ms) used in
the optimal control problem is not equivalent to the sampling time Ts = 0.25 ms.
This setting, which we might call “oversampled” NMPC, allows one to obtain a
longer prediction horizon without increasing the number of optimization variables.
Although a theoretical analysis of this strategy is well beyond the scope of this
section, we point the interested reader to [Grüne and Nesić, 2003] where it is
shown that fundamental properties of the feedback policy hold for the oversampled
setting. Moreover, notice that this setting is used in [Zanelli et al., 2020] and
[Zanelli et al., 2021b] in order to prove asymptotic stability of the combined
system-optimizer dynamics.

We have tuned the weights in (6.14) until satisfactory closed-loop performance
could be achieved in simulation resulting inW = blkdiag(312.5 ·I2, 1e−4 ·I2) and
WN set to the corresponding LQR cost obtained with the dynamics linearized
at i = 0, ψ = 0, u = 0 and ωm = 0. Although the terminal cost should in
general be updated together with the desired reference, a fixed terminal cost
was able to provide satisfactory control performance.

In the following, we discuss simulation and experimental results obtained using
the above described RTI strategy to solve (6.14) with acados.

6.2.1 Simulation results

In order to validate, first in simulation and then experimentally, the proposed
approach, we regard a setting where the RSM is connected to a permanent
synchronous machine (PMSM) which can be used to simulate different load
conditions. The CS-NMPC controller has been implemented in acados using
its Python interface and integrated in a Simulink model that makes use of
a high-fidelity model of the system to be controlled including a model of the
PMSM and of the two-level VSI described in Section 6.1.2. Moreover, we have
implemented an EKF based on the augmented model (6.15) using the implicit
integrators available in acados.

We set the PMSM’s controller such that it maintains a constant rotational
speed and we change the torque reference fed to the RSM’s controller to
assess the tracking performance of the proposed controller. We compare the
closed-loop trajectories obtained with the ones achieved when using instead the
gain-scheduled PI controller with anti-windup presented in [Hackl, 2015]. The
parameter tuning used in [Hackl, 2015] was used as baseline and we adapted

SIMULATION AND EXPERIMENTAL RESULTS 173

0.0 0.5 1.0 1.5 2.0
time (in sec)

10−4

1.25× 10−4

1.5× 10−4

1.75× 10−4

2× 10−4

2.25× 10−4
2.5× 10−4

2.75× 10−4
3× 10−4

C
PU

tim
e

(in
se

c)

Figure 6.11: Current steps at 157 rad s−1: overall control loop turnaround time
(in black) obtained with the CS-NMPC controller using acados with qpOASES
(available computation time of 250 µs in red). About 90% of the computation
time is due the CS-NMPC controller (together with the EKF).

the parameters until the PI controller was able to stabilize the system and
achieve satisfactory control performance for the scenario under analysis. In
particular, we had to scale down the proportional and integral coefficients by a
factor two. For the sake of reproducibility the entire simulation environment is
made available at https://github.com/zanellia/cs_nmpc_rsm.

In order to highlight the advantages of using a controller which can handle
constraints directly, we set the reference speed to a value that is close to the
limit value ω?m computed as follows:

ω?m := 1
2 arg max

ω
ω

s.t. ‖Rsiref + ωJψref‖2 ≤
(
udc√

3

)
.

(6.17)

Since the optimal value is achieved at the boundaries of the feasible set, we can
simply solve for ω the quadratic equation

‖Rsiref + ωJψref‖22 −
(
udc√

3

)2
= 0, (6.18)

such that, for the values iref = (16.45, 31.99) A and ψref = (0.819, 0.417) Wb
associated with the torque value 58 N m and udc = 556 V, we obtain ω?m =
169.32 rad s−1. Hence, we set ωm,ref = 157 rad s−1 ≈ ωm,nom for both the

https://github.com/zanellia/cs_nmpc_rsm

174 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

par. value par. value
Rs 0.4 Ω ωm,nom 157.07 rad s−1

mm,nom 61 N m ı̂s,max 29.7 A
ûs,max 556 V −

Table 6.1: Parameters of physical setup (used in simulation too).

simulation and experimental scenarios. Finally, the parameters used in the
simulations match the ones of the physical setup and are reported in Table 6.1.
The current trajectories obtained with the CS-NMPC and PI controller are
reported in Figure 6.7 (similarly for input trajectories in Figure 6.6). It is
clear from the plots that the tracking performance achieved by the CS-NMPC
controller is largely superior to the one obtained by the PI controller, especially
when the input constraints become active (e.g., between t = 0.75 s and t = 1.00 s).
At the same time, as it can be seen from the current trajectories in Figure
6.6 between t = 1.25 s and t = 1.50 s, a faster transient can be achieved, even
when the constraints are active only for a short time. In Appendix A.6 we
report additional results obtained with a slightly increased reference speed
ωm,ref = 165 rad s−1.

6.2.2 Experimental Results

The presented NMPC scheme has been deployed on a custom-built 9.6 kW RSM
(Courtesy of Prof. Maarten Kamper, Stellenbosch University, South Africa) with
the parameters reported in Table 6.1. and the nonlinear flux linkage maps as
depicted in Figure 6.2 (maps were obtained from FEM). The overall laboratory
setup is depicted in Figure 6.4 and comprises the dSPACE real-time system with
processor board DS1007 and various extensions and I/O boards, two 22 kW SEW
inverters in back-to-back configuration sharing a common DC-link. Moreover,
it comprises the HOST-PC running MATLAB/Simulink with RCPHIL R2017
and dSPACE ControlDesk 6.1p4 for rapid-prototyping, data acquisition and
evaluation, the custom-built 9.6 kW RSM as device under test and a 14.5 kW
SEW PMSM as load machine. The DR2212 torque sensor allows to measure
the mechanical torque too, but it was not used during the experiments. The
CS-NMPC controller based on the formulation described in Section 6.2.1 and
implemented using the acados framework has been deployed on the dSPACE
unit connected to the physical RSM.

In order to validate the control performance of the proposed CS-NMPC controller
we reproduced the scenario used for the simulation reported in Section 6.2.1,
i.e., we used the PMSM to maintain the nominal rotational speed of the rotor

CHAPTER SUMMARY AND OUTLOOK 175

(157 rad s−1) and different torque references have been fed to the RSM controllers
under analysis.

The closed-loop trajectories for the conducted experiments are reported in Figure
6.9-6.10. Similarly to the results obtained in simulation (see Figures 6.7 and
6.6), the proposed CS-NMPC controller achieves better tracking performance
than the gain-scheduled PI controller, in particular when the voltage constraint
becomes active (especially between t = 0.75 s and t = 1.00 s). Notice that
there is a non negligible discrepancy between simulation and experimental
results potentially due to model mismatches. Among other possible causes of
discrepancies, we mention the fact that the modelled flux maps might differ
from the real ones. Moreover, we observe from Figure 6.10 that the DC-link
voltage fluctuates around its nominal value. In fact, in the presence of a sudden
change in the torque reference, the voltage of the DC-link capacitor can drop if
the recharging rate is slower than the discharging rate (behavior not modelled
in simulation). Although this behavior is not accounted for in the dynamics
of the system used to design the controllers under analysis, in both controllers
we exploit the measured DC-link voltage in order to adjust the feasible set.
Notice that the uref computed by the CS-NMPC controller becomes sometimes
infeasible. This infeasibility is consistent with the fact that the quadratic
constraint can be violated during transient and will only be satisfied at the
steady. However, due to the safety polytopic constraints introduced in (6.14),
we can guarantee that the computed solution will not violate the outer voltage
hexagon. At the same time, whenever a voltage reference that lies outside of
the circular feasible set is fed to the modulator, a projection onto the disk of
radius udc√

3 is carried out.

6.3 Chapter summary and outlook

In this chapter we presented simulation and experimental results obtained
with a CS-NMPC torque controller for RSMs. As opposed to most successful
implementations present in the literature, that use instead FS-MPC/NMPC,
we showed the effectiveness and real-time feasibility of the continuous control
set approach. In particular, we showed that, using the software implementation
of the real-time iteration method for NMPC available in the software package
acados, it is possible to deploy the proposed controller on embedded hardware
and to meet the challenging sampling times typically required to control electrical
drives. We discussed implementation details and reported on simulation as well
as experimental results which show that the proposed approach can largely
outperform state-of-art control methods especially when the input constraints
become active.

176 CONTINUOUS CONTROL SET NMPC OF RELUCTANCE SYNCHRONOUS MACHINES

Future research will involve the investigation of novel numerical methods,
e.g., the real-time first-order methods proposed in [Zanelli et al., 2019b] or the
truncated SQP strategy outlined in Section 3.1, to speed up the computation
times, which are currently still rather long and neither allow for extensions of
the optimal control formulations (e.g., longer horizons, state or input spaces of
higher dimension, etc) nor for deployment on hardware with lower computational
power.

Chapter 7

prometeo: a domain specific
language for embedded
high-performance computing

Due to the considerable computational effort required to solve the nonconvex
programs associated with NMPC, its successful application largely depends on
the availability of computationally powerful hardware and high-performance
implementations of algorithms for nonconvex optimization. At the same time, a
second class of aspects that cannot be neglected when assessing applicability of
optimization-based control solutions is the one of user-friendliness, scalability
and maintainability. Although these aspects are crucial to the successful usage
of any software, they are even more crucial in the context of this thesis due
to the high algorithmic sophistication generally associated with NMPC, and
embedded optimization in general, with respect to traditional control solutions.

7.1 Introducing prometeo

In this chapter, we introduce the experimental software package prometeo
which provides a domain specific language (DSL) and a Python-to-C transpiler
for embedded high-performance computing. The DSL made available with
prometeo allows software developers to implement code for scientific computing
using a subset of the Python language which can then be transpiled to high-

177

178 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

performance and embeddable C code by prometeo’s transpiler. Its main features
are:

• Python compatible syntax: prometeo is a DSL embedded into the
Python language. prometeo programs can be executed from the Python
interpreter.

• efficient: prometeo programs transpile to C code that relies on the high-
performance library BLASFEO.

• statically typed: prometeo uses Python’s native type hints to strictly
enforce static typing.

• deterministic memory usage: a specific program structure is required
and enforced through static analysis. In this way prometeo transpiled
programs have a guaranteed maximum heap usage.

• fast memory management: thanks to its static analysis, prometeo can
avoid allocating and garbage-collecting memory, resulting in faster and
safer execution.

• self-contained and embeddable: unlike other similar tools and languages,
prometeo targets specifically embedded applications and programs written
in prometeo transpile to self-contained C code that does not require linking
against the Python run-time library.

7.1.1 From throwaway to evolutionary prototyping

The main goal of prometeo is to provide a tool that can help to refine
the commonly adopted paradigm adopted in the development of software
for embedded high-performance computing which revolves around so-called
throwaway prototyping. In fact, due to the nonnegligible complexity associated
with the efficient implementation of numerical algorithms, it is common practice
to prototype the algorithm of interest in a high-level programming language (e.g.,
Python, MATLAB or Julia [Bezanson et al., 2017]) that facilitates debugging
and testing. In a second phase of the development, the entire implementation
is carried out in a much lower level language (e.g., C) such that fundamental
requirements on performance and deployability are met. This transition from
high- to low-level programming languages often involves little to no code reuse
and necessitates a rather error-prone process. In fact code that is meant to be
deployable on embedded targets, and especially code that is meant to exploit
the available computational capabilities at their best, often requires a tight
interaction with hardware (and, quoting C++ ’s creator Bjarne Stroustrup,

INTRODUCING PROMETEO 179

“fiddling with machine addresses and memory is rather unpleasant and not
very productive”). Fortunately, especially in the context of embedded high-
performance computing, the most critical parts of the code base involve a number
of patterns that repeat themselves. However, although repetitiveness can to
some extent simplify the developer’s job (e.g., developing and maintaining 10
variants of the same data structure is slightly easier than doing the same with 10
completely different data structures), this doesn’t quite resolve the fundamental
underlying issue. As it often happens when complexity is associated with a
limited number of repetitive patterns, we argue that there is a large potential
for abstraction of such patterns in this context and that this abstraction can
be obtained with a dedicated DSL such as prometeo. The end goal of such
a software tool is indeed to reduce the overhead associated with throwaway
prototyping and to help to merge the prototyping and implementation phases of
software development in the context of embedded high-performance computing.

7.1.2 Transpiling Python to C

A transpiler (also called transcompiler or source-to-source compiler) is a tool
that is capable of translating a program to another language. Although this
is, to some extent, also what a compiler does - in the sense that it translates
source code into machine code - we make a distinction between compilers and
transpilers based on the fact that the latter operate a conversion between
languages of approximately the same level of abstraction. For example, CFront,
the original compiler for C++ from around 1983, used to translate C++ code into
C code, which, although is definitely a language that is “closer” to hardware
than C++ , has approximately the same level of abstraction if compared to
machine code (which would be the target language of a proper compiler such as
gcc).

Although translating a program written in a language into another with a
comparable level of abstraction can be significantly easier than translating to
one with a very different level of abstraction (especially if the target language is
of much lower level), translating Python programs into C programs still involves
a considerable abstraction gap and it is not an easy task in general. Loosely
speaking, the challenge lies in the necessity to reimplement features that are
natively supported by the source language in the target language. In particular,
when translating Python to C, the difficulty comes both from the different
level of abstraction of the two languages and from the fact that the source
and target languages are of two very different types: Python is an interpreted,
duck-typed and garbage-collected language and C is a compiled and statically
typed language.

180 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

The task of transpiling Python to C becomes even more challenging if we add
the constraint that the generated C code must be efficient (even for small to
medium scale computations) and deployable on embedded hardware. In fact
these two requirements directly imply that the generated code cannot make use
of: i) sophisticated runtime libraries, e.g., the Python runtime library, which are
generally not available on embedded hardware ii) dynamic memory allocation
that would make the execution slow and unreliable (exception made for memory
that is allocated in a setup phase and whose size is known a priori).

Since source-to-source code transformation, or transpilation, and in particular
transpilation of Python code into C code is not an unexplored realm, in the
following, we mention a few existing projects that address it. In doing so,
we highlight where and how they do not satisfy one of the two requirements
outlined above, namely (small scale) efficiency and embeddability.

Related work

Several software packages exist that address Python-to-C translation in various
forms.

In the context of high-performance computing, Numba [Lam et al., 2015] is a
just-in-time compiler for numerical functions written in Python. As such, its
aim is to convert properly annotated Python functions, not entire programs,
into high-performance LLVM code such that their execution can be sped up.
Numba uses an internal representation of the code to be translated and performs
a (potentially partial) type inference on the variables involved in order to
generate LLVM code that can be called either from Python or from C/C++ . In
some cases, namely the ones where a complete type inference can be carried
out successfully, code that does not rely on the C API can be generated
(using the nopython flag). However, the emitted LLVM code would still rely
on Numpy [Oliphant, 2006, Van Der Walt et al., 2011] for BLAS and LAPACK
[Anderson et al., 1999] operations.

Nuitka [Nui, 2020] is a source-to-source compiler that can translate every
Python construct into C code that links against the libpython library and it is
therefore able to transpile a large class of Python programs. In order to do so,
it relies on the fact that one of the most used implementations of the Python
language, namely CPython, is written in C. In fact, Nuitka generates C code
that contains calls to CPython that would normally be carried out by the Python
parser. Despite its attractive and general transpilation approach, it cannot
be easily deployed on embedded hardware due to its intrinsic dependency on
libpython. At the same time, since it maps rather closely Python constructs to
their CPython implementation, a number of performance issues can be expected

INTRODUCING PROMETEO 181

Python
source

AST

P
yth

o
n

 p
arser

prometeo
metadata

A
ST

 an
aly zer

call graph

static an
alysis

worst case
heap usage

short est path

C source

Figure 7.1: prometeo’s transpilation and worst case heap analysis.

when it comes to small to medium scale high-performance computing. This
is particularly relevant due to the fact that operations associated with, for
example, type checking, memory allocation and garbage collection that can slow
down the execution are carried out by the transpiled program too.

Cython is a programming language whose goal is to facilitate writing C
extensions for the Python language. In particular, it can translate (optionally)
statically typed Python-like code into C code that relies on CPython. Similarly
to the considerations made for Nuitka, this makes it a powerful tool whenever
it is possible to rely on libpython (and when its overhead is negligible, i.e.,
when dealing with sufficiently large scale computations), but not in the context

182 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 def f unc t i on ()
2 a = 1
3 return a

Listing 7.1: Simple Python program associated with the AST in Figure 7.2.

of interest here.

Finally, although it does not use Python as source language, we should mention
that Julia too is just-in-time (and partially ahead-of-time) compiled into LLVM
code. The emitted LLVM code relies however on the Julia runtime library
such that considerations similar to the one made for Cython and Nuitka apply.

7.1.3 prometeo’s transpiler

Transpilation of programs written using a restricted subset of the Python
language into C programs is carried out using prometeo’s transpiler. This source-
to-source transformation tool analyzes abstract syntax trees (AST) associated
with the source files to be transpiled in order to emit high-performance and
embeddable C code. In order to do so, special rules need to be imposed on
the Python code. This makes the otherwise extremely challenging task of
transpiling an interpreted, high-level, and duck-typed language into a compiled
low-level statically typed one possible. In doing so, we define what is sometimes
referred to as an embedded DSL in the sense that the resulting language uses
the syntax of a host language (Python itself) and, in prometeo’s case, it can
also be executed by the standard Python interpreter.

Traversing Python abstract syntax trees

An AST is a representation of the abstract syntactic structure of a piece of
source code written in a certain programming language. ASTs are commonly
used in the context of compiled languages and, although it is not a compiled
language, Python supports the generation and manipulation of ASTs and their
compilation into bytecode through the built-in module ast. Figure 7.2 shows
the AST associated with the simple Python program in Listing 7.1. Although
most of the information needed to transpile the source code into C code is
already contained in the AST, a fundamental piece of information is missing:
types. In fact, since Python is a duck-typed language, types are never stated
explicitly and the type of an object is instead determined by whether, at a
given point during the execution, it has certain methods and properties. This

INTRODUCING PROMETEO 183

Figure 7.2: AST associated with Listing 7.1

extremely implicit and dynamic way of handling type checking, makes it difficult
to transpile Python code into code written in a statically typed language. In
particular, this operation requires that type inference is first carried out in order
to determine the types of variables. However, type inference of an arbitrary
Python program can be very challenging or computationally intractable. For
this reason, we opt instead for a less flexible setup which goes in the direction
of statically typed Python. To this end we leverage the so-called type hints and
enforce their usage such that typing information can be easily extracted from
programs and used to generate C code.

Type hints and static typing

Apart from other specific syntactic and structural restrictions that will be
described in Section 7.2.1, a key restriction that allows the transpilation process
to be greatly simplified is the one that every valid program needs to be statically
typed. This is achieved by leveraging, and enforcing, the use of type hints, a
feature defined by PEP484 and available in Python3.6+ that allows the user to

184 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 a : int = 1

Listing 7.2: Assignment with type annotation.

1 def f unc t i on () −> int :
2 a : int = 1
3 return a

Listing 7.3: Simple Python program with type hints associated with the AST
in Figure 7.3.

specify the type of variables involved in declarations and function calls. Listing
7.2 shows an assignment with a type hint that describes the type of the variable
being declared. The information added through type hints is not used by the
standard Python interpreter, but it is added to the AST. This means that a
static analysis tool can in principle be used to determine the type of variables
without executing the code. This is what is done, for example, by the static
type checking tool mypy. Figure 7.3 shows how the typing information added in
the adapted simple program in Listing 7.3 is incorporated into the AST.

Listing 7.4 shows instead the data structure associated with the AST of the
program in Listing 7.1 generated by the ast module. prometeo’s transpiler
walks these ASTs using a subclass of the NodeVisitor class provided with the
ast module. In order to better understand how typed Python ASTs can be
used to emit C code, let us consider the simple Python class described in Listing
7.5.

prometeo can traverse the typed AST associated with Listing 7.5 in order to
generate the C code described in Listing 7.6 and 7.7. In particular, the class
simple_class is mapped by prometeo’s transpiler into a C structure. In this
structure, the class’s attributes are translated into fields and its methods are
implemented by means of functions pointed to by pointers that belong to the
structure. Although the C++ -like function mangling used to allow overload
makes the function names a little cryptic, in this simple example we can already
appreciate some of the benefits of transpilation. First, overload itself would not
be possible in C. Second, the emitted C code implements a class mimicking that
is not very different from what is often done in hand-written C code.

INTRODUCING PROMETEO 185

1 Module (
2 body=[
3 FunctionDef (
4 l i n eno=1,
5 c o l_o f f s e t =0,
6 name=’ f ’ ,
7 args=arguments (args =[] , . . .) ,
8 body=[
9 AnnAssign (
10 l i n eno=2,
11 c o l_o f f s e t =4,
12 t a r g e t=Name(l i n eno=2, c o l_o f f s e t =4, id=’ a ’ ,

ctx=Store ()) ,
13 annotat ion=Name(l i n eno=2, c o l_o f f s e t =8, id=’

i n t ’ , ctx=Load ()) ,
14 value=Num(l i n eno=2, c o l_o f f s e t =14, n=1) ,
15 s imple=1,
16) ,
17 Return (
18 l i n eno=3,
19 c o l_o f f s e t =4,
20 value=Name(l i n eno=3, c o l_o f f s e t =11, id=’ a ’ ,

ctx=Load ()) ,
21) ,
22] ,
23 d e c o r a t o r_ l i s t = [] ,
24 r e tu rn s=Name(l i n eno=1, c o l_o f f s e t =11, id=’ i n t ’ ,

ctx=Load ()) ,
25) ,
26] ,
27)

Listing 7.4: Data structure associated with the AST in Figure 7.3.

186 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

Figure 7.3: AST associated with Listing 7.3: typing information is added to
the AST.

1 class Simple_class :
2 def __init__(s e l f) −> None :
3 s e l f . a : int = 1
4
5 def method1 (s e l f) −> int :
6 return s e l f . a
7
8 def method1 (s e l f , b : int) −> int :
9 c : int = s e l f . a + b
10 return c

Listing 7.5: Simple Python class with type hints.

INTRODUCING PROMETEO 187

1 typedef struct Simple_class S imple_class ;
2
3 struct Simple_class {
4 int a ;
5 void (∗_Z8__init__) (Simple_class ∗ s e l f) ;
6 int (∗_Z7method1) (S imple_class ∗ s e l f) ;
7 int (∗_Z7method1int) (S imple_class ∗ s e l f , int b) ;
8 } ;
9
10 void (_Z8__init__Simple_class_impl) (S imple_class ∗ s e l f) ;
11 int (_Z7method1Simple_class_impl) (S imple_class ∗ s e l f) ;
12 int (_Z7method1intSimple_class_impl) (S imple_class ∗ s e l f ,

int b) ;

Listing 7.6: Simple Python class transpiled to C - header.

1 void Simple_class_constructor (
2 struct Simple_class ∗ ob j e c t) {
3 object−>_Z8__init__ = &_Z8__init__Simple_class_impl ;
4 object−>_Z7method1 = &_Z7method1Simple_class_impl ;
5 object−>_Z7method1int = &

_Z7method1intSimple_class_impl ;
6 object−>_Z8__init__(ob j e c t) ;
7 }
8
9 void _Z8__init__Simple_class_impl (S imple_class ∗ s e l f) {
10 s e l f −>a = 1 ;
11 }
12
13 int _Z7method1Simple_class_impl (S imple_class ∗ s e l f) {
14 return s e l f −>a ;
15 }
16
17 int _Z7method1intSimple_class_impl (
18 Simple_class ∗ s e l f , int b) {
19 int c = s e l f −>a + b ;
20 return c ;
21 }

Listing 7.7: Simple Python class transpiled to C - source.

188 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 from prometeo import ∗
2
3 n : dims = 10
4
5 def main () −> int :
6
7 A: pmat = pmat(n , n)
8 for i in range (n) :
9 for j in range (n) :
10 A[i , j] = 1 .0
11
12 B: pmat = pmat(n , n)
13 for i in range (n) :
14 B[0 , i] = 2 .0
15
16 C: pmat = pmat(n , n)
17
18 pmat_print (A)
19 pmat_print (B)
20 C = A ∗ B
21 pmat_print (C)
22 return 0

Listing 7.8: Simple program illustrating prometeo’s metadata.

7.1.4 Scope-dependent metadata

Although using typed ASTs it is possible to transpile most Python constructs
using just local information, other tasks, such as heap usage analysis (see Section
7.1.5) and enforcement of type constraints, require knowledge which is typically
not local. For example, when a variable is declared, it is necessary to check
whether a variable with the same name was already declared in the current
scope or, when calling a function or method, it is necessary to check that a
function or method with the correct signature exists in the current scope. In
particular, the transpiler creates dictionaries containing, e.g., scope-dependent
information regarding the type of variables being declared and, for certain types
of objects, their dimension. Such dictionaries are then stored in a cache folder
such that are accessible at later stages of the transpilation and static analysis.
Listings 7.8, 7.9 and 7.10 show a simple Python program and the associated
metadata dictionaries containing type and dimension information.

INTRODUCING PROMETEO 189

1 " g l oba l " : {} ,
2 " global@main " : {
3 "A" : ["n " , "n "] ,
4 "B" : ["n " , "n "] ,
5 "C" : ["n " , "n "]
6 }

Listing 7.9: prometeo metadata dictionary containing dimensions to be used
for heap analysis.

1 " g l oba l " : {
2 "n " : " dims "
3 } ,
4 " global@main " : {
5 "A" : "pmat " ,
6 "B" : "pmat " ,
7 "C" : "pmat "
8 }

Listing 7.10: prometeo metadata dictionary containing type information.

7.1.5 Static heap usage analysis

One of the key features of prometeo is its ability to simplify memory
management without compromising efficiency. In fact, by enforcing a specific
structure on the programs to be transpiled, it is possible to carry out a simple,
but yet efficient static analysis that determines the worst-case heap usage. In
this way the memory needed by the program can be allocated during a startup
phase such that allocations and deallocations can be efficiently carried out on
what we may call a preallocated virtual heap. The requirement on the program’s
structure is the one that no memory ever escapes a context with exception made
for constructors. This entails that memory is always allocated by callers rather
than callees. Although this is definitely a restrictive requirement in a general
purpose programming language, we argue that in the context of embedded
high-performance computing it is a reasonable compromise to be made. In
particular, such a restriction allows one to carry out a static analysis of programs
based on the associated call graphs. Loosely speaking, each scope is associated
with a certain amount of memory which is independent of the value of mutable
variables (i.e., branching is neglected) and we require instead that memory
allocations only depend on special immutable dimension variables whose value
can be easily determined at parse time. In this way, the worst-case heap usage

190 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

main

f2f1

f3

-5

-2

-5

-3

-3

f5

f4

0

0

0

Figure 7.4: Call graph with memory-weighted edges. The shortest path from
main to any node with the most negative cost determines the worst-case heap
usage of the program. Only non negative cycles are allowed.

analysis boils down to solving a longest path problem on a graph whose nodes
and edges represent scopes and their associated memory cost, respectively. Since
the memory-weighted call graph is a directed graph which cannot have positive
cycles (due to the program structure imposed by prometeo), we can transform
the graph by flipping the sign of all weights and solve a simple shortest path
problem using the Bellman-Ford 1 algorithm (Dijkstra’s algorithm would require
the weights in the transformed graph to be positive). Figure 7.4 shows the
transformed graph associated with the simple program in Listing 7.11.

7.2 Usage and performance

In the following, we introduce prometeo’s syntax based on Python and present
two numerical benchmark in which its performance is compared to the one of
state-of-the-art alternatives for high-performance scientific computing.

1The Bellman-Ford algorithm has complexity O(|V ||E|), where V denotes the number of
vertices of the graph and E denotes the number of its edges.

USAGE AND PERFORMANCE 191

1 from prometeo import ∗
2
3 n : dims = 10
4
5 def f 1 () −> None :
6 A : pmat = pmat(n , n)
7 B : pmat = pmat(n , n)
8 C : pmat = pmat(n , n)
9 f3 ()
10 f4 ()
11 return
12
13 def f 2 () −> None :
14 A : pmat = pmat(n , n)
15 B : pmat = pmat(n , n)
16 f1 ()
17 f3 ()
18 return
19
20 def f 3 () −> None :
21 A : pmat = pmat(n , n)
22 B : pmat = pmat(n , n)
23 C : pmat = pmat(n , n)
24 D : pmat = pmat(n , n)
25 E : pmat = pmat(n , n)
26 return
27
28 def f 4 () −> None :
29 f5 ()
30 return
31
32 def f 5 () −> None :
33 f4 ()
34 return
35
36 def main () −> int :
37 f1 ()
38 f2 ()
39 return 0

Listing 7.11: Simple program illustrating prometeo’s static heap analysis.

192 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

7.2.1 Python restricted syntax

prometeo is an embedded domain specific language based on Python. Hence,
its syntax is based on Python. Below we describe the details regarding the most
common supported Python constructs that prometeo is able to transpile to C.

Variable declaration

A variable can be declared as follows
1 <var_name> : <type> = <value>

where <var_name> must be a valid identifier <type> must be a valid prometeo
built-in type or a user-defined type and <value> must be a valid expression of
type <type>.

Example:
1 a : int = 1

List declaration

A list can be declared using the plist constructor as follows
1 <list_name> : L i s t = p l i s t (<type>, <dim>)

Examples:
1 v : L i s t = p l i s t (int , n)

and
1 s i z e s : dimv = [[2 , 2] , [2 , 2] , [2 , 2] , [2 , 2] , [2 , 2]]
2 A : L i s t = p l i s t (pmat , s i z e s)

if statement

An if statement takes the form
1 i f <cond>:
2 . . .

USAGE AND PERFORMANCE 193

for loop

A for loop takes the form
1 for i in range([< s ta r t >] , <end>)
2 . . .

where the optional parameter <start> must be an expression of type int (default
value 0) and defines the starting value of the loop’s index and <end> must be
an expression of type int which defines its final value.

Function definition

Functions can be defined as follows
1 def <function_name> (<arg1> : <arg_1_type>, . . .) −> <

ret_type> :
2
3 . . .
4
5 return <ret_value>

Class definition

prometeo supports basic classes of the following form
1 class <name>:
2 def __init__(s e l f , <arg1> : <type_1>, . . .) −> None :
3 s e l f .< attr> : <type> = <value>
4 . . .
5
6 def <method> (s e l f , <arg1> : <type_1>, . . .) −> <

r_type>:
7 . . .
8
9 return <ret_value>

main function

For consistency all main functions need to be defined as follows

194 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 def main () −> int :
2
3 . . .
4
5 return 0

pure Python blocks

In order to be able to use the full potential of the Python language and its vast
pool of libraries, it is possible to write pure Python blocks that are run only
when prometeo code is executed directly from the Python interpreter (when
–cgen is set to false). In particular, any line that is enclosed within # pure
> and # pure < will be run only by the Python interpreter, but completely
discarded by prometeo’s parser.

1 # some prometeo code
2 A : pmat = pmat(n , n)
3 . . .
4
5 # pure >
6
7 # t h i s i s on ly run by the Python i n t e r p r e t e r (−−cgen=

False)
8 # and w i l l not be t r a n s p i l e d)
9
10 # some Python code
11
12 import numpy as np
13
14 M = np . array ([[1 . 0 , 2 . 0] , [0 . 0 , 0 . 5]])
15 print (np . l i n a l g . e i g v a l s (M))
16 . . .
17
18 # pure <
19
20 # some more prometeo code
21 for i in range (n) :
22 for j in range (n) :
23 A[i , j] = 1 .0
24 . . .

USAGE AND PERFORMANCE 195

7.2.2 BLAS and LAPACK API

A key aspect to user-friendliness of software for scientific computing is the
availability of a simple, but yet expressive, interface to BLAS and LAPACK
routines. The interface to such routines is based on the API of the software
BLASFEO [Frison et al., 2020] and presents minor variations with respect to
standard BLAS and LAPACK. Thanks to its static analysis engine, prometeo
can combine the ease of use typical of APIs of high-level languages such as
Python and the efficiency of high-performance C code. Below we report the
main BLAS/LAPACK routines implemented in prometeo together with their
API:

Level 2 BLAS

General matrix-vector multiplication (GEMV)

z ← β · y + α · op(A)x (7.1)

1 pmt_gemv(A [.T] , x , [y] , z , [alpha =1.0] , [beta =0.0])

Solve linear system with (lower or upper) triangular matrix coefficient (TRSV)

op(A)x = b (7.2)

1 pmt_trsv (A [.T] , b , [lower=True])

Matrix-vector multiplication with (lower or upper) triangular matrix coefficient
(TRMV)

z ← op(A)x (7.3)

1 pmt_trmv(A [.T] , x , z , [lower=True])

LEVEL 3 BLAS

General matrix-matrix multiplication (GEMM)

D ← β · C + α · op(A) op(B) (7.4)

196 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 pmt_gemm(A[.T] , B [.T] , [C] , D, [alpha =1.0] , [beta
=0 .0])

Symmetric rank k update (SYRK)

D ← β · C + α · op(A) op(B) (7.5)

with C and D lower triangular.

1 pmt_syrk (A [.T] , B [.T] , [C] , D, [alpha =1.0] , [beta
=0 .0])

Triangular matrix-matrix multiplication (TRMM)

D ← α ·BA> (7.6)

with B upper triangular or

D ← α ·AB (7.7)

with A lower triangular.

1 pmt_trmm(A[.T] , B, D, [alpha =1.0] , [beta =0 .0])

LAPACK

Cholesky factorization (POTRF)

C = DD> (7.8)

with D lower triangular and C symmetric and positive definite

1 pmt_potrf (C, D)

LU factorization (GETRF)

C = LP U (7.9)

1 pmt_getr (C, D)

USAGE AND PERFORMANCE 197

QR factorization (GEQRF)

C = QR (7.10)

1 pmt_geqrf (C, D)

7.2.3 Performance

Since prometeo programs transpile to pure C code that calls the high
performance linear algebra library BLASFEO, execution time can be comparable
to hand-written high-performance code. Next, we consider two benchmarks
that highlight the computational benefits of using prometeo.

Riccati factorization

Figure 7.5 shows a comparison of the CPU time necessary to carry out a
Riccati factorization using highly optimized hand-written C code with calls
to BLASFEO and the ones obtained with prometeo transpiled code from this
example. The computation times obtained with NumPy and Julia2 and the hand-
coded C implementation are added for comparison. Moreover, we include timings
obtained with Numpy with the BLAS API of BLASFEO [Frison et al., 2020]. All
the benchmarks have been run on a Dell XPS-9360 equipped with an i7-7560U
CPU running at 2.30 GHz (to avoid frequency fluctuations due to thermal
throttling).

For small matrix sizes, the CPU times obtained with prometeo are about an
order of magnitude shorter than with Numpy and Julia. Moreover, for any size
in the benchmark the computation times obtained with prometeo and with the
hand-coded implementation are almost identical.

Fibonacci numbers

The performance highlighted in Figure 7.5 shows that Python programs
transpiled with prometeo can achieve a performance substantially identical to
the one of hand-written high-performance C code. In the following, we address
the comparison with Nuitka, a state-of-the-art Python to C compiler, and

2notice however that these last two implementations of the Riccati factorization are not
easily embeddable

198 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

1 from prometeo import ∗
2
3 nm: dims = 10
4 nx : dims = 2∗nm
5 nu : dims = nm
6 nxu : dims = nx + nu
7 N: dims = 5
8
9 def main () −> int :
10 # number o f r e p e t i t i o n s f o r t iming
11 nrep : int = 10000
12
13 Ac11 : pmat = pmat(nm,nm)
14 for i in range (nm) :
15 Ac11 [i , i] = 1 .0
16
17 # se t up o ther matr ices (s im i l a r l y)
18 . . .
19
20 # array−type R i cca t i f a c t o r i z a t i o n
21 for i in range (nrep) :
22 pmt_potrf (Q, Lxx)
23 M[nu : nu+nx , nu : nu+nx] = Lxx
24 for i in range (1 , N) :
25 pmt_trmm_rlnn(Lxx , BAt , w_nxu_nx)
26 pmt_syrk_ln (w_nxu_nx , w_nxu_nx , RSQ, M)
27 pmt_potrf (M, M)
28 Lxx [0 : nx , 0 : nx] = M[nu : nu+nx , nu : nu+nx]
29
30 return 0

Listing 7.12: Riccati factorization implemented with prometeo.

CHAPTER SUMMARY AND OUTLOOK 199

1 from prometeo import ∗
2
3 def f i b (n : int) −> int :
4 a : int = 0
5 b : int = 1
6 c : int = 0
7 for i in range (n) :
8 c = a + b
9 a = b
10 b = c
11 return b
12
13
14 def main () −> int :
15
16 r e s : int = 0
17
18 for i in range (30) :
19 for j in range (1000000) :
20 r e s = f i b (i)
21 print (’%i ’ %r e s)
22 return 0

Listing 7.13: prometeo program that computes numbers in the Fibonacci series.

PyPy. To this end, we regard a substantially different benchmark in which the
computationally intensive operations are not delegated to high-performance
implementations (typically in C, Fortran or assembly) of BLAS and LAPACK
routines. In particular, we will regard the simple program described by Listing
7.13 that computes numbers in the Fibonacci series. Table 7.1 shows the
computation times obtained with the standard Python interpreter (CPython),
Nuitka, PyPy and prometeo. The results show that prometeo is more than
one order of magnitude faster than Nuitka and Python and about three times
faster than PyPy.

7.3 Chapter summary and outlook

In this chapter, we introduced prometeo, a domain specific language and Python-
to-C transpiler for embedded high-performance computing. prometeo is capable
of translating programs written using a restricted subset of the Python language

200 PROMETEO: A DOMAIN SPECIFIC LANGUAGE FOR EMBEDDED HIGH-PERFORMANCE
COMPUTING

Figure 7.5: Computation time associated with a Riccati factorization for
increasing matrix sizes. prometeo’s performance is almost identical to the
one achieved with hand-coded C code. Although not embeddable, Numpy and
Julia are included in the benchmark for reference.

parser/compiler CPU time [s]
Python 3.7 (CPython) 11.787

Nuitka 10.039
PyPy 3.7 1.78
prometeo 0.657

Table 7.1: CPU time for the Fibonacci benchmark: prometeo is more than one
order of magnitude faster than Nuitka and Python and about three times faster
than PyPy.

into efficient and self-contained C programs. Unlike in most general purpose
Python transpilers, the code emitted by prometeo does not depend on runtime
libraries and it can be easily deployed on embedded hardware. Moreover, due
to its tailored memory management system, it can outperform state-of-the-art
alternatives while providing a sufficiently expressive language.

Ongoing research targets the improvement of the implementation of the features

CHAPTER SUMMARY AND OUTLOOK 201

presented in this chapter as well as the development of new features. Among
these, support for nonlinear functions and automatic differentiation through
CasADi [Andersson et al., 2019] and interfacing with external C libraries are of
primary interest.

Chapter 8

Conclusions and outlook

In this thesis we investigated methods for NMPC that, although lead to inexact
feedback policies, preserve certain system theoretic and numerical properties,
while reducing the computational burden associated with the solution of the
underlying mathematical programs. The feedback policies obtained by these
methods find their most intuitive interpretation in two distinct classes. The
first is a class of methods that rely on feedback policies obtained from inexact
solutions to optimal control problems with stabilizing properties. These are
typically NMPC formulations for which we can easily construct a Lyapunov
function using standard arguments. The second encompasses methods that
make use of exact solutions to “perturbed” versions of standard optimal control
problems. This qualitative classification, although to some extent artificial, can
help us to distinguish the methods presented in the thesis and provides insights
on how the derivation of stability guarantees can be carried out. In this respect,
the real-time methods analyzed in Chapter 3 fit in the first class. In fact it is
in general difficult to associate the obtained feedback policy with the optimal
solution to a specific optimal control problem with certain stabilizing properties.
Similarly, the progressive and partial tightening NMPC methods introduced in
Chapter 5 together with the zero-order NMPC method proposed in Chapter 4
find their best interpretation within the second class. In both cases we can in
fact more or less explicitly refer to the optimal solution to a perturbed optimal
control problem in a useful way. Finally, as discussed in Chapters 4 and 5, it
is often possible to regard inexact solutions to the perturbed problems, hence
combining the two approaches, without jeopardizing the stabilizing properties of
the obtained feedback policies. This is the case, e.g., for the real-time variants
of the partial tightening and zero-order NMPC methods. Although not entirely
surprising, the fact that stability properties can be preserved under specific

203

204 CONCLUSIONS AND OUTLOOK

modifications to the underlying formulations and numerical strategies opens the
field to a number of interesting directions, which have been partially investigated
in this thesis. Some of these methods, such as the SQP-based RTI, are already
well established and constitute an extremely valuable tool in achieving real-time
feasibility in many applications. This is the case, for example, for the continuous
control set NMPC controller for reluctance synchronous machines presented
in Chapter 6. It is in applications characterized by short sampling times and
limited computational power that the potential of inexact methods becomes even
more evident. Finally, the implementation of methods proposed in this thesis
often relies on a nontrivial interaction between computational building blocks
commonly present in standard algorithms for nonlinear programming for direct
optimal control (e.g., QP solvers and integrators). Hence, their applicability
hinges on the availability of a user-friendly framework for the implementation
of numerical algorithms for embedded high-performance computing. This need
has motivated the development of the paradigm described in Chapter 7 which
prometeo is based on.

In the following we further elaborate on the conclusions and outlook of the
present thesis, with special attention to the interaction between the different
topics addressed.

Real-time methods

Methods inspired by the well established RTI strategy have been analyzed
from an abstract point of view in Chapter 3 and specific algorithms have been
proposed in Chapters 3, 4 and 5. In particular, we have shown how stability of
the system-optimizer dynamics can be proved for a large number of algorithms,
that need not be SQP-based (and not even optimization-based). The results
of Chapter 3 both provide a proof of asymptotic stability for the classical RTI
strategy in the inequality constrained setting and show that similar results can
be obtained for similar strategies based on early termination. Notably, Theorem
3.2.28 applies to the real-time variants of the zero-order methods proposed in
Chapter 4 and the partial tightening method proposed in Chapter 5 as well as
to a real-time variant of the feasible SQP strategy proposed in Section 4.1.1.

Outlook. Interesting research directions could stem from relaxation of the
assumptions made in Theorem 3.2.28. Among others, it would be interesting
to remove the assumption of Lipschitz continuity and replace it with a weaker
assumption, e.g., Hölder continuity, or regularity of set-valued solution maps,
could constitute fruitful research directions. Analogously, it is not hard
to envision extensions of the stability results to algorithms with sublinear
convergence rates. Finally, since robustness issues have not been addressed yet,

CONCLUSIONS AND OUTLOOK 205

it would be interesting to further study properties such as input-to-state stability
and robust constraint satisfaction in the presence of bounded disturbances.
Although input-to-state stability could be easily obtained due to Lipschitz
continuity of the system-optimizer dynamics, the details have not been worked
out and this topic constitutes an interesting research direction.

Zero-order methods

Strategies based on the use of inexact fixed first- and second-order information
that we call zero-order methods have been proposed and analyzed in Chapter 4.
On the one hand, such methods can improve efficiency by avoiding computing
derivatives and performing linear algebra operations otherwise necessary. On the
other hand, they lead to feasible solutions that enjoy advantageous asymptotic
suboptimality bounds. The properties of the solution the iterates converge to
were used to prove local asymptotic stability of the resulting inexact feedback
policy and, for the real-time variant of the algorithm, local asymptotic stability
of the system-optimizer dynamics.

From an algorithmic point of view, in addition to the obvious advantage of
not having to compute derivatives, solution of the QP subproblems can be
largely sped up. We showed how factorizations of the KKT systems can be
reused across iterations both for OCP structured and unstructured nonconvex
programs. In the OCP structured case, it is possible to leverage a structure
exploiting algebraic elimination in combination with a dense active-set QP
solver (such as qpOASES) in order to avoid refactorization of the KKT system.
Similarly, in the case of unstructured problems (or when dealing with large-scale
OCP structured programs) it is possible to exploit a sparse active-set method
based on a Schur complement strategy. Regardless of how the QPs are solved,
solving a series of zero-order problems gives rise to a feasible SQP algorithm
that we analyzed in Section 4.1.1.

Outlook. Although a proof-of-concept implementation of the feasible SQP solver
using qpOASES and CasADi’s code-generation is available at https://github.
com/zanellia/feasible_sqp, a thorough implementation and benchmarking
is subject of undergoing research. Moreover, we believe that feasible SQP
methods can be beneficially applied in the context of real-time optimal control.
In fact feasibility of the intermediate iterates can be exploited in order to obtain
cheap feedback policies or suboptimal path plans.

https://github.com/zanellia/feasible_sqp
https://github.com/zanellia/feasible_sqp

206 CONCLUSIONS AND OUTLOOK

Progressive and partial tightening methods

In Chapter 5 we introduced progressive tightening NMPC methods with stage-
varying costs and constraints. Using costs and constraints that are increasingly
conservative the farther we look into the future, we extended the standard
argumentation used for the stability proof of tracking NMPC. Based on this
idea, we proposed a specific numerical strategy, that we called partial tigthening,
that makes use of a barrier-based tightening of the constraints. The prediction
horizon is split into two sections and, in the terminal section, the constraints
are tightened in order to alleviate the numerical difficulties associated with the
nonsmooth complementarity manifold. An iterative algorithm based on such
formulation is proposed that can be classified as a generalized Newton-type
method. In the resulting subproblems, the variables associated with the terminal
section of the prediction horizon can be efficiently eliminated. In this way, a
reduced linear-quadratic constrained OCP with shorter horizon needs to be
solved leading to computational savings. A proof-of-concept implementation of
partial tightening NMPC has been developed within acados using the building
blocks of the Riccati-based interior-point QP solver HPMPC [Frison et al., 2014].
The implementation has been deployed on the embedded control unit of a
quadcopter and experimentally validated.

Outlook. An implementation of partial tightening within acados using the
successor of HPMPC, namely the QP solver HPIPM [Frison et al., 2020], is currently
under consideration. Moreover, variants of partial and progressive tightening
that also exploit concepts from zero-order methods could lead to interesting
algorithms that can further speed up computations.

Continuous control set NMPC of electrical drives

Although MPC for electrical drives is an increasingly adopted control strategy,
most of its applications rely on the so-called direct, or finite-set control, approach.
A mixed-integer optimal control problem is formulated in which the switches’
positions are regarded as input to the system. As stated in [Geyer, 2016], a
much more unexplored approach is the one of indirect, or continuous control set,
MPC (CS-MPC). In this case one assumes that the inputs to the system, namely
the voltages applied to the windings, can take values in real-valued intervals.
This second approach seems to have found much less widespread application
due to the challenge of solving continuous optimization problems within the
short time typically available between two successive sampling instants.

In Chapter 6, we presented the experimental validation of a CS-NMPC controller
based on the RTI strategy and implemented with acados. The resulting

CONCLUSIONS AND OUTLOOK 207

controller was deployed on a dSPACE DS1007 unit and experimentally tested
with a sampling time of 250 µs. Although the optimal control problem is
discretized in only two shooting nodes, using a simple oversampling strategy, it
is possible to predict about 10 sampling times ahead.

The simulation and experimental results showed that the proposed CS-NMPC
controller can largely outperform state-of-the-art gain-scheduled field-oriented
PI controllers, especially when the constraints become active. This situation
occurs systematically when operating the machine close to, or slightly above, the
nominal velocity and thus makes CS-NMPC a valid alternative to field-oriented
PI controllers.

Outlook. Although it was possible to run the proposed solver based on acados
on a dSPACE DS1007 unit, the computational burden associated with CS-NMPC
is still rather high. In order to reduce it, it seems reasonable to explore
algorithms similar to the real-time ADMM algorithm applied (in simulation
only) to a permanent magnet synchronous machine in Section 3.1. In the context
of nonconvex programming, such an algorithm could be based, e.g., on the
truncated SQP method proposed in Section 3.1. Finally, an extensive simulation
study and experimental validation of the proposed real-time ADMM algorithm
for permanent magnet synchronous machines is definitely an interesting research
direction.

Domain specific languages for embedded high-performance computing

The availability of user-friendly, maintainable and extensible software implemen-
tations of algorithms for numerical optimization is of fundamental importance
for the successful deployment of NMPC on embedded hardware. However,
combining computational efficiency and features of high-level programming
languages is a challenging task. Most implementations of software for embedded
optimization are nowadays carried out in low-level languages, such as C, resulting
in a tedious and error prone development workflow. Although this difficulty
does not necessarily impact user-friendliness, it definitely impacts the amount
of work required by such implementations.

Based on the fact that the task of implementing software for embedded
optimization often involves error prone, but repetitive, patterns, we presented
in Chapter 7 the domain specific language prometeo. Thanks to its Python-
to-C transpiler and its static analysis tools, prometeo aims at simplifying
the development workflow for embedded optimization and high-performance
computing in general.

Outlook. The implementation of prometeo is still at an early stage and will

208 CONCLUSIONS AND OUTLOOK

require further work. Undergoing research targets the improvement of the
implementation of the features presented in Chapter 7 as well as the development
of new features. Among these, support for nonlinear functions and automatic
differentiation through CasADi [Andersson et al., 2019] and interfacing with
external C libraries are of primary interest.

Appendix A

Appendix

A.1 Proof of Proposition 3.2.16

In the following, we will use the shorthand u = Mu,zz. First, notice that, since

ψ(t;x, u) = x+
∫ t

0
φ(ψ(τ ;x, u), u) dτ, (A.1)

for all x ∈ XV̄ and all z ∈ B(z̄(x), rz), there exists a T ′ > 0, such that, for all
t ≤ T ′, we have ψ(t;x, u) ∈ XV̄+ρ.

Using the Gronwall Lemma and Assumption 3.2.16, we obtain that, for any
x ∈ XV̄ , all z ∈ B(z̄(x), rz) and all T ≤ T ′, the following holds:

‖ψ(T ;x, u)− x‖ ≤
∫ T

0
‖φ(ψ(τ ;x, u), u)‖ dτ

≤
∫ T

0
Lφ,x‖ψ(τ ;x, u) + x− x‖ dτ

+
∫ T

0
Lφ,u‖u‖dτ

(A.2)

209

210 APPENDIX

such that
‖ψ(T ;x, u)− x‖ ≤ T (Lφ,u‖u‖+ Lφ,x‖x‖)

+
∫ T

0
Lφ,x‖ψ(τ ;x, u)− x‖ dτ

≤ TeLφ,xT (Lφ,u‖u‖+ Lφ,x‖x‖)

(A.3)

and we can define Lψ,x := eLφ,xTLφ,x and Lψ,u := eLφ,xTLφ,u, such that

‖ψ(T ;x, u)− x‖ ≤ T · (Lψ,x‖x‖+ Lψ,u‖u‖) (A.4)

for any x ∈ XV̄ and all z ∈ B(z̄(x), rz). Similarly, in order to prove the second
inequality, we first notice that there must exist a T ′′ > 0 such that, for all
x ∈ XV̄ , for all u = Mu,zz and all u′ = Mu,zz

′ such that z, z′ ∈ B(z̄(x), rz) and
for all t ≤ T ′′, we have ψ(t;x, u), ψ(t;x, u′) ∈ XV̄+ρ. Hence, for any x ∈ XV̄

and all z, z′ ∈ B(z̄(x), rz) and all T ≤ T ′′ we can proceed as follows:

‖ψ(T ;x, u′)− ψ(T ;x, u)‖

≤
∫ T

0
‖φ(ψ(τ ;x, u′), u′)− φ(ψ(τ ;x, u), u)‖ dτ

=
∫ T

0
‖φ(ψ(τ ;x, u′), u′)− φ(ψ(τ ;x, u), u)

+ φ(ψ(τ ;x, u′), u)− φ(ψ(τ ;x, u′), u)‖ dτ

=
∫ T

0
‖φ(ψ(τ ;x, u′), u′)− φ(ψ(τ ;x, u′), u)‖dτ

+
∫ T

0
‖φ(ψ(τ ;x, u), u)− φ(ψ(τ ;x, u′), u)‖dτ

≤ TLφ,u‖u′ − u‖

+
∫ T

0
Lφ,x‖ψ(τ ;x, u′)− ψ(τ ;x, u)‖ dτ

and, applying the Gronwall Lemma, we obtain

‖ψ(T ;x, u′)− ψ(T ;x, u)‖ ≤ TLφ,ueTLφ,x‖u′ − u‖

= TLψ,u‖u′ − u‖.

Finally, setting T1 := min{T ′, T ′′} concludes the proof.

PROOF OF THEOREM 3.2.25 211

A.2 Proof of Theorem 3.2.25

It suffices to show that Vl(w) is a Lyapunov function for (3.84) in Rn≥0. Define
ŵmin := min

i=1,...,n
[ŵ]i and ŵmax := max

i=1,...,n
[ŵ]i. The following inequalities hold:

ŵ>w ≥ ŵmin · 1>w = ŵmin · ‖w‖1 ≥ ŵmin · ‖w‖2

and
ŵ>w ≤ ŵmax · 1>w

≤ ŵmax · ‖1‖2‖w‖2

≤ √n ŵmax · ‖w‖2
which shows that there exists K∞ functions αl,1(‖w‖) := ŵmin · ‖w‖ and
αl,2(‖w‖) :=

√
n ŵmax · ‖w‖ such that

αl,1(‖w‖) ≤ Vl(w) ≤ αl,2(‖w‖). (A.5)

Moreover, for any w > 0, we have that

Vl(w+)− Vl(w) = ŵ>Aw − ŵ>w

= ŵ>(A− I)w

= w>(A> − I) ŵ

≤ −d̂ · ‖w‖1 ≤ −d̂ · ‖w‖2.

(A.6)

Hence, there exists a positive definite and continuous function αl,3(‖w‖) :=
d̂ · ‖w‖ such that, for any w ≥ 0, the following holds

Vl(w+)− Vl(w) ≤ −αl,3(‖w‖) (A.7)

and αl,3(0) = 0, which concludes the proof.

Remark A.2.1. Notice that the original Theorem in [Kaczorek, 2008] requires
the existence of a strictly positive vector ŵ > 0 such that

(A− I)ŵ < 0. (A.8)

Although the condition used in Theorem 3.2.26 is equivalent to one above, the
resulting ŵ can only be used to define a Lyapunov function for the dual system
w+ = A>w.

212 APPENDIX

A.3 Lyapunov function for the system-optimizer
dynamics in error form

In the following, we report a simplified version of the arguments presented in
Section 3.2. In particular, we construct a Lyapunov function for the system-
optimizer dynamics in error form defined as follows.

Definition A.3.1 (System-optimizer dynamics in error form). We will refer to
the following discrete-time system as system-optimizer dynamics in error form:

x+ = ψ(T ;x,Mu,ze+ z̄(x)),

e+ = ϕ(ψ(T ;x,Mu,zz), e+ z̄(x))− z̄(ψ(T ;x,Mu,zz)),
(A.9)

where we have introduced e := z − z̄(x). Let ξ̂ := (x, e). We will use

ξ̂+ = Φ̂(T ; ξ̂), (A.10)

to refer to (3.48) in compact form.

Corollary A.3.2. Let Assumptions 3.2.2, 3.2.4, 3.2.8, 3.2.11, 3.2.12 and
3.2.16 hold. Then the origin is an asymptotically stable equilibrium with region
of attraction Σ for the system-optimizer dynamics (3.49). In particular, the
function

Vso(ξ̂) := ŵ>
[
V (x)

1
q

‖e‖

]
(A.11)

is a Lyapunov function in Σ for the system (3.49) and the origin (x, e) = ξ̂ = 0.

Proof. We can derive an upper bound for Vso(ξ̂) as follows.

Vso(ξ̂) = V (x)
1
q + β‖e‖ ≤ a

1
q

2 ‖x‖+ β‖e‖

≤ max{a
1
q

2 , β}︸ ︷︷ ︸
=:w̃2

· (‖x‖+ ‖e‖)

≤ w̃2 · (‖x‖1 + ‖e‖1) = w̃2 · ‖ξ̂‖1

≤ w̃2
√
nx + nz · ‖ξ̂‖.

LYAPUNOV FUNCTION FOR THE SYSTEM-OPTIMIZER DYNAMICS IN ERROR FORM 213

Similarly, a lower bound can be obtained as

Vso(ξ̂) = V (x)
1
q + β‖e‖ ≥ a

1
q

1 ‖x‖+ β‖e‖

≥ a
1
q

1√
nx
‖x‖1 + β√

nz
‖e‖1

≥ min

 a
1
q

1√
nx
,
β√
nz

︸ ︷︷ ︸
=:w̃1

· (‖x‖1 + ‖e‖1)

≥ w̃1 · ‖ξ̂‖.
Finally, the Lyapunov decrease can be derived as follows.

Vso(ξ̂+) = V (x+)
1
q + β‖e+‖

≤ ν+ + βε+ ≤ ν + ε− d̂ ·
∥∥∥∥νε
∥∥∥∥

= V (x)
1
q + βE − d̂ ·

∥∥∥∥νε
∥∥∥∥

= Vso(ξ̂)− d̂ ·
∥∥∥∥vE
∥∥∥∥

≤ Vso(ξ̂)− d̂ ·
√

(a
1
q

1 ‖x‖)2 + ‖e‖2

≤ Vso(ξ̂)− d̂ ·min{a
1
q

1 , 1}︸ ︷︷ ︸
=:w̃3

√
‖x‖2 + ‖e‖2

≤ Vso(ξ̂)− w̃3‖ξ̂‖.

Hence we can define the K∞ functions αso,1(‖ξ̂‖) := w̃1 · ‖ξ̂‖ and αso,2(‖ξ̂‖) :=
w̃2 · ‖ξ̂‖ and the positive definite function αso,3(‖ξ̂‖) := w̃3 · ‖ξ̂‖, such that

αso,1(‖ξ̂‖) ≤ Vso(ξ̂) ≤ αso,2(‖ξ̂‖)

Vso(ξ̂+)− Vso(ξ̂) ≤ −αso,3(‖ξ̂‖),
(A.12)

i.e. Vso(ξ̂) is a Lyapunov function in Σ for the system-optimizer dynamics
ξ̂+ = Φ̂(T ; ξ̂) and the equilibrium ξ̂ = 0.

214 APPENDIX

A.4 Asymptotic stability of the system-optimizer
dynamics for equality constrained NMPC

Theorem 3.2.28 provides a Lyapunov function for the system-optimizer dynamics
under general assumptions. In the following, based on [Zanelli et al., 2021b],
we present a tailored result that can be applied in the context of equality
constrained NMPC. In particular, we will make use of the following assumption.

Assumption A.4.1 (Second-order growth). Assume that, for any u ∈ Rnu ,
for any x ∈ XV̄ and any T ≤ T0, the following holds:

V (ψ(T ; x, u))− V (x) ≤ −T · a3‖x‖2 + T ·O(‖u− ū(x)‖2). (A.13)

Remark A.4.2. Assumption A.4.1 can be informally justified by analyzing the
properties of an underlying continuous-time Lyapunov function Vc and using an
argument similar to the one used in Assumption 2.18 in [Diehl et al., 2007] in a
discrete-time setting. In particular, under suitable differentiability assumptions,
for any δ > 0, with a slight abuse of notation, we can introduce uδ : R→ Rnu
with uδ ∈ L2 and write

Vc(x) = min
uδ

{∫ δ

0
l(ψ(τ, x, uδ(τ)), uδ(τ))dτ + Ṽc(ψ(δ, x, uδ))

}

= Ṽc(ψ(δ, x, uδ)) +
∫ δ

0
l(ψ(τ, x, uδ(τ)), uδ(τ))dτ

+O(‖uδ − ūδ(x)‖2L2),

where Ṽc is the optimal value function for a problem with shrunk horizon Tf − δ
and ūδ : R → Rnu with ūδ ∈ L2. Using the fact that Vc(x) ≤ Ṽc(x) and a
quadratic lower bound on l we can conclude

Vc(ψ(δ, x, uδ)) ≤ Ṽc(ψ(δ, x, uδ))

≤ Vc(x)−
∫ δ

0
l(ψ(τ, x, uδ(τ)), uδ(τ))dτ +O(‖uδ − ūδ(x)‖2L2)

≤ Vc(x)− δ · ã3‖x‖2 +O(‖uδ − ūδ(x)‖2L2).

This last inequality, together with the fact that, for a piece-wise constant
parametrization, ‖uδ − ūδ(x)‖2L2

= δ · ‖u− ū(x)‖, justifies Assumption A.4.1, if
V is a “sufficiently” good approximation of Vc in the sense of Remark 3.2.3.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS FOR EQUALITY CONSTRAINED
NMPC 215

Proposition A.4.3. Let Assumptions 3.2.2, 3.2.8, 3.2.11 and A.4.1 hold.
Then, there exist finite positive constants µ, V̄q ≤ V̄ and rq ≤ rz, such that, for
any E ≤ rq and any x in XV̄q

, where XV̄q
:= {x : V (x) ≤ V̄q}, the following

holds:
V+ ≤ (1− T ā)V + TµE2, (A.14)

with ā := a3
a2
.

Proof. Assumption A.4.1 implies that there must exist strictly positive constants
µ, V̄q ≤ V̄ and rq ≤ rz such that the following holds

V (ψ(x,Mu,zz)) ≤ V (x)− Ta3‖x‖2 − TµE2

≤ V (x)− T a3
a2
V (x)− TµE2

= (1− T ā)V (x)− TµE2,

(A.15)

for any E ≤ rq, any x ∈ XV̄q
and any T ≤ T2.

Definition A.4.4. Define the following set:

Σ := {(x, z) : V (x) ≤ V̄q, ‖z − z̄(x)‖ ≤ r̃q}, (A.16)

where

r̃q := min
{
rq,

√
āV̄q
µ

}
. (A.17)

The following theorem shows positive invariance of Σ.

Lemma A.4.5 (Invariance of Σ). Let Assumptions 3.2.2, 3.2.8, 3.2.11, 3.2.12,
3.2.16 and A.4.1 hold. Define

γ := σκ̂η and T ′3 := (1− κ)r̃q
√
a1√

V̄ γ
. (A.18)

Then, for any (x, z) ∈ Σ and any T ≤ T3 := min{T ′3, T2}, it holds that (x+, z+) ∈
Σ. Moreover, the following coupled system-optimizer contractions hold:

V+ ≤ (1− T ā)V + TµE2,

E+ ≤ T γ̂V
1
2 + κE,

(A.19)

where γ̂ = γ√
a1
.

216 APPENDIX

Proof. Given that E ≤ r̃q ≤ rq and x ∈ XV̄q
, we can apply the inequality from

Proposition A.4.3, such that

V+ ≤ (1− T ā)V + TµE2, (A.20)

holds. Moreover, due to the definition of r̃q, V+ ≤ V̄q holds, which implies that
x+ is in XV̄q

. Similarly, due to the fact that E ≤ r̃q ≤ rz and x ∈ XV̄q
⊆ XV̄ ,

we can apply the result from Proposition 3.2.18, which shows that

E+ ≤ κE + Tγ‖x‖ and E+ ≤ rz (A.21)

must hold. Using Assumption 3.2.2 in Equation (A.21), we obtain

E+ ≤ κE + T γ̂V
1
2 . (A.22)

Moreover, due to (A.18), E+ ≤ r̃q holds.

Lemma A.4.5 shows that we can guarantee that the state of the combined
system-optimizer dynamics (x, z) will not leave Σ under the assumption that
the sampling time T is short enough. Moreover, due to subadditivity of the
square root, the following holds:

V
1
2

+ ≤ (1− T ā) 1
2V

1
2 + (Tµ) 1

2E (A.23)

such that we can regard the following simpler dynamics:

Definition A.4.6 (Auxiliary dynamics). Regard the linear discrete-time positive
dynamical system

ν+ = (1− T ā) 1
2 ν + (Tµ) 1

2 ε,

ε+ = T γ̂ν + κε
(A.24)

with states ν, ε ∈ R or, in compact form, In the following, we exploit properties
of positive systems in order to construct an explicit linear Lyapunov function
for the auxiliary dynamics which can be rewritten in the compact form

w+ = Aaw, (A.25)

where
Aa :=

[
(1− T ā) 1

2 T µ̂
T γ̂ κ

]
, (A.26)

and w := (ν, ε). We will refer to (A.25) as auxiliary dynamics.

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS FOR EQUALITY CONSTRAINED
NMPC 217

Remark A.4.7. Notice that the considerations made by [Diehl et al., 2007],
in a similar setting, lead to the same type of coupled contraction from Lemma
A.4.5. An attractivity proof that implicitly uses auxiliary dynamics that would
be obtained directly from (A.19) is derived in [Diehl et al., 2007]. However, in
that case, due to the fact that the auxiliary system-optimizer dynamics are not
Lipschitz at (0, 0), it would not be possible to prove stability with standard linear
analysis tools.

Due to linearity and positivity of the auxiliary dynamics (A.24), we can study
asymptotic stability as follows.
Theorem A.4.8. The positive discrete-time linear system (A.25) is asymptot-
ically stable if and only if the following condition is satisfied:

T
3
2
√
µγ̂ − (1− κ)(1− (1− T ā) 1

2) < 0, (A.27)

which is satisfied for any sufficiently small sampling time T ≤ T5 := β2(1−κ)2

µ .
Moreover, the function Vl(w) := ŵ>w, where

ŵ =
[

1
β

]
, with β := 1

4
ā

γ̂
, (A.28)

is a Lyapunov function for (A.25) in R2
≥0.

Proof. The proof follows the same arguments used in the proof of Theorem
3.2.27, but based on the auxiliary system (A.24). A sufficient and necessary
condition for asymptotic stability is that the eigenvalues of the matrix

A =
[
(1− T ā) 1

2 (Tµ) 1
2

T γ̂ κ

]
, (A.29)

are smaller than one in absolute value.

Following an argumentation similar to the one in the proof Theorem 3.2.28 we
can prove the following result.
Theorem A.4.9 (Asymptotic stability). Let Assumptions 3.2.2, 3.2.8, 3.2.11,
3.2.12, 3.2.16 and A.4.1 hold. Then, for any T ≤ min{T4, T5}, the origin is an
asymptotically stable equilibrium with region of attraction Σ for the combined
system-optimizer dynamics (3.49). In particular, the function

Vso(ξ) := ŵ>
[

V (x) 1
2

‖z − z̄(x)‖

]
, (A.30)

where ŵ is defined according to Theorem A.4.8, is a Lyapunov function in Σ
for the system (3.49) and the origin (x, z) = ξ = 0.

218 APPENDIX

Illustrative example

In the following, although the results derived apply to a much more general class
of problems (twice-continuously nonlinear dynamics and cost), we discuss an
illustrative numerical example where we exploit a simplified setting in order to be
able to explicitly compute all the constants used in the assumptions of Theorem
A.4.9. In particular, we regard the following unconstrained, linear-quadratic
optimal control problem:

min
s(·),u(·)

∫ ∞
0

[
s(t)
u(t)

]> [
Qc 0
0 Rc

] [
s(t)
u(t)

]
s.t. s(0)− x = 0,

ṡ(t) = Acs(t) +Bcu(t), t ∈ [0,∞],

(A.31)

where the continuous-time dynamics are defined by

Ac :=
[
0 1
0 0

]
, Bc :=

[
0
1

]
(A.32)

and the matrices
Qc := I2 and Rc := 1 (A.33)

define the cost.

Problem (A.34) is discretized using multiple shooting with a single shooting
node and a fixed discretization time Td = 0.1s as follows:

min
s0,s1,u0

Td

[
s0
u0

]> [
Qc 0
0 Rc

] [
s0
u0

]
+ s>1 Ps1

s.t. s0 − x = 0,

s1 = ATds0 +BTdu0.

(A.34)

Here the discrete-time dynamics are obtained using an exact discretization with
piece-wise constant parametrization of the control trajectories:

ATd := exp (AcTd), BTd :=
(∫ Td

0
exp (Acτ)dτ

)
Bc. (A.35)

Finally, the symmetric positive-definite matrix P that defines the terminal cost
for the discretized problem is computed by solving the discrete-time algebraic
Riccati equation

ASYMPTOTIC STABILITY OF THE SYSTEM-OPTIMIZER DYNAMICS FOR EQUALITY CONSTRAINED
NMPC 219

0.00 0.05 0.10 0.15 0.20

T

1.00

1.01

λ
1
(T

)

0.00 0.05 0.10 0.15 0.20

T

0.085

0.090

0.095

λ
2
(T

)

Figure A.1: Eigenvalues as a function of the sampling time T for problem
(A.34). For sufficiently short sampling times, the auxiliary system in Definition
A.4.6 is asymptotically stable.

P = A>TdPATd − (A>TdPBTd)(R+B>TdPBTd)−1(B>TdPATd) +Q, (A.36)

where R := TdRc and Q := TdQc. After elimination of s0, the first-order
optimality conditions of problem (A.34) read

Hu0 +Gx = 0, (A.37)

with
H := (TdR+B>TdPBTd), G := B>TdPATd . (A.38)

We solve (A.37) with the following real-time gradient descent method:

u0,+ = −H̃−1 ((H − H̃)u0 +Gx+
)
, (A.39)

where H̃ = ρ I for some positive constant ρ > 1.
Remark A.4.10. Recall that the example under consideration has purely
illustrative purpose and does not try to draw connections with numerical
algorithms that would be used in practice. In fact here the optimization problem
is a one dimensional unconstrained parametric quadratic program which can be
solved in closed form. However, due to its simplicity, we will be able to better
analyze the behavior of the otherwise far from trivial system-optimizer dynamics.

Using standard arguments from convergence theory for Newton-type methods
(see e.g [Diehl, 2016]), it is easy to show, that, for a fixed value of the parameter
x, the following contraction estimate holds:

‖u0,+ − ū0(x)‖ ≤ κ̂‖u0 − ū0(x)‖, (A.40)

220 APPENDIX

0.00 0.25 0.50 0.75 1.00

T

0.0

0.2

0.4

0.6

0.8

1.0

|λ
(T

)|

−1.0 −0.5 0.0 0.5 1.0

Re

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Im

Figure A.2: Modulus of the eigenvalues associated with the system-optimizer
dynamics and their trajectories in the complex plane. The plot reveals some
conservatism of the analysis based on the auxiliary dynamics. In fact, the
largest T for which the system-optimizer dynamics are stable is T ≈ 0.6 as
opposed to T ≈ 0.15 obtained from Figure A.1.

with
κ̂ := ‖H̃−1(H − H̃)‖. (A.41)

Since V (x) = x>Px and ū0(x) = −H−1Gx, we can compute exactly the
constant σ = ‖H−1G‖ and approximately the constant µ ≈ 0.5R. Let

AT := exp (AcT), BT :=
(∫ T

τ=0
exp (Acτ)dτ

)
Bc (A.42)

describe the dynamics discretized according to the sampling time T . Given that

x+ = ATx+BTu = x+ T

T
((AT − I)x+BTu), (A.43)

we can compute the constants

Lψ,x = 1
T
‖AT − I‖ and Lψ,u = 1

T
‖BT ‖. (A.44)

Following the definitions in Propositions 3.2.18 and 3.2.18, we have γ̂ = 1√
a1
σκ̂η

and κ = κ̂(1+Tσθ), where η = Lψ,u+Lψ,xσ and θ = Lψ,u. In order to validate
Assumption 3.2.2 and compute an estimate for constant a3, we compute the
largest eigenvalue λmax(∆P) of the matrix

∆P (T) := 1
T

(x>† Px† − x>Px), (A.45)

A GLOBALIZATION HEURISTIC FOR THE FEASIBLE SQP STRATEGY OF SECTION 4.1 221

with
x† = (AT +BTK)x (A.46)

and K = −H−1G. Choosing

a3 = min
T
λmax(∆P (T)), (A.47)

we obtain a value of a3 that satisfies (3.37b) for any T such that 0 ≤ T ≤ Td.
Finally, we can compute the constants in (3.37a) as a1 = λmin(P) and a2 =
λmax(P).

Given that we can numerically compute all the constants involved in the
Assumptions of Theorem A.4.9, it is possible to compute the longest sampling
time for which the auxiliary system in (A.24) is asymptotically stable. Figure
A.1 shows the eigenvalues of the auxiliary system as a function of T .

Finally, Figure A.2 shows the eigenvalues of the system-optimizer dynamics
defined as [

x+
u+

]
=
[

ATd BTd

H̃−1B>Td
PATd H̃−1(H − H̃)

] [
x
u

]
. (A.48)

The plot reveals some conservatism of the analysis based on the auxiliary
dynamics. In fact, the largest T for which the system-optimizer dynamics are
stable is T ≈ 0.6 as opposed to T ≈ 0.15 obtained from the analysis of the
auxiliary dynamics (see Figure A.1).

A.5 A globalization heuristic for the feasible SQP
strategy of Section 4.1

In order to enforce descent properties of the proposed method, a globalization
strategy that guarantees contraction of the outer iterations is necessary. To this
end, we propose the following modification of the gradient term:

a = β · ∇yf(ỹ) + β · P (ŷ − ỹ) + (1− β) ·M(ŷ − ỹ). (A.49)

Let ∆ = ‖ẑ+ − ẑ‖ denote the norm of the primal-dual step associated with the
inner iterations. The nonlinear root-finding problem (4.18) takes the following
form:

F̃ (z) :=
[
β · ∇yf(ỹ) + (β · P + (1− β) ·M) (y − ỹ) +G(ỹ)>λ

g(y)

]
= 0. (A.50)

222 APPENDIX

The following Lemma shows that at any feasible point ỹ, for sufficiently small
values of the globalization parameter β, the step computed by the feasible SQP
strategy is a descent direction.

Lemma A.5.1 (Descent properties). Let Assumption 4.1.6 hold and let ỹ be a
feasible point, i.e. g(ỹ) = 0. Moreover, let ∆y(β) denote the full step associated
with ỹ as a function of β, i.e., ∆y(β) := ỹ+(β)− ỹ. Then there exist a strictly
positive constants β̂ and c1 such that, for any 0 < β ≤ β̂, the following holds:

f(ỹ + ∆y(β))− f(ỹ) < −c1 · ‖∆y(β)‖2. (A.51)

Proof. Regard the linearized problem

Flin(z, β) :=
[
β · ∇yf(ỹ) +W (β)(y − ỹ) +G(ỹ)>λ

G(ỹ)(y − ỹ)

]
= 0, (A.52)

with W (β) := β · P + (1 − β) ·M and let ∆ylin(β) denote the primal step
associated with its solution. First, notice that if β is sufficiently small and
M � 0, LICQ and SOSC are satisfied for the QP associated with (A.52) such
that a unique solution exists. Second, regard the inequality

f(ỹ + ∆ylin(β))− f(ỹ) ≤ ∇yf(ỹ)>∆ylin(β) + γ‖∆ylin(β)‖2, (A.53)

where γ is a positive constant. Due to (A.52), we can write

∇yf(ỹ)>∆ylin(β) = − 1
β

(∆ylin(β)>W (β)∆ylin(β) + λ>G(ỹ)∆ylin(β))

= − 1
β

∆ylin(β)>W (β)∆ylin(β),
(A.54)

where the last equality follows from G(ỹ)∆ylin(β) = 0. Using this fact we obtain

f(ỹ+∆ylin(β))−f(ỹ) ≤ − 1
β
·∆ylin(β)>W (β)∆ylin(β)+γ‖∆ylin(β)‖2, (A.55)

such that it becomes apparent that, for any sufficiently small β, ∆ylin(β) attains
the desired descent property. In order to prove the result, it suffices to show
that ∆y(β) preserves such property. To this end, notice that, by straightforward
application of Dini’s Theorem to (A.52), we can show that ∆ylin(β) = O(β).
Similarly, for sufficiently small β and ξ, the perturbed problem

Fpert(z, β, ξ) :=
[
β · ∇yf(ỹ) +W (β)(y − ỹ) +G(ỹ)>λ

g(y) + ξ

]
= 0, (A.56)

CS-NMPC FOR RSMS: ADDITIONAL RESULTS 223

has a unique solution in a properly defined nonempty neighborhood and the
associated primal step satisfies ∆ypert(β, ξ) = ∆y(β) + O(‖ξ‖). Choosing
ξ = ξ̄ = G(ỹ)∆ylin(β)− g(ỹ + ∆ylin(β)) = O(‖∆ylin(β)‖2) = O(β2), we obtain

∆ylin(β) = ∆ypert(β, ξ̄) = ∆y(β) +O(β2). (A.57)

Finally, due to differentiability of f , we can write

f(ỹ+∆y(β))− f(ỹ)

= f(ỹ + ∆ylin(β))− f(ỹ) +O(β2)

≤ − 1
β
·∆ylin(β)>W (β)∆ylin(β) + γ‖∆ylin(β)‖2 +O(β2)

(A.58)

and, given that ∆ylin = O(β), there exist a strictly positive constant β̂, such
that, for all 0 < β ≤ β̂, the desired descent property holds.

A.6 CS-NMPC for RSMs: additional results

In the following, we report additional simulation and experimental (for CS-
NMPC only) results carried out at a reference speed of 165 rad s−1. In this
scenario, the impact of the input constraint is even stronger than for the
one used in Sections 6.2.1 and 6.2.2. Since the results showed potentially
damaging behavior when controlling the RSM with the gain-scheduled PI, we
ran the corresponding experiments only with CS-NMPC. The simulation and
experimental results are reported in Figures A.3, A.4 and A.5. These additional
results confirm the observation made for the scenario reported in Sections 6.2.1
and 6.2.2.

224 APPENDIX

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40

cu
rr

en
ts

(in
A

)

CS-NMPC (sim.)

id

iq

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40

cu
rr

en
ts

(in
A

)

gain-scheduled PI (sim.)

id

iq

Figure A.3: Current steps at 165 rad s−1 (simulation): closed-loop trajectories
obtained using CS-NMPC (left) and gain-scheduled PI controller (right).

CS-NMPC FOR RSMS: ADDITIONAL RESULTS 225

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)

CS-NMPC (sim.)

‖uref‖
udc√

3

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)

gain-scheduled PI (sim.)

‖uref‖
udc√

3

Figure A.4: Current steps at 165 rad s−1 (simulation): two-norm of voltage
references uref commanded by the two controllers and udc over time. During
the third current step, the PI controller saturates and does not steer the system
to the desired reference.

226 APPENDIX

0.0 0.5 1.0 1.5 2.0
time (in sec)

−40

−20

0

20

40

cu
rr

en
ts

(in
A

)

CS-NMPC (exp.)

id

iq

0.0 0.5 1.0 1.5 2.0
time (in sec)

0

100

200

300

400

vo
lta

ge
s

(in
V

)

CS-NMPC (exp.)

‖uref‖
udc√

3

Figure A.5: Current steps at 165 rad s−1 (experiment): closed-loop current
trajectories obtained using the two controllers under analysis. Due to the strong
effect of input saturation observed in simulation, for this value of the reference
speed it was not possible to run the experiment with the PI controller.

Bibliography

[Kit, 2010] (2010). Kitty Hawk, Mountain View, CA, USA.
https://kittyhawk.aero.

[EHa, 2014] (2014). Ehang Inc. Guangzhou, China. http://www.ehang.com.

[Nui, 2020] (2020). Nuitka. https://github.com/Nuitka/Nuitka.

[Albersmeyer and Diehl, 2010] Albersmeyer, J. and Diehl, M. (2010). The
lifted Newton method and its application in optimization. SIAM Journal on
Optimization, 20(3):1655–1684.

[Albin et al., 2017] Albin, T., Ritter, D., Liberda, N., Quirynen, R., and Diehl,
M. (2017). In-vehicle realization of nonlinear MPC for gasoline two-stage
turbocharging airpath control. IEEE Transactions on Control Systems
Technology, pages 1–13.

[Allan et al., 2017] Allan, D. A., Bates, C. N., Risbeck, M. J., and Rawlings,
J. B. (2017). On the inherent robustness of optimal and suboptimal nonlinear
MPC. Systems & Control Letters, 106:68–78.

[Allgower and Georg, 1990] Allgower, E. L. and Georg, K. (1990). Introduction
to Numerical Continuation Methods. Colorado State University Press.

[Anderson et al., 1999] Anderson, E., Bai, Z., Bischof, C., Blackford, S.,
Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling, S.,
McKenney, A., and Sorensen, D. (1999). LAPACK Users’ Guide. SIAM,
Philadelphia, PA, third edition.

[Andersson et al., 2019] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings,
J. B., and Diehl, M. (2019). CasADi – a software framework for nonlinear
optimization and optimal control. Mathematical Programming Computation,
11(1):1–36.

227

228 BIBLIOGRAPHY

[Bertsekas, 1999] Bertsekas, D. P. (1999). Nonlinear Programming. Athena
Scientific, 2nd edition.

[Besselmann et al., 2015] Besselmann, T. J., Van de moortel, S., Almér, S., Jörg,
P., and Ferreau, H. J. (2015). Model predictive control in the multi-megawatt
range. IEEE Transactions on Industrial Electronics, 63(7):4641–4648.

[Betsch and Siebert, 2009] Betsch, P. and Siebert, R. (2009). Rigid body
dynamics in terms of quaternions: Hamiltonian formulation and conserving
numerical integration. International Journal for Numerical Methods in
Engineering, 79(4):444–473.

[Betz et al., 1993] Betz, R., Lagerquist, R., Jovanovic, M., Miller, T., and
Middleton, R. (1993). Control of synchronous reluctance machines. IEEE
Transactions on Industry Applications, 29(6):1110–1122.

[Bezanson et al., 2017] Bezanson, J., Edelman, A., Karpinski, S., and Shah,
V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review,
59(1):65–98.

[Bisschop and Meeraus, 1977] Bisschop, J. and Meeraus, A. (1977). Matrix
augmentation and partitioning in the updating of the basis inverse.
Mathematical Programming, 13(1):241–254.

[Bock, 1983] Bock, H. G. (1983). Recent advances in parameter identification
techniques for ODE. In Numerical Treatment of Inverse Problems in
Differential and Integral Equations, pages 95–121. Birkhäuser.

[Bock et al., 2007] Bock, H. G., Diehl, M., Kostina, E. A., and Schlöder, J. P.
(2007). Constrained optimal feedback control of systems governed by large
differential algebraic equations. In Real-Time and Online PDE-Constrained
Optimization, pages 3–22. SIAM.

[Bock and Plitt, 1984] Bock, H. G. and Plitt, K. J. (1984). A multiple shooting
algorithm for direct solution of optimal control problems. In Proceedings of
the IFAC World Congress, pages 242–247. Pergamon Press.

[Boldea et al., 1991] Boldea, I., Fu, Z., and Nasar, S. (1991). Torque vector
control (TVC) of axially-laminated anisotropic (ALA) rotor reluctance
synchronous motors. Electric machines and power systems, 19(3):381–398.

[Bolognani et al., 2011] Bolognani, S., Peretti, L., and Zigliotto, M. (2011).
Online MTPA control strategy for DTC synchronous-reluctance-motor drives.
IEEE Transactions on Power Electronics, 26(1):20–28.

BIBLIOGRAPHY 229

[Bonnans and Shapiro, 1998] Bonnans, J. F. and Shapiro, A. (1998).
Optimization problems with perturbations: A guided tour. SIAM Review,
40:228–264.

[Bouabdallah et al., 2004] Bouabdallah, S., Noth, A., and Siegwart, R. (2004).
Pid vs lq control techniques applied to an indoor micro quadrotor. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sendai, Japan.

[Chen and Allgöwer, 1998] Chen, H. and Allgöwer, F. (1998). A quasi-infinite
horizon nonlinear model predictive control scheme with guaranteed stability.
Automatica, 34(10):1205–1218.

[Chikhi et al., 2010] Chikhi, A., Djarallah, M., and Chikhi, K. (2010). A
comparative study of field-oriented control and direct-torque control of
induction motors using an adaptive flux observer. Serbian Journal of Electrical
Engineering, 7(1):41–55.

[Cimini et al., 2020] Cimini, G., Bernardini, D., Levijoki, S., and Bemporad,
A. (2020). Embedded model predictive control with certified real-time
optimization for synchronous motors. IEEE Transactions on Control Systems
Technology, pages 1–8.

[Cortes et al., 2008] Cortes, P., Kazmierkowski, M., Kennel, R., Quevedo, D.,
and Rodriguez, J. (2008). Predictive control in power electronics and drives.
IEEE Transactions on Industrial Electronics, 55(12):4312–4324.

[Diehl, 2001] Diehl, M. (2001). Real-Time Optimization for Large Scale
Nonlinear Processes. PhD thesis, University of Heidelberg.

[Diehl, 2002] Diehl, M. (2002). Real-Time Optimization for Large Scale
Nonlinear Processes, volume 920 of Fortschritt-Berichte VDI Reihe 8, Meß-,
Steuerungs- und Regelungstechnik. VDI Verlag, Düsseldorf. PhD Thesis.

[Diehl, 2016] Diehl, M. (2016). Lecture Notes on Numerical Optimization.
(Available online: http://cdn.syscop.de/publications/Diehl2016.pdf).

[Diehl et al., 2002a] Diehl, M., Bock, H., and Schlöder, J. (2002a). Newton-type
methods for the approximate solution of nonlinear programming problems in
real-time. In Pillo, G. D. and Murli, A., editors, High Performance Algorithms
and Software for Nonlinear Optimization, pages 177–200. Kluwer Academic
Publishers B.V.

[Diehl et al., 2002b] Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy,
Z., and Allgöwer, F. (2002b). Real-time optimization and nonlinear model
predictive control of processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577–585.

230 BIBLIOGRAPHY

[Diehl et al., 2009] Diehl, M., Ferreau, H. J., and Haverbeke, N. (2009). Efficient
numerical methods for nonlinear MPC and moving horizon estimation. In
Magni, L., Raimondo, M., and Allgöwer, F., editors, Nonlinear model
predictive control, volume 384 of Lecture Notes in Control and Information
Sciences, pages 391–417. Springer.

[Diehl et al., 2007] Diehl, M., Findeisen, R., and Allgöwer, F. (2007). A
stabilizing real-time implementation of nonlinear model predictive control.
In Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., and van
Bloemen Waanders, B., editors, Real-Time and Online PDE-Constrained
Optimization, pages 23–52. SIAM.

[Diehl et al., 2005] Diehl, M., Findeisen, R., Allgöwer, F., Bock, H. G., and
Schlöder, J. P. (2005). Nominal stability of the real-time iteration scheme
for nonlinear model predictive control. IEE Proc.-Control Theory Appl.,
152(3):296–308.

[Diehl et al., 2003] Diehl, M., Findeisen, R., Allgöwer, F., Schlöder, J., and
Bock, H. (2003). Stability of nonlinear model predictive control in the presence
of errors due to numerical online optimization. In Proceedings of the IEEE
Conference on Decision and Control (CDC), pages 1419–1424, Maui, Hawaii.

[Diehl and Gros, 2017] Diehl, M. and Gros, S. (2017). Numerical Optimal
Control - script draft. (Available online: https://www.syscop.de/files/
2017ss/NOC/script/book-NOCSE.pdf).

[Diehl and Gros, 2018] Diehl, M. and Gros, S. (expected to be published in
2018). Numerical Optimal Control. –.

[Domahidi et al., 2012a] Domahidi, A., Mariethoz, S., and Morari, M. (2012a).
High-bandwidth explicit model predictive control of electrical drives. IEEE
Transactions on Industry Applications, 48(6):1980–1992.

[Domahidi et al., 2012b] Domahidi, A., Zgraggen, A., Zeilinger, M. N., Morari,
M., and Jones, C. N. (2012b). Efficient interior point methods for multistage
problems arising in receding horizon control. In Proceedings of the IEEE
Conference on Decision and Control (CDC), pages 668–674, Maui, HI, USA.

[Dontchev and Rockafellar, 2009] Dontchev, A. L. and Rockafellar, R. T.
(2009). Implicit Functions and Solution Mappings. Springer.

[Duff, 2004] Duff, I. (2004). Ma57—a code for the solution of sparse symmetric
definite and indefinite systems. ACM Transactions on Mathematical Software,
30(2):118–144.

https://www.syscop.de/files/2017ss/NOC/script/book-NOCSE.pdf
https://www.syscop.de/files/2017ss/NOC/script/book-NOCSE.pdf

BIBLIOGRAPHY 231

[Eldeeb et al., 2017] Eldeeb, H., Hackl, C. M., Horlbeck, L., and Kullick, J.
(2017). A unified theory for optimal feedforward torque control of anisotropic
synchronous machines. International Journal of Control, 91(10):2273–2302.

[Englert and Graichen, 2018] Englert, T. and Graichen, K. (2018). A fixed-
point iteration scheme for model predictive torque control of PMSMs. In
Proceedings of the 6th IFAC Conference on Nonlinear Model Predictive
Control, volume 51, pages 568–573, Madison, Wisconsin, USA.

[Feller and Ebenbauer, 2016] Feller, C. and Ebenbauer, C. (2016). A stabilizing
iteration scheme for model predictive control based on relaxed barrier
functions. arXiv preprint at arXiv:1603.04605.

[Feller and Ebenbauer, 2017] Feller, C. and Ebenbauer, C. (2017). Relaxed
logarithmic barrier function based model predictive control of linear systems.
IEEE Transactions on Automatic Control, 62(3):1223–1238.

[Ferreau et al., 2008] Ferreau, H. J., Bock, H. G., and Diehl, M. (2008). An
online active set strategy to overcome the limitations of explicit MPC.
International Journal of Robust and Nonlinear Control, 18(8):816–830.

[Ferreau et al., 2014] Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and
Diehl, M. (2014). qpOASES: a parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation, 6(4):327–363.

[Fiacco, 1983] Fiacco, A. (1983). Introduction to sensitivity and stability analysis
in nonlinear programming. Academic Press, New York.

[Fletcher, 1982] Fletcher, R. (1982). Second order corrections for non-
differentiable optimization. Numerical Analysis. Lecture Notes in
Mathematics, 912.

[Frison, 2015] Frison, G. (2015). Algorithms and Methods for High-Performance
Model Predictive Control. PhD thesis, Technical University of Denmark
(DTU).

[Frison, 2017] Frison, G. (2017). HPIPM, High-performance interior-point qp
solvers. https://github.com/giaf/hpipm.

[Frison and Jørgensen, 2013] Frison, G. and Jørgensen, J. B. (2013). A fast
condensing method for solution of linear-quadratic control problems. In
Proceedings of the IEEE Conference on Decision and Control (CDC), pages
7715–7720.

[Frison et al., 2017] Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., and
Diehl, M. (2017). BLASFEO: Basic linear algebra subroutines for embedded
optimization. arXiv:1704.02457.

232 BIBLIOGRAPHY

[Frison et al., 2018] Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., and
Diehl, M. (2018). BLASFEO: Basic linear algebra subroutines for embedded
optimization. ACM Transactions on Mathematical Software (TOMS),
44(4):42:1–42:30.

[Frison et al., 2020] Frison, G., Sartor, T., Zanelli, A., and Diehl, M. (2020).
The BLAS API of BLASFEO: Optimizing performance for small matrices.
ACM Transactions on Mathematical Software (TOMS), 46(2):15:1–15:36.

[Frison et al., 2014] Frison, G., Sorensen, H. B., Dammann, B., and Jørgensen,
J. B. (2014). High-performance small-scale solvers for linear model predictive
control. In Proceedings of the European Control Conference (ECC), pages
128–133.

[Geyer, 2016] Geyer, T. (2016). Model Predictive Control of High Power
Converters and Industrial Drives. John Wiley & Sons.

[Geyer et al., 2009] Geyer, T., Papafotiou, G., and Morari, M. (2009). Model
predictive direct torque control – Part I: Concept, algorithm, and analysis.
IEEE Transaction on Industrial Electronics, 56(6):1894–1905.

[Gill et al., 1987] Gill, P. E., Murray, W., Saunders, M. A., and H., W. M.
(1987). A Schur-complement method for sparse quadratic programming.
Technical report, Stanford Univ., CA (USA). Systems Optimization Lab.

[Gill and Wong, 2015] Gill, P. E. and Wong, E. (2015). Methods for convex and
general quadratic programming. Mathematical Programming Computation,
7(1):71–112.

[Gould and Toint, 2002] Gould, N. I. M. and Toint, P. L. (2002). An iterative
working-set method for large-scale nonconvex quadratic programming. Applied
Numerical Mathematics, 43(1):109–128.

[Graichen and Kugi, 2010] Graichen, K. and Kugi, A. (2010). Stability and
incremental improvement of suboptimal MPC without terminal constraints.
IEEE Transactions on Automatic Control, 55(11):2576–2580.

[Grüne and Nesić, 2003] Grüne, L. and Nesić, D. (2003). Optimization-based
stabilization of sampled-data nonlinear systems via their approximate discrete-
time models. SIAM J. Control Optim, 42(1):98–122.

[Hackl et al., 2016] Hackl, C., Kamper, M., Kullick, J., and Mitchell, J. (2016).
Current control of reluctance synchronous machines with online adjustment
of the controller parameters. In 2016 IEEE 25th International Symposium
on Industrial Electronics (ISIE). IEEE.

BIBLIOGRAPHY 233

[Hackl, 2015] Hackl, C. M. (2015). Dynamische Reibungsmodellierung: Das
Lund-Grenoble (LuGre) Reibmodell (available at the authors upon request). In
Schröder, D., editor, Elektrische Antriebe – Regelung von Antriebssystemen,
chapter 25, pages 1615–1657. Springer-Verlag.

[Hackl, 2017] Hackl, C. M. (2017). Non-identifier Based Adaptive Control in
Mechatronics. Springer International Publishing.

[Janka et al., 2016] Janka, D., Kirches, C., Sager, S., and Wächter, A. (2016).
An SR1/BFGS SQP algorithm for nonconvex nonlinear programs with block-
diagonal hessian matrix. Mathematical Programming Computation, 8(4):435–
459.

[Kaczorek, 2008] Kaczorek, T. (2008). The choice of the forms of Lyapunov
functions for a positive 2D Roesser model. International Journal of Applied
Mathematics and Computer Science, 17(4):471–475.

[Kamel et al., 2015] Kamel, M., Alexis, K., Achtelik, M., and Siegwart, R.
(2015). Fast nonlinear model predictive control for multicopter attitude
tracking on so(3). In IEEE Conference on Control Applications, Sidney,
Australia.

[Kamper et al., 1996] Kamper, M. J., van der Merwe, F., and Williamson, S.
(1996). Direct finite element design optimisation of the cageless reluctance
synchronous machine. IEEE Transactions on Power Conversion, 11(3):547–
555.

[Kouzoupis et al., 2018] Kouzoupis, D., Frison, G., Zanelli, A., and Diehl, M.
(2018). Recent advances in quadratic programming algorithms for nonlinear
model predictive control. Vietnam Journal of Mathematics, 46(4):863–882.

[Lagerquist et al., 1994] Lagerquist, R., Boldea, I., and Miller, T. (1994).
Sensorless-control of the synchronous reluctance motor. IEEE Transactions
on Industry Applications, 30(3):673–682.

[Lam et al., 2015] Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A
LLVM-based Python JIT compiler. In Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, New York, NY, USA. Association
for Computing Machinery.

[Landsmann et al., 2010a] Landsmann, P., Kennel, R., de Kock, H. W., and
Kamper, M. J. (2010a). Fundamental saliency based encoderless control for
reluctance synchronous machines. In Proceedings of the XIX International
Conference on Electrical Machines (ICEM), pages 1–7, Incheon, South Korea.

234 BIBLIOGRAPHY

[Landsmann et al., 2010b] Landsmann, P., Paulus, D., Stolze, P., and Kennel,
R. (2010b). Reducing the parameter dependency of encoderless predictive
torque control for reluctance machines. In Proceedings of the IEEE
International Symposium on Sensorless Control for Electrical Drives (SLED),
pages 93–99.

[Liao-McPherson et al., 2019] Liao-McPherson, D., Nicotra, M., and Kol-
manovsky, I. (2019). Time distributed sequential quadratic programming
for model predictive control: Stability and robustness. arXiv preprint
arXiv:1903.02605.

[Matsuo and Lipo, 1993] Matsuo, T. and Lipo, T. (1993). Field oriented
control of synchronous reluctance machine. In Power Electronics Specialists
Conference, 1993. PESC ’93 Record., 24th Annual IEEE, pages 425–431.

[Morari and Maeder, 2012] Morari, M. and Maeder, U. (2012). Nonlinear offset-
free model predictive control. Automatica, 48(9):2059–2067.

[Muske and Badgwell, 2002] Muske, K. R. and Badgwell, T. A. (2002).
Disturbance modeling for offset-free linear model predictive control. Journal
of Process Control, 12:617–632.

[Nishihara et al., 2015] Nishihara, R., Lessard, L., Recht, B., Packard, A.,
and Jordan, M. (2015). A general analysis of the convergence of admm. In
Proceedings of the 32nd International Conference on International Conference
on Machine, volume 37, pages 343–352.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical
Optimization. Springer Series in Operations Research and Financial
Engineering. Springer, 2 edition.

[Ohtsuka, 2015] Ohtsuka, T. (2015). A tutorial on C/GMRES and automatic
code generation for nonlinear model predictive control. In Control Conference
(ECC), 2015 European, pages 73–86.

[Oliphant, 2006] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol
Publishing USA.

[OpenBLAS, 2011] OpenBLAS (2011). OpenBLAS: An optimized BLAS library.
http://www.openblas.net/.

[Ostrowski, 1966] Ostrowski, A. (1966). Solutions of Equations and Systems of
Equations. Academic Press, New York.

[Pannocchia et al., 2015] Pannocchia, G., Gabiccini, M., and Artoni, A. (2015).
Offset-free MPC explained: novelties, subtleties, and applications. In

BIBLIOGRAPHY 235

Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive
Control, volume 48, pages 342–251.

[Pannocchia and Rawlings, 2003] Pannocchia, G. and Rawlings, J. (2003).
Disturbance Models for Offset-Free Model-Predictive Control. AIChE Journal,
49:426–437.

[Pannocchia et al., 2011] Pannocchia, G., Rawlings, J., and Wright, S. (2011).
Conditions under which suboptimal nonlinear MPC is inherently robust.
System & Control Letters, 60(9):747–755.

[Quevedo et al., 2019] Quevedo, D. E., Aguilera, R., and Geyer, T. (2019).
Model predictive control for power electronics applications. In Rakovic, S. V.
and Levine, W. S., editors, Handbook of Model Predictive Control, pages
551–580. Birkhäuser, Cham.

[Quirynen et al., 2013] Quirynen, R., Gros, S., and Diehl, M. (2013). Efficient
NMPC for nonlinear models with linear subsystems. In Proceedings of the
IEEE Conference on Decision and Control (CDC), pages 5101–5106.

[Quirynen et al., 2015] Quirynen, R., Gros, S., and Diehl, M. (2015). Inexact
Newton based lifted implicit integrators for fast nonlinear MPC. In Proceedings
of the IFAC Conference on Nonlinear Model Predictive Control (NMPC),
pages 32–38.

[Quirynen et al., 2017] Quirynen, R., Gros, S., Houska, B., and Diehl, M.
(2017). Lifted collocation integrators for direct optimal control in ACADO
toolkit. Mathematical Programming Computation, 9(4):527–571.

[Rao et al., 1998] Rao, C. V., Wright, S. J., and Rawlings, J. B. (1998).
Application of interior-point methods to model predictive control. Journal of
Optimization Theory and Applications, 99:723–757.

[Rashad et al., 2004] Rashad, E., Radwan, T., and Rahman, M. (2004). A
maximum torque per ampere vector control strategy for synchronous
reluctance motors considering saturation and iron losses. In Conference
Record of the 2004 IEEE Industry Applications Conference (39th IAS Annual
Meeting), volume 4, pages 2411–2417.

[Rawlings et al., 2017] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M. (2017).
Model Predictive Control: Theory, Computation, and Design. Nob Hill, 2nd
edition.

[Robinson, 1980] Robinson, S. M. (1980). Strongly Regular Generalized
Equations. Mathematics of Operations Research, Vol. 5, No. 1 (Feb., 1980),
pp. 43-62, 5:43–62.

236 BIBLIOGRAPHY

[Sargent and Murtagh, 1973] Sargent, R. and Murtagh, B. (1973). Projection
methods for nonlinear programming. Mathematical Programming, 4(1):245–
268.

[Scokaert et al., 1999] Scokaert, P. O. M., Mayne, D. Q., and Rawlings, J.
(1999). Suboptimal Model Predictive Control (Feasibility Implies Stability).
IEEE Transactions on Automatic Control, 44(3):648–654.

[Steinbach, 1996] Steinbach, M. (1996). Structured interior point SQP methods
in optimal control. Zeitschrift für Angewandte Mathematik und Mechanik,
76(S3):59–62.

[Stellato et al., 2020] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. (2020). OSQP: An operator splitting solver for quadratic programs.
Mathematical Programming Computation, 12(4):637–672.

[Tran-Dinh et al., 2012] Tran-Dinh, Q., Savorgnan, C., and Diehl, M. (2012).
Adjoint-based predictor-corrector sequential convex programming for
parametric nonlinear optimization. SIAM J. Optimization, 22(4):1258–1284.

[Van Der Walt et al., 2011] Van Der Walt, S., Colbert, S. C., and Varoquaux,
G. (2011). The NumPy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22.

[Van Parys and Pipeleers, 2018] Van Parys, R. and Pipeleers, G. (2018). Real-
time proximal gradient method for linear MPC. In Proceedings of the European
Control Conference (ECC), Lymassol, Cyprus.

[Verschueren et al., 2021] Verschueren, R., Frison, G., Kouzoupis, D., Frey, J.,
van Duijkeren, N., Zanelli, A., Novoselnik, B., Albin, T., Quirynen, R.,
and Diehl, M. (2021). acados – a modular open-source framework for fast
embedded optimal control. Mathematical Programming Computation.

[Verschueren et al., 2016] Verschueren, R., van Duijkeren, N., Quirynen, R.,
and Diehl, M. (2016). Exploiting convexity in direct optimal control: a
sequential convex quadratic programming method. In Proceedings of the
IEEE Conference on Decision and Control (CDC).

[Wächter and Biegler, 2009] Wächter, A. and Biegler, L. (2009). IPOPT - an
Interior Point OPTimizer. https://projects.coin-or.org/Ipopt.

[Wächter and Biegler, 2006] Wächter, A. and Biegler, L. T. (2006). On the
implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming, 106(1):25–57.

[Wills and Heath, 2004] Wills, A. G. and Heath, W. P. (2004). Barrier function
based model predictive control. Automatica, 40(8):1415–1422.

BIBLIOGRAPHY 237

[Wirsching et al., 2006] Wirsching, L., Bock, H. G., and Diehl, M. (2006). Fast
NMPC of a chain of masses connected by springs. In Proceedings of the IEEE
International Conference on Control Applications, Munich, pages 591–596.

[Xu et al., 1991] Xu, L., Xu, X., Lipo, T. A., and Novotny, D. W. (1991).
Vector control of a synchronous reluctance motor including saturation and
iron losses. IEEE Transactions on Industrial Applications, 27(5):977–985.

[Yamamoto et al., 2009] Yamamoto, S., Adawey, J., and Ara, T. (2009).
Maximum efficiency drives of synchronous reluctance motors by a novel loss
minimization controller considering cross-magnetic saturation. In Proceedings
of the 2009 IEEE Energy Conversion Congress and Exposition, pages 288–293.

[Yang, 2012] Yang, Y. (2012). Spacecraft attitude determination and control:
Quaternion based method. Annual Reviews in Control, 36(2):198–219.

[Zanelli et al., 2017a] Zanelli, A., Domahidi, A., Jerez, J. L., and Morari, M.
(2017a). FORCES NLP: An efficient implementation of interior-point methods
for multistage nonlinear nonconvex programs. International Journal of
Control.

[Zanelli et al., 2018] Zanelli, A., Horn, G., Frison, G., and Diehl, M. (2018).
Nonlinear model predictive control of a human-sized quadrotor. In Proceedings
of the European Control Conference (ECC), pages 1542–1547.

[Zanelli et al., 2021a] Zanelli, A., Kullick, J., Eldeeb, H., Frison, G., Hackl, C.,
and Diehl, M. (2021a). Continuous control set nonlinear model predictive
control of reluctance synchronous machines. IEEE Transactions on Control
Systems Technology, pages 1–12.

[Zanelli et al., 2016] Zanelli, A., Quirynen, R., and Diehl, M. (2016). An efficient
inexact NMPC scheme with stability and feasibility guarantees. In Proceedings
of 10th IFAC Symposium on Nonlinear Control Systems, Monterey, CA, USA.

[Zanelli et al., 2019a] Zanelli, A., Quirynen, R., and Diehl, M. (2019a). Efficient
zero-order NMPC with feasibility and stability guarantees. In Proceedings of
the European Control Conference (ECC), Naples, Italy.

[Zanelli et al., 2017b] Zanelli, A., Quirynen, R., Frison, G., and Diehl, M.
(2017b). A partially tightened real-time iteration scheme for nonlinear model
predictive control. In Proceedings of 56th IEEE Conference on Decision and
Control, Melbourne, Australia.

[Zanelli et al., 2019b] Zanelli, A., Tran-Dinh, Q., and Diehl, M. (2019b).
Contraction estimates for abstract real-time algorithms for NMPC. In
Proceedings of the IEEE Conference on Decision and Control, Nice, France.

238 BIBLIOGRAPHY

[Zanelli et al., 2020] Zanelli, A., Tran-Dinh, Q., and Diehl, M. (2020). Stability
analysis of real-time methods for equality constrained NMPC. In Proceedings
of the IFAC World Congress, Berlin, Germany.

[Zanelli et al., 2021b] Zanelli, A., Tran-Dinh, Q., and Diehl, M. (2021b). A
lyapunov function for the combined system-optimizer dynamics in inexact
model predictive control. Automatica, 134:109901.

[Zavala and Anitescu, 2010] Zavala, V. and Anitescu, M. (2010). Real-Time
Nonlinear Optimization as a Generalized Equation. SIAM J. Control Optim.,
48(8):5444–5467.

Curriculum vitae

Andrea Zanelli, born June 2, 1990, in Como, Italy.

Education

2015 - 2020: PhD in Engineering - Prof. Moritz Diehl, University of
Freiburg, Germany.

2015: Research assistant - Dr. Alexander Domahidi, Dr. Juan Jerez,
Prof. Manfred Morari, IfA, ETH Zurich, Switzerland - embotech AG (5
months).

2014 - 2015: Master thesis - Dr. Alexander Domahidi, Dr. Juan Jerez,
Prof. Manfred Morari, IfA, ETH Zurich, Switzerland - embotech AG.

2012 - 2015: MSc in Robotics, Systems and Control, ETH Zurich,
Switzerland.

2009 - 2012: BSc in Automation Engineering, Politecnico di Milano, Italy

Industrial experience

2016: Internship - Greg Horn, Kitty Hawk, Mountain View, California,
USA (2 months).

2013 - 2014: Internship - Dr. Joachim Ferreau, ABB research center,
Baden, Dättwil, Zurich, Switzerland (9 months).

239

List of publications

Journal articles (as main author)

1. Zanelli, A., Domahidi, A., Jerez, J. L., Morari, M. FORCES NLP: An
efficient implementation of interior-point methods for multistage nonlinear
nonconvex programs. International Journal of Control (2017).

2. Zanelli, A., Kullick, J., Eldeeb, H., Frison, G., Hackl, C., Diehl, M.
Continuous control set nonlinear model predictive control of reluctance
synchronous machines. IEEE Transactions on Control Systems Technology
(2021)

3. Zanelli, A., Tran-Dinh, Q., Diehl, M. A Lyapunov function for the
combined system-optimizer dynamics in nonlinear model predictive control.
Automatica (2021).

4. Zanelli, A., Sartor, T., Rutquist, P., Frison, G., [...], Diehl, M. prometeo:
a domain specific language and Python-to-C transpiler for embedded
high-performance computing (in preparation).

5. Zanelli, A., [...], Diehl, M. Asymptotic stability of progressive tightening
model predictive control (in preparation).

6. Zanelli, A., [...], Diehl, M. A feasible sequential quadratic programming
strategy with iterated second-order corrections (in preparation).

Journal articles (as co-author)

1. Frison, G. Kouzoupis, D., Sartor, T., Zanelli, A., Diehl, M. BLASFEO:
Basic linear algebra subroutines for embedded optimization. ACM
Transactions on Mathematical Software (2018)

241

242 LIST OF PUBLICATIONS

2. Kouzoupis, D., Frison, G., Zanelli, A., Diehl, M. Recent advances in
quadratic programming algorithms for nonlinear model predictive control.
Vietnam Journal of Mathematics (2018).

3. Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., van Duijkeren, N.,
Zanelli, A., Novoselnik, B., Albin, T., Quirynen, R., Diehl, M. acados:
a modular open-source framework for fast embedded optimal control.
Mathematical Programming Computation (2021).

4. Frison, G., Sartor, T., Zanelli, A., Diehl, M. The BLAS API of BLASFEO:
Optimizing performance for small matrices. ACM Transactions on
Mathematical Software (2020).

Conference proceedings (as main author)

1. Zanelli, A., Quirynen, R., Diehl, M. An efficient inexact NMPC scheme
with stability and feasibility guarantees. In Proceedings of the IFAC
Symposium on Nonlinear Control Systems (Monterey, CA, USA, August
2016).

2. Zanelli, A., Quirynen, R., Jerez, J., Diehl, M. A homotopy-based nonlinear
interior-point method for NMPC. In Proceedings of the IFAC World
Congress (Toulouse, France, July 2017).

3. Zanelli, A., Quirynen, R., Frison, G., Diehl, M. A partially tightened
real-time iteration scheme for nonlinear model predictive control. In
Proceedings of the IEEE Conference on Decision and Control (Melbourne,
Australia, December 2017).

4. Zanelli, A., Horn, G., Frison, G., Diehl, M. Nonlinear model predictive
control of a human-sized quadrotor. In Proceedings of the European
Control Conference (Limassol, Cyprus, June 2018).

5. Zanelli, A., Quirynen, R., Diehl, M. Efficient zero-order NMPC with
feasibility and stability guarantees. In Proceedings of the European
Control Conference (Naples, Italy, June 2019).

6. Zanelli, A., Tran-Dinh, Q., Diehl, M. Contraction estimates for abstract
real-time algorithms for NMPC. In Proceedings of the IEEE Conference
on Decision and Control (Nice, France, Dec 2019).

7. Zanelli, A., Tran-Dinh, Q., Diehl, M. Stability analysis of real-time
methods for equality constrained NMPC. In Proceedings of the IFAC
World Congress (Berlin, Germany, July 2020).

LIST OF PUBLICATIONS 243

8. Zanelli, A., Frey, J., Messerer, F., Plum, F., Diehl, M. Zero-order robust
nonlinear model predictive control with ellipsoidal uncertainty sets. In
Proceedings of the IFAC Conference on Nonlinear Model Predictive
Control (Bratislava, Slovakia, July 2021).

Conference proceedings (as co-author)

1. Kouzoupis, D., Zanelli, A. Peyrl, H., Ferreau, H.J. Towards proper
assessment of QP algorithms for embedded model predictive control.
In Proceedings of the European Control Conference (Linz, Austria, June
2015).

2. Frison, G., Quirynen, R., Zanelli, A., Diehl, M., Jørgensen, J.B. Hardware
tailored linear algebra for implicit integrators in embedded NMPC. In
Proceedings of the IFAC World Congress (Toulouse, France, July 2017).

3. Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A.,
Quirynen, R., Diehl, M. Towards a modular software package for embedded
optimization. In Proceedings of the IFAC Conference on Nonlinear Model
Predictive Control (Madison, Wisconsin, USA, August 2018).

4. Nurkanovic, A., Zanelli, A., Albrecht, S., Diehl, M., The advanced step
real time iteration for NMPC. In Proceedings of the IEEE Conference on
Decision and Control (Nice, France, December 2019).

5. Baumgärtner, K., Zanelli, A., Diehl, M. Zero-order moving horizon
estimation. In Proceedings of the IEEE Conference on Decision and
Control (Nice, France, December 2019).

6. Nurkanovic, A., Mesanovic, A., Zanelli, A., Frey, J., Frison, G., Albrecht,
S., Diehl, M. Real-time nonlinear model predictive control for microgrid
operation. In Proceedings of the American Control Conference (Denver,
Colorado, USA, July 2020).

7. Gargiani, M., Zanelli, A., Tran-Dinh, Q., Diehl, M., Hutter, F. Transferring
optimality across data distributions via homotopy methods. In
Proceedings of the International Conference on Learning Representations
(Addis Ababa, Ethiopia, April 2020).

8. Baumgärtner, K., Zanelli, A., Diehl, M. A gradient condition for the
arrival cost in moving horizon estimation In Proceedings of the European
Control Conference (Saint Petersburg, Russia, May 2020).

9. Gargiani, M., Zanelli, A., Diehl, M., Hutter F. On the promise of the
stochastic generalized Gauss-Newton method for training DNNs. Technical
report available on arXiv (2020).

244 LIST OF PUBLICATIONS

10. Nurkanovic, A., Zanelli, A., Albrecht, S., Frison, G., Diehl, M. Contraction
properties of the advanced step real-time iteration for NMPC. In
Proceedings of the IFAC World Congress (Berlin, Germany, July 2020).

11. Schoels, T., Rutquist, P., Palmieri, L., Zanelli, A., Arras, K.O., Diehl,
M. CIAO: MPC-based safe motion planning in predictable dynamic
environments. In Proceedings of the IFAC World Congress (Berlin,
Germany, July 2020).

12. Kloeser, D., Schoels, T., Sartor, T., Zanelli, A., Frison, G., Diehl, M.
NMPC for racing using a singularity-free path-parametric model with
obstacle avoidance. In Proceedings of the IFAC World Congress (Berlin,
Germany, July 2020).

13. Geweth, D., Zanelli, A., Frison, G., Vollmer, U, Diehl M. Field oriented
economic model predictive control for permanent magnet synchronous
motors. In Proceedings of the IFAC World Congress (Berlin, Germany,
July 2020).

14. Carlos, B.B., Sartor, T., Zanelli, A., Diehl, M., Oriolo, G. Least
conservative linearized constraint formulation for real-time motion
generation. In Proceedings of the IFAC World Congress (Berlin, Germany,
July 2020).

15. Carlos, B.B., Sartor, T., Zanelli, A., Frison, G., Burgard, W., A., Diehl,
M., Oriolo, G. An efficient real-time NMPC for quadrotor position control
under communication time-delay. In Proceedings of the International
Conference on Control, Automation, Robotics and Vision (Shenzhen,
China, December 2020).

FACULTY OF ENGINEERING
DEPARTMENT OF MICROSYSTEMS ENGINEERING

SYSTEMS CONTROL AND OPTIMIZATION LABORATORY
Georges-Köhler-Allee 102

DE-79110 Freiburg i. Br.

	Abstract
	Kurze Zusammenfassung
	List of abbreviations
	Notation
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions and outline of the thesis

	Background on numerical optimization and predictive control
	Numerical optimization
	Numerical optimal control and model predictive control

	Asymptotic stability of the system-optimizer dynamics in NMPC
	Contraction estimates for real-time methods
	Asymptotic stability of the system-optimizer dynamics
	Chapter summary and outlook

	Zero-order methods for NMPC with stability guarantees
	Zero-order SQP for NMPC
	Asymptotic stability of zero-order NMPC
	Implementation details and benchmarking
	Chapter summary and outlook

	Progressive tightening methods for NMPC with stability guarantees
	Asymptotic stability of progressive tightening model predictive control
	A partial tightening real-time method
	Progressive tightening NMPC for attitude control of a quadcopter
	Chapter summary and outlook

	Continuous control set NMPC of reluctance synchronous machines
	Nonlinear model predictive control for electrical drives
	Simulation and experimental results
	Chapter summary and outlook

	prometeo: a domain specific language for embedded high-performance computing
	Introducing prometeo
	Usage and performance
	Chapter summary and outlook

	Conclusions and outlook
	Appendix
	Proof of Proposition 3.2.16
	Proof of Theorem 3.2.25
	Lyapunov function for the system-optimizer dynamics in error form
	Asymptotic stability of the system-optimizer dynamics for equality constrained NMPC
	A globalization heuristic for the feasible SQP strategy of Section 4.1
	CS-NMPC for RSMs: additional results

	Bibliography
	Curriculum vitae
	List of publications

